
26 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Neurostream: Scalable and Energy Efficient Deep Learning with Smart Memory Cubes / Azarkhish, Erfan*;
Rossi, Davide; Loi, Igor; Benini, Luca. - In: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS.
- ISSN 1045-9219. - STAMPA. - 29:2(2018), pp. 8038819.420-8038819.434. [10.1109/TPDS.2017.2752706]

Published Version:

Neurostream: Scalable and Energy Efficient Deep Learning with Smart Memory Cubes

Published:
DOI: http://doi.org/10.1109/TPDS.2017.2752706

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/624052 since: 2018-09-22

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TPDS.2017.2752706
https://hdl.handle.net/11585/624052

This is the post peer-review accepted manuscript of:

E. Azarkhish, D. Rossi, I. Loi and L. Benini, "Neurostream: Scalable and Energy Efficient Deep Learning

with Smart Memory Cubes," in IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 2,

pp. 420-434, 1 Feb. 2018. doi: 10.1109/TPDS.2017.2752706

The published version is available online at: https://doi.org/10.1109/TPDS.2017.2752706

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works

https://doi.org/10.1109/TPDS.2017.2752706

1

Neurostream: Scalable and Energy Efficient
Deep Learning with Smart Memory Cubes

Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini, Fellow, IEEE

Abstract—High-performance computing systems are moving
towards 2.5D and 3D memory hierarchies, based on High
Bandwidth Memory (HBM) and Hybrid Memory Cube (HMC)
to mitigate the main memory bottlenecks. This trend is also
creating new opportunities to revisit near-memory computation.
In this paper, we propose a flexible processor-in-memory (PIM)
solution for scalable and energy-efficient execution of deep
convolutional networks (ConvNets), one of the fastest-growing
workloads for servers and high-end embedded systems. Our co-
design approach consists of a network of Smart Memory Cubes
(modular extensions to the standard HMC) each augmented with
a many-core PIM platform called NeuroCluster. NeuroClusters
have a modular design based on NeuroStream coprocessors (for
Convolution-intensive computations) and general-purpose RISC-
V cores. In addition, a DRAM-friendly tiling mechanism and
a scalable computation paradigm are presented to efficiently
harness this computational capability with a very low pro-
gramming effort. NeuroCluster occupies only 8% of the total
logic-base (LoB) die area in a standard HMC and achieves
an average performance of 240 GFLOPS for complete execution
of full-featured state-of-the-art (SoA) ConvNets within a power
budget of 2.5 W. Overall 11 W is consumed in a single SMC
device, with 22.5 GFLOPS/W energy-efficiency which is 3.5X
better than the best GPU implementations in similar technologies.
The minor increase in system-level power and the negligible
area increase make our PIM system a cost-effective and energy
efficient solution, easily scalable to 955 GFLOPS with a small
network of just four SMCs.

Index Terms—Hybrid Memory Cube, Convolutional Neural
Networks, Large-scale Deep Learning, Streaming Floating-point

I. INTRODUCTION

Today, brain-inspired computing (BIC) is successfully used
in a wide variety of applications such as surveillance, robotics,
industrial, medical, and entertainment systems. Recently, sev-
eral research programs have been launched by major industrial
players (e.g. Facebook, IBM, Google, Microsoft), pushing
towards deploying services based on brain-inspired machine-
learning (ML) to their customers [1][2][3]. These companies
are interested in running such algorithms on powerful compute

E. Azarkhish, D. Rossi, and I. Loi are with the Department of Electri-
cal, Electronic and Information Engineering, University of Bologna, 40136
Bologna, Italy (e-mails: {erfan.azarkhish, davide.rossi, igor.loi}@unibo.it).

L. Benini is with the Department of Information Technology and Electrical
Engineering, Swiss Federal Institute of Technology Zurich, 8092 Zurich,
Switzerland, and also with the Department of Electrical, Electronic and
Information Engineering, University of Bologna, 40136 Bologna, Italy (e-
mail: lbenini@iis.ee.ethz.ch).

This project has received funding from the European Unions Horizon 2020
research and innovation programme (OPRECOMP) under grant agreement No
732631; Swiss National Science Foundation under grant 162524 (MicroLearn:
Micropower Deep Learning), armasuisse Science & Technology; and the ERC
MultiTherman project (ERC-AdG-291125). The authors would like to thank
Fabian Schuiki and Michael Schaffner for their help with training explorations.

Global-Interconnect

Cluster-Interconnect

To/From
DRAM

M M M M M

C
lu

ster 1

C
lu

ster 2

C
lu

ster C

SPM

Main SMC Interconnect 256b @1GHz

PEp-1

I$

PE0

I$

Se
rial

Lin
k

Se
rial

Lin
k

Se
rial

Lin
k

Se
rial

Lin
k

Vault Ctrl. Vault Ctrl. Vault Ctrl.

NeuroStream

32GB/S

D
R

A
M

 D
ies

Lo
gic-b

ase (Lo
B

)

DRAM DRAM DRAM
DRAM DRAM DRAM
DRAM DRAM DRAM
DRAM DRAM DRAM

N
eu

ro
C

lu
ster

PE1

I$ RISC-V

DMA

 Parameter Value Motivation
 NeuroCluster’s Frequency 1GHz Optimal Energy Efficiency
 NeuroStreams per Cluster 8 Limited by the Operating Frequency
 RISC-V Cores per Cluster 4 Overhead of Programming the NSTs
 Private I-Cache per Core 1KB Fitting ConvNet Kernel Codes
 SPM per Cluster 128KB Optimal Energy Efficiency
 SPM Interleaving WLI Programmability and Flexibility
 SPM Banking Factor 2 Optimal SPM Bank Conflicts
 Number of Clusters in SMC 16 Area Efficiency, Cost and Integration Issues
HMC: 1GB (4 DRAM Dies), 32 Vaults, Closed Policy, 4 Serial Links, 32MB Banks

NNST

NPE

Fig. 1. (a) An overview of the SMC network for scalable ConvNet execution,
(b) block diagram of one SMC instance highlighting the NeuroCluster
platform along with the baseline system parameters.

clusters in large data centers. Convolutional neural networks
(ConvNets) are known as the SoA ML algorithms specialized
at BIC [4]. ConvNets process raw data directly, combining
the classical models of feature extraction and classification
into a single algorithm. The key advantages of them over tra-
ditional Multilayer-Perceptrons (MLP) are local connectivity
and weight sharing: Each neuron is connected only to a local
region of the previous layer (or the input volume) called its
receptive field [5]. This is beneficial for dealing with high-
dimensional inputs such as images. Moreover, weight sharing
dramatically reduces the number of parameters that need to
be stored. ConvNets are not limited to image-processing only
and they can be applied to other workloads such as audio
and video [6], and even RFID-based activity recognition [7].
Also, function approximation in scientific workloads [8] is
another important target for ConvNets, motivating the need
for a highly scalable and energy-efficient execution platform
for them. In addition, recurrent networks (RNN) have been
recently utilized for Deep Learning (DL) and implemented

2

on scalable network-on-chips [9][10]. These networks have a
great potential for solving time-dependent pattern recognition
problems because of their inherent dynamic representations.
All these emerging DL models can be future targets for our
PIM proposal, yet, in this paper, we focus on ConvNets for
image and video.

A diverse range of ConvNet implementations exist today
from standard software libraries running on general-purpose
platforms [11][12] to application-specific FPGA [13][14][15],
ASIC [16][17][18][19], and even initial explorations on near
memory computing [20][21][22][23]. Even though Conv-
Nets are computation-intensive workloads and extremely
high energy-efficiencies have been previously reported for
their ASIC implementations [18][19][17], the scalability and
energy-efficiency of modern ConvNets are ultimately bound by
the main memory where their parameters and channels need to
be stored (See subsection II-B). This makes them interesting
candidates for near memory computation, offering them plenty
of bandwidth at a lower cost and without much buffering
compared to off-chip accelerators due to lower memory access
latency (A consequence of the Little’s law1 [24]).

Heterogeneous Three-dimensional (3D) integration is help-
ing mitigate the well-known memory-wall problem [25] The
Through-silicon-via (TSV) technology is reaching commercial
maturity by memory manufacturers [26][27] to build memory
cubes made of vertically stacked thinned memory dies in
packages with smaller footprint and power compared with
traditional multichip modules, achieving higher capacity. On
the other hand, a new opportunity for revisiting near-memory
computation to further close the gap between processors and
memories has been provided in this new context [20][21].
This approach promises significant energy savings by avoiding
energy waste in the path from processors to memories. In
2013, an industrial consortium backed by several major semi-
conductor companies standardized the hybrid memory cube
(HMC) [26] as a modular and abstracted 3D memory stack
of multiple DRAM dies placed over a logic base (LoB) die,
providing a high-speed serial interface to the external world.
More recently, a fully backward compatible extension to the
standard HMC called the smart memory cube (SMC) was
introduced in [25] along with a flexible programming-model
[24], augmenting the LoB die with generic PIM capabilities.

In this paper, we propose a scalable, flexible, and energy-
efficient platform targeting large-scale execution of deep
ConvNets with growing memory footprints and computation
requirements. Our proposal increases the total LoB die area
of a standard HMC only by 8% and achieves 240 GFLOPS
on average for complete execution of full-featured ConvNets
within a power-budget of 2.5 W. 22.5 GFLOPS/W energy effi-
ciency is achieved in the whole 3D stack (consuming 11 W in
total) which is 3.5X better than the best GPU implementations
in similar technologies. We also demonstrate that using a
flexible tiling mechanism along with a scalable computation
paradigm it is possible to efficiently utilize this platform
beyond 90% of its roofline [28] limit, and scale its performance

1Little’s law (L = λW) states that in a stable memory system, the long-
term average buffer size (L) is equal to the long-term average effective
bandwidth (λ) multiplied by the average memory access time (W).

to 955 GFLOPS with a network of four SMCs. We have
adopted the cycle-accurate SMC model previously developed
in [25] along with the generic software stack provided in
[24], and built a Register-Transfer-Level (RTL) model for
our DL framework, along with the required software layers.
Our main contributions can be summarized as follows: I)
Using near memory computation for large-scale acceleration
of deep ConvNets with large memory footprints, requiring the
use of DRAM; II) Proposing the NeuroStream coprocessors
as an alternative to vector-processing, providing a flexible
form of parallel execution without the need for fine-grained
synchronization; III) Presenting a flexible tiling mechanism
and a scalable computation paradigm for ConvNets, achieving
more than 90% roofline utilization; IV) A low-cost and energy-
efficient implementation of this solution based on a standard
HMC device, scalable to a network of multiple HMCs.

This paper is organized as follows. Background and related
work are presented in section II. Our architectural design
methodology, computation paradigm, and programming model
are explained in Sections section III, section IV, and section V
respectively. Experimental results are in section VI. Conclu-
sions and future directions are explained in section VII.

II. BACKGROUND AND RELATED WORK

A brief introduction to ConvNets is presented in sub-
section II-A. The evolution of modern ConvNets and their
uprising implementation challenges are explained in subsec-
tion II-B. The existing implementations for them are compared
with this work in subsection II-C.

A. Convolutional Neural Networks

ConvNets are typically built by repeated concatenation
of five classes of layers: convolutional (CONV), activation
(ACT), pooling (POOL), fully-connected (FC), and classifi-
cation (CLASS) [29]. CONV is the core building block of
the ConvNets doing most of the computational heavy-lifting
for feature extraction. It essentially consists of Multiply-and-
accumulate (MAC) operations as shown below [29]:

yl
o(i, j) = blo +

∑
c∈Ci

∑
(a,b)∈K

kl
o,c(b, a)x

l
c(j − b, i− a)

where o indexes the output channels (Cl
o), c indexes the

input channels (Cl
i), and K denotes the convolution kernels

(a.k.a filters). After each CONV layer, a non-linear activation
function (e.g. sigmoid, tanh, or ReLU [29]) is applied to the
output y of each individual neuron. This non-linearity gives
neural networks (NNs) superior classification and learning
capabilities over linear classifiers and allows them to solve
non-trivial problems. Sigmoid and tanh come from the tra-
ditional multilayer perceptrons, and their requirement for the
computation of exponential functions makes them unsuitable
for the main activation function [29]. In modern feed-forward
NNs the common recommendation is to use the rectified linear
unit (ReLU) defined by g(z) = max{0, z}. Applying this
function to the output of a linear transformation yields a
piecewise-linear function. For this reason, it preserves many

3

TABLE I
STORAGE REQUIREMENT (MB) IN THE SOA CONVNETS.

ConvNet Max {Neurons/Layer} Max {Coeffs./Layer} Max {Storage/Layer} Total Coeffs. Total (MB)

AlexNet 2 5 6 14 16

ResNet50 4 9 9 79 83

ResNet101 4 9 9 151 155

ResNet152 4 9 9 211 214

VGG16 25 9 25 56 81

VGG19 25 9 25 76 101

GoogLeNet 4 4 4 19 23

250K 19 9 19 228 247

1M 76 9 76 245 321

2M 150 9 150 262 411

4M 305 9 305 279 584

(MB)

of the properties that make linear models easy to generalize
and optimize with gradient-based methods [29]. It is common
to periodically insert a POOL layer in-between successive
CONV layers. Its function is to progressively reduce the size
of the volume (e.g. by calculating the maximum value of every
k×k region). This is to reduce the amount of parameters and
computation in the network and to control over-fitting [29].
In the final layers, multiple FC layers and one CLASS layer
perform the final classification and transform the results into
several classes. FC layers have a full connectivity and work
similar to MLPs. The CLASS layer converts the outputs of the
network to categorical distributions. A widely used classifier
is the SoftMax function. Compared to the rest of the network,
its computational complexity is usually small [4][30]. The
first layer connects the network to the input volume which
can be an image, a video frame, or a signal, depending on
the application (a 3-channel R,G,B image for instance). Each
layer l transforms the input volume (Xi, Yi, Ci) into an output
volume (Xo, Yo, Co). This terminology is used throughout this
paper and will be further elaborated in subsection IV-A.

B. Implementation Challenges of Modern ConvNets

ConvNets have been rapidly evolving in the past years, from
small networks of only a few layers (e.g. LeNet-5 [29]) to
over hundred [31] and thousand [32] layers, and from having
a few kilobytes of coefficients (a.k.a. weights) to multi-mega
bytes in [1][5][31]. Also, traditional ConvNets were only ap-
plicable to small 32x32 images, while the SoA ConvNets have
224x224 inputs, and this size is expected to grow [29]. Table I
shows an estimation for the storage requirements (in MB) of
top-performing ConvNets, assuming layer-by-layer execution.
AlexNet [29] is the 2012 winner of the ILSVRC challenge
[33]. VGG networks [5] and GoogLeNet [1] were the winners
of different categories in 2014, and ResNet [31] was the most
recent winner of this challenge in 2015. ResNet1K with 1001
layers [32] is omitted from our study because its training
loss and validation error (for the ImageNet database [33])
are not yet lower than its previous versions. Instead in this
paper, ResNet-152 is extended to larger networks (accepting
250K/1M/2M/4M-pixel images shown in Table I) to further
investigate the scalability of our approach and its applicability
to beyond High-Definition (HD) image resolutions. ResNet
is chosen for this purpose because it is more challenging to
accelerate than the other networks (See subsection VI-A).

It can be clearly seen that the typical on-chip (L1, L2)
storages in the memory hierarchy (caches or SRAM-based
scratchpad memories) cannot accommodate even a single layer
of these ConvNets, as the required storages per layer range
from 6 MB to over 300 MB. In addition, the assumption that

all coefficients can be stored on-chip ([16][17][34]) is not valid
anymore, since an additional storage of 14∼ 280 MB is re-
quired to accommodate the coefficients. Overall, 16∼580 MB
is needed for layer-by-layer execution, demonstrating that
DRAM is necessary as the main storage for deep ConvNets
and also motivating computation near main memory. A similar
observation was recently made in [21].

Another point is that the straightforward topology of the
traditional ConvNets such as LeNet-5 has recently evolved to
more complex topologies such as Deep Residual Learning in
ResNet [31] and the Inception Model (Network in Network) in
GoogLeNet [1]. This makes application specific implementa-
tions less practical and highlights the need for flexible and
programmable platforms. Also, unlike traditional ConvNets
with very large and efficient convolution filters (a.k.a. feature
maps) of over 10x10 inputs, modern ConvNets tend to have
very small filters (e.g. 3x3 in VGG and 1x1 in GoogLeNet
and ResNet). It can be easily verified that the Operational
Intensity (OI)2 decreases as the convolution filters shrink. This
can negatively impact computation, energy, and bandwidth
efficiency (See section VI). In this paper, we design a scalable
PIM platform capable of running very deep networks with
large input volumes and arbitrary filter sizes.

Lastly, different tiling methods for ConvNets have been
previously proposed [13][15] for FPGA implementations, in
[17] for a neuromorphic accelerator, and in [35] for a Very
Long Instruction Word (VLIW) architecture. In [35] a tile-
strip mechanism is proposed to improve locality and inter-tile
data reuse for ConvNets with large filters. In [15] a row-
major data layout has been proposed to improve DRAM’s
bandwidth efficiency and reduce bank conflicts in FPGA’s
BRAM banks. Also, tile-aware memory layouts have been
previously proven effective for multi-core [36] and GPU
implementations [37] of linear algebra algorithms, directly
affecting their cache performance, bandwidth efficiency, and
the degree of parallelism. In this paper, we introduce a general
and flexible form called 4D-tiling (subsection IV-A) allowing
for optimization of performance and energy efficiency under
given constraints such as on-die SPM and DRAM bandwidth
usage. Our proposed mechanism reduces the communication
overheads among the clusters and uses the DRAM interface
more efficiently by merging DMA transfers into larger chunks.

Throughout this paper, we use single-precision floating-
point (FP32) arithmetic to be able to flexibly target large-
scale DL in the high-performance computing domain. The
wide dynamic range offered by this representation improves
programmability and allows for implementing a wider range
of algorithms, as well as, training and backpropagation, since
they usually require higher precision and dynamic range [29].
We use the notion of GFLOPS (Giga-FLOPS per second)
to demonstrate the achieved FP32 performance, along with
GOPS (Giga-operations per second) to show integer/fixed-
point performance in subsection II-C.

2Operational Intensity (OI), a.k.a. Computation to Communication Ratio,
is a measure of computational efficiency defined in the roofline-model [28]
as the number of computations divided by the total transferred data (bytes).

4

C. SoA ConvNet Implementations

A glance at the SoA highlights two main directions:
(I) Application-specific architectures based on ASIC/FPGAs
[34][18][17][13][15][16][38]; (II) Software implementations
on programmable general-purpose platforms such as CPUs
and GPUs [30][39][13][40]. ASIC ConvNet implementations
achieve impressive energy efficiency and performance: Dian-
Nao [17] obtains 450 GOPS at 0.5 W with a neuromorphic
architecture using 16b fixed-point arithmetic in 65nm tech-
nology. Later, it has been extended to 1250 GOPS within a
similar power budget in [19]. The limiting assumption in this
work is that the whole ConvNet (coefficients + the largest
intermediate layer of LeNet-5) fits inside the on-chip SRAM
(∼256kB). As we showed above, this assumption is not valid
anymore for modern ConvNets. Also, they use a small input
image size (32x32) with very large convolution filters (e.g.
18x18, 7x7), which is unrealistic for modern ConvNets, as
explained before. In EIE [16] coefficients are compressed by
pruning and weight-sharing, achieving 100 GOPS at 625 mW
in 45nm technology, with the main drawback of storing 84M
coefficients on-chip, resulting in an area of over 40mm2.
Eyeriss [38] presents a reconfigurable ConvNet accelerator
mainly focusing on reducing data movement by an approach
called “row-stationary” computation, in which kernel coef-
ficients are loaded once and reused several times. Eyeriss
achieves around 70 GOPS at 278 mW for AlexNet, but when
scaling to VGG16, their performance drops to 20 GOPS within
the same power budget. In [23] it is shown that memory is
the main bottleneck of Eyeriss, limiting its scalability and
energy efficiency when used with larger networks and images.
Origami [18] achieves 145 GOPS at 0.5 W, using 12b fixed-
point implementation (65nm-UMC technology at 1.2V, with
40kB of storage), being scalable to 800 GOPS/W at 0.8V. The
main issue with these works is their lack of flexibility and
scalability to large inputs and modern ConvNets. Also, the
assumption that a significant part of the ConvNet can be stored
on-chip is not valid anymore, and shrinking filter dimensions
can significantly hurt their reported performance and efficiency
numbers with 18x18 filters in [17], 10x10 in [34], 7x7 in
[21], and 6x6 in [18], due to the significantly reduced OI. In
this paper, we propose a flexible solution supporting a wide
range of ConvNets with different network, kernel, and image
dimensions.

FPGA platforms provide higher flexibility compared to
ASIC implementations but lower energy/area efficiency due
to the usage of reconfigurable routing switches and logic
blocks. In [13], ConvNet models are synthesized to Xil-
inx Virtex7-485T using high-level synthesis. 61 GFLOPS is
achieved (FP32) at 18 W (3.4 GFLOPS/W). In [34] the Neu-
Flow data-flow vision processor has been prototyped on Xilinx
Virtex-6 VLX240T and 147 GOPS @ 10 W (14.7 GOPS/W) is
achieved. Caffeine [15] presents a flexible hardware/software
co-design library to efficiently accelerate ConvNets on FPGAs.
It achieves 166 GOPS @ 25 W (6.6 GOPS/W) on Xilinx
KU060 and 8.5 GOPSW on Xilinx VX690T with 16b fixed-
point arithmetic. In comparison with CPU/GPU platforms,
low-cost FPGAs have limited memory bandwidth which is
also highly sensitive to memory access burst lengths, requiring

a more careful design for efficient bandwidth usage. High-
end FPGAs offer larger bandwidths thanks to their larger
number of high-speed IOs. The problem is that these IOs are
very general (because of the reconfigurability requirements)
and therefore they are very expensive in area and power
[15]. Our proposal achieves higher energy-efficiency thanks
to near memory computation and having optimized DMA
interfaces to DRAM with a novel tiling scheme. In addition,
the higher bandwidth available to our solution translates into
lower programming effort (according to the roofline model
[28]) and reasonable performance, even for applications not
super-optimized to use the available bandwidth efficiently.

General-purpose GPU platforms, on the other hand, are able
to flexibly execute different deep NNs [39][30][13] without the
limitations of application specific architectures. Fast and user-
friendly frameworks such as CAFFE [11] and cuDNN [12] are
publicly available which also provide facilities to efficiently
train deep NNs. In [39] over 500 GFLOPS has been reported
for execution of the CAFFE models based on cuDNN on
NVIDIA Tesla K40 with default settings. By turning off error-
correction and boosting the clock speed they have been able
to reach 1092 GFLOPS @235 W (4.6 GFLOPS/W). Geforce
GTX 770 achieves 2.6 GFLOPS/W using the same framework
[39]. Mobile GPUs achieve similar energy efficiencies at lower
power budgets. 54 GFLOPS for less than 30 W is reported in
[34] for NVIDIA GT335M, and in [30] 84 GFLOPS for 11 W
is reported for NVIDIA Tegra K1. More recently NVIDIA [41]
has reported promising energy and performance improvement
for its high-end GPU accelerator Tesla P100 in 16nm technol-
ogy and with a new framework called TensorRT which is 1.5X
more efficient than CAFFE. For inference with GoogLeNet,
ResNet-50, and AlexNet, 20, 23.9, and 35 GFLOPS/W are
reported, respectively. We would like to remind here that Tesla
P100 is an expensive high-end accelerator costing more than
$9K, while our PIM solution can be integrated within existing
systems with HMC devices at almost no additional cost, in the
same package structure, and within the same power budget.
Plus, an HMC module itself costs less than $1.4K, which is
expected to reduce as its market size grows.

CPU implementations achieve lower energy efficiency for
execution of ConvNets with standard frameworks. In [13],
12.8 GFLOPS at 95 W has been reported for Intel Xeon CPU
E5-2430 (@2.20GHz) with 15MB cache and 16 threads.
In [30], 35 GFLOPS at 230 W has been reported for Intel
Xeon E5-1620v2. In [40] a domain-specific instruction set
architecture (ISA) is designed for the widely used NN models
by identifying the common operations in them. They show
higher flexibility compared to [17] by being able to model 9
classes of NNs. The size of the studied networks, however, is
extremely small compared to the ones studied in our paper.
Another common approach is to augment a RISC processor
with Single-Instruction-on-Multiple-Data (SIMD) extensions.
Commercial platforms such as TI AccelerationPAC, CEVA-
XM4, Synopsys DesignWare EV5x, and Movidius Fathom fol-
low this trend. Performance and efficiency characterization of
these platforms is not publicly available, nevertheless, SIMD
extensions require more programming effort to be efficiently
utilized, and their register-file bottleneck limits their scalability

5

[40]. In this paper, we follow a different approach based on
many scalar coprocessors working in parallel on a shared
memory. This is described in section III. On the other hand,
Google’s TensorFlow platform [42] maps large-scale ML prob-
lems to several machines and computation devices, including
multi-core CPUs, general-purpose GPUs, and custom designed
ASICs known as Tensor Processing Units (TPUs). Nervana,
also, has built a scalable ML platform [43] with their own
implementation of TPUs, and a library called Neon to support
cloud computation with different back-ends. Apache Spark
features a library called MLlib [44] targeting scalable practical
ML. No performance or efficiency data is publicly available
for these platforms. Lastly, HCL2 [45] motivates designing a
heterogeneous programming system based on map-reduce for
ML applications supporting CAFFE [11] representations.

The study of the ConvNets in a near-memory context has
been done in [20][21][22][23]. In [20] the authors assume that
the whole internal bandwidth of the HMC (320 GB/s) is avail-
able to PIM. They reach a performance of 160 GFLOPS (lower
compared to our solution) for AlexNet and VGG inside each
cube, and the details of their PIM design are not exposed in
their work. Plus, instead of performance efficiency, normalized
execution time is reported only, and the analysis of power and
area are left as future works. In [21] a data-driven computing
model is proposed using finite-state-machines (FSM) near each
HMC vault controller, preprogrammed to generate DRAM
addresses for the ConvNet under execution (16b fixed-point).
Their study, however, is limited to a small ConvNet with 6
layers and scaling their approach to modern ConvNets seems
difficult. They achieve 132 GOPS @ 13 W with an energy
efficiency lower compared to our work (10 GOPS/W). The
LoB die in NeuroCube consumes 3.4 W, mainly due to the
presence of data caches, on-chip storage for weights, and
network-on-chip routers with packet encapsulation in their
accelerator design.

Tetris [23] is a scalable NN accelerator based on HMC. It
uses the “row-stationary” computation paradigm proposed in
[38] with fixed-point computation and scales it to multiple NN
engines each associated with a DRAM vault. Tetris requires an
area of 3.5mm2 per vault in the 45nm technology, which can
be scaled to 21mm2 in 28nm technology. From the relative
results reported in [23] its performance can be estimated as
159 GOPS with an average power consumption of 6.9 W. Both
energy and area efficiency of Tetris are lower than our work.

Finally, in [22], ConvNet execution in Re-RAM based non-
volatile memory is investigated with different design decisions
due to the drastically different memory technology used. Rel-
ative performance and energy numbers reported in this work
make it difficult to compare directly, nevertheless, a throughout
survey on the techniques to use these memories in comparison
with DRAM is presented in [46]. In this paper, we have
observed that for modern ConvNets with shrinking kernels,
coefficient reuse is becoming less practical and approaches
such as row-stationary are not that beneficial anymore. For
this reason, we use a completely different approach focusing
on parallelism rather than coefficient reuse.

To summarize, three main assumptions motivate our pro-
posed computation paradigm and tiling mechanism: a) Focus-

ing on synchronization-free parallelism rather than coefficient
reuse; b) Limiting the on-chip storage available to the PIM
cluster; c) Supporting very large input images (up to 32Mega-
pixels). We will demonstrate that our scalable and flexible
ConvNet acceleration platform provides higher energy effi-
ciency compared to the best FPGA and GPU implementations
in similar technologies at a fraction of their system cost.

III. SYSTEM ARCHITECTURE

ConvNets, by nature, are computation demanding algo-
rithms. One forward pass of VGG19, for example, requires
around 20 billion MAC operations with over 100K operations
per pixel. Maintaining even a frame-rate of 10 frames per
second will require over 200 GFLOPS. In theory, ConvNets
can reach extremely high OI ratios (discussed in subsec-
tion II-B), as they reuse data efficiently. However, due to
the very large memory footprints of deep ConvNets, their
performance and energy efficiency is ultimately constrained
by the main DRAM storage and off-chip communication.
As we will show throughout this paper, in a near-memory
context some of these constraints can be relaxed, providing the
possibility to improve energy efficiency and programmability.
subsection III-A describes the design of our many-core PIM
platform.

A. NeuroCluster

NeuroCluster (Illustrated in Figure 1b) is a flexible gen-
eral purpose clustered many-core platform, designed based
on energy-efficient RISC-V processing-elements (PEs) [47]
and NeuroStream (NST) coprocessors (described in subsec-
tion III-B), all grouped in tightly-coupled clusters. Each cluster
consists of four PEs and eight NSTs, with each PE being
responsible for programming and coordinating two of the
NSTs. This configuration is found to be optimal in the explo-
rations presented in section VI. The PEs are augmented with a
light-weight Memory Management Unit (MMU) along with a
small sized Translation Look-aside Buffer (TLB) providing
zero-copy virtual pointer sharing from the host to Neuro-
Cluster (More information in section V). Instead of caches
and prefetchers which provide a higher level of abstraction
without much control, and they are more suitable for host-
side accelerators [24], scratchpad memories (SPMs) and DMA
engines are used with a simple and efficient computation
paradigm to boost energy efficiency [48][24][35]. Also, caches
introduce several coherence and consistency concerns and are
less area and energy-efficient in comparison with SPMs [24].
Each cluster features a DMA engine capable of performing
bulk data transfers between the DRAM vaults and the SPM
inside that cluster. It supports up to 32 outstanding transactions
and accepts virtual address ranges without any alignment or
size restrictions. The NST coprocessors, on the other hand,
have limited visibility only to the cluster’s SPM with no
concerns about address translations and DMA transfers. This
mechanism allows for simple and efficient computation while
maintaining the benefits of virtual memory support [24].

Each PE is a light-weight RISC-V based processor with 4
pipeline stages and in-order execution (without branch predic-

6

S1

S0

A S2

+

EN
1

EN

2

EN
3

OPA-Addr S1

S0

A S2

+

EN
1

EN

2

EN
3

OPB-Addr

C
m

d

O
P

1

O
P

2

Data-flow Controller

Pipe ACC

 Main
Controller

RW-FSM

1

E0

i
0

+

T

F

<
T/F

1

E1

j
0

+

T

F

<
T/F

1

E2

k
0

+

T

F

<
T/F

en en en
EN1

AGU0 AGU1

HWL

CMD
FIFO

To
RISC-V

From
RISC-V

Command
FSM To

Cluster
Interco.

From
Cluster
Interco.

Waddr.
FIFO

Streaming

FPU

Loop 0 Loop 1 Loop 2

0x1020_480C

0x1020_4808

0x1020_4804

0x1020_4800

REGS
CMD

Status

CFG
ACC

N
e

u
ro

St
re

am

AGU

FP32-MUL FP32-CMP FP32-ADD To Cluster
Interco.

M
U

X

Operand
FIFOs

Fig. 2. Architecture of the NeuroStream (NST) floating-point coprocessors.

tion, predication, or multiple issue) for energy-efficient opera-
tion [47]. RTL models of these cores have been adopted from
[49]. 1 kB of private instruction-cache (4-way set associative)
is available to each core. An in-depth exploration of different
instruction cache choices (including size, associativity, and
shared/private organizations) are previously performed in [50],
demonstrating that this organization not only supports larger
data-sets (e.g. ConvNets), but also larger codes, as long as their
main computing loops (kernels) fit in the caches. The SPM in-
side each cluster is word-level-interleaved (WLI) with multiple
banks accessible through the cluster-interconnect. The cluster-
interconnect has been designed based on the logarithmic-
interconnect proposed in [51] to provide low-latency all-to-
all connectivity inside the clusters. Also, the AXI-4 based
global-interconnect, connecting the clusters, follows the same
architecture as the SMC-Interconnect [25] to achieve a very
high bandwidth.

B. NeuroStream

NeuroStream (NST) is a streaming coprocessor designed
based on two observations: (I) Modern ConvNets tend to
have very small convolution filters, making coefficient reuse
less practical (previously discussed in subsection II-B). (II)
The most demanding operation in ConvNets is MAC [30].
Therefore, unlike conventional SIMD coprocessors (e.g. ARM
NEON), NST works directly on the shared multi-bank SPM
without having many internal registers (just one accumulator).
This feature along with its dedicated hardware address genera-
tors allows it to perform arbitrary computations efficiently and
directly on the SPM. This removes the register-file bottleneck
which is present in SIMD architectures and allows it to achieve
a performance close to 1 MAC/cycle. Moreover, each NST
can be treated as a scalar coprocessor working independently.
Yet, it is possible to instantiate several NSTs inside a cluster to
achieve a scalable parallelism without the need for fine-grained
synchronization among them. This way, NSTs are easier
to program compared to SIMD units, and they offer more
flexibility in terms of the size/shape/stride of the computations.
In total, 128 instances of NST, clocked at a moderate speed
of 1 GHz, sum up to 256 GFLOPS of raw performance in the
NeuroCluster.

Figure 2 illustrates the block diagram of NST, composed
of the main controller, three hardware-loops (HWL), two
Address Generation Units (AGUs), and an FP32 datapath
(FPU) compatible with the IEEE-754 standard. The main-
controller is responsible for receiving the commands from
the processor and issuing them to the datapath. A parametric-
depth first-in-first-out (FIFO) command-queue is implemented
to hide the programming latencies. Also, the control interface
is memory-mapped, making it possible for the NSTs to easily
communicate with other processor micro-architectures (e.g.
ARM). NSTs follow a nonblocking data-flow computation
paradigm, and information flows in them as tokens. The
main controller is, therefore, responsible for issuing enough
transactions (2 in each cycle in case of MAC) towards the SPM
and filling up the operand FIFOs to keep the FPU busy almost
every cycle. The hardware-loops are programmable FSMs
capable of modeling up to three nested-loops in hardware.
The AGUs can be programmed to generate complex strided
SPM access patterns (See subsection V-A). By having two
direct ports to the cluster-interconnect, each NST can fetch
two operands (typically one coefficient and one data) in a
single-cycle and perform an operation on them.

NST supports strided convolution, max-pooling, ReLU-
activation, along with some basic utilities for backpropagation
and training. Apart from these tasks, it can also be used for
generic computations such as dot product, matrix multiplica-
tion, linear transformations, and weighted sum/average. Even
single FP32 operations (e.g. add, multiply) are supported for
generality. More than 14 commands in three categories are im-
plemented: streaming (e.g. STREAM MAC, STREAM SUM,
STREAM MAX), single (e.g. SINGLE ADD, SINGLE MUL),
and memory commands (for configuration and memory trans-
fers to/from the accumulator). subsection V-A describes how
NSTs can be programmed to do various computations.

IV. COMPUTATION MODEL

When a ConvNet such as GoogLeNet is selected for ex-
ecution over our PIM system, first it is tiled using the 4D-
tiling mechanism described in subsection IV-A. This proce-
dure prepares it for parallel execution over the clusters, and
optimally partitions it to achieve the highest efficiency under
given constraints such as on-die SPM and DRAM bandwidth
usage. Next, all coefficients are loaded in SMC’s DRAM
and an additional space is reserved there for the intermediate
results of the largest layer (shown previously in Table I).
The input volume (e.g. the image or video frame) is loaded
into this area before each run. The actual execution takes
place layer-by-layer, each layer being parallelized over 16
clusters. Each cluster executes one 4D-tile at a time with all
its NSTs working cooperatively to compute its final result
inside the cluster’s SPM. Only at the end of each layer, the
clusters are synchronized. A more detailed description follows
in subsection IV-A and subsection IV-B.

A. 4D-Tiling Mechanism

A 4D-tile (illustrated in Figure 3a,b) is a subset of the
input volume (called Input-tile) and output volume (Output-
tile) of a convolutional layer (l) identified by the (T (l)

Xi , T
(l)
Y i ,

7

Width (X)

CONV Layer (Ɩ)

Input Volume

Filters

Width (X)

Augmented-TileRaw-Tile

H
eigh

t (Y)

Ty
i(Ɩ

)

Txi(Ɩ)

Txi(Ɩ)b

c

e

T0 T1

T3 T4

4D-Tile

Xo

YoInput
Tile Output

Tile

Output Volume

Tyi(Ɩ)

Width (Xi)
H

ei
gh

t
(Y

i)

Kx

Ky

Input Volume

Classified Outputs

Layer 1 Layer ma

H
ei

gh
t

(Y
)

A

B C

row0

row1

row2

row3

row4

row5

T0 A

B C DRAM Layout for one augmented tile

A A A CB
row0 row1 row4 row5

 An augmented tile

M

N

Q

R

Input
channels

P

Tc
i(Ɩ

)

Tc
o

(Ɩ
)

d

4
D

-T
ile

Output
channels

T2

T5

(raw)

(raw)

f
T0 raw T0 rawT0 raw

Fig. 3. (a) Illustration of a general ConvNet, (b) a 4D-tile, (c) row-major
data layout and tile-overlapping, (d) partial computation of tiles, and (e,f) the
underlying DRAM storage of one augmented-tile.

T
(l)
Ci , T (l)

Co) tuple. T (l)
Xi and T

(l)
Y i are the tile width and height

of the input volume of layer l, and T
(l)
Ci and T

(l)
Co are the

numbers of input and output channels to the tile. The output
dimensions of each tile are calculated directly from input
width and height, filter dimensions, striding, and zero-padding
parameters. 4D-tiles have three main features essential for
near-memory acceleration of deep ConvNets:

Row-major data layout: With the conventional tile-
oblivious layout, data is fragmented in DRAM, so several
DMA transfers are required to fetch one tile. Even a DMA
engine with striding capabilities does not help with the inef-
ficiency caused by opening a DRAM row with closed policy
[26] and partially reading from it in strides. To address this
problem, we modify the underlying storage of the intermediate
layers in DRAM to a row-major form (illustrated in Fig-
ure 3c,e). This way with a single large DMA transfer request,
the whole tile can be fetched by the processing cluster. This
improves DRAM’s read performance which can be exploited
as described below. The implications of this mechanism on
DMA write and its overheads will be explained later in this
section.

Tile overlapping: When the convolution filters are larger
than 1×1, borders of the adjacent tiles of each tile should be
fetched from DRAM, as well. Assuming that the bandwidth
overhead of these overlapping regions can be tolerated by
proper choice of tile dimensions, still, the storage impact
on the row-major data placement in DRAM is not trivial,
and fragmented DMA transfers will be required to fetch the
overlaps. This problem can be solved by storing the overlap-
ping regions in the DRAM once per each tile. This means
storing the “augmented-tiles” (shown in Figure 3c) instead of

“raw-tiles” inside DRAM in a row-major form, at the cost of
increased DRAM storage and bandwidth. When reading from
DRAM, a complete tile (including all overlapping regions
required to compute the convolution in its borders) can be
fetched using a single DMA transfer request. But, when
writing the results back to the DRAM some care should be
taken to convert the raw output tile to an augmented-tile for the
next layer (explained below). The average increases in DRAM
bandwidth and storage incurred by this mechanism were found
to be less than 10% and 3%, respectively. Also, on the average
around 200 MB of DRAM was used with maximum usage of
580 MB for ResNet with 4M-pixel images.

Partial Computations: Tiling of channels (T (l)
Ci and T

(l)
Co)

requires maintaining partial computations, as more than one
input tile contributes to the result of each output tile. Assuming
that one input tile and one output tile can fit in each cluster’s
SPM, we perform the following steps to compute each output
tile: Tile M (See Figure 3d) and the related filter coefficients
(KMQ) are fetched from the DRAM. Then, Q = Q+M∗KMQ

is computed inside the SPM (Q containing partial sums of the
output channels). Next, Tile N and KNQ are fetched from
the DRAM, and Q = Q + N ∗ KNQ is computed, and so
forth. After all input tiles have been read once, activation and
pooling are directly performed on the output tile Q (again
inside the SPM) and then Q is written back to the DRAM
by the associated PE. This mechanism reduces DRAM’s write
bandwidth and puts more pressure on read bandwidth given
that data is only written back once after several DRAM reads
(as described), after reduction operations (pooling, strided
convolution) which further reduce the number of DRAM
writes in comparison with DRAM reads. In all experiments
of this paper, DRAM’s write bandwidth was found to be less
than 4% of the read bandwidth. This suits our row-major data
layout, requiring DRAM writes to be off the execution critical
path.

It is important to explain how the raw output tile of one
layer (l) is converted to an augmented tile for the next layer
(l + 1), given that data cannot be “magically” reorganized in
the DRAM. Looking at T0 in Figure 3e, we can see that it has
4 regions (raw, A, B, C). The raw region of T l+1

0 is written
to DRAM using multiple fragmented DMA writes when T l

0 is
computed in SPM. This is shown in Figure 3f. The A, B, and
C regions of T l+1

0 are written to DRAM after T l
1, T l

3, and T l
4

are computed, respectively, using small DMA chunks shown in
Figure 3f. Zero-padding is also properly handled at this stage
for the corner tiles. Since DRAM writes are off the critical
path, we can afford to perform these conversions, without
incurring significant overheads. Another key point is that the
raw-tile width and height of the consecutive layers must be
equal (for consistent row-major data layout) unless there has
been a strided convolution [29] or pooling stage between
them, for which the tile dimensions will shrink. This way,
as we move forward through the ConvNet layers, tile width
and height (T (l)

Xi , T
(l)
Y i) tend to shrink. To avoid this having

a negative impact on computation and SPM usage efficiency,
we need to increase T

(l)
Co or T (l)

Ci . This completely modifies
the shape and number of the tiles in each layer and impacts
everything from synchronization overheads to the efficiency of

8

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

S1

S2

Loop2

Loop0

A
d

d
re

ss

tile_in[tyo + ky*sy][txo + kx*sx][tci]

filters[tco][ky][kx][tci]

Time

S0

Loop1

for (b=0; b<NUM_BATCHES; b++)
{
 tco = tileinfo[cpuid][b].tco;
 txo = tileinfo[cpuid][b].tyo;
 tyo = tileinfo[cpuid][b].txo;
 DATA_TYPE result = 0;
 for (ky = 0; ky < KY; ky++)
 for (kx = 0; kx < KX; kx++)
 for (tci = 0; tci < TCI; tci++)
 result += filters[tco][ky][kx][tci]*
 tile_in[tyo + ky*sy][txo + kx*sx][tci];
 tile_out[tco][tyo][txo] = result;
}

Loop 0

Loop 1

Loop 2

a b
Start-Addr

Offload to
NST[b % NNP]

NNP= NNST / NPE

TXo × TYo × TCo
NNST

Fig. 4. (a) A convolution kernel to be performed on a 4D-tile, (b) a typical
memory access pattern generated by this kernel.

the computing loops and DRAM bandwidth. This highlights
the need for a flexible computing cluster to support a wide
range of tile dimensions.

B. Mapping Tiles to Clusters

Since there is no data overlap among augmented-tiles (ex-
cept possibly for some filter coefficients), each cluster can
execute one tile at a time. This minimizes communication
among the clusters. Also, tiling information is prepared off-
line (only once) and is stored in a list accessible by all clusters
in DRAM. The master PE (the first PE in each cluster) consults
this list to obtain the required information (e.g. address in
DRAM, size, and filter coefficients) for the next tile. Then
it issues a DMA read to fetch the new tile. Each cluster
works based on ping-pong buffering to hide the setup and
DMA transfer latencies. While one tile is being computed by
the NSTs in the cluster, another tile is fetched by the master
PE and tiling information is prepared for it. This procedure
continues until all tiles in a layer are finished. At this point,
all clusters are synchronized before proceeding with the next
layer.

Inside each cluster the master PE partitions the tile among
the NSTs in the order of T (l)

Xo, T (l)
Y o, and T

(l)
Co dimensions

first. This is to ensure that each output is written exactly
by one NST, and to remove synchronization requirements
among the NSTs. If still more NSTs are remaining (e.g.
for small corner tiles), T (l)

Ci is used for tile partitioning,
posing some synchronization overheads to the PEs. Therefore,
corner tiles (with smaller dimensions) and arbitrarily sized-
tiles are properly handled in this scheme. Thanks to this tile-
mapping mechanism, NSTs can work independently without
worrying about getting synchronized with each other. Any
required synchronization is handled by the RISC-V PEs,
through hardware primitives devised for this purpose. Given
that (Xo×Yo×Kx×Ky×Ci×Co) MAC operations need to be
done in each layer, 4D-tiling can be viewed as a schedule (in
time and space) of this computation to the available resources
in NeuroCluster. Overall, the computation inside each SMC
is done in a self-contained manner, without synchronizing
with the host processors. The user only offloads a ConvNet
task to the SMC, and the rest of the computation happens
completely inside the cube. The serial-links are turned-off
when not required to save energy. The performance and energy
advantages of this scheme are studied in subsection VI-C.

V. PROGRAMMING MODEL

Previously in [24], a complete software stack (API, Device
Driver) had been developed for a single-processor PIM device
residing on the SMC, exposing it to the user-level applications.
This software stack is available online for reuse and mod-
ification [52]. An optimized memory virtualization scheme
was developed in [24], as well, for zero-copy data sharing
between host and PIM, allowing PIM to directly access user-
space virtual memory without costly memory copies. In this
paper, we have adopted this software stack and extended it
to support NeuroCluster, a parallel-processing platform rather
than a single core. It has been, also, amended to support
DL primitives and offloading of ConvNet tasks. The memory
virtualization scheme has been adopted from [24], as well.

As a demonstrative example, suppose that the user applica-
tion wants to execute GoogLeNet on PIM for an image already
stored in DRAM. After initializing PIM’s API, it uses this API
to offload the precompiled computation kernels, including the
computing loops for the ConvNet layers (e.g CONV, ACT, and
POOL), to NeuroCluster. This procedure is done only once.
Next, the pointer to the image is passed to the API, and a
special table called slice-table (a generalized form of page-
table) is built for the data structures, by the driver, and stored
in DRAM. The user then triggers the actual execution through
the API and waits for the task to complete. The RISC-V cores
work directly on the virtual memory and consult the slice-
table whenever a miss occurs in their TLB. The offloading
overheads have been previously shown to be negligible in
[24]. Also, in case of having several video frames instead
of images, the same pointers can be reused in double/multi-
buffering modes to avoid the need for rebuilding the slice-
table upon every execution. More details on the software stack
and the memory virtualization scheme can be found in [24].
subsection V-A describes how NSTs are programmed by the
PEs to perform the tasks related to inference in ConvNets.
subsection V-B presents the implications of supporting train-
ing.

A. Inference with NSTs

Figure 4a illustrates a convolution kernel to be performed
on a 4D-tile. The data-structure tileinfo contains the required
partitioning information for the given tile among the NSTs.
When the number of total jobs (TXo × TY o × TCo) is more
than NNST , the jobs will be broken into several batches
(NUM BATCHES). The flexibility provided by tileinfo allows
us to reduce the number of convolution loops down to 4
instead of 6. filters and tile in are the two data structures
accessed in every iteration of the inner-loop. Typical memory
access patterns for this kernel are plotted in Figure 4b. These
patterns seem fairly regular, therefore, NSTs should be easily
able to generate them, as well. It is enough to program the
configurations registers of an NST with the starting address
and the three step values illustrated in Figure 4b (S0, S1, and
S2), and then issue a STREAM MAC command to it. This
way, the three inner loops of Figure 4a can be replaced by
execution in hardware. This is illustrated in Figure 5a. The
latency overheads of these commands are hidden by having
multiple NSTs and by filling up their command queues with

9

a b For k=0; k<E2; k++:
 For j=0; j<E1; j++:
 For i=0; i<E0; i++:
 ACC +=
 TCDM[AGU0] × TCDM[AGU1]
 AGU0 += S00
 AGU1 += S10
 AGU0 += S01
 AGU1 += S11
 AGU0 += S02
 AGU1 += S12

// Once per each CONV layer
ISSUE_CMD(MEM_LDC, AGU0_S0, 1);
ISSUE_CMD(MEM_LDC, AGU0_S1, TCI*(Sx-1));
ISSUE_CMD(MEM_LDC, AGU0_S2, TCI*(TXI*Sy-Sx*KX+1));
ISSUE_CMD(MEM_LDC, AGU1_S0, 1);
ISSUE_CMD(MEM_LDC, AGU1_S1, 0);
ISSUE_CMD(MEM_LDC, AGU1_S2, 0);
ISSUE_CMD(NST0, MEM_LDC, HWL_E0, TCI);
ISSUE_CMD(NST0, MEM_LDC, HWL_E1, KX);
ISSUE_CMD(NST0, MEM_LDC, HWL_E2, KY);
for (b=0; b<NUM_BATCHES; b++) {
 // tco, tyo, txo = tileinfo[...] // Once per batch
 ISSUE_CMD(NST0, MEM_LDC, AGU0_A, &kernels[tco][0][0][0]);
 ISSUE_CMD(NST0, MEM_LDC, AGU1_A, &tile_in[tyo][txo][0]);
 ISSUE_CMD(NST0, STREAM_MAC, 0, 0);
}

Fig. 5. (a) Using NSTs to accelerate the loop shown in Figure 4a, (b) the
pseudo-code for implementation of STREAM MAC inside the NSTs.

multiple commands. The implementation of STREAM MAC
inside the NSTs is depicted in Figure 5b. This is hard-coded
in the main controller of the NSTs and is executed efficiently,
without losing any cycles (See subsection VI-A for results).

Similarly, each NST is able to perform ReLU activation
on arbitrary tiles using STREAM MAX command devised
for this purpose on the same set of state machines and
hardware blocks. For the sake of generality, STREAM SUM,
STREAM SCALE, STREAM SHIFT, and STREAM MIN are
implemented, as well. Another widely used operation in Conv-
Nets is pooling [4]. NST supports max-pooling [53] through
the STREAM MAXPL command. Thanks to the flexibility of
the AGUs and HWLs, arbitrary tiles with different strides are
supported. Finally, FC layers can also be implemented using
a set of STREAM MAC commands, similar to the CONV
layers. The CLASS layer, however, is executed on the PEs in
the current implementation using the SoftFloat library [54].

B. Implications of Training

Backpropagation is the prevalent method for training NNs
including ConvNets [29]. Given a set of training sample inputs,
first a forward propagation is executed layer-by-layer, then
using an optimization algorithm, such as gradient descent
(GD) [4], the coefficients (weights) are updated backwards
so that the network learns that sample. A modern training
algorithm based on GD has three phases [29]: (1) Forward
Pass, (2) Gradient calculation and routing, and (3) Weight
update. In step (1), the selected input (e.g. an image) is fed
to the network and the outputs of all layers including the
value of the loss function are calculated. This is similar to
a normal inference pass, except that additional information
about the current operating point (e.g., max-pool decisions)
in all layers has to be stored, such that it can be retrieved
later on for gradient calculation. This can be easily handled
by our platform because plenty of DRAM is available to
the NeuroClusters through a high-bandwidth and low-latency
3D interface. For example, ResNet-152 requires 211 MB for
its coefficient and a total of 161 MB for all its layers. This
aggregates to a total of 372 MB of DRAM storage. Another
difference with inference is that the POOL layer should
keep track of the inputs which were maximal in the pooling
operation. This is called argmax and since just comparison
with zero is involved, in this implementation we use the RISC-
V cores for it.

In step (2), starting from the final stage of the network
(classification layer), the gradients of the loss function are
calculated with respect to the inputs (DX) and to the weights
(DW) and propagated backwards towards the input layers. For

the FC layers DX = WT .DY and DW = DX .X
T , and for

the CONV layers DX = DY ∗ WT and DW = X ∗ DY
T

can be completely calculated on the NSTs using a series of
STREAM MAC operations (Y is the output gradient of each
layer which is propagated backward to the input X , and T
stands for matrix transpose). ACT layer only propagates back
the gradients (DXi = Xi ≥ 0?DY i : 0). This operation is
not currently supported by NSTs. But since only comparisons
with the zero are involved, the integer datapath of RISC-V
cores is used. POOL layer, similarly, propagates back the
gradients with a matrix scatter operation [29], populating a
sparse matrix without performing any actual computation.
Again, this operation is implemented on the RISC-V cores in
the current version. SoftMax (CLASS) is calculated similarly
to the forward-pass on the RISC-V cores. Finally, in step (3),
the weights are updated either with fixed or adaptive step sizes
(α or αi, respectively): Wi = Wi − α(dWi + λWi). This
procedure is repeated in an iterative manner for all variations
of GD algorithms (e.g. Stochastic GD, Batch GD) [29]. A fixed
step implementation of this formula is currently supported
by the NSTs, while adaptive steps need to be calculated
by the PEs, once per each backward pass. An estimation
for the performance of training on SMC is presented in
subsection VI-A.

VI. EXPERIMENTAL RESULTS

Our baseline system is composed of a memory-centric
network [55] of four SMC devices based on a mesh topology.
Each SMC hosts a NeuroCluster with 16 clusters on its LoB
die, with each cluster having 4 RISC-V cores (with 1kB private
instruction cache each), 8 NSTs, a DMA engine, and 128kB
of SPM. This configuration is found to achieve reasonable
performance and efficiency through several simulations. Total
available DRAM is 1GB in 4 stacked dies with DRAM banks
of 32MB and a closed-page policy [25]. Low-interleaved-
addressing is implemented as the HMC’s default addressing
scheme [26]. A summary of these parameters is also listed on
page 1. A fully functional and cycle-accurate (CA) RTL model
of the NeuroCluster has been modeled in SystemVerilog, with
the components adopted and reconfigured from [49]. This
model along with a previously developed cycle-accurate model
of the SMC [25] allows us to analyze the performance of
tiled execution over a single SMC device considering the
programming overheads.

Silicon area and power consumption are also extracted from
these models using topographical logic synthesis (See subsec-
tion VI-B). In addition, an epoch-based in-house simulator is
developed (modeling the SMC network shown on page 1) to
estimate the performance and power consumption of executing
full ConvNets on large images, based on the data obtained
from the CA simulations. This strategy allows us to obtain
both reasonable accuracy and very high simulation speed. Our
simulation platform supports CAFFE [11] representation of the
SoA ConvNets. For every layer of the ConvNets under study,
the optimum tile dimensions are found based on performance,
energy efficiency, available SPM size, and required DRAM
bandwidth. This procedure requires multiple simulations with
different combinations of parameters and is only done once

10

0

20

40

60

80

100

1/4 1/2 1 2 4

1x1
2x2
3x3

P
e

rf
. E

ff
ic

ie
n

cy
 (

%
)

BF

CONV Filters

Fig. 6. The effect of SPM’s banking-factor on the performance efficiency of
a single cluster, executing tiled convolutions with 1x1, 2x2, and 3x3 filters
over average tiles of the studied ConvNets.

per each ConvNet (at the beginning). Optimally sized tiles
can then be used in later simulations with different images.
Four serial link controllers in LoB are modeled to consume
up to 10 W of power for highest traffic pressure [24][56].
We can share this 10 W power budget between the serial link
controllers and NeuroCluster, and for example by turning off
one of them we give a 2.5 W power budget to NeuroCluster
allowing it to operate in the “shadow” of a powered-down se-
rial link. Performance is studied in subsection VI-A. Detailed
energy consumption and silicon area results are presented in
subsection VI-B. Finally, the overall results of the multi-SMC
network are presented in subsection VI-C.

A. Performance of Single SMC
The average performance efficiency (actual/peak perfor-

mance) of a single cluster measured in CA simulation is
illustrated in Figure 6, where the cluster is executing tiled
convolution on its NSTs with 1x1, 2x2, and 3x3 filters over
tiles with average dimensions of the studied ConvNets, listed
in Figure 7. We define performance efficiency (PEF) as
follows:

PEF =
Total#MACs

#Cycles×NNST
%

Total#MACs indicates the total number of MACs per-
formed by all NSTs, and #Cycles stands for the total number
of execution cycles. PEF is an indication for how well and
efficiently the NSTs have been utilized. The banking-factor3

(BF) of the SPM is changed from 1/4 to 4 (i.e. from 4 to
64 banks). On the average, BF=2 yields an efficiency of over
93% for the execution of a single tile. This is why the baseline
clusters shown in Figure 1 have 32 SPM banks each, in a
WLI organization. Another point is that a traditional bank-
level interleaved (BLI) SPM needs to be explicitly managed
and partitioned by software, and its performance is highly
dependent on the tile dimensions. A significant amount of
bank-conflicts can occur if it is not properly managed. Also,
with BLI, only half of the banks will be used for computation
(because of ping/pong buffering), further reducing the band-
width. In this paper, we use WLI because of its flexibility and
high parallelism regardless of the tile dimensions. One last
point to observe in Figure 6 is that the execution efficiency
reduces as the convolution filters shrink (3x3> 2x2> 1x1).
This is a common trend in modern ConvNets and will be
investigated later in this section.

Figure 7 illustrates the roofline plot [28] for complete
execution of the ConvNets listed in Table I on a single SMC,

3Banking-factor is the ratio between the number of SPM banks and the
number of master ports (from the NSTs). In WLI memories, this parameter
directly affects the ratio of bank-conflicts inside the SPM, and has a critical
impact on the clock frequency and area of the cluster interconnect. More
information: [57].

Roofline Limit

0

10

20

30

40

50

60

70

80

90

100

96

160

224

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AlexNet GoogLeNet ResNet50 ResNet101 ResNet152

VGG16 VGG19 roofline Bandwidth

A
vg

. D
R

A
M

 B
an

d
w

id
th

 (
G

B
/S

)

To
ta

l P
e

rf
o

rm
an

ce
 (

G
FL

O
P

S)

X-Axis: Operational Intensity (OI)

Increase in TCo/TCi

Tiling Info. AlexNet GoogLeNet ResNet50 ResNet101 ResNet152 VGG16 VGG19

Input Txi, Tyi 64 x 64 64 x 64 96 x 96 96 x 96 96 x 96 50 x 50 50 x 50

Avg. Kx, Ky 4.8 x 4.8 3.1 x 3.1 2.3 x 2.3 2.1 x 2.1 2.0 x 2.0 2.9 x 2.9 2.9 x 2.9

Avg. Txi, Tyi 14.9 x 14.9 14.3 x 14.3 14.1 x 14.1 10.1 x 10.1 9.3 x 9.3 18.4 x 18.4 16.7 x 16.7

Avg. Tci 137.5 103.1 74.9 91.8 92.8 74.6 80.7

Avg. Tco 4.2 18.2 39.9 49.8 50.3 7.1 7.6

OI (Measured) 4.3 6.6 7.5 8.1 8.6 4.8 5.0

AlexNet

GoogLeNet

ResNet50

ResNet101

ResNet152

VGG16

VGG19

Fig. 7. Roofline plot for execution of ConvNets over a single SMC, and the
actual tile dimension statistics for different ConvNets.

0
1
2
3
4
5
6
7
8
9

10

A
le

xN
et

R
e

sN
e

t5
0

R
e

sN
e

t1
0

1

R
e

sN
e

t1
5

2

V
G

G
1

6

V
G

G
1

9

G
o

o
gL

eN
et

2
5

0
K

1
M

2
M

4
M

 Bandwidth-Limit
 SPM-Conflicts
 Cluster-Sync
 Loop-Overheads

Ex
e

cu
ti

o
n

 T
im

e
 O

ve
rh

ea
d

(%

)

1

10

100

1000

10000

220

225

230

235

240

245

250

255

A
le

xN
et

R
e

sN
e

t5
0

R
e

sN
e

t1
0

1

R
e

sN
e

t1
5

2

V
G

G
1

6

V
G

G
1

9

G
o

o
gL

eN
et

2
5

0
K

1
M

2
M

4
M

GFLOPS

Execution Time

To
ta

l P
e

rf
o

rm
an

ce
 (

G
FL

O
P

S)

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

98%

90%

92%
93%

94%
95%

93%

93%

a

Perf. Efficiency

b

Fig. 8. (a) Performance comparison of different ConvNets on a single SMC
device, and (b) breakdown of different overheads contributing to performance
loss.

along with the tile dimension statistics, where OI denotes
operational intensity (previously defined in subsection II-B).
For each ConvNet, different OI ratios are achieved by altering
the tile channel ratios of all layers (RTCL = T (l)

Co/T (l)
Ci , directly

proportional to OI). In this experiment, TX and TY of the
channels are kept constant. The left axis shows achievable
GFLOPS, and right axis shows the average DRAM bandwidth.
The synthetic extensions to ResNet (250K∼1M) have been
omitted from this plot as they behaved similarly to the rest
of the ResNet group. This plot highlights the importance of
proper tile sizing on the delivered performance, as different
ConvNets have different optimal points. Also, too much in-
crease in RTCL can negatively impact performance, because
the initialization overhead of the NSTs is highly dependent on
this parameter, especially for ResNet with a high percentage
of 1x1 filters (as later explained in this section). We, also,
observed that the bandwidth demand varies widely across
different ConvNet layers. For this reason, we have dedicated
3 high-performance AXI ports (each delivering 32GB/sec)
to connect the cluster to the main SMC interconnect (See
Figure 1). This is to smoothly adapt to different bandwidth
demands with minimal impact on the delivered performance.

Having found the optimum tile dimensions, Figure 8a
depicts the overall performance (GFLOPS) and total execution
time for the studied ConvNets on a single cube. Among
the studied ConvNets from the SoA, VGG networks have
the highest execution time due to their higher requirement
for MAC operations, while GoogLeNet and AlexNet are the
fastest ones executing in less than 12 ms. GoogLeNet has a
very low computation requirement (less than 2 GMAC for
each forward pass) compared to the other modern networks
(ResNet and VGG) mainly due to the use of strided convo-
lution in the beginning layers. It can be further seen that the
ResNet group achieves the lowest performance efficiency. This

11

Loop
Overheads

Cluster
Sync

Bandwidth
Limit

SPM
Conflicts

Exec. Time

0
10
20
30
40
50
60
70
80
90

100

A
le

xN
et

R
es

N
et

5
0

R
es

N
et

1
0

1

R
es

N
et

1
5

2

V
G

G
1

6

V
G

G
1

9

G
o

o
gL

eN
e

t

2
5

0
K

1
M

2
M

4
M

 11x11

 7x7

 5x5

 3x3

 1x1

CONV
Filters

Ex
e

cu
ti

o
n

 T
im

e
 B

re
ak

d
o

w
n

 (
%

)

Image Size

0

0.5

1

1.5

2

2.5

0

1

2

3

4

5

6

7

2
5

0
K

1
M

2
M

4
M

8
M

1
6

M

3
2

M

Ex
e

c.
 T

im
e

 p
e

r
P

ix
e

l (
u

S)

Ex
e

cu
ti

o
n

 T
im

e
 O

ve
rh

e
ad

 (
%

)

b a

Fig. 9. (a) Breakdown of total execution time versus the size of the
convolution filters. (b) Execution overheads (left-axis), and execution-time
per pixel versus image size for ResNet-based networks (right-axis).

can be associated with higher percentage of SPM conflicts
illustrated in Figure 8b. In this figure, four main sources
of performance loss are identified as: TL: Loop overheads,
TS : Cluster Synchronization, TB : Bandwidth limit, TC : SPM
Conflicts. In the NeuroCluster architecture, the RISC-V cores
are responsible for tile preparation, loop initialization, DMA
setup, and synchronization with other clusters. While NSTs are
responsible for the actual computation on the SPM (TU : Useful
Computation). For this reason, the RISC-V cores account
for (TL + TS) overhead cycles, while the NSTs account for
(TC + TB + TU) from the total execution time. Overall, for
all studied ConvNets, less than 6% of the total execution
time was spent on the RISC-V cores, and the rest was spent
on NSTs, either for useful computation, or waiting for the
memory system. Tile preparation and DMA setup phases
are also handled by the RISC-V PEs, nevertheless, they are
overlapped with the execution on NST so they are hidden and
do not contribute to the total execution time. It is also worthy
to note that among the overheads shown in Figure 8b, only
loop overheads are caused by the proposed tiling mechanism,
which account for less than 5% of the performance loss.

To gain further insights from this plot, a breakdown of total
execution time is depicted in Figure 9a versus the size of the
convolution filters. As can be seen, a significant portion of the
execution time (over 45%) of the ResNet group is spent in 1x1
filters, and as we saw previously in Figure 6, 1x1 filters cause
more SPM conflicts than larger filters. Plus, for 1x1 filters
the 3 convolution loops illustrated in Figure 4a change into
a single loop iterating over Tci. This increases the relative
overhead of NST initialization (shown in Figure 8b).

To demonstrate the scalability of the proposed PIM plat-
form, the size of the input images is increased from 250K-
pixels to 32M-pixels, and execution-time per pixel with ex-
ecution overheads for ResNet-based synthetic networks are
plotted in Figure 9b. This plot clearly shows that the execution
overheads do not increase even for very large images, and
execution-time per pixel only increases slightly due to the
increased number of layers. This proves the effectiveness of
the proposed 4D-tiling mechanism and the efficient compu-
tation paradigm based on ping-pong buffering to hide the
latencies. To summarize each SMC instance is capable of
processing 126, 83, 34, 16, 11, 8, 6 frames (each frame being
220×220×3 Bytes) per second for AlexNet, GoogLeNet,
ResNet50, ResNet101, ResNet152, VGG16, VGG19, respec-
tively, with an average performance of 240 GFLOPS. This
performance is scalable to larger images as described.

Lastly, an estimation of the training performance on SMC
can be obtained by answering two questions: (I) How much

TABLE II
EXECUTION-TIME OF TRAINING (MS) COMPARED WITH INFERENCE FOR

DIFFERENT LAYERS OF GOOGLENET.

Percentage (%) FC ACT POOL CONV CLASS SUM Exec. Time (ms)

Inference 2.1 3.7 2.2 90.9 1.1 100 12.0

Training (Best) 6.4 7.4 4.4 277.3 2.2 297.6 35.7

Training (Current) 6.4 33.3 39.6 277.3 2.2 358.8 43.1

0

10

20

30

40

50

60

70

80

90

100

N
ST

 A
re

a
B

re
ak

d
o

w
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Hardware
Loops

FPU

Controller

AGU2

AGU1

N
ST

 P
o

w
e

r
B

re
ak

d
o

w
n

 (
%

)

b a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

8 4 2

1 2 4

Cores

NST/Core

Si
n

gl
e

 C
lu

st
e

r
A

re
a

(m
m

2
)

10%
20%

0

20

40

60

80

100

120

140

8 4 2

1 2 4

Other
Icache
Interco
RISCV
NST
TCDM

Cores

NST/Core Si
n

gl
e

 C
lu

st
e

r
P

o
w

e
r

(µ
W

/M
H

z)

22%

13%

c d

Fig. 10. (a) Area and (b) power breakdown inside one instance of Neu-
roStream, (c) Area and (d) power breakdown for one of the clusters shown
in Figure 1, where the number of PEs has been changed from 2 to 8.

additional computation do each of the training stages need
compared to their corresponding stage in inference? (II) How
much efficiency is lost due to the extra usage of the RISC-V
cores for computation? For the forward pass, the only extra op-
eration is the argmax function in the POOL layer. For gradient
routing, FC and CONV layers require additional computations
(on the NSTs), while ACT and CLASS need the same amount
as inference. POOL, also, implements a different operation (on
the RISC-V cores) as described in subsection V-B. Finally,
the weight-update phase works solely on the FC and CONV
layers, and its overhead is found to be less than 5% of the
total execution time. We have chosen GoogLeNet as a repre-
sentative of the future ConvNets with strided convolutions,
shrinking kernel coefficients, and complex topologies [29].
For GoogLeNet we have estimated the execution-time of each
kernel relative to its corresponding kernel in inference. We
have, then, scaled the execution times of inference with these
results. Table II summarizes these estimates, where “Training
(Best)” indicates the estimated execution-time provided that
the NSTs implement the additional required functions such
as argmax and vector multiply. This is not achievable in the
current version, and it is planned to be done as a future work.
“Training (Current)” is the estimated execution time with the
current platform. It can be seen that one training pass takes
3.6X longer than one inference pass (almost 3X more in the
best case). This is reasonable and consistent with our previous
measurements on GPUs [30]. Also, the amount of efficiency
loss due to using RISC-Vs for part of the computation is
17%. Overall, the training performance can be estimated as
197 GFLOPS for GoogLeNet.

B. Silicon Area and Power Efficiency

A complete processing cluster was synthesized using Syn-
opsys Design Compiler (J-2014.09-SP4) in the topographi-
cal mode in 28nm FDSOI technology of STMicroelectron-
ics (1.0V , SS, 125◦C, Low Threshold Voltage Transistors),
achieving a clock frequency of 1 GHz. The critical-path was
inside the NST blocks where MAC is computed. Our current
implementation uses discrete DesignWare IP components in
IEEE compatible mode. This creates a timing critical loop
which cannot be pipelined. As a future work, we plan to
switch to fused carry-save MAC with a fast carry-save adder

12

0

5

10

15

20

25

0

0.5

1

1.5

2

2.5

3

3.5

4

GFLOPS/W/mm2
GFLOPS/W

SPM Size / Cluster Number of Clusters

4 8 16 32 64
0

10

20

30

40

50

60

0

0.5

1

1.5

2

2.5

3

3.5
GFLOPS/W/mm2

GFLOPS/W

G
FL

O
P

S/
W

/m
m

2

G
FL

O
P

S/
W

G
FL

O
P

S/
W

/m
m

2

G
FL

O
P

S/
W

ht13 ht19

32K 64K 128K 256K

240 GFLOPS
22.5 GFLOPS/W
2.7 GFLOPS/W/mm2

-16%

-33%

-55%

1.9X

1.8X

1.5X

1.2X

-6%

-23%

-53%

Loss in area
efficiency

Gain in energy
efficiency

0

4

8

12

16

20

24

800 1200 1600 2000 2400 2800

28nm FDSOI

20nm FDSOI

14nm FDSOI

10nm FDSOI

En
e

rg
y

Ef
fi

ci
e

n
cy

 (

G
FL

O
P

S/
w

at
t)

Frequency (MHz)

1GHz

a b

c

Fig. 11. (a) Effect of the SPM size per cluster (b) and the number of total
clusters, on energy and area efficiency of the SMC. (c) Effect of technology
scaling of the LoB die on the energy efficiency of a complete SMC device.
Voltage is scaled to achieve different operating frequencies.

in the loop. Power consumption was extracted using Synopsys
Primetime (H-2013.06-SP2) at 25◦C, TT, 1.0V . The CA
cluster model runs the tiled-convolution illustrated in Figure 4a
on typical tiles (listed in Figure 7) by offloading them to NSTs
similar to Figure 5a. Switching activity is then recorded and
fed to Primetime for power extraction. For vault controllers
and the SMC controller previously developed models in [25]
and [24] were used (all in 28nm FDSOI), the serial link area
and energy were estimated based on [56][58]. 5000 TSVs [59]
with a pitch of 48 µm × 55µm [60] were used to estimate
TSV matrix area, with energy modeled from [56].

Figure 10a,b illustrates the power and area breakdown
inside one NST instance. As expected, over two-third of the
total power and area are dedicated to the streaming FPUs,
while the controller accounts only for 26% of the total area
and 13% of the power consumption. These simplified FSMs
allow for a significant energy reduction compared to full-
featured processors such as RISC-V (see below). Figure 10c,d
illustrates the area and power breakdowns for a complete
cluster, where the number of PEs is changed. Decreasing the
number of RISC-V core from 8 to 4 gives an average power
and area reduction of 20% and 22%, respectively, while from
4 to 2 smaller reductions of 10% and 13% are obtained.
Reminding that having fewer RISC-V cores increases the
programming overheads (each core needs to manage more
NSTs), we choose to have 4 cores per cluster. For the NSTs,
8 instances were found optimal, as beyond that the delay and
area of the cluster-interconnect limits achievable frequency.
The optimal SPM size in terms of energy-efficiency was found
to be 128kB per cluster. This is shown in Figure 11a, yielding
22.5 GFLOPS/W and 2.7 GFLOPS/W/mm2. Thanks to the
proposed tiling scheme, this choice does not affect the size of
the supported ConvNets and images, and very large networks
like 4M can be easily executed on this platform, regardless
of the SPM size, as long as they are properly tiled. Also,
we found that deploying 16 clusters leads to a well-balanced
design as shown in Figure 11b. More clusters negatively
impact the area-efficiency, yields diminishing energy returns,
and can cause major modifications in the standard HMC’s
stack structure. This is explained below at the end of this
section.

0

20

40

60

80

100

GlobalRoute

SerialLink

VaultCtrls

TSVMatrix

SMCInterco

NeuroCluster

LoB
Area

(mm2)

0

1

2

3

4

5

6

7

8

9

SPMInterco

ICACHE

SPM

DMA

Neurostream

RISCV

(mm2)

NeuroCluster

Area

0

0.5

1

1.5

2x
1

0
0

0

DMA

ICACHE

SPMInterco

SPM

NeuroStream

RISCV

NeuroCluster
Power

(W)

0

5

10

15

20

x
1

0
0

0

SMCCtrl

SerialLink

TSV

DRAM

VaultCtrl

SMCInterco

NeuroCluster

System
Power

(W)

H
o

st
D

R
A

M

C
u

b
e

 P
o

w
e

r

b a d c

Fig. 12. (a) Total system power for NeuroCluster placed on the host side, (b)
power breakdown inside NeuroCluster. (c) Silicon area of the whole LoB die
and (d) one NeuroCluster.

The choice of a moderate operating frequency in our design
is justified through the experiment shown in Figure 11c for
different technology choices. The energy efficiency of a com-
plete SMC device executing different ConvNets is estimated
for the 28nm to 10nm FDSOI technologies at various operating
points. Interestingly, a moderate clock frequency of 1.2 GHz
achieves the highest efficiency, and increasing the clock speed
beyond that is not beneficial. This is mainly due to the com-
munication bound (DRAM’s latency and bandwidth), limiting
the achievable performance. This choice, also, relieves us from
thermal concerns. As in [21] a 3D thermal simulation of the
HMC with 4 stacked DRAM dies shows that a processing
cluster clocked up to 5 GHz can be embedded in its LoB
die increasing the temperature up to 76◦C which is below
the thermal limits of HMC [26]. Power consumption is a
secondary concern, as well, because up to 10 W budget is
available in the LoB die by turning-off the serial links, and
NeuroCluster only consumes 2.2 W.

Figure 12a depicts different contributors to power consump-
tion in the baseline configuration. Cube Power represents the
total consumed power inside a single SMC averaged for the
execution of all ConvNets under study. As can be seen 11 W is
consumed inside the cube, on the average. The NeuroCluster
is responsible only for 2.2 W of this power. While the rest
(around 75%) is consumed inside the DRAM dies, mostly due
to the refresh operations. For this reason, the average power
does not vary a lot for the execution of the studied ConvNets
(less than 10%). The power consumed in NeuroCluster is
dominated by the SPM (51%) and the NSTs (16%), while
the RISC-V cores only consume 14% (See Figure 12b). This
highlights the efficiency of this architecture, minimizing the
unnecessary power consumed in control-flow and dedicating it
to the computations. Each NST instance consumes an average
of 2.7 mW, while a RISC-V core consumes 2.2 mW just
for programming and coordinating the NSTs. Floating-point
arithmetic is only responsible for a small portion (less than
3%) of the total power in our platform, and any improvements
to it (e.g. reduced precision) is expected to have a marginal
power reduction in the overall system. For this reason, we
have kept FP32 for generality and flexibility in supporting
different workloads and focused on optimizing the rest of
the system (especially the DRAM interface). Overall, an
energy efficiency of 22.5 GFLOPS/W is achieved inside one
SMC for the execution of complete ConvNets (NeuroCluster
itself achieves 117 GFLOPS/W). One interesting observation
is that if we place the NeuroCluster accelerator on the host
side (behind the SMC controller and the serial links) rather

13

than inside the SMC, while maintaining exactly the same
computation paradigm, the total execution time and the power
consumed in the NeuroCluster itself do not change much,
but on the average, system power increases by 10.2 W. This
power is consumed in the SMC controller and the serial
links, suggesting that computing inside the SMC can give an
average energy reduction of 48% compared to a similar host-
side accelerator (1.7X improvement in system-level energy
efficiency). Another downside of the host-side accelerators
is that they require more buffering to deal with the higher
memory access latency and to maintain a constant bandwidth
(Little’s law).

Finally, looking at the silicon area results in Figure 12c,d
we can see that the NeuroCluster (8.3 mm2) occupies around
8% of the area in the LoB die with the SPM (55% of
NeuroCluster), the RISC-V cores (16.5%), and the NSTs
(16%) being its main contributors. The total area for the
LoB die was estimated as 99mm2. It is worth mentioning
that the LoB die of HMC is already larger than its DRAM
dies [56], and it is occupied by four serial link controllers
(∼ 55mm2), 32 vault controllers (∼ 25mm2), and the TSV
matrix (∼ 13mm2), with almost no free space available in it.
Any major addition to this die requires modification of the 3D
stack structure and power delivery network. This is why we
have tried to keep the area increase to a maximum of 3% in
each dimension. The optimal parameters found in this section
were listed in section I and used in all experiments.

C. The Multi-SMC Network

This section presents the estimated performance and energy
efficiency for the SMC network previously shown on page
1. Four SMC devices are connected to each other using
mesh topology with an HD camera recording raw images of
8 M-pixels. ResNet has been chosen as the most difficult to
accelerate ConvNet among the studied ones due to having
a significant percentage of 1x1 and 3x3 kernels (more than
95%), with a very large number of layers (more than 100).
The camera sends the images to the memory cubes over the
highlighted links in Figure 1a, and each SMC executes ResNet
on one complete frame, independently from the other cubes.
This ensures minimum communication among the cubes and
allows for turning off the serial-links for a large portion of the
time. Each SMC has a copy of the ConvNet coefficients inside
its DRAM dies, and the coefficients have been preloaded once
at the beginning.

The host system-on-chip (SoC) is only responsible for
coordination and receiving the results. It does not send or
receive data at a high bandwidth, yet we keep its serial link
(Link0) always active, to make sure it can manage the other
devices through that link. The other serial links, however,
are turned on only when there is a data to send over them,
and then turned off again. Considering a typical bandwidth of
16 GB/sec for each serial link, and the power-state transition
times obtained from the HMC specifications V2.1 [26] [Active
to Sleep: 600ns (tSME), Sleep to Power-Down: 150µs (tSD),
and Power-Down to Active: 50µs], the total power consumed
in the SMC network can be estimated as 42.8 W. The camera
sends images to the cubes in a ping-pong fashion: while an

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

5.0 25.0 45.0

Tesla P100 - AlexNet Tesla P100 - ResNet-50

SMC Tesla P100 - GoogleNet

Geforce GTX780 Tegra X1 (Embedded)

Tegra K1 (Embedded) Tesla K40

Geforce GTX Titan Geforce GTX770

Geforce GTX480 GT335m (Embedded)

Tesla K20

16nm

 (Actual / Peak)

Performance Efficiency (%)

En
e

rg
y

Ef
fi

ci
e

n
cy

 (
G

FL
O

P
S/

W
)

16nm

(%)

16nm

28nm

20nm

28nm

40nm

10521 GFLOPS @ 300W

955 GFLOPS @ 42.8W

1650 GFLOPS @ 250W

76 GFLOPS @ 12W

999 GFLOPS @ 240W

294 GFLOPS @ 220W

498 GFLOPS @ 235W

7358 GFLOPS @ 308W

6181 GFLOPS @ 299W

93 GFLOPS @ 11W

1092 GFLOPS @ 235W

636 GFLOPS @ 246W

54 GFLOPS @ 30W

SMC @ 28nm
Perf. Eff. > 90%

Fig. 13. Energy and performance efficiency of the SoA ConvNet implemen-
tations on GPUs with standard frameworks.

SMC is working on one image, the camera sends another
image to its DRAM. This is easily achievable because there
is plenty of space available inside each SMC. Our SMC
network can achieve 955 GFLOPS @42.8 W. Moreover, this
architecture is scalable to a larger number of nodes because
the average bandwidth demand over the serial links is not large
(in the order of 10 MB/sec per image). Therefore it is possible
to turn on a link, transfer the image at a higher bandwidth,
and turn it off, periodically. This asynchronous and on-demand
mechanism allows us to achieve a scalable performance with
high energy efficiency.

To extend our comparison with the SoA GPUs, Figure 13
presents the energy and performance efficiency of some of
the most recent GPU ConvNet implementations with standard
frameworks. The measurements on Tesla P100 have been
performed in [41]. Geforce GTX780 and NVIDIA Tegra K1
have been directly used and measured in our group [30]. Tegra
X1 has been used in [61]. Measurements on Tesla K20, K40,
Geforce GTX Titan, and GTX 770 have been performed by
Berkely AI Lab [39]. Finally, Geforce GTX480 and NVIDIA
GT335m has been used in [34]. A couple of points are
interesting to observe in this plot: we saw previously on page
10 that SMC achieves an almost uniform performance for all
studied ConvNets (more than 90% efficiency) while looking at
the results of Tesla P100 we can observe more variations. This
is mainly thanks to the hardware implementation of nested
loops in the NeuroStream computation paradigm, and to the
availability of a large amount of DRAM at a low latency in
SMC. Furthermore, the SMC achieves about 3.5X improve-
ment when compared with GPUs in similar technologies (e.g.
GTX780, Tegra K1, Tesla K40). Compared to Tegra X1 with
20nm technology it achieves 2.7X, and compared to Tesla
P100 (16nm) for GoogLeNet and ResNet, on the average, it
achieves a similar energy efficiency. For AlexNet, however,
Tesla P100 achieves 1.5X better efficiency compared to our so-
lution. Another glance at the above plot reveals that ConvNets
cannot easily exploit the maximum throughput offered by the
GPUs. We can observe that even on the most powerful GPUs,
the utilization of computing resources does not exceed 55%,
which is directly reflected in a lower energy-efficiency. In fact,
they are optimized to perform general matrix multiplication
(GEMM) operations, and ConvNets should be transformed
into these forms for execution on the GPU platforms [30].
However, for modern ConvNets with growing memory foot-
prints and non-uniform layers it is becoming more difficult
(and wasteful in terms of memory footprint and bandwidth)
to transform them into GEMM formats. This is in contrast
with our proposal which executes ConvNets with more than
90% performance efficiency for all studied ConvNets (See

14

subsection VI-A). Also, the aggregate bandwidth available
in the multi-SMC scenario is much higher than what can
be delivered to the host processors and accelerators. This
makes our solution more scalable in comparison with high-
performance FPGAs and GPUs.

VII. CONCLUSIONS AND ONGOING WORK

In this paper, we proposed a scalable and energy-efficient
PIM system based on a network of multiple SMC devices.
Each SMC is augmented with a flexible clustered many-core
called NeuroCluster, capable of executing deep ConvNets with
growing memory footprints and computation requirements. To
this end, NeuroStream (a streaming FP32 coprocessor) is pro-
posed, along with an efficient tiling mechanism and a scalable
computation paradigm. Our proposal increases the LoB die
area of the standard HMC only by 8%, and achieves an average
performance of 240 GFLOPS for complete execution of full-
featured modern ConvNets within a power-budget of 2.5 W.
22.5 GFLOPS/W energy efficiency is achieved in a single
SMC (consuming 11 W in total) which is 3.5X better than the
best GPU implementations in similar technologies. The perfor-
mance was shown scalable with a network of SMCs. It is worth
stressing that our platform allows for offloading the ConvNet
tasks completely into the memory cubes at a minor system
power cost. This implies that the compute logic in the host SoC
is free to deal with other workloads. Also, the cost increase
with respect to a baseline HMC system would be negligible.
Therefore, essential ConvNet acceleration is provided at a very
small system cost. Ongoing research efforts include silicon
implementation of the NeuroCluster with 5 clusters, parallel
implementation of training on this architecture, and pushing
further to achieve higher performance and efficiency inside
the cubes (e.g. more advanced refresh and power management
schemes to reduce the power in unused DRAM pages).

REFERENCES

[1] C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015, pp. 1–9.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the
gap to human-level performance in face verification,” in Proceedings of
the 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[3] T.-Y. Lin, M. Maire, S. Belongie et al., Microsoft COCO: Common
Objects in Context. Springer International Publishing, 2014.

[4] S. Srinivas, R. K. Sarvadevabhatla, K. R. Mopuri et al., “A taxonomy
of deep convolutional neural nets for computer vision,” Frontiers in
Robotics and AI, vol. 2, p. 36, 2016.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[6] S. E. Kahou, C. Pal, X. Bouthillier et al., “Combining modality specific
deep neural networks for emotion recognition in video,” in Proceedings
of the 15th ACM on International Conference on Multimodal Interaction,
ser. ICMI ’13, 2013, pp. 543–550.

[7] X. Li, Y. Zhang, M. Li et al., “Deep neural network for RFID-based
activity recognition,” in Proceedings of the Eighth Wireless of the
Students, by the Students, and for the Students Workshop, ser. S3, 2016,
pp. 24–26.

[8] R. Adolf, S. Rama, B. Reagen et al., “Fathom: Reference workloads
for modern deep learning methods,” CoRR, vol. abs/1608.06581, 2016.
[Online]. Available: http://arxiv.org/abs/1608.06581

[9] S. Carrillo, J. Harkin, L. J. McDaid et al., “Scalable hierarchical
network-on-chip architecture for spiking neural network hardware im-
plementations,” IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 12, pp. 2451–2461, Dec 2013.

[10] J. Bilski and J. Smolag, “Parallel architectures for learning the RTRN
and Elman dynamic neural networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 9, pp. 2561–2570, Sept 2015.

[11] Y. Jia, E. Shelhamer, J. Donahue et al., “Caffe: Convolutional archi-
tecture for fast feature embedding,” in Proceedings of the 22nd ACM
International Conference on Multimedia, 2014.

[12] S. Chetlur, C. Woolley, P. Vandermersch et al., “cuDNN: Efficient
primitives for deep learning,” CoRR, vol. abs/1410.0759, 2014.

[13] C. Zhang, P. Li, G. Sun et al., “Optimizing FPGA-based accelerator
design for deep convolutional neural networks,” in Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays.

[14] C. Farabet, B. Martini, B. Corda et al., “NeuFlow: A runtime recon-
figurable dataflow processor for vision,” in CVPR 2011 WORKSHOPS,
June 2011, pp. 109–116.

[15] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards
uniformed representation and acceleration for deep convolutional neural
networks,” in 2016 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Nov 2016, pp. 1–8.

[16] S. Han, X. Liu, H. Mao et al., “EIE: Efficient inference engine on
compressed deep neural network,” in Proceedings of the 43rd Annual
International Symposium on Computer Architecture, 2016.

[17] T. Chen, Z. Du, N. Sun et al., “A high-throughput neural network
accelerator,” IEEE Micro, vol. 35, no. 3, pp. 24–32, May 2015.

[18] L. Cavigelli and L. Benini, “A 803 GOp/s/W convolutional network
accelerator,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. PP, no. 99, pp. 1–1, 2016.

[19] Z. Du, R. Fasthuber, T. Chen et al., “ShiDianNao: Shifting vision
processing closer to the sensor,” SIGARCH Comput. Archit. News,
vol. 43, no. 3, pp. 92–104, Jun. 2015.

[20] L. Xu, D. Zhang, and N. Jayasena, “Scaling deep learning on multiple
in-memory processors,” in 3rd Workshop on Near-Data Processing
(WoNDP), 2015.

[21] D. Kim, J. Kung, S. Chai et al., “Neurocube: A programmable digital
neuromorphic architecture with high-density 3D memory,” in Pro-
ceedings of the 43rd Annual International Symposium on Computer
Architecture, 2016.

[22] P. Chi, S. Li, C. Xu et al., “PRIME: A novel processing-in-memory
architecture for neural network computation in ReRAM-based main
memory,” in Proceedings of the 43rd Annual International Symposium
on Computer Architecture, 2016.

[23] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
SIGARCH Comput. Archit. News, vol. 45, no. 1, pp. 751–764, Apr. 2017.

[24] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, Design and Evaluation
of a Processing-in-Memory Architecture for the Smart Memory Cube.
Cham: Springer International Publishing, 2016, pp. 19–31.

[25] E. Azarkhish, C. Pfister, D. Rossi, I. Loi, and L. Benini, “Logic-
base interconnect design for near memory computing in the Smart
Memory Cube,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. PP, no. 99, pp. 1–14, 2016.

[26] Hybrid Memory Cube Specification 2.1, Hybrid Memory Cube Consor-
tium Std., 2015.

[27] D. Kang, W. Jeong, C. Kim et al., “256Gb 3b/cell V-NAND flash
memory with 48 stacked WL layers,” in 2016 IEEE International Solid-
State Circuits Conference (ISSCC), Jan 2016, pp. 130–131.

[28] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, Apr. 2009.

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[30] L. Cavigelli, M. Magno, and L. Benini, “Accelerating real-time em-
bedded scene labeling with convolutional networks,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), 2015.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[32] K. He, X. Zhang et al., “Identity mappings in deep residual networks,”
CoRR, vol. abs/1603.05027, 2016.

[33] Large scale visual recognition challenge. [Online]. Available: http:
//image-net.org/challenges/LSVRC/

[34] P. H. Pham, D. Jelaca, C. Farabet et al., “NeuFlow: Dataflow vision
processing system-on-a-chip,” in IEEE 55th International Midwest Sym-
posium on Circuits and Systems (MWSCAS), 2012, pp. 1044–1047.

[35] M. Peemen, R. Shi, S. Lal et al., “The neuro vector engine: Flexibility
to improve convolutional net efficiency for wearable vision,” in 2016
Design, Automation Test in Europe Conference Exhibition (DATE),
March 2016, pp. 1604–1609.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1608.06581
http://www.deeplearningbook.org
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/

15

[36] A. Haidar, J. Kurzak, and P. Luszczek, “An improved parallel singular
value algorithm and its implementation for multicore hardware,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013.

[37] J. Gmez-Luna, I. J. Sung, L. W. Chang et al., “In-place matrix transposi-
tion on GPUs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 3, pp. 776–788, March 2016.

[38] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–
138, Jan 2017.

[39] Caffe performance measurements on NVIDIA GPUs. [Online].
Available: http://git.caffe.help/performance hardware.html

[40] S. Liu, Z. Du, J. Tao et al., “Cambricon: An instruction set architecture
for neural network,” in Proceedings of the 43rd Annual International
Symposium on Computer Architecture, 2016.

[41] “Deep learning inference platform performance study,” White Paper,
NVIDIA, 2017.

[42] M. Abadi, A. Agarwal, P. Barham et al., “TensorFlow: Large-scale
machine learning on heterogeneous distributed systems,” CoRR, vol.
abs/1603.04467, 2016.

[43] Rethinking computation: A processor architecture for machine
intelligence. [Online]. Available: https://goo.gl/gAWZGp

[44] X. Meng, J. Bradley, B. Yavuz et al., “MLlib: Machine learning in
Apache Spark,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 1235–1241,
Jan. 2016.

[45] M. Grossman, M. Breternitz, and V. Sarkar, “HadoopCL2: Motivating
the design of a distributed, heterogeneous programming system with
machine-learning applications,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 3, pp. 762–775, March 2016.

[46] S. Mittal and J. S. Vetter, “A survey of software techniques for using
non-volatile memories for storage and main memory systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 5, pp.
1537–1550, May 2016.

[47] M. Gautschi, P. D. Schiavone, A. Traber et al., “A near-threshold
RISC-V core with DSP extensions for scalable IoT endpoint
devices,” CoRR, vol. abs/1608.08376, 2016. [Online]. Available:
http://arxiv.org/abs/1608.08376

[48] D. Rossi, A. Pullini, I. Loi et al., “A 60 GOPS/W, -1.8 V to 0.9 V
body bias ULP cluster in 28nm UTBB FD-SOI technology,” Solid-State
Electronics, vol. 117, pp. 170 – 184, 2016.

[49] The parallel ultra low power (PULP) processing platform. [Online].
Available: http://www.pulp-platform.org/

[50] I. Loi, D. Rossi et al., “Exploring multi-banked shared-L1 program cache
on ultra-low power, tightly coupled processor clusters,” in Proceedings of
the 12th ACM International Conference on Computing Frontiers, 2015.

[51] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “A modular shared L2
memory design for 3-D integration,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 23, no. 8, pp. 1485–1498, 2015.

[52] SMCSim: A simulation framework for the smart memory cube (SMC).
[Online]. Available: https://iis-git.ee.ethz.ch/erfan.azarkhish/SMCSim

[53] A. Giusti, D. C. Ciresan, J. Masci et al., “Fast image scanning
with deep max-pooling convolutional neural networks,” CoRR, vol.
abs/1302.1700, 2013. [Online]. Available: http://arxiv.org/abs/1302.1700

[54] Berkeley SoftFloat library. [Online]. Available: http://www.jhauser.us/
arithmetic/SoftFloat.html

[55] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric system
interconnect design with hybrid memory cubes,” in Proceedings of the
22Nd International Conference on Parallel Architectures and Compila-
tion Techniques, ser. PACT ’13, 2013, pp. 145–156.

[56] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architec-
ture increases density and performance,” in VLSI Technology (VLSIT),
2012 Symposium on, June 2012, pp. 87–88.

[57] E. Azarkhish, I. Loi, and L. Benini, “A case for three-dimensional
stacking of tightly coupled data memories over multi-core clusters using
low-latency interconnects,” IET Computers Digital Techniques, vol. 7,
no. 5, pp. 191–199, September 2013.

[58] H. Kimura, P. Aziz, T. Jing et al., “28Gb/s 560mW multi-standard
SerDes with single-stage analog front-end and 14-tap decision-feedback
equalizer in 28nm CMOS,” in 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), Feb 2014.

[59] P. M. Kogge and D. R. Resnick, “Yearly update: Exascale projections
for 2013,” Sandia National Laboratoris, Tech. Rep. SAND2013-9229,
Oct. 2013.

[60] K. Sohn, W. J. Yun, R. Oh et al., “A 1.2V 20nm 307GB/s HBM
DRAM with at-speed wafer-level I/O test scheme and adaptive refresh
considering temperature distribution,” in 2016 IEEE International Solid-
State Circuits Conference (ISSCC), Jan 2016, pp. 316–317.

[61] “GPU-based deep learning inference: A performance and power analy-
sis,” White Paper, NVIDIA, 2015.

Erfan Azarkhish received the B.Sc and M.Sc.
degrees from the University of Tehran, Tehran, Iran
in 2007 and 2009, respectively. He received his
Ph.D. degree in Electronics Engineering from the
University of Bologna, Bologna, Italy, in 2015,
and served as a post-doc researcher there until
2017. He currently holds a senior R&D engineer
position at the Swiss Center for Electronics and
Microtechnology, Neuchâtel, Switzerland. His main
research interests are neuromorphic computing and
near-memory processing.

Davide Rossi received the PhD from the University
of Bologna, Italy, in 2012. He has been a postdoc
researcher in the Department of Electrical, Elec-
tronic and Information Engineering at the University
of Bologna since 2015, where he currently holds
an assistant professor position. His research inter-
ests focus on energy efficient digital architectures
in the domain of heterogeneous and reconfigurable
multi and many-core systems. In this fields he has
published more than 50 paper in international peer-
reviewed conferences and journals.

Igor Loi received the B.Sc. degree in Electrical En-
gineering from the University of Cagliari, Cagliari,
Italy, in 2005 and the Ph.D. degree in the Department
of Electronics and Computer Science, University of
Bologna, Italy, in 2010. He is currently holding
the position of Assistant Professor in Electronic
Engineering at the University of Bologna. He is
focusing his research on ultra-low power multi-core
systems, memory systems evolution, and ultra low-
latency interconnects.

Luca Benini is the Chair of Digital Circuits and
Systems at ETH Zurich and a Full Professor at
the University of Bologna. He has served as Chief
Architect for the Platform2012/STHORM project at
STmicroelectronics, Grenoble. Dr. Benini’s research
interests are in energy-efficient system and multi-
core SoC design. He has published more than 800
papers in peer-reviewed international journals and
conferences, four books and several book chapters.
He is a Fellow of the ACM and a member of the
Academia Europaea.

http://git.caffe.help/performance_hardware.html
https://goo.gl/gAWZGp
http://arxiv.org/abs/1608.08376
http://www.pulp-platform.org/
https://iis-git.ee.ethz.ch/erfan.azarkhish/SMCSim
http://arxiv.org/abs/1302.1700
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html

	Frontpage_Benini_IEEE_Azarkhish.pdf
	NEUROSTREAM_Postprint.pdf
	I Introduction
	II Background and Related Work
	II-A Convolutional Neural Networks
	II-B Implementation Challenges of Modern ConvNets
	II-C SoA ConvNet Implementations

	III System Architecture
	III-A NeuroCluster
	III-B NeuroStream

	IV Computation Model
	IV-A 4D-Tiling Mechanism
	IV-B Mapping Tiles to Clusters

	V Programming Model
	V-A Inference with NSTs
	V-B Implications of Training

	VI Experimental Results
	VI-A Performance of Single SMC
	VI-B Silicon Area and Power Efficiency
	VI-C The Multi-SMC Network

	VII Conclusions and Ongoing Work
	References
	Biographies
	Erfan Azarkhish
	Davide Rossi
	Igor Loi
	Luca Benini

