
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 1

Elastic Symbiotic Scaling of Operators and
Resources in Stream Processing Systems

Federico Lombardi, Leonardo Aniello, Silvia Bonomi, Leonardo Querzoni
Research Center of Cyber Intelligence and Information Security

Department of Computer, Control, and Management Engineering Antonio Ruberti
Sapienza University of Rome

E-mail: {lombardi,aniello,bonomi,querzoni}@dis.uniroma1.it

Abstract—Distributed stream processing frameworks are designed to perform continuous computation on possibly unbounded data
streams whose rates can change over time. Devising solutions to make such systems elastically scale is a fundamental goal to achieve
desired performance and cut costs caused by resource over-provisioning. These systems can be scaled along two dimensions: the
operator parallelism and the number of resources. In this paper, we show how these two dimensions, as two symbiotic entities, are
independent but must mutually interact for the global benefit of the system. On the basis of this observation, we propose a fine-grained
model for estimating the resource utilization of a stream processing application that enables the independent scaling of operators and
resources. A simple, yet effective, combined management of the two dimensions allows us to propose ELYSIUM, a novel elastic scaling
approach that provides efficient resource utilization. We implemented the proposed approach within Apache Storm and tested it by
running two real-world applications with different input load curves. The outcomes backup our claims showing that the proposed
symbiotic management outperforms elastic scaling strategies where operators and resources are jointly scaled.

Index Terms—Cloud, Elasticity, Elastic Scaling, Stream Processing, Storm.

F

1 INTRODUCTION

Stream processing systems (SPSs) process unbounded streams
of input tuples by evaluating them according to a given set
of queries. Queries are usually modeled as graphs, where
vertices represent processing elements called operators and
edges correspond to streams of tuples moved between op-
erators. This data processing model allows to break down
complex computations into simpler units (the operators),
independently parallelize them, and deploy the resulting
system over any number of computing machines. Having
the computation executed in parallel by several distinct
operators on many machines is the core feature of distributed
stream processing systems. Such flexibility allows to scale
horizontally in such a way to provide the computational
power required to sustain a given tuple input load with a
reasonable processing latency. Thanks to these characteris-
tics, SPSs today represent a fundamental building block for
a large number of big data computing infrastructures [1].

A complex challenge SPSs need to cope with is input
dynamism. Such systems, in fact, are designed to ingest data
from heterogeneous and possibly intense sources like sensor
networks, monitoring systems, social feeds, etc. that are
often characterized by large fluctuations in the input data
rates. Solutions based on over-provisioning are considered
cost-ineffective in a world that moves toward on-demand
resource provisioning built on top of IaaS platforms.

Recently, researchers introduced the idea of elastic SPSs
that continuously adapt at runtime to changes in the input
rates, to accommodate load fluctuations by provisioning

Manuscript received February, 2017.

more resources only when needed. The requirements for the
controller of an elastic SPS have been informally defined in
[2] as SASO properties [3]: stability1, accuracy2, short settling
time3 and no overshoot4. Several optimizations have been
identified [4] and several approaches [5], [6] have been
proposed to make SPSs elastically scale. These solutions
scale the system by increasing operators’ parallelism (op-
erator scaling or fission) and accordingly provisioning new
computing resources (resource scaling). However, by looking
at how SPSs work under stressing workloads, it is apparent
that operator and resource scaling address two distinct
aspects of a same problem. In particular, operator scaling
allows to subdivide the load of the specific computation im-
plemented by an operator, thus enabling efficient resource
usage through load balancing. On the other hand, correct
provisioning through resource scaling is crucial to avoid
excessive contention for the execution of the operators.

In this paper we claim that, although both aspects must
be taken into account, they don’t need to be always exer-
cised jointly and that it is possible to build a more efficient
elastic scaling solution for SPSs by accurately managing
them. In particular, we advocate a “symbiotic” management
of operator and resource scaling, where their independent
and/or combined effects increase the global efficiency of the
system. We introduce Elastic Symbiotic Scaling of Operators
and Resources in Stream Processing Systems (ELYSIUM), a

1. stability: the system configuration does not oscillate.
2. accuracy: the system configuration maximizes the throughput.
3. short settling time: the system quickly reaches a stable configuration.
4. no overshoot: the system does not use more resource than necessary.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 2

new elastic scaling solution for distributed SPSs that scales
operators and resources in a symbiotic fashion to let the
system work always in a correctly provisioned configuration
where the least amount of resources are wasted (4th SASO
property). Scaling actions in ELYSIUM can be executed
either in a reactive or proactive fashion. Indeed, ELYSIUM
employs a prediction module to forecast variations in the
input load and periodically checks if the current provision-
ing configuration needs to be scaled-in/out to accommodate
for foreseeable load fluctuations. A tunable assessment period
parameter allows ELYSIUM to avoid oscillations (1st SASO
property); ELYSIUM first adapts the parallelism for each
operator used by the application to avoid bottlenecks on
operator instances. Then it checks if the current resource
provisioning is the smallest that will let the system work
without incurring any performance degradations. For this
last check, ELYSIUM leverages a novel resource estimator
to compute the expected resource consumption, given an
input load and a configuration, so as to accurately and
quickly adapt to the workload in a single reconfiguration
(2nd and 3rd SASO properties). A monitoring system lets
ELYSIUM collect at runtime fine-grained information on
resource usage that is then used to decide how the system
must be scaled. With this approach ELYSIUM can scale
independently operators and resources as well as jointly
scale them, whenever this is needed.
Summarizing, we provide the following contributions:

• we explain why operator and resource scaling impact
on two distinct aspects of SPSs scalability, and pro-
pose how to symbiotically manage them to elastically
provision the system in a more efficient way;

• we introduce ELYSIUM, a reactive/proactive elas-
tic scaling solution for SPSs that consider operator
and resource scaling as two distinct solutions that
need to be combined only when necessary; ELYSIUM
employs a fine-grained model of resource usage to
estimate how the SPS will behave under a given
load, which enables to properly choose how many
instances (for each operator) and resources to set;

• we provide an in-depth evaluation of ELYSIUM’s
performance by testing a prototype on real stream
processing applications under different workloads
and comparing it with a standard elastic scaling
solution employing only the joint scaling approach.

Paper Structure. §2 defines more formally the system model
and the problem to tackle, so that in §3 we can present
our approach. §4 presents the ELYSIUM implementation
on Apache Storm, while the experimental evaluation is
described in §5. Related works are discussed in §6 and,
finally, §7 sums up the paper and points out future work.

2 SYSTEM MODEL AND PROBLEM STATEMENT

We model a computation in a SPS as a directed acyclic
graph where vertices represent operators and edges represent
streams of tuples between pairs of operators (see Figure 1).
We define such a graph as an application. Each operator
carries out a piece of the overall computation on incom-
ing tuples and emits downstream the results of its partial
elaboration. In general, an operator has ni input streams

(0 for source operators) and no output streams (0 for sink
operators). An application is also characterized by an input
load that varies over time and represents the rate of tuples
fed to the SPS for such application (input rate). Each input
tuple generates multiple tuples that traverse several streams
in the application graph. The processing of some of these
tuples may possibly fail; in this case we say that the tuple
is failed. Conversely, if all the tuples generated in the graph
are correctly processed, then we say that the corresponding
tuple is acked. The rate of tuples that are acked over time is
referred to as throughput.

For the sake of simplicity, and without loss of generality,
we assume that a stream connecting operators A (upstream
operator) and B (downstream operator) can be uniquely
identified by the pair (A,B), which means that no two
distinct streams can connect the same pair of operators. The
selectivity for a stream (A,B) is defined as the ratio between
the tuple rate of (A,B) and the sum of the tuple rates of all
the input streams of A, i.e. the selectivity of (A,B) measures
its tuple rate as a function of the total input rate of A [4].
In this paper we assume to work with SPS applications
having constant average operators’ selectivities at runtime,
similarly to applications presented in [7], [8], [9].

To let the application scale at runtime each operator can
be instantiated multiple times such that its instances will
share the load provided by the input stream. However,
the maximum number of instances for an operator op is
upper-bounded by an application parameter max parallop.
Each operator instance runs sequentially and uses a single
CPU core at a time5. The number of available instances
for a given operator is defined as its level of parallelism.
As a consequence, a stream (A,B) can be constituted by
several sub-streams, each connecting one of the instances of
operator A to one of the instances of operator B. To simplify
the discussion, we assume that the SPS is able to fairly
distribute the load among the available instances of each
operator. This is achieved by means of grouping functions
that manage how tuples in a stream are mapped in its sub-
streams [12], [13], [14].

Fig. 1. SPS computation model

When an application is run, the SPS uses a scheduler
to assign the execution of each single operator instance to
a worker node among the many available in a computing
cluster. We assume that worker nodes in the cluster are
homogeneous (same configuration for CPU cores, speed,
memory, etc.) and can be activated on-demand as for an IaaS
provider. At each point in time the application configuration
is defined by the parallelism for each operator and the
number of used worker nodes. We define three possible
states for a worker node at runtime by comparing its CPU

5. This operator execution model is common to several SPSs like
Apache Storm [10] and Apache Flink [11].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 3

usage6 to two thresholds (cpu min thr < cpu max thr):

• cpu low: CPU usage < cpu min thr
• cpu avg: cpu min thr ≤ CPU usage ≤ cpu max thr
• cpu stress: CPU usage > cpu max thr

Similarly, we define three possible states for an operator
instance at runtime by comparing its CPU core usage to two
thresholds (core min thr < core max thr):

• oper low: core usage < core min thr
• oper avg: core min thr ≤ core usage ≤ core max thr
• oper stress: core usage > core max thr

The configuration of a SPS is correct as long as no
operator instance and no worker node is in the stress state.
Note that we are here considering CPU-bound applications.
A more complete model that considers memory and band-
width consumption is subject of our future work. Since we
assume a homogeneous cluster, we define minimal configura-
tion as a correct configuration having the minimum number
of worker nodes required to sustain a certain input load.

The SPS can be scaled by tweaking the operator paral-
lelism or the number of available worker nodes. These two
operations can be performed independently as they address
two different issues: operator overloading and scarceness of
computing resources, respectively. In some cases, increasing
the level of parallelism for an operator, i.e. increasing the
number of instances for that operator, may also impact re-
source provisioning demanding for further working nodes.
Furthermore, we cannot exclude that in some (unfrequent)
cases scaling up the parallelism of an operator may possibly
induce a reduction of resource provisioning. The operations
of increasing or decreasing an operator parallelism or the
number of available worker nodes are named scale out and
scale in respectively.

We consider that reconfigurations have a cost (reconfig-
uration overhead) due to (i) the elastic controller execution
and (ii) a period of performance degradation whose ampli-
tude and duration are mainly related to: (a) Rstate, i.e. the
operator state migration time; (b) Rrestart, i.e. the time due
to topologies restarting; (c) Rqueue, i.e. the time to process
tuples queued during Rstate + Rtime. These time periods
strictly depend on the specific strategies employed by the
SPS to handle application reconfigurations at runtime.

The problem we tackle in this paper is how to choose,
at runtime, configurations for a SPS in such a way that
all will be correct despite variations in the input load (i.e.
number of tuples per second injected in the system). Ideally,
these configurations should also be minimal but we cannot
guarantee such a property.

3 ELYSIUM
3.1 Symbiotic Scaling Strategy

ELYSIUM is based on the following idea: stress at the opera-
tor instance level and stress at the worker node level are two
different issues that can be addressed by separately scaling-
in/out operators and worker nodes. In some cases, the two
issues are interrelated in such a way that both operators

6. We consider the cumulative CPU usage on all its cores, averaged
over a sliding window to avoid oscillations.

Fig. 2. Scaling Options in a Distributed Stream Processing System

and worker nodes will be scaled-in/out. Fig. 2 depicts
the different scaling strategies used by ELYSIUM. Fig. 2(a)
shows the operator scaling operation where for one or more
operators the number of parallel instances is decreased or
increased. This strategy can be adopted when an operator
instance is in a oper stress status, as this may indicate that
a single instance is saturating a CPU core because it is
overloaded by incoming tuples. By increasing the operator
parallelism we increase the probability that its load will
be shared among other instances, thus alleviating its stress
state. Fig. 2(b) shows the dual resource scaling operation
performed to scale-in/out resources by adding or removing
worker nodes assignable by the SPS scheduler. This strategy
can be adopted when one or more worker nodes have their
CPU in a cpu stress status, as this may indicate that the
resources available to the SPS scheduler are insufficient to
handle the global application input load. By increasing the
amount of available resources we decrease stress on pre-
existing worker nodes, thus allowing the SPS to ingest more
data for the application. Finally, Fig. 2(c) shows a joint scaling
operation where resources and operators are scaled-in/out
together. This strategy can be adopted when the scale-out
of one or more operators saturates available resources, thus
requiring a resource scale-out operation. This is the strategy
employed by most of the elastic scaling solutions for SPS
present in the state of the art (see §6). The picture shows that
we don’t rule out the possibility of scaling-in resources after
having scaled-out processes (and vice-versa). These counter-
intuitive scenarios may arise in specific setting where, for
example, after an operator scale-out decision, the SPS sched-
uler is a able to better distribute instances over the available
worker nodes, thus reducing the global load on the cluster.

3.2 Architecture
ELYSIUM profiles the SPS and the applications running on
top of it with the aim of producing accurate estimations
about the resource consumption a specific configuration can
cause given a certain input load. By leveraging such estima-
tions, ELYSIUM periodically calculates a new configuration
to be adopted by the SPS during the next assessment period.
This calculation is performed striving to minimize the num-
ber of used worker nodes, while providing a configuration
that will be correct with high probability for the whole
duration of the next period. The assessment period can be
tuned depending on the specific cluster characteristics, and
accordingly to the desired tradeoff between (i) the need to
reduce the amount of time the system will run in a non
correct configuration, and (ii) the reconfiguration overhead
caused by adopting each new configuration.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 4

ELYSIUM can be used either in reactive or proactive mode.
The difference lies in the input load used for the estimations:
if the real current input load is used, then ELYSIUM scales
reactively, otherwise, if input load is forecasted over a certain
prediction horizon, then ELYSIUM scales proactively. In the
former case the assessment is performed such that the new
configuration is correct with respect to the recently observed
input load. Conversely, in the latter case ELYSIUM uses
the maximum predicted input load for the next assessment
period as a metric to identify correct configurations.

While working in reactive mode, ELYSIUM profiles the
applications to learn what would be the CPU usage for
the worker nodes in a certain configuration when a given
input load is fed to the SPS. This is accomplished by
splitting ELYSIUM execution in two phases: a profiling phase,
where it learns these information, and an autoscaling phase,
where it makes periodical assessments leveraging learned
application profile. While working in proactive mode, the
profiling phase also includes an input load learning step
used to enable load prediction.

ELYSIUM’s architecture (Fig. 3) includes three subsys-
tems: (i) a Monitoring subsystem which collects and pro-
vides the metrics required to carry out the two phases, (ii)
an Application Profiler subsystem implementing the phase
1 and (iii) an AutoScaling subsystem for the phase 2.

Monitoring Subsystem — The Monitoring subsystem con-
sists of a set of monitoring agents deployed over the worker
nodes and a metric DB where metrics are stored. Each metric
agent monitors the operator instances running on the same
worker node where it is deployed, collects metrics and
periodically stores average values computed over a sliding
time window into the metric DB. Collected metrics are (i)
inter-operator instance traffic, measured as the tuple rate
for each pair of communicating operator instances, (ii) CPU
usage of each operator instance and (iii) CPU usage of the
whole worker node due the SPS. In proactive mode, also the
input load is collected, and it is measured as the tuple rate
in input to each application running in the SPS.

Application Profiler Subsystem — The Application Profiler
subsystem is in charge of learning specific characteristics of
a running application by analyzing the data stored in the
metric DB after that application ran for a sufficiently long
period of time (see §5). While working in reactive mode,
it includes three distinct profilers, each aimed at learning
a specific aspect of an application: (i) the Selectivity Profiler
(SP) learns the selectivity of each operator (see §2), (ii) the
Operator CPU Usage Profiler (OCUP) learns how the CPU
usage of each operator instance varies as a function of its
input rate and (iii) the Overhead Profiler (OP) learns how
the CPU usage of a worker node varies depending on
the sum of the CPU usages of its operator instances. The
latter is required as, typically, SPSs impose some overhead
over running applications to provide basic services like
process management, message queue control threads, etc.
Therefore, the worker node total CPU usage is the sum of
the usage imposed by running operator instances and the
overhead. While working in proactive mode, a further Input
Load Profiler (ILP) is used, to learn input load patterns over
time. The outputs from the profilers constitute the applica-
tion description parameters (see Fig. 3) that will be used by

Fig. 3. ELYSIUM Architecture integrated in the SPS. The dotted blue line
indicates modules involved in the first phase of application profiling, the
red dotted one those involved in the second phase of autoscaling. The
Input Load Profiler, represented with a yellow background, is used only
when switching from reactive to proactive mode.

the AutoScaling subsystem to estimate the state of worker
nodes and operator instances (see §2). In the following,
we detail the profilers and data they collect. For the sake
of simplicity, the formalisms used to model managed data
don’t include applications’ and operators’ identifiers when
they are obvious.

• SP — Extracts metrics related to inter-operator instance
traffic from the metric DB to create a dataset with records
in the form 〈up op, dn op, tuple rate〉, where tuple rate is
the average tuple rate of the stream from up op upstream
operator instance to dn op downstream operator instance.
The output of the SP is the selectivity for each stream, as
defined in §2.
• OCUP — Retrieves data from the metric DB to create a
dataset having records for each operator instance structured
as 〈tuple rate, cpu usage〉, where tuple rate is the average
input rate of the operator instance, and cpu usage is the
CPU usage (in Hz7) that the worker node needs to run the
operator instance. The output of the OCUP is a function for
each operator that, given the input rate, returns the expected
CPU usage that one of its instance entails.
• OP — Reads the metric DB to extract a dataset consisting
of records in the form 〈cpu usage ops, cpu usage sps〉.
Each record maps the sum of CPU usages of all operator
instances running on a worker node (cpu usage ops) with
the CPU usage of that worker node (cpu usage sps). Its
output is a function that returns the expected CPU usage of
a worker node due to the SPS overhead, given the sum of
CPU usages due to the operator instances running on it.
• ILP — Profiles input load over time for each running ap-
plication, on the base of data extracted from the metric DB.
Such dataset includes records in the form 〈ts, input load〉,
where input load is the average input load observed during
one minute8 starting at timestamp ts . The output of the ILP
is a function that returns the maximum input load expected

7. Using Hz as a metric for CPU usage allows our system also to
support heterogeneous nodes.

8. We considered a one minute granularity for collecting input load
data as this value, from our experimental evidence, provided the best
compromise for input load predictions [15].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 5

during the next prediction horizon, given in input the day
of the week, the hour, the minute, and the input loads seen
in the last nILP minutes, where nILP is a configuration
parameter whose value must be tuned empirically. This kind
of input enables a combination of prediction approaches:
one simply based on current time (the day of the week, the
hour, the minute) to profile periodic trends, and another
based on time series (input loads seen in the last n minutes)
to catch behaviors depending on patterns.

AutoScaling Subsystem — The AutoScaling subsystem
starts to work once the profiling phase ends, so that it can
leverage the application description parameters provided by
the Application Profiler subsystem. It includes two compo-
nents: (i) the Estimator, which uses fresh data from the metric
DB to compute functions provided by the profilers so as to
expose methods for obtaining estimations and predictions
on specific applications, and (ii) the AutoScaler, which starts
the assessments and leverages these Estimator’s methods to
decide the new configuration to use.

The Estimator exposes four methods:
• getOperatorInputRate() — Traverses the applica-
tion graph and uses operator selectivities obtained by the
SP to compute the expected operator input rates starting
from the application input load.
• getOperatorInstanceCpuUsage() — Estimates CPU
usage of operator instances by dividing the total expected
input rate of an operator by its parallelism and then using
this value to feed the profile function returned by OCUP.
• getCpuUsages() — Provides an estimation of the CPU
usage of worker nodes given (i) the allocation of operator
instances to worker nodes provided by the SPS scheduler
and (ii) expected CPU usage for all operator instances. The
estimation for a given node is obtained by summing the
CPU usage of operator instances running on it, and then
feeding this value to the profile function returned by OP.
• predictInputLoad() — This methods is used only
in proactive mode and returns the maximum input load
predicted for an application for the next prediction horizon.
It is implemented by computing the function provided by
the ILP on the inputs obtained from the metric DB.

Fig. 4 shows an example of how the Estimator works.
The AutoScaler module works by invoking periodically
its computeConfig() method (reported in Algorithm 1)
accordingly to the configured assessment period. This oper-
ation allows to choose the configuration to apply in order
to efficiently sustain an expected input load during the next
assessment period. It takes as input (i) a reference to the
Estimator component, (ii) a reference to the SPS scheduler
used to compute allocations of operator instances to worker
nodes, (iii) the list of applications currently running in the
SPS, and (iv) the corresponding input loads. In reactive
mode, these input loads are directly read from the metric
DB, while in proactive mode they are predicted by the Esti-
mator and obtained by calling the predictInputLoad()
method for each running application. The computation of a
new configuration is performed by two consecutive stages.
Firstly, the parallelism of each operator is adapted to avoid
any CPU core overloading or under-utilization (operator
parallelism scaling). Then, the minimum number of worker
nodes is identified to run all the operator instances without

Fig. 4. Example of Estimator’s functioning on a 3 operator applica-
tion. The Estimator, through the method getOperatorInputRate(),
starting from an input load x, traverses the application graph by us-
ing the selectivities provided by the SP to compute the input rate
of each operator; in the figure above the input rate of the oper-
ator B is x, while the input rate of the operator C is αBC · x,
where αBC is the selectivity of the stream BC. Through the method
getOperatorInstanceCpuUsage() the Estimator first obtains the
input rate of each operator instance by dividing the input rate of each
operator by its parallelism (figure below), then, by using the function
provided by the OCUP, it infers the operator instance CPU usage.
Finally, through the method getCpuUsages() the Estimator infers the
CPU usage of each worker node by taking from the SPS scheduler an
allocation of operator instances on worker nodes. In proactive mode the
input load x is predicted though the predictInputLoad() method.

saturating the CPU of any worker node (resource scaling).
Each stage decides a scaling action along a different dimen-
sion, and the second one takes into account the possibly
updated operators’ parallelism decided in the first stage.

The first stage (lines 2-9 of Algorithm 1) analyzes for
each running application ak the status of their operator
oi. Estimator’s methods getOperatorInputRate() and
getOperatorInstanceCpuUsage() are invoked to eval-
uate the CPU load that each of the pi instances (where pi is
initialized to 1) of oi would produce on the CPU core where
it is running, given the input load for ak. Since it is assumed
that the input rate of an operator gets equally split among
its instances (see §2), the value of pi can be adjusted by
increasing it in case of core overloading (estimated CPU core
load greater than core max thr), or decreasing it in case of
core under-utilization (estimated CPU core load lower than
core min thr), until a steady point is reached, i.e. operators
in state oper avg.

In the second stage (lines 10-16 of Algorithm 1), multi-
ple potential configurations, each differing for the number
of used worker nodes are checked. The process starts by
checking the configuration with the least number of workers
nodes (i.e. 1 node) and proceeds by increasing the worker
nodes one at a time until a configuration is found that has
no bottleneck: this is the configuration that will be used
in the next assessment period. For each configuration, the
scheduler is requested to produce an allocation, which is a
mapping of the operator instances of running applications
to the worker nodes of the configuration to test. Such an
allocation and the input load of each application are passed
to the getCpuUsages() method exposed by the Estimator,
and the list of CPU usages of the worker nodes in the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 6

Algorithm 1 AutoScaling Algorithm
1: function COMPUTECONFIG(Estimator E, Scheduler S, List〈Application〉 apps, List〈int〉 input loads)
2: for all application ak in apps do
3: for all operator oi in ak do
4: iri ← E.getOperatorInputRate(input loadsk, oi)
5: pi ← 1
6: while E.getOperatorInstanceCpuUsage(oi,

iri
pi
) > core max thr & pi < max paralloi do

7: pi ← pi + 1

8: while E.getOperatorInstanceCpuUsage(oi,
iri
pi
) < core min thr & pi > 1 do

9: pi ← pi − 1

10: worker nodes← 1
11: while true do
12: allocation← S.allocate(apps, worker nodes)
13: cpu usages← E.getCpuUsages(allocation, input loads)
14: if ∀x ∈ cpu usages : x ≤ cpu max thr then
15: return worker nodes, {pi}
16: worker nodes← worker nodes+ 1

configuration being checked is obtained. If any of such
worker nodes is in stress state, then the current configu-
ration does not contain enough available resources for the
computation; one more worker node must be added and the
new configuration needs to be checked again. Conversely,
the number of worker nodes with the number of instances
for each operator of the submitted applications is returned.

4 ELYSIUM IMPLEMENTATION IN STORM

In this section we describe how we implemented each com-
ponent of ELYSIUM and how we integrated it into Apache
Storm [10], a widely adopted framework for distributed SPS.
The way ELYSIUM is integrated with Storm is shown in
Fig. 5 and described in following subsections.

Fig. 5. ELYSIUM deployment in Storm

In Storm jargon applications, called topologies, are rep-
resented as acyclic graphs of operators, called components.
Source components are called spouts, while all the others are
named bolts. Spouts usually wrap external data sources and
generate the input load for applications. At runtime, each
component is executed by a configurable number of threads,
called executors, which are the instances of the operators.
Storm does not provide support for stateful operator migra-
tion at runtime. For this reason, in this implementation we
consider Rstate = 0.

A Storm cluster comprises a single master node (Nimbus)
which coordinates all the other nodes each locally managed

by a special process called Supervisor. Each Supervisor pro-
vides a fixed number of Java processes (workers) to run
executors. A topology can be configured to run over a
precise number of workers. The Nimbus is in charge of
deciding the allocation of executors to available workers
by running a scheduling algorithm. Application developers
can use the embedded even scheduler, provided by Storm,
or implement custom allocation strategies through a generic
scheduler interface. As a rule of thumb, each topology should
use a single worker per supervisor in order to avoid the
overhead of inter-process communication. Indeed, the de-
fault scheduler strives to choose the workers for a topology
in such a way. The Nimbus also provides a rebalance API to
dynamically vary (i) the number of workers a topology can
use to run its executors (resource scaling), and (ii) the number
of executors for each component (operator scaling).

Monitoring Subsystem — The monitoring agents are
threads that run inside the workers and monitor executor
metrics by leveraging Storm’s metrics framework. With
reference to §3.2, monitored metrics are (i) the rate of tuples
received by bolts (to monitor inter-operator traffic), (ii) the
CPU usage of the executors, (iii) the CPU usage of the
workers, and (iv) the rate of tuples emitted by spouts (to
monitor the input load). Our prototype stores every 10
seconds into an Apache Derby DB [16] (the metric DB hosted
on the Nimbus) average metric values computed over a
sliding window of 1 minute.

Application Profiler Subsystem — Profilers are imple-
mented as standalone Java applications. They access every
10 seconds the metric DB to extract the required data and
build a dataset. Once the profiling phase ends, they pro-
duce the output functions and store them as Java objects
serialized to file.

The SP provides the list of selectivities for each stream in
the topology by averaging over time collected selectivities.
This approach is motivated by the initial assumption on
constant selectivities. Tests reported in §5 show that SP
provides reliable predictions for selectivities also with real
workloads that show little selectivity oscillations.

As output OCUP, OP and ILP produces Artificial Neu-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 7

ral Networks (ANNs)9 through Encog [17]. Specifically, the
OCUP employs an ANN for each component of the topol-
ogy, each one having a single input node for the input
rate, and a single output node with the estimated CPU core
usage. Similarly, the OP employs an input node for the sum
of CPU usages due to executors and an output node with the
estimated CPU usage of the worker node. The ILP employs
a different ANN that takes as input the day of the week,
the hour, the minute and the input loads seen in the last
nILP minutes. More details about ANNs’ setting and their
training are discussed in §5.

AutoScaling Subsystem — The AutoScaling subsystem is
implemented as a Java library to be imported by the Nim-
bus. It implements the scheduler interface, and the Nimbus
is configured to be invoked periodically with period equals
to the chosen assessment period. In this way, assessments
are executed at the right frequency and have access to all
the required information about allocations.

The Estimator is a Java object that accesses the metric DB
and implements the methods introduced in §3.2. It loads the
profiles produced by the Application Profiler subsystem by
unserializing them.

The AutoScaler is the Java object that implements the
scheduler interface and executes Algorithm 1. It wraps the
default scheduler of Storm and uses it to simulate alloca-
tions when checking the effectiveness of configurations. In
case the chosen configuration is different from the current
one, it issues a rebalance operation through the Nimbus
API to apply the new configuration, that is to assign (i)
a different number of workers to a topology, and (ii) a
different number of executors to each component.

5 EXPERIMENTAL EVALUATION

5.1 Environment and Deployment
Testbed — The environment used to deploy and test ELY-
SIUM was composed by 4 blade servers IBM HS22, each
equipped with 2 Quad-Core Intel Xeon X5560 2.28 GHz
CPUs and 24 GB of RAM. We distributed the Storm frame-
work on a cluster of 5 VMs, each equipped with 4 CPU cores
and 4 GB of RAM. One was dedicated to hosting the Nimbus
process and the Apache Derby DB, while the remaining 4
hosted the worker nodes. One further VM was used for
the Data Driver process, in charge of generating the input
load. This VM was equipped with 2 CPU cores and 4 GB of
RAM. The Data Driver process generates tuples according
to a given dataset, then sends them to a HornetQ [18] Java
Messaging Service (JMS) queue. The spouts are connected to
such JMS queue to get the tuples to inject into the topology.

Reference Applications and Dataset — To evaluate ELY-
SIUM we implemented two topologies that we refer to as
T1 and T2 respectively: T1 performs a Rolling-Top-K-Words
computation [19] and T2 implements Sentiment Analysis [20].
Each operator in the topologies has a parallelism in the
range [1; 4]. We evaluated ELYSIUM by using both synthetic
and real traces to generate the input load. As synthetic
traces, we employed (i) a stair-shaped curve, (ii) a sine

9. We consider that ANNs can be one of the best solutions for our
requirements as they provide (i) a data-driven non-linear model and
(ii) the ability to generalize and infer unseen parts of a population [15].

function, and (iii) a square wave. As real trace we used a
subset of a 10 GB Twitter dataset containing 3 months of
tweets captured during the European Parliament election
round of 2014 from March to May in Italy. To make tests
with the real trace practical, we applied to them a 60 : 1
time-compression factor to allow the replay of the real trace
with reasonable timing.
Evaluation Metrics — The effectiveness of ELYSIUM has
been evaluated considering the following metrics:
• the throughput degradation, measured as the per-

centage difference over time between input load
and throughput, where the throughput is rate of
acked input tuples (see §2). The throughput degra-
dation is computed as |input load−throughput|

input load . Note
that throughput degradation becomes greater than
1 when there is a large number of input tuples
buffered in the queue. In this case the throughput
can become much larger than the input load, hence
|input load− throughput| > input load;

• the percentage of nodes saved with respect to a stat-
ically over-provisioned configuration; let N be the
number of assessments done during the evaluation,
C the number of worker nodes defined in the over-
provisioned configuration, ci the configuration cho-
sen by the i-th assessment, this metric is computed
as 1−

∑N
i=1 ci
NC ;

• the latency, i.e. the average tuple completion time.

Whenever applicable these metrics have been computed
over sliding time windows or as an overall value for the
entire test.
Parameters setup — All our tests were conducted us-
ing the prototype introduced in §4. To properly set the
thresholds presented in §2, we adopted a methodology
based on Reinforcement Learning. We used Q-Learning [21]
during the profiling phase starting with no knowledge of
the application behavior. To find the cpu max thr, the
Reward Function R(threshold) we propose aims at max-
imizing node usage, hence looks for the maximum CPU
threshold that corresponds to the lowest throughput degra-
dation; specifically R(cpu max thr) = cpu max thr −
throughput degradation. The Q-Learning rewards are
shown in table 1 where it is possible to see that the max
reward is given to a threshold of 0.8, i.e. 80% CPU usage.
Fig. 6 shows how the throughput degradation and nodes
saved metrics change in function of the max CPU threshold.
Specifically, Fig. 6(a) backups the result that the 80% of CPU
usage seems to be the best cpu max thr as larger values
impose a larger throughput degradation. In a similar way
we computed the other thresholds: their values are 0.25 for
core min thr and 0.65 for core max thr.

The ANNs have been tuned by following some empirical
rules presented in [15]: the ILP ANN has 13 input nodes,
1 hidden layer with 24 neurons, 5 output nodes for direct
prediction (i.e. a prediction for each future minute) and
linear-tanH-tanH activation functions. Data are normalized
with the min-max normalization [0; 1] and the dataset was
split 70% training and 30% test. For OCUP/OP ANN we set
1 hidden layer with 3 neurons, tanH-tanH-tanH activation
functions. We trained the ANNs with the Resilient Back-
propagation [22] and a 10-cross validation to avoid overfit-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 8

0

0,1

0,2

0,3

0,4

0,5

60 65 70 75 80 85 90

th
ro

u
gh

p
u

t
 d

eg
ra

d
at

io
n

threshold (%)

(a) Throughput Degradation

0

5

10

15

20

25

30

35

60 65 70 75 80 85 90

n
o

d
es

 s
av

ed
 (

%
)

threshold (%)

(b) Nodes saved

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5 6

th
ro

u
gh

p
u

t
 d

eg
ra

d
at

io
n

assessment period (min)

(c) Overhead due to the assessment period

Fig. 6. Throughput Degradation (a,c) and nodes saved (b) due to parameters setup (threshold cpu max thr and assessment period)

CPU Max Threshold Reward
0.60 0.53
0.65 0.57
0.70 0.62
0.75 0.66
0.80 0.71
0.85 0.65
0.90 0.43

TABLE 1
Reward of Q-Learning for CPU max threshold

Stream Average Std. Dev.
WordGener - StopWordFilter 17.86 0.54
StopWordFilter - Counter 0.68 0.02
Counter - IntermRanker 0.41 0.34
IntermRanker - FinalRanker 0.01 0.00

TABLE 2
Selectivity of T1’s streams

ting. The profiling phase duration is application dependent.
Basically, the more data you collect, the more accurate the
prediction will be. In our scenario we notice that injecting
a variable workload for 30 minutes is enough to achieve a
good prediction accuracy (see next subsection).

5.2 ELYSIUM Evaluation

Reconfiguration Overhead — The overhead introduced by
ELYSIUM is negligible. The metrics monitoring CPU usage
and traffic are extremely lightweight (they are collected
every 10 seconds). The bandwidth consumed for metric
collection is just few KB, depends on the number of op-
erator instances, and it is independent from the input load.
The real-time computation of the AutoScaler is lightweight
and consumes an insignificant amount of CPU periodically.
Furthermore, this computation is carried out on the machine
hosting the Nimbus, so it doesn’t compete for resources
with running topologies. When the configuration has to
be changed, the throughput of an application degrades. In
our experiments, a reconfiguration is triggered by issuing
a rebalance command to the Nimbus, which causes such
degradation for two reasons mainly: firstly, topologies have
to be restarted (Rrestart), which takes 5 to 8 seconds in our
testbed. During this period, the application cannot process
tuples, so they are buffered before the spout component
(into the JMS queue in our topologies). Secondly, once
topologies become ready to work, the spouts start retrieving
tuples from the input queues at the highest possible rate.

This is likely to causes a non-negligible load peak with a
consequent resource overloading, regardless of the actual
input load curve. So, after the restart of the topology, a
transient phase occurs where the cluster is likely to move
in a stress state because applications need to drain accu-
mulated input tuples (Rqueue) to finally keep up with the
real input load. The length of this transient phase depends
on how many tuples are queued while the reconfiguration
takes place. This is a common behavior for SPSs that, like
Storm, do not allow dynamic reconfigurations of running
applications at runtime.

To measure how the assessment period impacts the
reconfiguration overhead, we deployed T1 over an over-
provisioned configuration (no worker nodes nor operators
in stress state) and injected 9 minutes of sinusoidal input
load. In this setting, we computed the throughput degrada-
tion for different assessment periods. As expected, Fig. 6(c)
clearly shows the throughput degradation gets larger as the
assessment period is shortened.

By comparing these results with the quasi-zero through-
put degradation obtained without reconfigurations and in
an over-provisioned setting (see Fig. 9), it can be noted
that reconfiguration overhead is significant. Therefore, the
assessment period has to be tuned accordingly to input load
variability and throughput degradation tolerance. In our
tests, we set the assessment period to 1 minute. Therefore,
pessimistically assuming reconfigurations occur at each as-
sessment, the baseline value of the throughput degradation
for comparisons is 0.64 (with 2 minute assessment period,
the throughput degradation would be 0.43).

Estimator Accuracy — The accuracy of the estimations
provided by the Estimator depends in turn on the accuracy
of the profiles learned by the SP, the OCUP, and the OP.
Table 2 shows average and standard deviation of the selec-
tivities observed for the streams of T1, during a 30 minutes
test with the stair-shaped curve as input load. Reported
standard deviations are very small, which backups the
implementation choice for the SP, described in §4, of mod-
eling selectivities with constant values. The stream Counter
- IntermediateRanker is the only one having a large standard
deviation. This is due to the semantics of the Counter bolt;
indeed, it sends tuples downstream to the IntermediateRanker
bolt periodically, independently of its input rate. The impact
on the estimation is negligible as at runtime the input rate
of the bolts downstream the Counter bolt is very small and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 9

produces really small CPU usage. The accuracy of the OCUP
is related to the estimations of CPU usage for an operator
instance given its input rate. Average mean percentage error
of estimations is under 3%. Fig. 7 reports the real CPU usage
over time of the instances of two operators, aggregated by
operator, and the corresponding estimations provided by
the OCUP. In this test, a sinusoidal input load was injected
in the topology for 25 minutes. As the figure shows, the
estimations faithfully predict the real CPU usage.

0
1E+09
2E+09
3E+09
4E+09
5E+09
6E+09
7E+09
8E+09
9E+09
1E+10

1 6 11 16 21

o
p

er
at

o
r

lo
ad

 (
H

z)

time (min)

counter real counter estimated
filter real filter estimated

Fig. 7. Comparison between real and estimated total CPU usage (in Hz)
for all instances of T1’s Counter and StopWordFilter operators

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 99

w
o

rk
er

 C
P

U
 (

%
)

summed executors CPU (%)

Fig. 8. Worker node CPU usage as a function of the sum of the CPU
usage of all the executors running in such worker node

The OP estimates the CPU usage of a worker node as
a function of the sum of the CPU usage of all the operator
instances running in that node. In this way, it is possible
to take into account the overhead caused by the SPS such as
tuple dispatching and thread management. Fig. 8 depicts the
profiling of such overhead in a worker node of our cluster.
Such profiles provide all the information needed to infer the
total CPU usage of a worker node.

Comparing Joint and Symbiotic Scaling — To define the
policy enforced by the joint scaling approach, we took
inspiration from [23]10: operator scale-out entails adding a new
resource, while operators scale-in and resource scale-in/out are
independent. This means that another worker node is added
whenever any operator is scaled-out, while operator scale-
in doesn’t affect resource scaling. Furthermore, in case no
operator is scaled, resources are scaled in or out on the base
of current worker nodes’ CPU usage. Since joint scaling
is reactive, ELYSIUM was set in reactive mode as well
and a same activation threshold for both approaches was
considered, such to provide a fair comparison.

10. Note that here we aim at comparing symbiotic versus joint
approaches and not the systems themselves as they are widely different.

Topology /

Dataset
Figures Scaling Type Resources

Operator

Parallelism

Throughput

Degradation

Nodes

Saved %

-- -- 4 4 0.05 0

-- only operators 2 scalable 1.47 50

-- only operators 4 scalable 0.98 0

-- only resources scalable 2 1.43 19

-- only resources scalable 4 0.97 33

joint 0.97 32

ELYSIUM (R) 0.81 43

ELYSIUM (P) 0.81 43

joint 0.78 50

ELYSIUM (R) 0.59 58

joint 1.49 25

ELYSIUM (R) 1.7 35

ELYSIUM (P) 1.2 35

joint 1.25 25

ELYSIUM (R) 1.01 47

joint 1.25 24

ELYSIUM (R) 0.86 45

ELYSIUM (P) 0.9 45

joint 0.99 13

ELYSIUM (R) 1.03 33

joint 0.63 30

ELYSIUM (R) 0.17 22

joint 0.49 48

ELYSIUM (R) 0.48 50

0.80 17ELYSIUM (R)

T
1

si
ne

T
2

si
ne

12(d-f) ELYSIUM (R) scalable 0.46 21

T
1

st
ep

T
2

st
ai

r

12(a-c) scalable

scalable

scalable

T
1

st
ep 10(a-c)

scalable

scalable

T
1

st
ai

r
da

ta
se

t

10(f)

13(a)
scalable

scalable

scalable

scalable

scalable

T
1

si
ne 10(g)

11(b)

scalable

scalable

T
1

sq
ua

re 10(d-e)

11(a)

13(b) scalable

T
1

tw
itt

er

10(h)

11(c)

13(c) scalable

T
2

tw
itt

er 10(k)

11(f)

scalable

scalable

T
2

sq
ua

re 10(i)

11(d)

scalable

scalable

T
2

si
ne

10(j)

11(e)

scalable

scalable

Fig. 9. Evaluation summary. The second column indicates the reference
to the figure in this paper; the third column refers to the scaling strategy,
where ELYSIUM can be set either reactive (R) or proactive (P).

To highlight the advantage of scaling on a single di-
mension only, either operators or resources, we first show a
case where scaling only operators, and not resources, can be
enough to make the application sustain an input load peak.
Fig. 10(a) shows a throughput comparison over T1 between
a static configuration and an operator-only AutoScaler. The
static configuration has 2 worker nodes and all operators
with parallelism set to 1, so there are 6 executors over 8 cores
(2 worker nodes with 4 cores) running operators, and 2
remaining cores used by other Storm processes.

The static configuration cannot sustain the input load
change occurring at about second 180, and the throughput
drops after a couple of minutes. The AutoScaler starts
with the same configuration, then scales up when the peak
occurs, as it detects an operator stress. It changes the paral-
lelism of the stressed operator (StopWordFilter in this case)
from 1 to 2 and the throughput, after some oscillations due
to reconfiguration overhead, increases keeping up with the
input rate. The inverse operation (operator scale-in) occurs
at about second 600, where the two operator instances
become under-utilized and the parallelism is set back to 1.
The next experiment aims at underlining the limitation of
the joint scaling regarding its possibility to scale resources
in/out of a single unit (single-level). On the contrary, the pro-
posed scaling approach leverages the Estimator to choose
the proper number of worker nodes to use (multi-level). For
this test, we used a step-shaped input load over T1, as
shown in Fig. 10(b) and 10(c), where throughput and used
worker nodes comparisons are shown, respectively. These
Figures clearly show that both the scaling strategies suffer
the input load peak at the beginning. While the symbiotic

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 10

0

200

400

600

800

1000

1200

1 121 241 361 481 601 721

ra
te

 (
tu

p
le

/s
ec

)

time (sec)

input rate
scaling operator parallelism
static operator parallelism

(a) Thr. with static vs operator scaling

0

400

800

1200

1600

1 121 241 361 481

ra
te

 (
tu

p
le

/s
ec

)

time (sec)

input rate
multi-level throughput
single-level throughput

(b) Thr. with single/multi-level scaling

0

500

1000

1500

2000

0

1

2

3

4

5

1 121 241 361 481

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

multi-level single-level
input rate

(c) Nodes with single/multi level scaling

0

500

1000

1500

2000

0

1

2

3

4

5

1 121 241 361 481 601 721 841 961

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

ELYSIUM joint input rate

(d) Resources scaling while injecting a square wave toward T1

0

500

1000

1500

2000

0

1

2

3

4

5

1 121 241 361 481 601

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

sw
f

o
p

er
at

o
r

p
ar

al
le

lis
m

time (sec)

ELYSIUM joint input rate

(e) Operators scaling while injecting a square wave toward T1

0

500

1000

1500

2000

0

1

2

3

4

5

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

1

2
0

1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

ELYSIUM joint input rate

(f) Stair wave injected toward topology T1

0

500

1000

1500

2000

0

1

2

3

4

5

1

2
4

1

4
8

1

7
2

1

9
6

1

1
2

0
1

1
4

4
1

1
6

8
1

1
9

2
1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

ELYSIUM joint input rate

(g) Sine wave injected toward topology T1

0

500

1000

1500

2000

0

1

2

3

4

5

1 241 481 721 961 1201

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

ELYSIUM joint input rate

(h) Twitter curve injected toward topology T1

0

500

1000

1500

0

1

2

3

4

5

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

ELYSIUM joint input rate

(i) Square wave injected toward topology T2

0

500

1000

1500

0

1

2

3

4

5

1

2
4

1

4
8

1

7
2

1

9
6

1

1
2

0
1

1
4

4
1

1
6

8
1

1
9

2
1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

ELYSIUM joint input rate

(j) Sine wave injected toward topology T2

0

500

1000

1500

2000

0

1

2

3

4

5

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

1

2
0

1

1
3

2
1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

ELYSIUM joint input rate

(k) Twitter curve injected toward topology T2

Fig. 10. Comparison between joint scaling and symbiotic scaling (ELYSIUM) while injecting different traces toward T1 and T2

scaling resumes sustaining the input load after 80 to 90
seconds from the peak, the joint scaling makes the appli-
cation throughput break down for a few tens of seconds,
then manages to keep up after about two and half minutes
from the input load peak. When the input load decreases
at minute 6, the symbiotic approach scales in the resources

after one minute, and the throughput gradually decreases
to match the input load. During this settlement period, the
throughput is larger than the input load because of the re-
configuration overhead. The joint scaling performs worse as
it requires more reconfigurations to reach the correct one, so
it pays a much larger overhead, while ELYSIUM provisions

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 11

0

2500

5000

7500

10000

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

la
te

n
cy

 (
m

s)

time (s)

ELYSIUM joint

(a) Square wave injected on topology T1

0

5000

10000

15000

1

2
4

1

4
8

1

7
2

1

9
6

1

1
2

0
1

1
4

4
1

1
6

8
1

1
9

2
1

2
1

6
1

la
te

n
cy

 (
m

s)

time (s)

ELYSIUM joint

(b) Sine wave injected on topology T1

0

5000

10000

15000

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

1

2
0

1

1
3

2
1

la
te

n
cy

 (
m

s)

time (s)

ELYSIUM joint

(c) Twitter curve injected on topology T1

0

10000

20000

30000

40000

50000

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

la
te

n
cy

 (
m

s)

time (s)

ELYSIUM joint

(d) Square wave injected on topology T2

0

5000

10000

15000

20000

1

2
4

1

4
8

1

7
2

1

9
6

1

1
2

0
1

1
4

4
1

1
6

8
1

1
9

2
1

2
1

6
1

la
te

n
cy

 (
m

s)

time (s)

ELYSIUM joint

(e) Sine wave injected on topology T2

0

10000

20000

30000

40000

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

1

2
0

1

1
3

2
1

la
te

n
cy

 (
m

s)

time (s)

ELYSIUM joint

(f) Twitter curve injected on topology T2

Fig. 11. Comparison on latency between ELYSIUM and joint scaling while injecting different input load curves toward the two topologies

the right amount of resources with a single reconfiguration.
Indeed, joint scaling takes a few tens of seconds longer
than ELYSIUM to generate a throughput equal to the input
load. Besides providing smaller throughput degradation
(0.59 against 0.78), the symbiotic approach allows to save
resources as show in Fig. 10(c) (see also Fig. 9, where an
overview of all the tests executed is reported). Throughput
degradation of symbiotic scaling is slightly better than that
obtained by reconfiguring every minute (see Fig. 6(c)).

To provide a better understanding on the way operators
and resources are scaled symbiotically, we show the results
of an experiment that used a square wave input load over
T1. Fig. 10(d) and 10(e) present respectively how the number
of worker nodes and the parallelism of T1’s StopWordFilter
(the most significant operator in T1) change over time,
for joint and symbiotic scaling (i.e. ELYSIUM). With the
symbiotic approach it is possible to adapt faster than with
the joint one, for what regards both the resources and the
operator parallelism. The throughput degradation is similar
but larger with ELYSIUM (1.7 vs 1.49) as a lower number
of nodes is used compared to the joint approach, which in-
stead over-provisions the topology and does not experience
overloading. Indeed, nodes saved are 25% for joint scaling
and 35% for ELYSIUM. We experienced similar results with
T2 (Fig. 10(i)): slightly larger throughput degradation (1.03
vs 0.99), but more nodes saved (33% vs 13%).

To complete the comparison between joint scaling and
ELYSIUM, we show how they differ in used worker nodes
over time for other distinct input load curves. Fig. 10(f)
shows the comparison with a stair-shaped input load over

T1. Globally the throughput degradation is smaller for ELY-
SIUM (0.81 vs 0.97 of the joint), while saving more resources
(43% vs. 32% with joint scaling).

Similar results are reported in Fig. 10(g) and 10(j) for a
sinusoidal input load over T1 and T2 respectively. In both
cases, ELYSIUM provides a lower throughput degradation
(1.01/0.17 vs 1.25/0.63), while they differently save nodes
(47/22% vs 25/30%). Finally, Fig. 10(h) and 10(k) show the
results with the Twitter trace over T1 and T2. In both tests
ELYSIUM has a lower throughput degradation (0.86/0.48
vs 1.25/0.49) and more nodes saved (45/52% vs 24/48%).

The performance of ELYSIUM compared to joint scaling
in terms of latency are shown in Fig. 11. Specifically, it
is possible to see that the trend of the latency of both
approaches when injecting a square curve is similar for both
T1 and T2 (Fig. 11(a), 11(d)). For the twitter trace, instead,
ELYSIUM and joint scaling, for both T1 and T2, differ in
specific periods as they use a different policy to scale (Fig.
11(c), 11(f)). The main differences are appreciable from tests
using a sinusoidal wave as input load, as shown in Fig.
11(b), 11(e) where ELYSIUM outperforms the joint approach,
showing pretty smaller latency values.

Managing Multiple Applications — To test the ability of
ELYSIUM to scale in presence of multiple applications, we
ran two tests with both T1 and T2 deployed in the same
cluster. In the first test we injected a step input load of
200req/s in T1 and a stair wave in T2. From Fig. 12(a,b)
it is possible to see how the two topologies require different
number of nodes as well as different number of operators.
Specifically, the nodes of T2 change over time as it has to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 12

0

250

500

750

1000

1250

0

1

2

3
1

1

2
1

2

4
1

3

6
1

4

8
1

6

0
1

7

2
1

8

4
1

9

6
1

1

0
8

1

1
2

0
1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

nodes T1 nodes T2

input rate T1 input rate T2

(a) Nodes used by T1 and T2

0

250

500

750

1000

1250

0

5

10

15

20

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

1

2
0

1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

o
p

er
at

o
rs

 (

th
re

ad
s)

time (sec)

operators T1 operators T2

input rate T1 input rate T2

(b) Operators used by T1 and T2

15000

30000

45000

60000

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

la
te

n
cy

 (
m

s)

time (s)

T1 T2

(c) Latency of T1 and T2

0

250

500

0

1

2

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

1

2
0

1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

nodes T1 nodes T2

input rate T1 input rate T2

(d) Nodes used by T1 and T2

0

250

500

0

5

10

15

20
1

1

2
1

2

4
1

3

6
1

4

8
1

6

0
1

7

2
1

8

4
1

9

6
1

1

0
8

1

1
2

0
1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

o
p

er
at

o
rs

 (

th
re

ad
s)

time (sec)

operators T1 operators T2

input rate T1 input rate T2

(e) Operators used by T1 and T2 trace

0

10000

20000

30000

40000

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

la
te

n
cy

 (
m

s)

time (s)

T1 T2

(f) Latency of T1 and T2

Fig. 12. ELYSIUM handling two topologies with different workloads

handle a larger workload, while T1 always uses a single
node. Nevertheless, T1 frequently requires an increases of
its operator parallelism, as the overhead due to reconfigura-
tions leads to a larger usage of some operators. Conversely,
in a second test we injected a sinusoidal input load in both
T1 and T2 with different magnitudes. Fig. 12(d,e) show how
T1 and T2 differently scale for nodes and operators. From
Fig. 12(c,f), it is possible to see how the latency of both T1
and T2 is quite stable and, obviously, T2 has in both cases
larger values as it handles a larger workload.

Proactive Symbiotic Scaling — ELYSIUM can be used in
either reactive or proactive mode. Proactive scaling can
help reducing the delay between when the reconfiguration
occurs and when its effects are actually needed. Here, we
implemented a technique that over-provisions resources for
the next temporal horizon. By setting for instance a horizon
of h minutes, the proactive system computes a prediction of
the input load for each minute from t+1 to t+h, and uses the
highest forecasted input load to estimate required resources.
Fig. 13 (a-c) show the comparison on used worker nodes
between reactive and proactive ELYSIUM, while injecting
three different input load curves toward T1. Note that the
strategies used by the proactive and reactive systems are
exactly the same, the unique difference lying in the recon-
figuration point that for the proactive version results closer
to the real demand point.

In terms of nodes saved, the differences are negligible
(very few nodes), but available resources are used more
efficiently. Fig. 13 (d-e) shows the overall results of these
comparisons in terms of throughput degradation and nodes

saved. For the square wave input load (i.e. the most critical
pattern for reactive ELYSIUM), the throughput degradation
drops from 1.7 to 1.2 showing a notable improvement that
clearly justifies the usage of a proactive approach.
Overall Result — The overall main results are: (i) ELYSIUM
always outperforms the joint scaling approach in term of
saved resources, (ii) ELYSIUM is anyway able to sustain the
same workload, often with a lower throughput degradation
and lower latencies due to its ability to scale more units per
time and (iii) the proactive version of ELYSIUM can reduce
the impact of the reconfiguration overhead and further
improve performance of the symbiotic approach.

6 RELATED WORK

Elastic scaling is a well known problem in the area of cloud-
based platforms, where a lot of efforts have been devoted
to the identification of efficient scalability policies [24] as
well as metrics and benchmark methodologies [25]. How
to scale SPSs has been extensively studied and analyzed
from an application-level perspective by Hirzel et al. in [4].
Most of the works that tackle this problem at the application
level [2], [26], [27] assume that a fixed amount of computing
resources are available, and then strive to define the best
allocation of operators to such resources. From this point
of view, ELYSIUM works on a fully orthogonal direction,
as we assume that a possibly infinite amount of resources
is available (like in a cloud computing scenario), but aims
at consuming the minimum amount needed to run the SPS
with the goal of being cost efficient. Differently from pre-
vious solutions, ELYSIUM manages operator and resource

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 13

0

500

1000

1500

2000

0

1

2

3

4

5

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

1
2

0
1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

ELYSIUM reactive

ELYSIUM proactive

input rate

(a) Stair dataset

0

500

1000

1500

2000

0

1

2

3

4

5

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

ELYSIUM reactive

ELYSIUM proactive

input rate

(b) Square wave

0

500

1000

1500

2000

0

1

2

3

4

5

1

1
2

1

2
4

1

3
6

1

4
8

1

6
0

1

7
2

1

8
4

1

9
6

1

1
0

8
1

1

2
0

1

1
3

2
1

in
p

u
t

ra
te

 (
tu

p
le

/s
ec

)

co
n

fi
gu

ra
ti

o
n

 (

n
o

d
es

)

time (sec)

ELYSIUM reactive

ELYSIUM proactive

input rate

(c) Twitter trace

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

stair square sine twitter

th
ro

u
gh

p
u

t
d

eg
ra

d
at

io
n

 joint
ELYSIUM reactive
ELYSIUM proactive

(d) Throughput degradation comparison

0

10

20

30

40

50

60

70

stair step square sine twitter

n
o

d
es

 s
av

ed
 (

%
)

joint
ELYSIUM reactive
ELYSIUM proactive

(e) Saved nodes comparison

Fig. 13. The Figures above show the comparison on used worker nodes between reactive and proactive ELYSIUM according to specific input load
curves toward T1. The Figures below show the comparison on throughput degradation and nodes saved aggregates between joint and symbiotic
reactive/proactive approaches, with different input load curves.

scaling in a symbiotic fashion, deciding which one to apply
or whether to apply both depending on the specific scenario.

A large fraction of solutions available in the literature
scale one resource at a time. A notable exception is repre-
sented by [2], where the authors propose rapid scaling i.e.
a solution that reduces the number of iterations needed to
reach the target configuration. ELYSIUM further improves
along this same direction by providing a solution that
removes/provisions multiple resources in a single scale-
in/out action on the basis of the resource usage estimated
from either current or predicted input load, depending on
whether the reactive or proactive mode is enabled.

Heinze et al. in [5] presented a solution to perform hor-
izontal scaling according to the workload pattern evolution
and by optimizing a cost function. Such prototype extends
the FUGU stream processing system [6], where the authors
compared threshold-based techniques with reinforcement
learning techniques as defined in [24]. Furthermore, in [28]
they proposed a latency aware solution. ELYSIUM, with
respect to the previous solutions, is able to predict large
load fluctuations and thus allows scale-in/out of multiple
instances and resources at the same time.

While the majority of the works are reactive and based
on thresholds, i.e. they act after an overload/underload
detection, Ishii et al. in [29] proposed a proactive solution
to move part of the computation to the cloud when the
local cluster becomes unable to handle the predicted work-
load. The proactive model we propose is more fine-grained
thanks to a resource estimator that allows to accurately
compute the expected resource consumption given an input
load and a configuration.

Recently, some efforts have also been spent to consider
together problems related to elasticity and fault tolerance. In
[23], the authors considered the problem of scaling stateful
operators deployed over a large cloud infrastructure. In
cloud environment, in fact, failures are common and man-
aging replicated operators in presence of crash and recover-
ies introduces additional overheads with respect to those
imposed by automatic scaling. The scaling strategy they
propose, contrarily from us they (i) used a joint approach
hence the detection of an overloaded operator leads to the
allocation of new resources, and (ii) scale one unit per time.

7 CONCLUSION

In this paper we presented ELYSIUM, an elastic scaling
framework for SPS. ELYSIUM first uses a Profiler to learn
the behavior of a SPS application, then predictively scales
the system symbiotically along two distinct dimensions: op-
erator parallelism and resources. Through an experimental
evaluation based on a real prototype integrated in Storm, we
showed how ELYSIUM outperforms a joint scaling strategy,
while always saving more resources.

As future directions, we aim to design a more complete
model for resource estimation including memory and band-
width so as to integrate shedding techniques to tackle band-
width bottlenecks. Considering other optimization tech-
niques proposed in [4], we also plan to integrate further
solutions (e.g. smart operator placement to improve load
balancing among resources [30]) and scaling according to
predefined SLAs, such as maximum latency, as we similarly
did in [31], in a more complete framework.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 14

REFERENCES

[1] T. Heinze, L. Aniello, L. Querzoni, and Z. Jerzak, “Cloud-based
data stream processing,” in DEBS ’14. ACM, 2014, pp. 238–245.

[2] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” in Transactions on Parallel and Distributed
Systems, vol. 25, no. 6. IEEE, 2014, pp. 1447–1463.

[3] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
control of computing systems. John Wiley & Sons, 2004.

[4] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A
catalog of stream processing optimizations,” in Computing Survey,
vol. 46. ACM, 2014.

[5] T. Heinze, L. Roediger, A. Meister, Y. Ji, Z. Jerzak, and C. Fetzer,
“Online parameter optimization for elastic data stream process-
ing,” in SoCC ’15. ACM, 2015, pp. 276–287.

[6] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer, “Auto-scaling
techniques for elastic data stream processing,” in DEBS ’14. ACM,
2014, pp. 318–321.

[7] G. Jacques-Silva, Z. Kalbarczyk, B. Gedik, H. Andrade, K.-L. Wu,
and R. K. Iyer, “Modeling stream processing applications for
dependability evaluation,” in DSN ’11. IEEE, 2011, pp. 430–441.

[8] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas,
“Operator scheduling in data stream systems,” VLDB, vol. 13,
no. 4, pp. 333–353, 2004.

[9] S. Schneider, M. Hirzel, and B. Gedik, “Tutorial: stream processing
optimizations,” in DEBS ’13. ACM, 2013, pp. 249–258.

[10] Apache, “Storm,” http://storm.apache.org, 2011.
[11] Apache, “Flink,” https://flink.apache.org/, 2015.
[12] N. Rivetti, E. Anceaume, Y. Busnel, L. Querzoni, and B. Sericola,

“Online scheduling for shuffle grouping in distributed stream
processing systems,” in Proceedings of the ACM/IFIP/USENIX Mid-
dleware Conference, 2016.

[13] N. Rivetti, L. Querzoni, E. Anceaume, Y. Busnel, and B. Sericola,
“Efficient key grouping for near-optimal load balancing in stream
processing systems,” in Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems (DEBS), June 2015.
[Online]. Available: http://www.dis.uniroma1.it/∼midlab

[14] M. A. U. Nasir, G. D. F. Morales, D. Garcı́a-Soriano, N. Kourtellis,
and M. Serafini, “The power of both choices: Practical load balanc-
ing for distributed stream processing engines,” in Data Engineering
(ICDE), 2015 IEEE 31st International Conference on. IEEE, 2015, pp.
137–148.

[15] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial
neural networks: The state of the art,” International journal of
forecasting, vol. 14, no. 1, pp. 35–62, 1998.

[16] Apache, “Derby DB,” https://db.apache.org/derby/, 2004.
[17] Heaton Research, “Encog Machine Learning Framework,”

http://www.heatonresearch.com/encog/, 2013.
[18] JBoss, “Hornetq,” http://hornetq.jboss.org/, 2009.
[19] N. Marz, “Twitter Rolling Top-K Words Storm Topology,”

https://storm.apache.org/javadoc/apidocs/storm/starter/,
2013.

[20] M. Illecker, “SentiStorm,” https://github.com/millecker/senti-
storm, 2015.

[21] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[22] M. Riedmiller and H. Braun, “A direct adaptive method for
faster backpropagation learning: The rprop algorithm,” in Neural
Networks. IEEE, 1993, pp. 586–591.

[23] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Piet-
zuch, “Integrating scale out and fault tolerance in stream process-
ing using operator state management,” in SIGMOD ’13. ACM,
2013, pp. 725–736.

[24] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environ-
ments,” Journal of Grid Computing, vol. 12, no. 4, 2014.

[25] N. R. Herbst, S. Kounev, and R. H. Reussner, “Elasticity in cloud
computing: What it is, and what it is not.” in ICAC ’13. ACM,
2013, pp. 23–27.

[26] E. Zeitler and T. Risch, “Massive scale-out of expensive continuous
queries.” PVLDB, vol. 4, no. 11, pp. 1181–1188, 2011.

[27] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez, “Streamcloud: An elastic and scalable data streaming
system,” in Transaction on Parallel Distributed System, vol. 23, no. 12.
IEEE, 2012, pp. 2351–2365.

[28] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-
aware elastic scaling for distributed data stream processing sys-
tems,” in DEBS ’14. ACM, 2014, pp. 13–22.

[29] A. Ishii and T. Suzumura, “Elastic stream computing with clouds,”
in CLOUD ’11. IEEE, 2011, pp. 195–202.

[30] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online schedul-
ing in storm,” in Proceedings of the 7th ACM International Conference
on Distributed Event-based Systems, ser. DEBS ’13. ACM, 2013, pp.
207–218.

[31] L. Aniello, S. Bonomi, F. Lombardi, A. Zelli, and R. Baldoni,
“An architecture for automatic scaling of replicated services,” in
NETYS ’14. Springer, 2014, pp. 122–137.

Federico Lombardi is a PhD student at
Sapienza University of Rome working at the Re-
search Center of Cyber Intelligence and Infor-
mation Security, Department of Computer, Con-
trol, and Management Engineering ”Antonio Ru-
berti”. He obtained the Master of Science in
Engineering in Computer Science in the same
institution with a thesis about an architecture
for automatic scaling replicated services. His re-
search mainly copes with scalability and elastic-
ity problems of distributed and cloud services,

distributed storage and stream processing systems. He also works on
security topics such as failure prediction, fault detection, data integrity
and blockchain.

Leonardo Aniello is a Research Fellow at
the Research Center of Cyber Intelligence and
Information Security, Department of Computer
and System Sciences ”Antonio Ruberti”, ”La
Sapienza” University of Rome. He obtained a
Ph.D. in Engineering in Computer Science from
the same institution. His research studies in-
clude several topics in the fields of Big Data
in large-scale environments, distributed storages
and distributed computation techniques, with fo-
cus on the aspects of cyber security (malware

analysis, intrusion prevention/detection, anonymization, privacy), in-
tegrity (blockchain-based storage), fault-tolerance, scalability and perfor-
mance. Leonardo is author of more than 20 papers about these topics,
published on international conferences, workshops, journals and books.

Silvia Bonomi is a PhD in Computer Science
at Sapienza University of Rome. She is member
of the Research Center of Cyber Intelligence
and Information Security (CIS) in Sapienza. She
is doing research on various computer science
fields including Byzantine fault-tolerance, dy-
namic distributed systems, Intrusion Detection
Systems and event-based systems. In these
research fields, she published several papers
in peer reviewed scientific forums. She has
been involved in several National and EU-funded

project where she addressed problems related to dependability and
security of complex distributed systems like smart environment or critical
infrastructures.

http://storm.apache.org
https://flink.apache.org/
http://www.dis.uniroma1.it/~midlab

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2017 15

Leonardo Querzoni is assistant professor at
Sapienza University of Rome. His research in-
terests range from distributed systems to com-
puter security and focus, in particular, on topics
that include distributed stream processing, de-
pendability and security in distributed systems,
large scale and dynamic distributed systems,
publish/subscribe middleware services. He regu-
larly serves in the technical program committees
of conferences in the field of dependability and
event-based systems like DSN and ACM DEBS.

He was general chair for the 2014 edition of the OPODIS conference and
has been appointed as PhD Symposium co-chair for the 2017 edition of
the ACM DEBS conference.

	Introduction
	System Model and Problem Statement
	ELYSIUM
	Symbiotic Scaling Strategy
	Architecture

	ELYSIUM Implementation in Storm
	Experimental Evaluation
	Environment and Deployment
	ELYSIUM Evaluation

	Related Work
	Conclusion
	References
	Biographies
	Federico Lombardi
	Leonardo Aniello
	Silvia Bonomi
	Leonardo Querzoni

