
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Global EDF Schedulability Analysis for Parallel
Tasks on Multi‑core Platforms

Chwa, Hoon Sung; Lee, Jinkyu; Lee, Jiyeon; Phan, Kiew‑My; Easwaran, Arvind; Shin, Insik

2016

Chwa, H. S., Lee, J., Lee, J., Phan, K. M., Easwaran, A., & Shin, I. (2016). Global EDF
Schedulability Analysis for Parallel Tasks on Multi‑core Platforms. IEEE Transactions on
Parallel and Distributed Systems, 99, 1‑1.

https://hdl.handle.net/10356/84114

https://doi.org/10.1109/TPDS.2016.2614669

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
[http://dx.doi.org/10.1109/TPDS.2016.2614669].

Downloaded on 19 Mar 2024 12:50:01 SGT

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 1

Global EDF Schedulability Analysis for Parallel
Tasks on Multi-core Platforms

Hoon Sung Chwa, Member, IEEE, Jinkyu Lee, Member, IEEE, Jiyeon Lee, Student Member, IEEE,
Kiew-My Phan, Student Member, IEEE, Arvind Easwaran, and Insik Shin, Member, IEEE

Abstract—With the widespread adoption of multi-core architectures, it is becoming more important to develop software in ways that
takes advantage of such parallel architectures. This particularly entails a shift in programming paradigms towards fine-grained,
thread-parallel computing. Many parallel programming models have been introduced for targeting such intra-task thread-level
parallelism. However, most successful results on traditional multi-core real-time scheduling are focused on sequential programming
models. For example, thread-level parallelism is not properly captured into the concept of interference, which is key to many
schedulability analysis techniques. Thereby, most interference-based analysis techniques are not directly applicable to parallel
programming models. Motivated by this, we extend the notion of interference to capture thread-level parallelism more accurately. We
then leverage the proposed notion of parallelism-aware interference to derive efficient EDF schedulability tests that are directly
applicable to parallel task models, including DAG models, on multi-core platforms, without knowing an optimal schedule. Our evaluation
results indicate that the proposed analysis significantly advances the state-of-the-art in global EDF schedulability analysis for parallel
tasks. In particular, we identify that our proposed schedulability tests are adaptive to different degrees of thread-level parallelism and
scalable to the number of processors, resulting in substantial improvement of schedulability for parallel tasks on multi-core platforms.

Index Terms—Real-time scheduling, Parallel task, Global EDF, Interference

F

1 INTRODUCTION

W ITH the advance of semiconductor technology, multi-
/many-core architectures are widely used to better

manage trade-offs between performance, power efficiency,
and reliability in deep submicron technology. As the size of
a CMOS transistor continuously shrinks, more cores are get-
ting integrated on a single die. For example, Intel introduced
the Intel Xeon Phi coprocessor with around 60 cores [1],
and Cavium designed ARM-based processors that scale up
to 48 cores [2]. Given the increasing emphasis on multi-
/many-core chip design, software parallelism is likely to be
one of the greatest constraints on computer performance.
This inherently entails a shift in programming paradigms
towards fine-grained thread-parallel computing, rather than
relatively coarse-grained application-level parallelism.

A popular technique to achieve fine-grained, thread-
level parallelism operates on the principle of divide-and-
conquer. It breaks down a larger task into many smaller
subtasks, runs those subtasks in parallel, and synchronizes
them to merge the results once each subtask completes
computation. Many parallel programming models have
been proposed to support such a principle for parallel
computation, including OpenMP [3], Cilk/Cilk++ [4], Intel
Threading Building Blocks [5], Wool [6], and Chapel [7].
Those parallel programming models share a common sce-
nario that some subtasks (threads) in a program (task) can

• H.S. Chwa, Jiyeon Lee, and I. Shin are with School of Computing, KAIST,
South Korea.
E-mail: {chwahs,jy.lee}@cps.kaist.ac.kr and insik.shin@cs.kaist.ac.kr.

• Jinkyu Lee is with Department of Computer Science and Engineering,
Sungkyunkwan University (SKKU), South Korea.
E-mail: jinkyu.lee@skku.edu.

• K. Phan is with PRECISE center, University of Pennsylvania.
E-mail: phankieumy@gmail.com.

• A. Easwaran is with School of Computer Engineering, Nanyang Techno-
logical University, Singapore.
E-mail: arvinde@ntu.edu.sg.

run in parallel to produce partial results individually and
certain threads should synchronize to integrate the partial
results 1. Many parallel task models have been considered to
capture those two important aspects: thread-level parallelism
and synchronization. One popular parallel task model is the
synchronous parallel task model, where a task consists of
a sequence of parallel regions, called segments, and each
segment includes one or more threads. All the threads
belonging to the same segment are released at the same
time and at most m threads are able to run simultaneously,
where m is the number of available cores. Two consecu-
tive segments are subject to synchronization (precedence
constraint); all the threads belonging to one segment must
complete their own execution in order to move onward to
the next segment. Recently, a growing research attention has
been given to a more general parallel task model, the DAG
(Directed Acyclic Graph) model, where a node represents
a thread and an edge describes a precedence dependence
between two threads. In the DAG model, the granularity
of precedence constraint becomes smaller to the level of
thread to offer a more flexible way of describing thread-
level parallelism and synchronization than the synchronous
parallel task model.

A shift from uni-core to multi-core processors allows
inter-task parallelism, where several tasks can execute si-
multaneously on multi-core processors. In addition, a shift
from single-thread to multi-thread tasks allows intra-task
parallelism, where even a single task can have multiple
threads running simultaneously to take full advantage of
multi-core processing. Despite the growing importance of
intra-task parallelism, most real-time multi-core scheduling

1. In terminology of some programming models, such as OpenMP,
Intel Threading Building Blocks, and Chapel, the term “task” is used to
represent a unit of parallel execution referred to as a “thread” in this
paper.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 2

TABLE 1
Schedulability analysis methods for parallel tasks: † indicates a case
where the proposed analysis method is applicable only for partitioned

scheduling.

Comparative Independent

Fork-join [21]†task model
Synchronous [22] [23]

parallel [24] [25]
task model [26] [27]†

[28]
DAG [28] [29]
task [30] [31]

model [29] [32]
This paper

studies are focused on inter-task parallelism of sequential
tasks, and relatively much less attention has been paid to
understanding intra-task parallelism towards the schedula-
bility analysis of parallel tasks. For example, a large num-
ber of studies extensively investigated the schedulability
analysis of sequential tasks under EDF (earliest-deadline-
first) and fixed-priority global scheduling [8], producing
many influential results. Such results include the concept
of problem window and interference [9], [10], interference
bounding techniques [11], [12], response time computation
methods [10], [13], and optimal priority assignment [14].
Many other scheduling algorithms have been proposed for
sequential models in order to take advantage of multi-
core more effectively, including optimal algorithms such as
pfair [15], DP-Fair [16], RUN [17], and U-EDF [18]. In ad-
dition, some approaches [19], [20] have been also proposed
for scheduling tasks with pipeline precedence constraints in
distributed real-time systems. However, the insights behind
those successful results are not directly applicable to par-
allel tasks, due to the unique characteristics of thread-level
parallelism.

For example, the notion of interference has been well
defined in the sequential task case and serves as the basis
for many schedulability analysis methods [9], [10], [11].
However, the current notion of interference does not capture
thread-level parallelism because it assumes that each task
has only a single thread to run at any time instant. Hence,
those analysis methods are not directly applicable or easily
extensible to parallel tasks.

Recently, a few schedulability analysis methods have
been proposed for parallel task systems (see Table 1). Those
methods can broadly fall into two types: comparative and
independent. The analysis methods in the literature can be
considered as comparative, if they derive resource augmen-
tation bounds; the resource augmentation bound indicates
how well a scheduler performs relatively to an optimal
scheduler. Thus, such resource augmentation bounds serve
as good measures to assess the performance of a scheduler
and compare different schedulers. However, they can be
hardly used to determine the schedulability of a set of
given parallel tasks when no optimal schedule is known.
In particular, [33] proved that it is impossible to find an
optimal online multi-core scheduler for sporadic task sys-
tems. On the other hand, analysis methods can be said

to be independent, if they can serve as schedulability tests
directly even without having to find any optimal schedule.
Motivated by this, the goal of this paper is to develop an
efficient, independent schedulability test that can determine
the schedulability of parallel tasks, including DAG tasks,
directly in connection to no optimal schedule.

Contribution. The main contributions of this paper can
be summarized as follows:

• We identify a chain of threads, called a critical thread,
in a DAG task that makes the most significant im-
pact to a deadline miss, if exists. We then derive
interference-based schedulability analysis of global
EDF scheduling for sporadic DAG task systems with
novel notions of critical interference and p-depth critical
interference in order to capture thread-level paral-
lelism accurately (see Section 4).

• We develop a polynomial-time workload-based
schedulability test. We identify the worst-case in-
terference scenario for DAG tasks considering the
structure of a DAG in detail and derive tight upper
bounds on interference based on workload (see Sec-
tion 5).

• We also develop a pseudo-polynomial-time slack-
based iterative schedulability test to reduce pes-
simism effectively in bounding interference (see Sec-
tion 6).

• We present simulation results, showing that the pro-
posed schedulability analysis methods significantly
outperforms the state-of-the-art methods available
for DAG tasks even if no optimal schedule is known
(see Section 7).

In our earlier work [23], we presented interference-based
schedulability tests for a synchronous parallel task set under
global EDF scheduling. In this paper, we extend this initial
study towards a more expressive parallel task model, DAG
task model, with further improvements. In the synchronous
parallel task model, each task consists of a sequence of
segments with synchronization points at the end of each
segment. The DAG task model refines the granularity of
synchronization from segment-level to thread-level, allow-
ing to describe more flexible way of thread-level parallelism
and synchronization. In order to generalize the schedula-
bility analysis techniques in [23] for the DAG task model,
this paper has the following new technical contributions in
addition to re-organizing and re-writing the entire paper for
better and/or concise presentation:

• The notions of critical thread, critical interference,
and p-depth critical interference are extended ac-
cordingly with the DAG task model. Building upon
those new notions, we extend the workload-based
schedulability test in [23] towards the DAG task
model, including a new way of calculating the worst-
case workload for DAG tasks.

• We additionally propose an improved schedulability
test by the use of slack values.

• We include more evaluation results, including a com-
parison with other related works for DAG tasks.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 3

2 RELATED WORK

Many scheduling approaches have been introduced for
intra-task thread-level parallelism in the hard real-time con-
text. The schedulability tests developed in the literature can
be largely categorized into two types: (1) comparative ones
that determine the schedulability of a scheduler relatively
to an ideal scheduler, and (2) independent ones that deter-
mine the schedulability of a scheduler independently in
connection to no other scheduler. For example, according
to [28], resource and capacity augmentation bounds2 serve
as comparative and independent tests, respectively. Table 1
summarizes the scheduling approaches in the literature by
schedulability test types and parallel task models.

Fork-join task model. One of the widely used parallel
task models is the fork-join model [21]. A fork-join task
consists of an alternate sequence of sequential and parallel
regions, called segments, and all the threads within each
segment should synchronize in order to proceed to the next
segment. Under the assumption that each parallel segment
can have at most as many threads as the number of pro-
cessors, [21] presented a resource augmentation bound of
3.42 for partitioned DM (deadline-monotonic) scheduling of
periodic fork-join tasks with implicit deadlines.

Synchronous parallel task model. Relaxing the restric-
tion that sequential and parallel segments alternate, sev-
eral studies have considered a more general synchronous
parallel task model that allows each segment to have any
arbitrary number of threads. [22] presented a resource aug-
mentation bound of 4 for global EDF scheduling and 5 for
partitioned DM scheduling of periodic tasks with implicit
deadlines. Building upon this work, [34] presented a pro-
totype scheduling service for their RT-OpenMP concurrency
platform. [26] also showed a resource augmentation bound
of 2 for a certain class of global scheduling algorithms, such
as PD2 [35], LLREF [36], DP-Wrap [16], or U-EDF [18] to
schedule sporadic tasks with constrained deadlines.

Those studies [21], [22], [26] share a common princi-
ple of task decomposition for schedulability analysis. They
decompose a single synchronous parallel task into multi-
ple independent sequential sub-tasks through intermediate
deadline assignment. This approach is safe — satisfying
the intermediate deadlines of all sub-tasks leads to meeting
the deadlines of their aggregate synchronous parallel tasks.
They then employ existing schedulability analysis for those
sequential sub-tasks. [22] decomposes a parallel task into a
set of sequential sub-tasks such that the density of each seg-
ment is upper bounded by some value, and [26] decomposes
a parallel task such that the maximum density among all
segments in a parallel task is minimized. However, such an

2. The resource augmentation bound r of a scheduler S has the
property that if a task set is feasible on m unit-speed processors,
then the task set is schedulable under S on m processors of speed
r. For a scheduler S and its corresponding schedulability condition X ,
their capacity augmentation bound c has the property that if the given
condition X is satisfied with a task set, the task set is schedulable by S
on m processors of speed c. Since the resource augmentation bound is
connected to an ideal optimal schedule, it is hard (if not impossible) to
use it as a schedulability test due to the difficulty of finding an optimal
schedule in many multi-core scheduling domains. On the other hand,
the capacity augmentation bound has nothing to do with an optimal
schedule, and this allows it to serve as an easy schedulability test
(see [28] more details).

𝜽𝒊,𝟏

𝜽𝒊,𝟐

𝜽𝒊,𝟑

𝜽𝒊,𝟒

𝜽𝒊,𝟔

𝜽𝒊,𝟓

𝑪𝒊,𝟏 = 𝟐 𝑪𝒊,𝟑 = 𝟏

𝑪𝒊,𝟐 = 𝟑

𝑪𝒊,𝟓 = 3

𝑪𝒊,𝟔 = 𝟐

𝑪𝒊,𝟒 = 𝟑

𝑇𝑖 = 11

𝐷𝑖 = 10

𝝉𝒊

Fig. 1. A DAG task τi

indirect analysis via task decomposition can be pessimistic,
because task decomposition can incur non-trivial overheads.
Furthermore, it requires modifications to existing operating
systems to support task decomposition [34].

Recently, some studies [23], [24], [25], [27] developed
direct schedulability analysis without task decomposition
for synchronous parallel tasks. [24] showed a resource
augmentation bound of 2 − 1/m for sporadic tasks with
constrained deadlines under global EDF scheduling. [23]
introduced an interference-based analysis for global EDF
scheduling of sporadic tasks with constrained deadlines.
[25] and [27] presented a response-time analysis (RTA) for
sporadic tasks under global fixed-priority scheduling and
partitioned fixed-priority scheduling, respectively.

DAG task model. Refining the granularity of synchro-
nization from segment-level to thread-level, a DAG (Di-
rected Acyclic Graph) task model is considered, where a
node represents a thread and an edge specifies a precedence
dependency between nodes. A thread can execute only after
all of its predecessors have been executed. [30] showed a
resource augmentation bound of 2 for a single DAG task
with arbitrary deadlines under global EDF scheduling. For a
set of DAG tasks, a resource augmentation bound of 2−1/m
was presented for global EDF scheduling [28], [29]. [29] also
derived a 3− 1/m resource augmentation bound for global
DM scheduling. In addition to those resource augmentation
bounds, which serve as comparative schedulability tests,
[28] introduced capacity augmentation bounds that can
work as independent schedulability tests for sporadic DAG
tasks with arbitrary deadlines under global EDF and RM
(rate-monotonic) scheduling. [31] later improved the capac-
ity augmentation bounds for global EDF and RM scheduling
and proposed a new scheduling policy, called federated
scheduling, for DAG tasks. [29] also presented a simple
polynomial-time independent schedulability test for global
EDF scheduling, and this work was later extended in [32]
to yield an improved pseudo-polynomial time independent
schedulability test. This paper proposes a new interference-
based, independent schedulability test for a DAG task set
under global EDF scheduling, significantly improving the
schedulability compared to the existing techniques.

3 SYSTEM MODEL

We consider a multi-core platform, where sporadic DAG
(Directed Acyclic Graph) tasks run over m identical proces-
sors under global EDF scheduling. A set of tasks is denoted
by τ . In the sporadic DAG task model, a task τi ∈ τ is
specified by (Gi, Di, Ti), where Gi is a directed acyclic

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 4

graph as shown in Figure 1, Di is the relative deadline,
and Ti is the minimum separation. The DAG Gi is specified
as Gi = (Vi, Ei), where Vi is a set of nodes and Ei is
a set of directed edges between two nodes. Each node
θi,u ∈ Vi represents a sequential operation (a “thread”),
and is characterized by the worst-case execution time re-
quirement (WCET) Ci,u. The number of threads in τi is
denoted by Ni. A directed edge (θi,u, θi,v) ∈ Ei represents
the precedence dependency that θi,v cannot start execution
unless θi,u has finished execution. A thread θi,u becomes
ready for execution as soon as all of its predecessors have
completed their execution.

A path in the sporadic DAG task τi is a sequence of
threads θi,1, θi,2, ..., θi,f such that (θi,j , θi,j+1) is an edge in
Gi for 1 ≤ j < f . The length of this path is defined as the
sum of the WCETs of all its threads:

∑f
j=1 Ci,j . The length

of a longest path, denoted by LCi can be computed in linear
time in the number of nodes and the number of edges in Gi,
when its nodes are sorted and processed in a topological
order. In Figure 1, the longest path of τi is the sequence of
θi,1, θi,2 and θi,5, with the longest path length LCi equal to
2 + 3 + 3 = 8. We also define Ci as the total WCET of τi,
and it is presented as

Ci =
∑

θi,j∈Vi

Ci,j . (1)

Note that LCi is the minimum amount of time needed
to execute all threads in τi assuming that it can use as
many processors as possible for its execution, and Ci is the
maximum amount of time to complete the execution of all
the threads in τi on a single core.

A sporadic DAG task τi invokes a series of jobs, and
successive jobs are released with a duration of at least Ti
time units apart. If a job of τi is released at time instant t then
all |Vi| threads θi,u ∈ Vi are released at time instant t and
must complete execution by the absolute deadline t + Di.
We consider a constrained deadline Di such that Di ≤ Ti.
It should be LCi ≤ Di but not necessarily Ci ≤ Di. Let Ui
denote the utilization of τi and be defined as Ui = Ci/Ti.
We denote the l-th job of a task τi with J li . We will omit the
superscript in the notation for simplicity when no ambiguity
arises. For a job J li , r

l
i and dli are its release time and

deadline. The execution window of a job J li is then defined
as interval [rli, d

l
i).

In EDF scheduling, threads are assigned priorities ac-
cording to their absolute deadline: the earlier the deadline of
a thread, the higher its priority. Thereby, threads in different
jobs may have different priorities, but all threads within
a single job have the same priority since they share the
same absolute deadline. With global EDF, each thread ready
to execute is placed in a system-wide queue, ordered by
non-decreasing absolute deadline, and the first m threads
are extracted from the queue to execute on the available
processors at every time instant. In this paper, we assume
quantum-based time and without loss of generality, let one
time unit denote the quantum length. All task parameters
are assumed to be specified as multiples of this quantum
length.

We summarize the notation used throughout the paper
in the supplement, available online.

4 SCHEDULABILITY ANALYSIS FOR DAG TASKS

In this section, we derive schedulability analysis of global
EDF scheduling for sporadic DAG task systems with con-
strained deadlines. To this end, we extend the concept of
interference towards the DAG task model and introduce a
new concept called critical interference. With the notion of
critical interference, we investigate what happens if there
is a deadline miss and identify a necessary condition for
a job to miss its deadline, which serves as a basis for
schedulability analysis. In this section, a run-time schedule
of a task set is assumed to be known. However, a worst-case
situation where a task suffers the worst possible interference
is generally unknown for global scheduling of sporadic task
systems. This prevents calculation of the exact interference
without knowledge of run-time schedule. Therefore, in later
sections, we derive a safe upper bound on the interference
and transform the necessary condition into an efficient
schedulability test.

4.1 The concept of critical interference
In the real-time scheduling literature, the notion of inter-
ference has been employed in many schedulability analysis
methods [10], [11], [37], [38], [39], using the following defi-
nitions:

• Interference Ik(a, b): the sum of all intervals in which
τk is ready for execution but cannot execute due to
other higher-priority tasks in [a, b).

• Interference Ii,k(a, b): the sum of all intervals in
which τi is executing and τk is ready to execute but
not executing in [a, b).

With the above definitions, the relation between Ik(a, b)
and Ii,k(a, b) serves as an important basis for deriving
schedulability analysis. In the single-thread task case, it is
intuitive to construct such a relation on m processors as
follows [10]:

Ik(a, b) =
1

m

∑
τi∈τ

Ii,k(a, b). (2)

However, it is not straightforward to build such a relation
in the multi-thread task case, as illustrated in the following
example.
Example 4.1. As an example, suppose that two threads of

higher-priority task τi and one thread of lower-priority
task τk are ready for execution on two processors at time
t. Then, the two threads of τi will run on two processors
in [t, t + 1), delaying the execution of τk. According to
the above definitions, τi imposes interference on τk in
[t, t + 1), yielding Ik(t, t + 1) = 1 and Ii,k(t, t + 1) = 1.
However, Eq. (2) no longer supports such definitions.

The above example suggests a need for extending the
concept of interference for the parallel task model, and this
raises three problems: (i) how to calculate the interference on
τk when only some (but not all) threads of τk are interfered,
(ii) how to calculate the interference of τi on τk when only
some (but not all) threads of τi interfere with τk, and (iii)
how to calculate the intra-task interference of threads of τk
on other threads of the same task τk.

To address problem (i), we represent the concept of
interference of a task τk by considering the interference on a

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 5

chain3 of its threads. This chain is called a critical chain, and
threads belonging to a critical chain are called critical threads.
The detailed description of a critical chain is provided in
Section 4.2. With the notion of critical threads, we can now
extend the traditional definition of interference towards the
DAG task model and introduce a new concept called critical
interference as follows:

• Critical interference Ik(a, b): the sum of all intervals
in which a critical thread of τk is ready for execu-
tion but cannot execute due to other higher-priority
threads in [a, b).

• Critical interference Ii,k(a, b): the sum of all intervals
in which at least one thread of τi is executing and
the critical thread of τk is ready to execute but not
executing in [a, b).

Note that when all tasks have a single thread, then the single
thread is equal to the critical thread and our definition is the
same as the traditional definition of interference.

To address problem (ii), we introduce a new concept
called p-depth critical interference. The p-depth critical inter-
ference of a task τi on τk characterizes not only the length
of the delay τi causes to τk but also the number of threads
of τi that cause the delay.

To address problem (iii), we incorporate the notion of
intra-task interference into both the critical interference and
the p-depth critical interference such that they include inter-
ference on a critical thread by other non-critical threads of
the same task.

In the remainder of this section, we describe the notion
of critical threads and address the problems raised the above
in detail.

4.2 Necessary condition for the first deadline miss of a
DAG task

In this section we formally define a critical chain of a job.
We first seek to identify a necessary condition for any DAG
task to miss a deadline on m processors. Let a last-completing
thread of a job be a thread that completes last among the job’s
threads. A job misses deadline if its last-completing thread
misses deadline. A thread is said to be a last-completing
predecessor of θk,u if it finishes last among all of the pre-
decessors of θk,u.4 A thread can only be ready when its last-
completing predecessor completes. If we recursively track
all the concatenating last completing predecessors from a
last completing thread until there is no predecessor, we can
construct a critical chain λlk of job J lk. Each thread in the
critical chain is defined as a critical thread, and the length
of the critical chain of J lk, denoted by CP lk, is defined as
the sum of the WCETs of all its critical threads. A DAG task
is then considered as complete as soon as its critical threads
complete execution.

We define interference on a critical thread θk,u ∈ λk over
interval [a, b) (denoted as I<k,u>(a, b)) as the cumulative
length of all intervals in which the critical thread θk,u is

3. A chain indicates a particular path at run-time.
4. We note that if there are multiple threads that finish last among

all of the predecessors of θk,u at the same time, we can choose any of
them. Without loss of generality, we choose the one that has the lowest
index among them.

i

processors

time

Threads of other tasks

I i (0,10)

0 10

(a) Thread structure of i

(Ti=11, Di=10)

Critical threads of i

Non-critical threads of i

(b) Critical threads and deadline miss

completion
time

i,1

deadline
miss

i,4

i,2 i,3 i,6

i,5

4 8

i,1

i,2

i,3

i,4

i,5

i,6

Fig. 2. An example of DAG task τi on 3 processors. (a) Task τi consists
of 6 threads with Ti = 11 and Di = 10. (b) A job J li of task τi misses a
deadline at 10. Here, critical threads are θi,1, θi,3, and θi,6, and those
critical threads were blocked in 3 time intervals (i.e., [0,2), [4,7), and
[8,9)), respectively. This yields Ii(0, 10) > Di −CP li , where CP li is the
sum of the execution times of all critical threads in job J li .

ready to execute but not executing due to the execution of
higher-priority threads that belong to not only other tasks
but also the same task. To avoid any confusion, it is worth
noting that I<k,u>(a, b) includes intra-task interference that
a critical thread θk,u ∈ λk receives from other threads θk,v /∈
λk of the same task τk. According to our definition, Ik(a, b)
is a total interference imposed collectively on all the critical
threads of τk, i.e.,

Ik(a, b) =
∑

θk,u∈λk

I<k,u>(a, b). (3)

In order to derive schedulability analysis using the con-
cept of critical interference, we investigate what happens
when the “first” deadline miss occurs and identify necessary
conditions for a job to miss its deadline. Generally, a dead-
line miss happens since there is a large amount of higher
priority execution that blocks the remaining execution of
critical threads of a job until its deadline. We consider any
legal sequence of job requests of task set τ , on which EDF
misses a deadline. Suppose that a job of task τk, denoted by
J∗k , is the first job to miss a deadline among all the jobs of all
tasks. Then, by definition, all the jobs of earlier deadlines
than the deadline of J∗k complete execution before their
deadlines, and the task system remains underloaded until
the first deadline miss. For J∗k , r∗k and d∗k are its release
time and deadline. Then, one can see that at least one
critical thread θk,u ∈ λ∗k of J∗k must execute for less than
Ck,u time units, and the total execution time taken by all
critical threads must be less than CP ∗k time units. In order
for all critical threads of J∗k to execute for strictly less than
CP ∗k time units over [r∗k, d

∗
k), it is necessary that its critical

interference Ik(r∗k, d∗k) be strictly more than (Dk − CP ∗k)
time units. This observation yields a necessary condition for
job J∗k to miss a deadline, i.e.,

Ik(r∗k, d∗k) > Dk − CP ∗k . (4)

Figure 2 illustrates a situation where a job of DAG task τi
misses a deadline. Figure 2(a) shows the thread structure of
task τi and its parameters that we will consider throughout

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 6

a time

processors (m=3)

i

k

Other tasks

b

I i,k(a,b) = 6

I i,k (3,a,b) = 1

I i,k (2,a,b) = 4

I i,k (1,a,b) = 1

i,4

i,1 i,2 i,5

i,3

i,6

Fig. 3. The notion of p-depth critical interference. Suppose that task τk
has a lower priority than τi. A job of τk is released at time instant a,
but it cannot execute in [a, a + 6) due to the execution of other higher
priority tasks. In this example, τi executes a single thread in interval
[a + 5, a + 6), which corresponds to 1-depth critical interference on τk.
This yields Ii,k(1, a, b) = 1. τi executes two threads in intervals [a, a+2)
and [a+ 3, a+ 5), leading to Ii,k(2, a, b) = 4. And Ii,k(3, a, b) = 1.

this paper. In Figure 2(b), a job J li of τi is released at 0
with a deadline of 10. Thread θi,6 is the last completion
thread in τi, and it is released when θi,3 has finished at
time instant 8 (i.e., θi,3 is a last completing predecessor of
θi,6). θi,1 is a last completing predecessor of θi,3. Since θi,1
has no predecessor, critical threads of J li are θi,1, θi,3, and
θi,6. The execution of those critical threads were delayed in
interval [0,2), [4,7), and [8,9), leading to I<i,1>(0, 10) = 2,
I<i,3>(0, 10) = 3, and I<i,6>(0, 10) = 1. Then, the crit-
ical interference Ik(0, 10) on τi during interval [0,10) is
2 + 3 + 1 = 6, resulting in Ik(0, 10) > Di − CP li . This
makes it infeasible for the last thread θi,6 to fully execute for
Ci,6 time units before the deadline of 10. This leads to the
deadline miss of task τi.

As shown in Example 4.1, it is not as straightforward as
Eq. (2) to build the relation between Ik(a, b) and Ii,k(a, b).
This is mainly because Ii,k(a, b) does not capture how many
threads of τi interfere with the critical threads of τk. We
thereby introduce a new concept of p-depth critical inter-
ference that characterizes the number of interfering threads,
and this new notion will bridge Ik(a, b) and Ii,k(a, b) ef-
fectively for DAG tasks. Let us define the p-depth critical
interference Ii,k(p, a, b) of task τi on task τk during interval
[a, b) as the cumulative length of all intervals in which (1) a
critical thread of τk is ready to execute but does not execute
and (2) exactly p number of threads of τi are executing (see
Figure 3). It is worth noting that when it comes to the intra-
task interference case, Ik,k(p, a, b) corresponds to a case
where a critical thread of τk is not executing while exactly p
number of other non-critical threads of τk are executing. The
p-depth critical interference enables to represent the behav-
ior of parallel execution in more detail, allowing to figure
out exactly how many threads of a task τi are executing
simultaneously when τi delays the execution of another task
τk. A total critical interference Ii,k(a, b) can be decomposed
into individual p-depth critical interferences as follows:

Ii,k(a, b) =
m∑
p=1

Ii,k(p, a, b). (5)

The p-depth critical interference also makes it easy to
constitute a total interference Ik(a, b) out of individual
interferences of each task on task τk on m processors as
follows.

Lemma 1. For any work-conserving algorithm, the total
critical interference Ik(a, b) imposed on task τk in in-
terval [a, b) is equal to the total amount of contribution
of individual threads to the interference on each critical
thread divided by the number of processors, i.e.,

Ik(a, b) =
1

m

∑
τi∈τ

m∑
p=1

Ii,k(p, a, b)× p. (6)

Proof: Since the scheduling algorithm is work-
conserving, in the time instants in each of which a critical
thread of a task is ready but not executing, each processor
must be occupied by all the other threads of another task
and including itself. The total amount of the contribution to
the critical interference on τk is

∑
τi∈τ

∑m
p=1 Ii,k(p, a, b)×p.

If it is divided by the number of processors, we get exactly
the length of cumulative intervals in which a critical thread
of τk is ready to execute but cannot in an interval [a, b).

Building upon the notion of p-depth critical interference
and Lemma 1, the necessary condition for task τk to miss a
deadline (presented in Eq. (4)) can be rewritten as follows:

1

m

∑
τi∈τ

m∑
p=1

Ii,k(p, r∗k, d∗k)× p+ CP ∗k > Dk. (7)

Conversely, in order for a task to be schedulable, it is
sufficient to demonstrate that for all of its jobs, Eq. (7) cannot
be satisfied. Hence to show that task set τ is schedula-
ble under global EDF scheduling, this condition must be
checked for each task in τ , which serves as a basis of a
schedulability condition. In order to leverage the condition
for schedulability analysis properly, we need to calculate
the terms in the left-hand side (LHS) of Eq. (7) accurately.
Unfortunately, it is hard to compute those terms precisely
without knowledge of run-time schedule. Thereby, we wish
to derive safe but tight upper bounds on the terms and
transform the necessary condition into schedulability tests
based on those upper bounds.

5 WORKLOAD-BASED EDF SCHEDULABILITY
TEST

This section derives a polynomial-time schedulability test
of global EDF scheduling for DAG tasks. We note that
any sporadic task system has infinitely many different le-
gal job arrival sequences. Hence, checking Eq. (7) for all
such sequences is computationally intractable. Moreover, it
is generally difficult to calculate the interference terms of
Ii,k(p, r∗k, d∗k) × p and the critical chain term of CP ∗k , since
they are decided at run-time according to the schedules of
other tasks that interfere with the job. Therefore, we instead
seek to derive upper bounds on the LHS of Eq. (7) for each
task.

To this end, we first consider a job Jk having a particular
length of its critical chain and derive an upper bound on
the interference term Ii,k(p, rk, dk) imposed on the job. By
definition, a critical chain of a job in τk is determined as one
of all possible paths inGk, and its length ranges between the
shortest path length inGk (denoted by SCk) and the longest
path length in Gk (i.e., LCk). When we derive an upper
bound on interference, we use the concept of workload that
has been widely used in the literature [10], [12], [38], [39],

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 7

𝑟𝑘 𝑑𝑘

𝐷𝑘
𝑑𝑖
′𝑟𝑖

′
𝐽𝑖
′

𝐽𝑘

𝜽𝒊,𝟑

𝜽𝒊,𝟒

𝜽𝒊,𝟐 𝜽𝒊,𝟓

𝜽𝒊,𝟔 𝜽𝒊,𝟒

𝜽𝒊,𝟐 𝜽𝒊,𝟓

𝜽𝒊,𝟔
𝜽𝒊,𝟏 𝜽𝒊,𝟏

𝜽𝒊,𝟑

𝜽𝒊,𝟒

𝜽𝒊,𝟐 𝜽𝒊,𝟓

𝜽𝒊,𝟔

𝜽𝒊,𝟏

𝜽𝒊,𝟑

𝐶𝐼𝑖 𝐷𝑘 𝐵𝐷𝑖(𝐷𝑘)
<Body Job><Carry-in Job>

Fig. 4. A worst-case release pattern in which Ŵi,k is maximized.

[40]: the workload Wi(a, b) of τi is the sum of all intervals
in which τi is executing in interval [a, b). The interference
imposed on a job can be divided into inter-task interfer-
ence received from threads of other tasks and intra-task
interference received from threads of the same task τk. We
note that bounding inter-task interference is independent
of the length of a critical chain, but bounding intra-task
interference is dependent on it. We derive upper bounds on
inter-task and intra-task interferences, respectively, based on
workload. Then, in order to ensure that there exists no job
that causes the first deadline miss, we need to check Eq. (7)
for all possible lengths of critical chains that a task can have.
To this end, we will show that our proposed schedulability
test needs to be conducted for only one case, rather than
exploring all the possible cases, to get the upper bound of
the LHS of Eq. (7) for all jobs.

5.1 Bounding interference
We define the workload W<i,v>(a, b) of thread θi,v in τi is
the sum of all intervals in which θi,v is executing in interval
[a, b). Then, the following inequality holds for any Jk of τk:

m∑
p=1

Ii,k(p, rk, dk)× p ≤
∑

θi,v∈hpi(Jk)

W<i,v>(rk, dk) (8)

def.
= Ŵi,k,

where hpi(Jk) is a set of threads in τi that have a priority
higher than or equal to a critical thread of Jk.

According to Inequality (8), an upper-bound on the in-
terference term can be obtained by finding an upper-bound
on Ŵi,k in any scheduling window of a job of τk. Note that
when the upper-bound of Ŵi,k is calculated, we assume that
there is no deadline miss. This is because our schedulability
test aims to derive necessary conditions for the first deadline
miss. Therefore, we will assume this for derivation of the
upper-bound of Ŵi,k in the rest of the paper. In addition,
we are not relying on any particular execution behavior of a
task as well as the number of processors when deriving the
upper bound on Ŵi,k. We next consider two cases to discuss
a worst-case release pattern for maximizing Ŵi,k: inter-task
(i 6= k) and intra-task cases (i = k).

5.1.1 Bounding inter-task workload
To simplify the presentation, we use the following terms.
A job is said to be a carry-in job of an interval [a, b) if it is
released before a but has a deadline within [a, b) or a body
job if its release time and deadline are both within [a, b).

Worst-case release pattern. Figure 4 shows a worst-case
release pattern, in which task τi has the maximum amount

of Ŵi,k that interferes with job Jk over interval [rk, dk)
under global EDF scheduling. As shown in the figure, all
the jobs of τi are released periodically, and its last body job
(J ′i) of the interval [rk, dk) has a deadline equal to that of
Jk (i.e., d′i = dk). All individual threads in [rk, dk) have a
priority higher than or equal to Jk and then execute as long
as their WCETs. For the carry-in job, we consider a worst-
case situation in which all threads of the carry-in job are
executed as late as possible subject to satisfying the deadline
of the carry-in job. With this release pattern we can include
the largest number of threads of τi having higher priority
than Jk in the interval [rk, dk), thus bounding the value
of Ŵi,k. We recapitulate the above result in the following
lemma:

Lemma 2. For any task τi under the assumption that all
jobs meet their deadlines as long as all threads in a job
execute at most their WCETs, a release pattern of τi that
maximizes Ŵi,k is: (a) τi releases jobs with a minimum
inter-arrival time of Ti time units, (b) the deadline of a
job of τi aligns with the deadline of the job of τk, and (c)
all threads of the carry-in job of τi are executed as late as
possible (right before the deadline of the carry-in job).

Proof: Figure 4 illustrates a worst-case release pattern
in which task τi satisfies requirements (a), (b) and (c).

First of all, the contribution of jobs to Ŵi,k cannot be
larger than when the release times of jobs are exactly peri-
odic. That is, moving the release times of some jobs farther
apart cannot increase Ŵi,k.

In Figure 4, we then consider what happens to the
contribution if we simultaneously shift all the release times
and deadlines of τi earlier or later. The maximum shift we
need to consider in either direction is Ti, since for longer
shifts the effect occurs periodically. From Figure 4, if we shift
their deadlines earlier, the contribution of carry-in and body
jobs to Ŵi,k cannot increase. The job having its deadline
after dk cannot achieve higher priority than Jk, so it cannot
contribute to Ŵi,k. Therefore, shifting their deadline earlier
cannot increase the maximum contribution to Ŵi,k. If we
shift their deadlines later, the absolute deadline of the last
body job J ′i becomes later than the one of Jk, so it cannot
contribute to Ŵi,k. Thereby, Ŵi,k is decreased by Ci. The
shift may increase the contribution of the carry-in job, but
by at most Ci. Therefore, shifting their deadline later cannot
increase the maximum contribution to Ŵi,k. From the two
cases, we can see that the maximum contribution of the
body jobs is achieved when a deadline of a job of τi aligns
with the deadline of the job of τk, and the interval of a carry-
in job in [rk, dk) is maximized.

For the carry-in job of τi, only threads executing in
[rk, dk) can contribute to Ŵi,k. If all threads of the carry-in
job are executed as late as possible right before the deadline,
it can maximize the number of threads executing in [rk, dk).
It is worthy noting that we assume that all jobs meet their
deadlines. Thus, each thread must complete execution so
that all of its successive threads are guaranteed to finish
before the deadline of the carry-in job although all threads
execute for their WCETs. The maximum contribution of the
carry-in job is achieved with the release pattern shown in
Figure 4.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 8

100

𝜽𝒊,𝟐 𝜽𝒊,𝟏𝜽𝒊,𝟔𝜽𝒊,𝟓 𝜽𝒊,𝟑 𝜽𝒊,𝟒

[S[5],f[5])
[7,10) [4,7) [8,10) [7,8) [2,4) [5,8)

(b) A worst-case release pattern for a carry-in job

862

(a) Topological sort of the threads in 𝐺𝑖
𝑇

L’

𝜽𝒊,𝟏

𝜽𝒊,𝟒

𝜽𝒊,𝟑

𝜽𝒊,𝟔

𝜽𝒊,𝟐 𝜽𝒊,𝟓

Fig. 5. Calculation of an upper bound on carry-in job workload under a
worst-case release pattern.

Calculating an upper bound on worst-case workload.
By using a worst-case release pattern, we can now de-
termine the interval of length Dk which maximizes Ŵi,k.
Define W<i,v>(Dk) as the value of W<i,v>(rk, dk) in such
an interval. Under a worst-case release pattern, there exist
only body and carry-in jobs in any interval of length Dk,
and all of the threads in those jobs have higher priority than
τk.

The interval [rk, dk) of length Dk can be partitioned into
body and carry-in intervals, and the length of the intervals
are denoted as BDi(Dk) and CIi(Dk), respectively, and
described as

BDi(Dk) =
⌊Dk

Ti

⌋
· Ti, (9)

CIi(Dk) = Dk −BDi(Dk). (10)

Let us consider a bound WBD
<i,v>(Dk) on the body job

workload in any interval of length Dk. The maximum
number of body jobs of τi over an interval of length Dk

is
⌊
Dk

Ti

⌋
, and each thread θi,v in a body job can fully execute

for its WCET. Then,WBD
<i,v>(Dk) is calculated as

WBD
<i,v>(Dk) =

⌊Dk

Ti

⌋
· Ci,v. (11)

Now, we consider a bound WCI
<i,v>(L

′) on the carry-
in job workload in any carry-in interval of length L′. For
the carry-in job case, only some of threads can contribute
to WCI

<i,v>(L
′) in an interval of length L′, and their ex-

ecution can partially fit into the carry-in interval due to
the precedence relation. Thereby, we need to figure out
the execution interval of each thread under the worst-
case release pattern. Under a worst-case release pattern, all
threads of the carry-in job are executed as late as possible
as long as all the threads finish their execution before the
deadline of the job. We assume that all threads can use
as many processors as possible for their execution when
we calculate WCI

<i,v>(L
′). Then, when each thread begins

to execute, it exclusively occupies one processor without
any interruption until executing for its WCET. We note that
contribution of each thread on WCI

<i,v>(L
′) is maximized

under the assumption. If we know each thread’s WCET and
precedence dependency between threads, we can calculate
WCI
<i,v>(L

′) for each thread θi,v .

Algorithm 1 Calculate-CarryinJob-Workload (τi, L′)
1: for each thread θi,u ∈ Vi do
2: s[u]← Di, f [u]← Di
3: end for
4: GTi ← (Vi, E

T
i)

5: topologically sort the threads in GTi
6: for each thread θi,u, taken in topologically sorted order do
7: for each thread θi,v ∈ Parent[u] do
8: if s[v] < f [u] then
9: f [u]← s[v]

10: end if
11: end for
12: s[u]← f [u]− Ci,u
13: end for
14: for each thread θi,u in GTi do
15: if s[u] ≥ Di − L′ then
16: WCI

<i,u>(L
′) = Ci,u

17: else
18: if s[u] < Di − L′ and f [u] > Di − L′ then
19: WCI

<i,u>(L
′) = f [u]− (Di − L′)

20: end if
21: else
22: WCI

<i,u>(L
′) = 0

23: end if
24: end for

Algorithm 1 shows how to calculate WCI
<i,v>(L

′) for a
carry-in job under the worst-case release pattern shown in
Figure 5(b). It computes each thread’s starting time and
finishing time under the worst-case release pattern. At first,
the starting and finishing time of each thread are initialized
to Di (lines 1-3). We reverse the direction of all edges in Ei
(denoted by ETi) and define DAG GTi as GTi = (Vi, E

T
i)

(line 4). Algorithm 1 then performs a topological sort of
GTi (line 5). The topological sort is a linear ordering of all
threads such that if GTi contains a directed edge from θi,u to
θi,v , then θi,u appears before θi,v in the ordering. It traverses
each thread in topologically sorted order and calculates its
starting and finishing time (lines 6-13). The finishing time
f [u] of thread θi,u is determined as the earliest one among
the starting times of the threads that have the edge to θi,u in
GTi . The starting time s[u] of thread θi,u is then determined
as its finishing time minus its WCET. We note that this
presents the worst-case release pattern for a carry-in job in
which all threads of the carry-in job are executed as late
as possible. If we compare each thread’s starting time and
finishing time with the carry-in interval, we can calculate
the contribution on WCI

<i,v>(L
′) for each thread θi,v (lines

14-24). In the example shown in Figure 5(a), the threads in
τi are topologically sorted according to GTi . The finishing
time f [1] of θi,1 is determined as 4, which is the starting
time of θi,2, and the finishing time s[1] is determined as 2,
which is f [1]−Ci,1. In Figure 5(b), each thread in τi executes
its WCET from its starting time to its finishing time.

A bound on the workload W<i,v>(rk, dk) that will con-
tribute to the worst case as shown in Figure 4, for i 6= k, is
expressed as follows:

W<i,v>(Dk) =WCI
<i,v>(CIi(Dk)) +WBD

<i,v>(BDi(Dk)).
(12)

We note that both WCI
<i,v>(CIi(Dk)) and

WBD
<i,v>(BDi(Dk)) in Eq. (12) are independent of a critical

chain of a job of τk. This means that we always get the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 9

same result of WCI
<i,v>(CIi(Dk)) and WBD

<i,v>(BDi(Dk)),
no matter what a critical chain of length is. We can then
compute bounds on the amount of inter-task interference
on any job of τk as follows:

Ŵi,k ≤
∑

θi,v∈Vi

W<i,v>(Dk). (13)

5.1.2 Bounding intra-task workload
The critical threads in a critical chain of a job of τk can get
interference from the other threads belonging to the same
job. For the intra-task interference, the worst-case release
pattern is already determined as the execution window of
a job of τk. Then, all threads within a single job except the
critical threads can interfere on the critical threads, and it
is clear that the interference of a single thread θk,v on the
critical threads is upper bounded by Ck,v . Thereby, the sum
of WCETs of all threads within a single job except the ones
of critical threads can contribute on Ŵk,k.

Unlike inter-task workload, intra-task workload is de-
pendent on the length of a critical chain of a job. We define
Wk(x) as a bound on intra-task workload of a job with a
critical chain of length x. The sum of WCETs of all threads
within a single job of τk except the ones of the critical
threads can contribute to Wk(x). We recall that the critical
chain length x is the sum of WCETs of the critical threads,
soWk(x) is computed as

Wk(x) = Ck − x. (14)

We can then compute bounds on the amount of intra-
task interference on a job with a critical chain of length x
as

Ŵk,k ≤ Wk(x). (15)

5.2 Deriving a schedulability test
Putting together inter-task and intra-task workloads as an
upper-bound on the interference on a job of τk with a critical
chain of length x (SCk ≤ x ≤ LCk), we can check the
schedulability of the job for a given task set under global
EDF scheduling as follows.
Lemma 3. Suppose that a task set τ is scheduled by global

EDF scheduling on m identical processors. Then, a job
invoked by τk ∈ τ having a critical chain length x
(SCk ≤ x ≤ LCk) does not cause the first deadline miss,
if the following inequality holds:

1

m

(∑
i 6=k

∑
θi,v∈Vi

W<i,v>(Dk) +Wk(x)
)
+ x ≤ Dk. (16)

Proof: From Lemma 2 and Inequality (8), the follow-
ing inequality holds for a job of τk having a critical chain
length of x:

1

m

∑
τi∈τ

m∑
p=1

Ii,k(p, rk, dk)× p+ x

≤ 1

m

(∑
i 6=k

∑
θi,v∈Vi

W<i,v>(Dk) +Wk(x)
)
+ x. (17)

Then, if Eq. (16) is satisfied for the job, the job fails to
satisfy the necessary condition of Eq. (7) that triggers the
first deadline miss.

In order to derive a schedulability test for a task set,
it should be guaranteed that all individual jobs satisfy
Lemma 3. Then, we need to check Eq. (16) for all possible
critical chain lengths of each task τk ranging between SCk
and LCk. We claim that our workload-based schedulability
test needs to be conducted for only one critical chain length,
which is the longest path length (i.e., LCk).
Lemma 4. For a given task set τ , a task τk satisfies the

followings:

1

m

(∑
i 6=k

∑
θi,v∈Vi

W<i,v>(Dk) +Wk(x)
)
+ x

≤ 1

m

(∑
i 6=k

∑
θi,v∈Vi

W<i,v>(Dk) +Wk(LCk)
)
+ LCk.

(18)

Proof: The term 1
m

∑
i 6=k

∑
θi,v∈Vi

W<i,v>(Dk) is in-
cluded in both LHS and RHS of inequality (18). Therefore,
we show that 1

mWk(x)+x ≤ 1
mWk(LCk)+LCk as follows.

1

m
Wk(x) + x

=
1

m
(Ck − x+mx)

(From Eq. (14))

=
1

m
(Ck − x+mx+ LCk − LCk +mLCk −mLCk)

=
1

m
(Ck − LCk +mLCk + (LCk − x)−m(LCk − x))

(Re-arrange the terms)

≤ 1

m
(Ck − LCk +mLCk)

(∵ (LCk − x) ≤ m(LCk − x))
(∵ By definition, x ≤ LCk and m > 0)

=
1

m
Wk(LCk) + LCk

(From Eq. (14))

Finally, we develop a workload-based schedulability test
for DAG tasks under global EDF scheduling.
Theorem 1. A task set τ is schedulable under global EDF

scheduling onm identical processors if for each task τk ∈
τ , the following inequality holds:∑
i 6=k

∑
θi,v∈Vi

W<i,v>(Dk) +Wk(LCk) ≤ m(Dk − LCk).

(19)

Proof: From Lemmas 3 and 4,
1
m

(∑
i 6=k

∑
θi,v∈Vi

W<i,v>(Dk) + Wk(LCk)
)

+ LCk is
an upper bound on the LHS of Eq. (7) for all jobs of a task
τk. Then, if Eq. (19) is satisfied for all tasks in a task set τ ,
no job can trigger the first deadline miss, and the task set
is schedulable under global EDF scheduling on m identical
processors.

Complexity. We denote the number of tasks in a task
set by n. For each task τi, Algorithm 1 is performed in
O(|Vi| + |Ei|) time to calculate an upper bound on carry-
in workload. The longest path length LCi can be calculated
in O(|Vi| + |Ei|) time. This repeats n times for all tasks in
a task set to calculate LCi. Independently, it requires O(n)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 10

time to calculate Eq. (19) for a given τk, and it repeats n
times for all tasks in a task set to check schedulability of
a task set. Therefore, the schedulability test in Theorem 1
requires max{O(n(|Vmax|+|Emax|)), O(n2)} time for a task
set, where |Vmax| and |Emax| represents the largest |Vi| and
|Ei| among all tasks τi ∈ τ .

6 SLACK-BASED ITERATIVE SCHEDULABILITY
TEST

In general, the computation of workload bounds in Section 5
involves much pessimism due to the overestimation on
calculating the worst-case workload of a carry-in job. In
particular, the worst-case release pattern for a carry-in job
shown in Figure 5(b) does not consider the fact that a task
can finish its execution earlier than its deadline. Once we
identify such an early completion of a task’s execution, we
can reduce the amount of workload of a carry-in job using
slack values, where the slack Sk of task τk is defined as a
length of the minimum time interval between finishing time
and deadline of a job of task τk. The idea of exploiting slack
values is introduced to reduce such pessimism effectively
for the sequential task model [11], [37]. In this section,
building upon our workload-based schedulability test, we
derive an improved schedulability test by taking advantage
of slack values for DAG tasks. To this end, we first introduce
how to calculate slack values for each task in the following
lemma.
Lemma 5. The slack of task τk is given by

Sk = Dk − CP ∗k −
⌈∑

τi∈τ
∑m
p=1 Ii,k(p, r∗k, d∗k)× p

m

⌉
,

if Sk > 0. (20)

Proof: We re-arrange Eq. (20) as follows:⌈∑
τi∈τ

∑m
p=1 Ii,k(p, r∗k, d∗k)× p

m

⌉
= Dk − CP ∗k − Sk

⇒
∑
τi∈τ

∑m
p=1 Ii,k(p, r∗k, d∗k)× p

m
≤ Dk − CP ∗k − Sk

⇔ Ik(r∗k, d∗k) ≤ Dk − CP ∗k − Sk
(∵ By Lemma 1)

⇔ Ik(r∗k, d∗k) + CP ∗k ≤ Dk − Sk (21)

According to Eq. (21), the sum of the critical interference
and total execution time taken by all critical threads is less
than or equal to Dk−Sk. Since we assume that Sk > 0, task
τk has already finished its execution at Sk time units ahead
of its deadline.

By exploiting the bounds on the interference derived in
Section 5, a lower bound Slbk on the slack Sk of a task τk
under global EDF scheduling is then given by

Slbk = Dk − LCk −

 1

m

(∑
i6=k

∑
θi,v∈Vi

W<i,v>(Dk) +Wk(LCk)
) ,

(22)

when this term is positive.
We now exploit slack values for reducing the pessimism

calculating the worst-case carry-in job workload of τk. When
a lower bound on the slack of a task is available, it is possible

Algorithm 2 Slack-based Iterative Schedulability Test (τ)
1: Updated← true,Nround← 0
2: for each task τk ∈ τ do
3: Slbk ← 0
4: end for
5: repeat
6: Feasible← true
7: Updated← false
8: for k ← 1 to |τ | do
9: NewBound← Eq. (23)

10: if NewBound < 0 then
11: Feasible← false
12: else
13: if NewBound > Slbk then
14: Slbk ← NewBound
15: Updated← true
16: end if
17: end if
18: end for
19: Nround++
20: if Feasible is true then
21: return schedulable
22: end if
23: until Updated is true and Nround ≤ NroundLimit
24: return unschedulable

to give a tighter upper bound on interference. If the value
of Slbk is positive, every job of τk will complete at least Slbk
time units before its deadline. Using this information, we
can reduce pessimism on calculating the worst-case carry-in
job workload of τk shown in Algorithm 1. It can be easily
incorporated by replacing the initial starting and finishing
times of each thread (line 2 in Algorithm 1) with s[u] ←
Di−Slbi and f [u]← Di−Slbi . Then, a worst-case workload
can be calculated in a similar way to Eq. (12), and we denote
the workload incorporating a lower bound on the slack of
task τi byW<i,v>(Dk, S

lb
i). Note that when a lower bound

on Slbi is not known, we can simply use Slbi = 0. Finally,
a lower bound on the slack of a task τk under global EDF
scheduling on m identical processors is given by

Slbk = Dk − LCk −

 1

m

(∑
i 6=k

∑
θi,v∈Vi

W<i,v>(Dk, S
lb
i) +Wk(LCk)

) ,
(23)

when this term is positive.
Then, the approaches [11], [37] of exploiting a slack value

can be adopted into our workload-based schedulability test
presented in Theorem 1. Therefore, we derive a slack-based
iterative schedulability test of a task set under global EDF
scheduling, and it is presented in Algorithm 2. As shown
in Algorithm 2, for every task in a task set, a lower bound
value on the slack of the task is initialized to zero (line 3). Eq.
(23) is used to compute a new value of the lower bound on
the slack of a task (line 9). If the computed value is negative,
the task is considered to be unschedulable (line 11). If it is
positive, the lower bound is accordingly updated (lines 13-
15). It is repeated for every task in the task set until the lower
bound on the slack for every task is not updated (lines 5-
23). If no computed value is negative, the task set is deemed
schedulable. If the iteration stops, the task set is deemed
unschedulable (line 24).

Complexity. Similar to the workload-based schedulabil-
ity test in Section 4, the slack-based iterative schedulability

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 11

test requires O(n(|Vmax| + |Emax|)) time to calculate LCi
for all tasks. Additionally, the complexity of the iterative test
depends on the number of iterations of slack updates. A sin-
gle iteration of slack updates requires O(n2) time. The total
number of iterations of the repeat cycle at line 5 is upper-
bounded by O(n · maxτi∈τ Di) [37]. Therefore, the over-
all time complexity is max{O(n(|Vmax| + |Emax|)), O(n3 ·
maxτi∈τ Di)}. We note that the complexity can be signifi-
cantly reduced if the test is stopped after a finite number
NroundLimit of iterations. If this is the case, the overall
complexity becomes max{O(n(|Vmax| + |Emax|)), O(n2 ·
NroundLimit)}. However, limiting the number of itera-
tions may reduce the number of schedulable task sets, reject-
ing some feasible task set that could be deemed schedulable
after a few more iterations. We examine such schedulability
loss for different values of NroundLimit in Section 7.

7 EVALUATION

In this section, we present simulation results to evaluate our
global EDF schedulability analysis that is directly applicable
to a set of parallel tasks.

7.1 Simulation environment
We generate DAG tasks mainly based on the method used
in [41]. For a DAG task τi, its parameters are determined as
follows. Period and deadline of τi (Ti = Di)5 are uniformly
chosen in [100, 1000]. The number of nodes (threads) Ni
is uniformly chosen in [1, 30]. For each pair of nodes, an
edge is generated with the probability of Pr; for each edge,
its orientation is chosen to ensure acyclicity. For individual
threads θi,u, the WCET (Ci,u) is randomly selected in the
range of [1, Ti/Ni].

In order to understand how our proposed approaches
perform with DAG tasks, we experiment by varying the
following parameters: the degree of parallelism in a DAG
task and the number of processors. In addition, we exam-
ine the effect of NroundLimit in our slack-based iterative
schedulability test presented in Section 6. Other experi-
ments when varying the number of threads and variation
of WCETs among threads in a DAG task are reported in the
supplement, available online.

In each experiment, we compare our proposed schedu-
lability tests with some related methods (shown in Table 1)
for the DAG task model under global EDF scheduling. More
specifically, we consider the following schedulability tests:

• our workload-based schedulability test in Theorem 1
(denoted by OUR)

• our slack-based iterative schedulability test allowing
the maximum number of iterations in Algorithm 2
(denoted by OUR-I)

• the EDF schedulability test in [32] (denoted by BAR).
• the capacity augmentation bound (i.e., Theorem 4)

in [31] (denoted by LCA)
• the EDF schedulability test (i.e., Theorem 21) in [29]

(denoted by BMS).

5. In this section, we only show the results of implicit deadline DAG
tasks because some of related works consider the implicit deadline
task case only, but our proposed analysis shows similar behaviors in
constrained deadline DAG tasks compared to those of implicit ones.

As mentioned in Section 2, the five schedulability tests
shown in Figure 6 are classified as independent schedulabil-
ity analysis. OUR-I and BAR are of pseudo-polynomial time
complexity, while OUR, LCA, and BMS are of polynomial
time complexity.

We note that other related analysis techniques are not
included in our evaluation, because the one in [30] is appli-
cable only to the single DAG task case, while the multiple
parallel task case is of our interest. The capacity augmenta-
tion bound in [28] is excluded in our evaluation, because
LCA is the best known capacity augmentation bound of
EDF. In [29], a pseudo-polynomial time schedulability test
was also proposed in addition to BMS, but it is not in-
cluded in this comparison because BAR strictly dominates
the pseudo-polynomial test. We also note that the resource
augmentation bounds in [28], [29] are not included in this
comparison, because those bounds can serve as schedulabil-
ity tests only when an optimal schedule is known. However,
no optimal schedule for parallel tasks has been developed
so far, and therefore, it is difficult (if not impossible) to check
the feasibility of a task set through simulation.

7.2 Simulation results

Effect of the degree of parallelism. Our first simulations
were performed to evaluate our approaches with different
degrees of intra-task parallelism. We generate 4,000 task sets
for m = 8, 16, and 32, where m is the number of processors,
yet leaving Pr undetermined, as follows.

S1 We first generate a seed task set with two tasks with
the parameters determined as described above.

S2 If the system utilization Usys (i.e., Usys =
∑
τi∈τ Ui)

of the seed task set is greater than m, we discard this
seed set and go to Step S1.

S3 We include this seed set for simulation. We then add
m/4 more task into the seed set and go to Step S2
until 4,000 task sets are generated.

We now consider constructing edges between nodes (i.e.,
precedence dependency between threads) with the proba-
bility parameter 0 ≤ Pr ≤ 1. When Pr = 0, there is no edge
and thereby no thread has predecessors, maximizing the
degree of intra-task parallelism. In contrast, with Pr = 1,
each node is fully connected to all the other nodes, repre-
senting no single thread can execute in parallel with any
other threads in the same task. An increasing value of Pr
generates a growing number of edges in each DAG task,
leading to a greater degree of precedence constraints be-
tween nodes but a smaller degree of intra-task parallelism.
Thereby, as Pr increases, each task is highly likely to have
a larger longest path length LCi. We define LUmax as the
maximum LCi/Ti among the tasks τi ∈ τ , and Figure 7
shows a tendency for LUmax as Pr increases. In order to run
simulation for different degrees of intra-task parallelism, we
perform simulation with 4,000 task sets in 11 different cases
in terms of Pr, where we increase Pr from 0.0 to 1.0 in the
step of 0.1, resulting in 44,000 simulations.

Figure 6 compares different schedulability tests (OUR,
OUR-I, BAR, LCA, and BMS) in terms of the number of
task sets deemed schedulable with different values of Pr for
m = 8, 16, and 32. The figure shows that OUR-I outperforms

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 12

 0

 500

 1000

 1500

 2000

 2500

 0.1 0.3 0.5 0.7 0.9

T
h
e
 n

u
m

b
e
r

o
f

ta
sk

 s
e
ts

 s
c
h
e
d
u
la

b
le

Pr (m = 8)

OUR-I

BAR

OUR

LCA

BMS

 0

 500

 1000

 1500

 2000

 2500

 0.1 0.3 0.5 0.7 0.9

T
h
e
 n

u
m

b
e
r

o
f

ta
sk

 s
e
ts

 s
c
h
e
d
u
la

b
le

Pr (m = 16)

OUR-I

BAR

OUR

LCA

BMS

 0

 500

 1000

 1500

 2000

 2500

 0.1 0.3 0.5 0.7 0.9

T
h
e
 n

u
m

b
e
r

o
f

ta
sk

 s
e
ts

 s
c
h
e
d
u
la

b
le

Pr (m = 32)

OUR-I

BAR

OUR

LCA

BMS

Fig. 6. Schedulability with different values of Pr for DAG tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.3 0.5 0.7 0.9

Pr (m = 8)

LUmax

Fig. 7. LUmax as Pr changes

the other existing methods throughout all the values of Pr.
In cases of m = 8, 16, and 32, OUR-I finds 47%, 54%,
and 65% more schedulable task sets than BAR does, and
OUR-I is also shown to improve schedulability, compared
to OUR, by 75%, 80%, and 89% more, respectively. OUR
finds 35%, 60%, and 90% additional task sets, which are
deemed unschedulable by LCA for m = 8, 16, and 32,
respectively. We note that OUR-I finds almost all task sets
deemed schedulable by the other tests except only 124, 12,
and 1 task sets for m = 8, 16, and 32, respectively. We
also note that OUR-I shows better performance compared
to other tests for cases with a larger number of processors.6

Looking at pseudo-polynomial-time schedulability tests
(OUR-I and BAR), it is interesting to see that the perfor-
mance gap between OUR-I and BAR becomes larger with a
smaller value of Pr. Looking at polynomial-time schedula-
bility tests (OUR, LCA, and BMS), when Pr increases the
two methods of LCA and BMS are shown to perform worse,
while OUR is relatively much insensitive to the value of Pr.
Thereby, the performance gap between OUR and those two
methods (LCA and BMS) becomes larger as the degree of
precedence constraint increases.

To understand such performance results of OUR and
OUR-I as Pr varies, we examine the effect of the de-
gree of parallelism on schedulability with respect to our
interference-based analysis. (i) In the perspective of a task
τk receiving interference from other tasks in a task set, LCk
generally decreases when the degree of parallelism increases
(i.e., when Pr decreases). This gives task τk more room
to accommodate larger interference from other tasks, likely
leading to better schedulability. (ii) On the other hand, in

6. We also conducted simulations for m = 48, but the results are
shown in the supplement, available online, since the trends are similar.

the perspective of a task τi imposing interference on τk,
the larger number of threads of τi has a chance to delay
execution of τk at the same time when the degree of paral-
lelism increases, leading to an increase in interference on τk.
Moreover, to derive a safe upper bound of the interference
suffered by τk, OUR assumes that every higher priority task
τi has carry-in. This is an over-pessimistic assumption, since
in a real scheduling sequence, it may be the case that some
task τi’s carry-in job has finished before the beginning of the
execution window of τk, thus it actually does not contribute
any carry-in to the interference on τk. Such pessimism on
bounding interference increases when the degree of paral-
lelism increases. Statements (i) and (ii) are conflicting with
each other in terms of schedulability. Figure 6 shows that the
performance of OUR stays insensitive to Pr with Statements
(i) and (ii) having comparable impacts on schedulability.

The figure also shows that OUR-I can compensate for
the loss of performance from the pessimism involved in
bounding interference, and the benefit of slack-based iter-
ative method is getting bigger with a smaller value of Pr.
Based on statement (i), it is highly likely to have larger
slack values of τk when the degree of parallelism increases.
Then, those slack values effectively reduce the pessimism
associated with the estimation of the carry-in of an interfer-
ing task according to statement (ii), which leads to better
schedulability. Such an effect makes a larger performance
gap between OUR-I and BAR with a smaller value of Pr.

The two existing polynomial-time tests (LCA and BMS)
are sensitive to LUmax due to their schedulability analysis,
since those two methods share in common that their schedu-
lability tests check whether LUmax is smaller than or equal
to some threshold (e.g., (3+

√
5)/2 in LCA, 1/3 in BMS). A

larger value of Pr generally increases the maximum LUmax
for a task set (as shown in Figure 7), leading to worse
schedulability.

Effect of the number of processors. Our second sim-
ulations were performed to show schedulability with a
different number of processors. We generate 4, 000 task
sets whose utilization Usys is in [3.9, 4.1]. Each task set is
obtained by repeatedly adding tasks until the system utiliza-
tion is in [3.9, 4.1] while each individual task is generated
with the parameters described in Section 7.1 and the value
of Pr fixed as 0.5.7

7. If the system utilization exceeds the limit in generating a task
set, we discard the lastly added task, add a new task, and repeat the
procedure until the system utilization is in the desired range.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 13

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 20 30 40 50

T
h

e
n

u
m

b
er

 o
f

ta
sk

 s
et

s
sc

h
ed

u
la

b
le

The number of processors (m)

OUR-I

BAR

OUR

LCA

BMS

Fig. 8. Schedulability with different number of processors

Figure 8 shows the number of task sets deemed schedu-
lable when the number of processors (m) is varied from 4 to
50. OUR-I significantly outperforms the other tests. OUR-I
requires a much lower number of processors (around 12) to
schedule 90% of the task sets while OUR and BAR require
more than 30 processors to do so. LCA and BMS behave
even worse in the sense that they cannot admit a large por-
tion of the generated task sets even with a very large number
of processors. This is because their schedulability analysis is
highly dependent on the value of LUmax irrelevant to the
number of processors, as discussed in the first simulation
results. We note that the running time of BAR increases
as m increases by reflecting its analytical procedure shown
in [32] while the running time of other tests including OUR-
I and OUR is relatively stable to the number of processors.
In particular, the average running time of OUR-I was 0.5 ms
for all values of m, while the average running time of BAR
was increased from 1 to 121 ms when changing m from 4 to
50.

TABLE 2
Schedulability ratio of OUR-I with different values of NroundLimit

relative to the maximum value of NroundLimit

m
Iteration limit (NroundLimit)
1 2 4 8 16

Schedulability
8 73.9 97.7 99.9 100 100

ratio (%)
16 70.0 97.7 99.9 100 100
32 66.4 97.3 99.9 99.9 100

Effect of NroundLimit in OUR-I. Our third simulations
were performed to investigate the schedulability loss of
OUR-I for different values of NroundLimit: 1, 2, 4, 8,
16. We ran simulations on the same task sets used for
Figure 6 with m = 8, 16, and 32, and Table 2 shows
the schedulability ratio of OUR-I with different values of
NroundLimit relative to the case of the maximum value
of NroundLimit (i.e., NroundLimit = n · maxτi∈τ Di).
For example, for NroundLimit = 1, OUR-I finds a so-
lution 73.9%, 70.0%, and 66.4% close to the case of the
maximum value of NroundLimit when m = 8, 16, and
32, respectively. When two slack updates for each task
are allowed (i.e., NroundLimit = 2), the number of task
sets deemed schedulable by OUR-I increases rapidly. With
NroundLimit = 16, OUR-I finds every task set that can be
detected using an unbounded NroundLimit for all m = 8,
16, and 32. We note that the average running time of
OUR-I with NroundLimit = 16 was 0.4 ms to check the

schedulability of a task set, while the average running time
of BAR was 11.1 ms when m = 8.

Summary. In summary, OUR outperforms the other
existing polynomial-time schedulability tests. In addition,
OUR-I significantly improves the schedulability of EDF
with good efficiency and thus shows the best performance
compared to the state-of-the-art independent schedulability
tests available for DAG tasks. We identify that our proposed
schedulability tests are adaptive to different degrees of intra-
task parallelism and scalable to the number of processors in
terms of both performance and complexity.

8 CONCLUSION

The motivation for our work was the desire to understand
the thread-level parallelism of DAG tasks in the context
of hard real-time multi-core scheduling. In this paper, we
extended the notion of interference formalizing it at a finer-
grained thread level and building a connection to the no-
tion at a task level. We then generalized interference-based
analysis methods according to the new proposed notion of
interference, introducing global EDF schedulability condi-
tions that are directly applicable to a set of DAG tasks.
Our evaluation results showed that it significantly improves
the state-of-the-art analysis techniques available for parallel
tasks.

This paper incorporated thread-level parallelism directly
into schedulability analysis focusing on the global EDF al-
gorithm. However, we believe the schedulability of parallel
tasks can be advanced much more significantly if thread-
level parallelism is directly reflected into scheduling algo-
rithms as well. Hence, a direction of our future work in-
cludes developing new real-time scheduling algorithms that
support intra-task parallelism and synchronization directly.

ACKNOWLEDGMENT

This work was supported in part by IITP (B0101-
15-0557), BSRP (NRF-2015R1D1A1A01058713, NRF-
2014R1A1A1035827), NCRC (2010-0028680), and NRF
(2015M3A9A7067220) funded by the Korea Government
(MEST/MSIP/MOTIE). This work was also funded in part
by MoE Tier-2 grant (MOE2013-T2-2-029, ARC9/14) of the
Singapore Government.

REFERENCES

[1] Intel, “Intel Xeon Phi product family,” http://www.intel.com/content/
www/us/en/processors/xeon/xeon-phi-detail.html.

[2] Cavium, “ThunderX ARM processors,” http : / / www. cavium . com /
ThunderX\ ARM\ Processors.html.

[3] OpenMP, “Openmp,” 1997, http://openmp.org∼.
[4] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the

cilk-5 multithreaded language,” ACM SIGPLAN Notices, vol. 33, no. 5, pp.
212–223, 1998.

[5] J. Reinders, Intel threading building blocks: outfitting C++ for multi-core proces-
sor parallelism. O’Reilly Media Inc., 2007.

[6] K.-F. Faxén, “Wool user’s guide,” in Technical report, Swedish Institute of
Computer Science, 2009.

[7] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel programmability
and the chapel language,” International Journal of High Performance Comput-
ing Applications, vol. 21, no. 3, pp. 291–312, 2007.

[8] C. Liu and J. Layland, “Scheduling algorithms for multi-programming in a
hard-real-time environment,” Journal of the ACM, vol. 20, no. 1, pp. 46–61,
1973.

[9] T. P. Baker, “Multiprocessor EDF and deadline monotonic schedulability
analysis,” in Proceedings of IEEE Real-Time Systems Symposium (RTSS), 2003.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 201X 14

[10] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability analysis
of EDF on multiprocessor platforms,” in Proceedings of Euromicro Conference
on Real-Time Systems (ECRTS), 2005.

[11] M. Bertogna and M. Cirinei, “Response-time analysis for globally sched-
uled symmetric multiprocessor platforms,” in Proceedings of IEEE Real-Time
Systems Symposium (RTSS), 2007.

[12] S. Baruah, “Techniques for multiprocessor global schedulability analysis,”
in Proceedings of IEEE Real-Time Systems Symposium (RTSS), 2007.

[13] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response time bounds of fixed
priority multiprocessor scheduling,” in Proceedings of IEEE Real-Time Systems
Symposium (RTSS), 2009.

[14] R. Davis and A. Burns, “Priority assignment for global fixed priority pre-
emptive scheduling in multiprocessor real-time systems,” in Proceedings of
IEEE Real-Time Systems Symposium (RTSS), 2009.

[15] S. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportionate
progress: a notion of fairness in resource allocation,” Algorithmica, vol. 15,
no. 6, pp. 600–625, 1996.

[16] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “Dp-fair: A simple
model for understanding optimal multiprocessor scheduling,” in Proceed-
ings of Euromicro Conference on Real-Time Systems (ECRTS), 2010.

[17] P. Regnier, G. Lima, E. Massa, G. Levin, and S. A. Brandt, “Run: Optimal
multiprocessor real-time scheduling via reduction to uniprocessor,” in Pro-
ceedings of IEEE Real-Time Systems Symposium (RTSS), 2011.

[18] G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic, “U-EDF: An
unfair but optimal multiprocessor scheduling algorithm for sporadic tasks,”
in Proceedings of Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[19] P. Jayachandran and T. Abdelzaher, “Transforming distributed acyclic sys-
tems into equivalent uniprocessors under preemptive and non-preemptive
scheduling,” in Proceedings of Euromicro Conference on Real-Time Systems
(ECRTS), 2008.

[20] N. Serreli, G. Lipari, and E. Bini, “The demand bound function interface of
distributed sporadic pipelines of tasks scheduled by edf,” in Proceedings of
Euromicro Conference on Real-Time Systems (ECRTS), 2010.

[21] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-time
tasks on multi-core processors,” in Proceedings of IEEE Real-Time Systems
Symposium (RTSS), 2010.

[22] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time schedul-
ing for generalized parallel task models,” in Proceedings of IEEE Real-Time
Systems Symposium (RTSS), 2011.

[23] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin, “Global EDF
schedulability analysis for synchronous parallel tasks on multicore plat-
forms,” in Proceedings of Euromicro Conference on Real-Time Systems (ECRTS),
2013.

[24] B. Andersson and D. de Niz, “Analyzing global-EDF for multiprocessor
scheduling of parallel tasks,” in Proceedings of Int. Conf. on Principles of
Distributed Systems, 2012.

[25] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time analy-
sis of synchronous parallel tasks in multiprocessor systems,” in Proceedings
of International Conference on Real-Time Networks and Systems (RTNS), 2014.

[26] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Techniques opti-
mizing the number of processors to schedule multi-threaded tasks,” in
Proceedings of Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[27] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Hartig,
“Response-time analysis of parallel fork-join workloads with real-time
constraints,” in Proceedings of Euromicro Conference on Real-Time Systems
(ECRTS), 2013.

[28] J. Li, K. Agrawal, C. Lu, and C. D. Gill, “Analysis of global EDF for parallel
tasks,” in Proceedings of Euromicro Conference on Real-Time Systems (ECRTS),
2013.

[29] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasibility
analysis in the sporadic DAG task model,” in Proceedings of Euromicro
Conference on Real-Time Systems (ECRTS), 2013.

[30] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and A. Wiese,
“A generalized parallel task model for recurrent real-time processes”,” in
Proceedings of IEEE Real-Time Systems Symposium (RTSS), 2012.

[31] J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis of
federated and global scheduling for parallel real-time tasks,” in Proceedings
of Euromicro Conference on Real-Time Systems (ECRTS), 2014.

[32] S. Baruah, “Improved multiprocessor global schedulability analysis of spo-
radic DAG task systems,” in Proceedings of Euromicro Conference on Real-Time
Systems (ECRTS), 2014.

[33] N. Fisher, J. Goossens, and S. Baruah, “Optimal online multiprocessor
scheduling of sporadic real-time tasks is impossible,” Real-Time Systems,
vol. 45, pp. 26–71, 2010.

[34] D. Ferry, J. Li, M. Mahadevan, C. Gill, C. Lu, and K. Agrawal, “A real-
time scheduling service for parallel tasks,” in Proceedings of IEEE Real-Time
Technology and Applications Symposium (RTAS), 2013.

[35] A. Srinivasan and J. Anderson, “Fair scheduling of dynamic task systems
on multiprocessors,” Journal of Systems and Software, vol. 77(1), pp. 67–80,
2005.

[36] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time scheduling
algorithm for multiprocessors,” in Proceedings of IEEE Real-Time Systems
Symposium (RTSS), 2006, pp. 101–110.

[37] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis of global
scheduling algorithms on multiprocessor platforms,” IEEE Transactions on
Parallel and Distributed Systems, vol. 20, pp. 553–566, 2009.

[38] J. Lee, A. Easwaran, and I. Shin, “LLF Schedulability Analysis on Multi-

processor Platforms,” in Proceedings of IEEE Real-Time Systems Symposium
(RTSS), 2010.

[39] H. S. Chwa, H. Back, S. Chen, J. Lee, A. Easwaran, I. Shin, and I. Lee, “Ex-
tending task-level to job-level fixed priority assignment and schedulability
analysis using pseudo-deadlines,” in Proceedings of IEEE Real-Time Systems
Symposium (RTSS), 2012.

[40] T. Baker, “An analysis of EDF schedulability on a multiprocessor,” IEEE
Transactions on Parallel Distributed Systems, vol. 16, no. 8, pp. 760–768, 2005.

[41] D. Cordeiro, G. Mouni, S. Perarnau, D. Trystram, J.-M. Vincent, and F. Wag-
ner, “Random graph generation for scheduling simulations,” in SIMUTools,
2010.

Hoon Sung Chwa is a postdoctoral researcher in School of Com-
puting, KAIST (Korea Advanced Institute of Science and Technology),
South Korea. He received BS, MS, and PhD degrees from KAIST all in
computer science in 2009, 2011, and 2016, respectively. His research
interests include system design and analysis with timing guarantees
and resource management in real-time embedded systems and cyber-
physical systems. He won two best paper awards from the 33rd IEEE
Real-Time Systems Symposium (RTSS) in 2012 and from the IEEE
International Conference on Cyber-Physical Systems, Networks, and
Applications (CPSNA) in 2014.

Jinkyu Lee is an assistant professor in Department of Computer Sci-
ence and Engineering, Sungkyunkwan University, South Korea, where
he joined in 2014. He received the BS, MS, and PhD degrees in
computer science from the Korea Advanced Institute of Science and
Technology (KAIST), South Korea, in 2004, 2006, and 2011, respec-
tively. He has been a research fellow/visiting scholar in the Department
of Electrical Engineering and Computer Science, University of Michigan
until 2014. His research interests include system design and analysis
with timing guarantees, QoS support, and resource management in
real-time embedded systems and cyber-physical systems. He won the
best student paper award from the 17th IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS) in 2011, and the
Best Paper Award from the 33rd IEEE Real-Time Systems Symposium
(RTSS) in 2012.

Jiyeon Lee received B.S. degree in Computer Science from Dankook
Univercity, South Korea in 2012 and M.S. degree in Computer Science
from KAIST (Korea Advanced Institute of Science and Technology),
South Korea in 2014. She is currently working toward the Ph.D. degree
in Computer Science from KAIST. Her research interests include system
design and analysis with timing guarantees and resource management
in real-time embedded systems and cyber-physical systems.

Kiew-My Phan received B.S. degrees in Computer Science in 2013
from KAIST (Korea Advanced Institute of Science and Technology),
South Korea. Her research interests include system design and analysis
with timing guarantees and resource management in real-time embed-
ded systems and cyber-physical systems.

Arvind Easwaran is an assistant professor in the School of Computer
Science and Engineering at Nanyang Technological University (NTU),
Singapore. He received MSc and PhD degrees from the University of
Pennsylvania, USA, and a BE degree from University of Mumbai, India,
all in Computer Science & Engineering. Prior to joining NTU in 2013,
he has been an Invited Research Scientist at the Polytechnic Institute
of Porto, Portugal, and an R&D Scientist at Honeywell Aerospace,
USA. His research interests include Cyber-Physical Systems, Real-Time
Systems, and Formal Methods. He has published in several leading
conferences and journals in these areas, some of which are highly cited
and have won awards.

Insik Shin received the BS degree from Korea University, the MS
degree from Stanford University, and the PhD degree from the University
of Pennsylvania all in computer science in 1994, 1998, and 2006,
respectively. He is currently an associate professor in the Department
of Computer Science at KAIST, South Korea, where he joined in 2008.
He has been a postdoctoral research fellow at Malardalen University,
Sweden, and a visiting scholar at the University of Illinois, Urbana-
Champaign until 2008. His research interests include cyber-physical
systems and real-time embedded systems. He is currently a member of
the Editorial Board of Journal of Computing Science and Engineering.
He has been cochair of various workshops including satellite workshops
of RTSS, CPSWeek, and RTCSA and has served various program
committees in real-time embedded systems, including RTSS, RTAS,
ECRTS, and EMSOFT. He received best paper awards, including Best
Paper Awards from RTSS in 2003 and 2012, Best Student Paper Award
from RTAS in 2011, and Best Paper runner-ups at ECRTS and RTSS in
2008. He is a member of the IEEE.

