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Abstract—Transient stability simulation of a large-scale and interconnected electric power system involves solving a large set 
of differential algebraic equations (DAEs) at every simulation time-step. With the ever-growing size and complexity of power 
grids, dynamic simulation becomes more time-consuming and computationally difficult using conventional sequential simulation 
techniques. To cope with this challenge, this paper aims to develop a fully distributed approach intended for implementation on 
High Performance Computer (HPC) clusters. A novel, relaxation-based domain decomposition algorithm known as Parallel-
General-Norton with Multiple-port Equivalent (PGNME) is proposed as the core technique of a two-stage decomposition 
approach to divide the overall dynamic simulation problem into a set of subproblems that can be solved concurrently to exploit 
parallelism and scalability. While the convergence property has traditionally been a concern for relaxation-based decomposition, 
an estimation mechanism based on multiple-port network equivalent is adopted as the preconditioner to enhance the 
convergence of the proposed algorithm. The proposed algorithm is illustrated using rigorous mathematics and validated both in 
terms of speed-up and capability. Moreover, a complexity analysis is performed to support the observation that PGNME scales 
well when the size of the subproblems are sufficiently large. 

Index Terms— high-performance computing, parallel simulation, power system, dynamic simulation 

——————————      —————————— 

1 INTRODUCTION
YNAMIC simulation has always been an essential tool 
to study and evaluate power systems [1], [2]. As de-

sign, planning, analysis and operation of a large and com-
plex interconnected power system would inevitably in-
volve the evaluation, understanding and prediction of the 
dynamic behaviors of the system under a wide range of 
scenarios, computational simulation provides an effective 
and essential tool to facilitate this requirement throughout 
the whole design process.  

One of the major challenges for power system dynamic 
simulation is on the scale and complexity of the current 
and future power grid. As the backbone of the power sys-
tem, electric grids all over the world are undergoing fun-
damental revolutions. Take the US power grid for exam-
ple, according to the U.S. Department of Energy, a national 
electricity backbone will be built to link the east and west 
coasts, as well as Canada and Mexico by year 2030 to give 
customers “continental” access to energy supplies [3], [4]. 
As part of this envisioned national grid, according to Oak 
Ridge National Lab’s estimation, the Eastern Interconnec-
tion model (EI) at year 2030 will be expanded to include 
over 70,000 buses and 8,000 generators, compared with the 
current EI model which only contains 16,000 buses and 
3,000 generators. It is evident that the power system of the 

future will be a much larger interconnected system on a 
scale that has never been encountered before. This, com-
bined with the wide deployment of smart-grid technolo-
gies, such as mini- and micro-grids and distributed energy 
technologies, has added significant complexity to the al-
ready sophisticated structure of the interconnected power 
grid. There is a growing realization that contribution from 
the computer industry will directly affect and influence the 
shape of the next-generation power grid. 

However, as pointed out in [3-5], the application of ad-
vanced computing techniques in power and energy indus-
try has significantly lagged behind other industries. Leg-
acy codes and algorithms written back in the 80’s based on 
single-process and serial operation are still dominating in 
the current power system analysis tools. To fully cope with 
the scale and complexity of the problem and adequately 
capture the sophisticated dynamic interactions and inter-
dependencies, new power system simulation techniques 
need to be developed to accommodate the accelerated 
growth of the size, complexity and heterogeneity of the 
problem and provide improved computational efficiency, 
accuracy, capacity, and scalability. Meeting this challenge 
requires both the introduction of parallelism in algorithm 
design and the advanced computing platforms such as 
High Performance Computing (HPC) cluster [5-7].  

While the multi-core, parallel computing hardware pro-
vide the necessary computational capabilities, parallel pro-
cessing adds the dimension of concurrency and brings ben-
efits such as speed-up, capability and scalability. To 
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achieve parallelism, a natural approach to undertake is 
through Domain Decomposition Methods (DDM) [8]. In 
the context of power system dynamic simulation, DDM 
generally refers to a class of techniques that decompose the 
original problem defined over a domain into smaller “sub-
problems” on overlapping or non-overlapping subdomains 
and coordinate the solution among subproblems to yield 
the equivalent solution of the original problem.  

This manuscript proposes a novel relaxation-based de-
composition technique named Parallel-General-Norton 
with Multiple-port Equivalent (PGNME) to facilitate the 
distributed dynamic simulation and analysis for large-
scale and very large-scale power systems on HPC plat-
forms. The design algorithm of PGNME can be seen as a 
combination of two techniques: a Jacobi-like Parallel Up-
dating Relaxation (PUR) process and a novel ME based 
Spectral Radius Reduction (SRR) technique. While the 
PUR algorithm is introduced to reconcile the solutions of 
subproblems until reaching a global convergence, in this 
paper, we particularly focus on demonstrating that 
through the analytical modeling of the convergence prop-
erties of PUR, an effective and scalable SRR method can be 
derived as the preconditioning mechanism to tune the con-
figurations of PUR in order to achieve significantly en-
hanced global convergence. We will start by illustrating 
the formulation of PGNME method for a general multiple-
subgraph, multiple-port system, followed by demonstrat-
ing PGNME on an intuitive single-port system containing 
two-subgraphs and a more complicated example system 
with 3 subgraphs and a total of 6 ports. 

The main contribution of this paper can be summarized 
as the following aspects: 
• System size and degree of parallelism: While previ-

ous work [6-7], [9], [11-27] (please refer to Section 2.1 
for a comprehensive literature review) have been suc-
cessful in achieving parallelism for power system dy-
namic simulation, they are designed for and validated 
based on smaller scale problems, and thus generally 
limited to relatively lower degree of concurrency in 
the range of 4- to 20-way parallelism for system size in 
the order of 10000 buses. In this manuscript, we realize 
that the electric grid is undergoing a fundamental 
change. The size and complexity of the future power 
grid is envisioned to reach a scale not witnessed since 
its creation and far beyond the scopes of existing stud-
ies presented in the literature. Therefore, our research 
effort was dedicated to exploring the capabilities and 
limitations of simulating truly large-scale and ultra-
large-scale power systems on the scale of one million 
buses. Although power transmission systems of this 
scale do not exist yet, when the distribution system 
and portions of the load “beyond the meter” are in-
cluded, the scale is at least this size. The research effort 
reported here is valuable for understanding and eval-
uating the bottlenecks of the DDMs when the size and 
complexity of the problem become critical.  

• Improved convergence: In the context of large-scale 
power system dynamic simulation, the existing relax-
ation-based decomposition methods have been criti-
cized for the sensitivity to partitioning schemes and 
lack of control over convergence especially when the 
couplings between subproblems are strong. Most of 

the literature addresses this issue by solely relying on 
the utilization of effective/customized graph parti-
tioning techniques [16], [23] [28-29]. However, the fea-
sibility and effectiveness of this approach when ap-
plied to a large-scale problem is in doubt.  In this pa-
per, a novel design feature of the proposed algorithm 
is to formulate the iterative parallel solution process of 
the power system network into a rigorously defined 
analytical model. Then by exploiting the structural 
properties of this model, the convergence of the pro-
cess can be controlled. Simulation results indicate that 
this feature effectively addresses the issue of slow and 
uncontrollable convergence.  

• Hardware implementation: Most existing parallel al-
gorithms and simulation routines developed in the 
state-of-the-art power system simulator are targeting 
shared-memory parallel computing architectures and 
small/medium size distributed-memory clusters. In-
stead, in this manuscript, realizing the scale and com-
plexity of emerging problems, the proposed algo-
rithm aims to leverage the massive computational ca-
pacity offered by the latest HPC infrastructures and 
software programming models. By developing, test-
ing and validating the performance of the proposed 
algorithm on a 110-node, 2200- modern HPC cluster, 
it is demonstrated for the first time that massive 
power system dynamic simulation is feasible. In [30], 
it is also demonstrated that faster-than-real-time per-
formance can be obtained using the proposed algo-
rithm with the smallest time step on the largest sys-
tem model as compared to existing literature using 
similar modeling strategies. 

• Scalability: A thorough complexity analysis has been 
performed to assure the performance of PGNME to 
solve a truly large-scale problem on a large machine 
configuration. It has been demonstrated analytically 
that the proposed algorithm scales well with the 
number of processors and the size of the system un-
der study. 

The paper is organized as follows: in Section 2, general 
backgrounds of the research work presented in this paper 
is briefly reviewed. In Section 3, the general derivations of 
PGNME algorithm are explained. In Section 4, PGNME is 
applied to two test systems to illustrate the detailed formu-
lation of PGNME. In Section 5, the implementation of 
PGNME on HPC cluster is presented while the simulation 
results obtained from two case studies are reported. The 
conclusion of this paper is drawn in Section 6. 

2 BACKGROUND 
Power system dynamic phenomena are highly compli-

cated and can range from microseconds to days, therefore 
different categories of modeling and simulation techniques 
exist to efficiently and adequately capture the system be-
haviors over different frequency ranges [1]. In this paper, 
we limit our scope to the category of Transient Stability 
(TS) simulation which focuses on evaluating system re-
sponse to large and sudden disturbances to assure secure 
and stable operation of the power system. As the goal of 



 

 

TS simulation is to effectively capture the low frequency 
electromechanical dynamic phenomenon assuming single-
phase fundamental frequency behavior of the transmission 
network, it is arguably the most suitable approach to study 
a large, interconnected power network. To set the stage for 
the rest of the paper, the general background of large-scale 
TS simulation, the most-recent DDM techniques that have 
been adopted in parallel dynamic TS simulation, as well as 
the two-level decomposition hierarchy adopted in this 
work is briefly overviewed in this section.  

2.1 Related work 
 In the context of parallel power system TS simulation, 

there are generally two separate approaches existing in 
DDM [6], [7], [9], [11-27]: fine-grained and coarse-grained. 
A summary of the most-recent DDM for power system TS 
simulation can be found in Table. 1. However, Table 1 
should not be construed as exhaustive of all applicable lit-
erature, and specifically does not intend to preclude the 
use of other domain decomposition methods well known 
to the field of computational fluid dynamics (CFD) in the 
area of unstructured grids, which may be attractive. 

In the fine-grained approach [6], [7], [11-14], the paral-
lelism is mainly obtained through matrix/vector reduction 
techniques to exploit the structural properties (such as 
sparsity and repetition) of the linear power system net-
work matrices and make it suitable for parallel implemen-
tation. On the other hand, the coarse-grained approach [9], 
[16-18], [20-27] is applied directly to the system of equa-
tions. Compared with fine-grained methods, coarse-
grained methods have manifested various advantages, 
such as: the parallelism is not limited by the block structure 
of the system, localized information for the subproblems is 
kept, subproblems can be solved using locally adapted 
simulation settings, etc. [10]. While coarse-grained paral-
lelism can be further exploited from different perspectives 
such as spatial parallelism [9], [17-18], [23-24] , time paral-

lelism and spatial-time parallelism (e.g. waveform relaxa-
tion) [16], [20-21], [25-27], in this paper, we mainly focus on 
the spatial parallelism (parallel-in-space) which incorpo-
rates a partitioning scheme to first decouple the original 
problem into various pieces then solve each of the parti-
tioned subproblems in parallel at a given time instant. 

The construction of a DD algorithm involves essentially 
three steps [8-10]. First of all, an appropriate partition 
scheme is adopted to divide the original problem into sub-
problems that can be solved concurrently. Secondly, the in-
terdependencies between each subproblem need to be 
specified, formulated in the form of “interface variables”, 
and solved along with the “interior variables” which are 
coupled only through local equations of a subproblem. In 
the third step, all the subproblems need to be reconciled 
through the interface variables to derive a coordinated, 
converged global solution. Based on the way the interface 
variables are computed, spatial DD techniques can be clas-
sified into two main approaches: Schur-complement 
method [9], [17], [18], [24] and Schwartz alternating 
method [23]. 

In Schur-complement method, a reduced system model 
needs to be formulated to specifically calculate the inter-
face variables. The subproblems then become naturally de-
coupled. Therefore, it is considered a “direct” method.  

On the other hand, Schwarz alternating method “re-
laxes” the interface variables during the subproblem solu-
tion [10], [23]. Once the associated subproblems are solved, 
the interface variables are updated and this process is iter-
ated until a global convergence is achieved. Schwarz alter-
nating method is more attractive due to the fact that no ad-
ditional reduced system needs to be formulated and calcu-
lated, thus the overall solution is completely parallelizable. 
The main drawback of Schwarz alternating method is the 
convergence properties as excessive number of iterations 
may diminish its merits. However, in the following discus-
sion, we will focus on demonstrating that while PGNME is 

 
TABLE 1. A summary of the most-recent representative DDMs for power system TS simulation 

 

Author Year 
Network Size 
(# of buses) 

DD Methodology Targeted Platform 

Jalili-Marandi et al. 
[14][15] [20][21] 

2009[20][21], 
2010[14], 
2012[15], 

39 [20][21][14], 
9984 [15] 

Fine-Grained LU [14] 
Fine-Grained LU + Coarse-Grained IR [15] 

Coarse-Grained Instantaneous 
Relaxation (IR) [20][21] 

Distributed memory PC [20][21] 
GPGPU [14][15] 

Huang et al. 
[11][12][13] 

2013[11], 
2017[12], 
2017[13] 

16072 [11], 
17000 [12], 
16072 [13] 

Fine-Grained 
Woodbury/LU [11] 

Fine-Grained LU [12][13] 

Shared memory HPC [11] 
Distributed memory HPC [12] 

Distributed/Shared memory HPC [13] 

Flueck et al. [22][23] 
2012[22], 
2012[23] 

7935 [22], 2383 
[23] 

Fine-Grained 
VDHN/LU [22] 
Coarse-Grained 

BJP + GMRES [23] 

Distributed Memory HPC [22] 
Shared Memory HPC [23] 

Aristdou et al. [9][24] 
2014[9], 
2016[24] 

2565 [24] 
15226 [9] 

Coarse-Grained Schur-complement [9][24] Share memory laptop/HPC [9][24] 

Marti et al. [17][18] 
2009[17], 
2013[18] 

15000 [17], 
14327 [18] 

Coarse-Grained Schur-complement [17][18] 
Dedicated PCI cards and shared 

memory hub [17][18] 
Pruvost et al. [25] 2011 15350  Coarse-Grained WR/Epsilon decomposition Shared memory HPC 

Liu et al. [16] 2016 12685  Coarse-Grained WR/Adomian decomposition Shared memory HPC 

Shi et al. 2017 258066  
Coarse-Grained 

Schwartz/PGNME preconditioning 
Distributed memory HPC 

 



 

 

developed based on the concept of Schwarz alternating 
method, the convergence enhancement featured in 
PGNME preconditioning allows it to fully exploit the ad-
vantages of Schwarz domain decomposition. 

 

2.2 Problem formulation 
In the scope of TS simulation, the simulation of power 

system dynamics is performed by solving a large differen-
tial-algebraic initial value problem in the time-domain that 
can be represented by a set of first-order differential equa-
tions [1] in the form of: 

                              
( , , ), :

( ) ,

n m n

n
0

t

t

+= →

= ∈0 0

x f x y f

x x x

  


 (1-a) 

and an algebraic equation set of:  
                              ( , , ); : n m mt += →0 g x y g    (1-b) 
where n∈x   denotes the vector of differential state varia-
bles, m∈y   denotes the vector of algebraic state variables, 
t denotes the time instant, and 0x  denotes the values of the 
vector x  at the initial time instant t0.       

2.3 A two-stage decomposition structure 
Under the common assumption that every component 

in the power system is coupled to the other components 
only through the network and the network is in the sinus-
oidal steady state within the bandwidth of interest, Eq. (1-
a) and Eq. (1-b) can be further divided and rearranged into 
two sub-sets: 
                                 ( , , , )C C C C N t=x f x y y  (2-a) 
                                     0 ( , , , )C C C N t= g x y y  (2-b) 
and 
                                  0 ( , , )N C N t= g y y  (3) 

Once these two sub-sets of equations are constructed, 
the Alternating Solution Method (ASM) [2] which solves 
Eq. (2) and Eq. (3) alternately can be utilized to facilitate 
the proper separation and parallel simulation of dynamic 
components and the linear network. Sub-set Eq. (2) is a col-
lection of independent, decoupled sub-sets corresponding 
to each generator and load. It includes all the differential 
and algebraic equations that describe the synchronous ma-
chines, their control devices such as excitation controls and 
turbine governors, and load dynamics. To solve Eq. (2), the 
sub-set of differential equations as defined in Eq. 2 (a) is 
firstly discretized using a specific numerical integration 
method. Then, the resulted algebraic equations are com-
bined with the sub-set of algebraic equations as defined in 
Eq. 2(b). This combined set of algebraic equations (usually 
non-linear) can then be solved using a specific non-linear 
algebraic solver. The solution to this stage is in the form of 
current injections at the buses where the dynamic compo-
nents are attached. Therefore, once Eq. (2) is solved, the 
vector of current injection at each bus, namely, I , can be 
determined. This is considered the first stage of decompo-
sition. 

Following stage 1, the vector of current injection I  will 
be fed into sub-set Eq. (3), which is the nodal network 
equation that can be represented using linear, sparse ad-
mittance matrix equations in the form of 1−=V Y I  where 
Y represents the n n×  nodal admittance matrix, V denotes 

the vector of voltages at each bus. Essentially, the purpose 
of this stage is to solve a large-scale linear and sparse ma-
trix equation. 

Using this decomposition strategy, sub-set Eq. (2) is 
completely separable and the overall system is coupled 
only through sub-set Eq. (3). It is apparent that stage 1 is 
component-wise independent and easily parallelizable 
(each dynamic component has their own individual subset 
of Eq. 2(a) and Eq. 2(b)). The most challenging problem for 
decomposing the solution of transient simulation when the 
scale of the electrical network is very large lies in the 
proper decomposition of the linear passive network Eq. 3 
that needs to be solved in Stage 2. Therefore, in this paper, 
we focus on addressing this issue by developing a self-con-
sistent parallel simulation solution known as PGNME to 
tackle the most significant obstacle and bottleneck in par-
allelizing the dynamic simulations by decomposing Eq. (3) 
into subgraphs that can be solved together with their asso-
ciated dynamic components in parallel. Although PGNME 
is intended to work as a part of the self-consistent solution 
of all equations as shown in Fig. 1 (a), in this manuscript 
our focus is on deriving and demonstrating PGNME as a 
linear network decomposition technique for solving the 
computationally intensive part of the problem, which are 
the power network equations. An application of PGNME 
as part of a full transient stability simulation is published 
in [30]. Therefore, for the rest of the discussion, a simplified 
computation paradigm shown in Fig. 1 (b) is adopted 
where the computation of stage 1 was replaced by pre-
computed data that simulates the solution of Eq. (2-a) and 
Eq. (2-b). However, in [30], the complete simulation rou-
tine shown in Fig. 1(a) was tested and very satisfactory re-
sults were obtained. 

2.4 Solving the Algebraic Equations by Iterative 
Relaxation 

Generally, a linear (either real or complex) system can 
be represented in the form of: 
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Fig. 1. A standard ASM solution procedure is shown in (a) while the 
simplified alternating solution considered in this manuscript is shown 
in (b) 

  



 

 

                                           AX = b  (4) 
where A is nonsingular and b is a constant vector. If A is 
nonsingular, then Eq. (4) can be iteratively solved with the 
linear stationary method using a parallel updating strategy 
[10]. Fig. 2 illustrates a graph-based decomposition of a 
system represented in Eq. (4). The graph consists of verti-
ces where state-variables of the potential type are defined, 
connected by edges where state-variables of the flux type 
are defined. The solution to Eq. (4) represents a self-con-
sistent balance between the fluxes on the edges and the po-
tentials at the vertices that cause flux to circulate. The par-
allel decomposition into subproblems involves cutting se-
lect edges in the larger graph in order to form subgraphs 
isolated from all other subgraphs. The problem of the 
solver is to reconcile cut-edge flux linkages to be equal as 
they would be in the original graph by using the subprob-
lem solvers to compute the reduced order equations in the 
form of Eq. (4). This of course requires specification of 
boundary conditions at all cut edges to close the set of 
equations. The method of the “boundary bus” will be de-
scribed in the next section to accomplish this. For now, it is 
adequate to recognize the bifurcation of the edge flux var-
iables into 2n in number, where n is the number of edges 
cut. A numbering scheme is suggested in Fig. 2 where at 
the j-th cut edge, one of these variables is X2j-1, while the 
other is X2j.  The objective of the solver is to relax the dif-
ference between all pairs of these cut edge flux variables 
through a finite number of iterations until all 2n variables 
converge, i.e., such that for all j, X2j-1= X2j within the toler-
ance for convergence. Since the set of equations for each 
subgraph are solved at every iteration count i, then as the 
cut-edge variables converge all the state variables con-
verge with them.  

Forming all cut-edge variables into a column vector X at 
every relaxation iteration l leads to an iteration equation of 
the first degree in the form of: 

                                    1 ll+ = +X WX G  (5) 
where X denotes the vector of cut-edge state variables that 
are updated iteratively, G is a constant vector, and W de-
notes the iteration matrix. X is a column vector of length 
2n, W is a 2n × 2n square matrix. Examples of deriving W 
and exploiting its structure to enhance the convergence of 
Eq. (5) will be covered in the following section. 

It is obvious from the state flow diagram shown in Fig. 
2 that a cut-edge state variable does not update itself until 
the second iteration interval is complete. Thus, W has the 
peculiar property of zeros on the main diagonal, which is 
a feature of the parallel procedure used. 

The iteration matrix W directly affects the iterative pro-
cess. Theorem 4.1 from [10] indicates that if W is a square 
matrix such that the spectral radius ρ(W) <1, then the iter-
ation process Eq. (5) converges for any G and X0. Meaning 
that for any iterative function and any initial condition the 
process will converge if ρ(W) <1 . Within this definition, 
ρ(W) is a scalar regardless if W is real or complex in the 
form of: 
                           ( ) 1 2max( , ,... )nρ λ λ λ=W  (6) 
where 1λ ,.. nλ  denotes the eigenvalues of the matrix W. 
More specifically, Equation (2-2.8) and (2-2.10) from [10] 
have defined that if ρ(W)<1, then the average rate of con-
vergence can be approximated [10] in the form of: 
                             ( )( )( ) logR ρ∞ = −W W  (7) 

This indicates that the closer ρ(W) gets to zero, the faster 
convergence can be achieved. Especially when ρ(W) ap-
proaches 0, the convergence rate becomes infinite which 
indicates an ideally “instantaneous” convergence (i.e. 1 it-
eration).  

It will be shown in section 4.1 that for a two-subgraph 
partition, by formulating the explicit analytical derivation 
of W and performing a “boundary bus” preconditioning 
step, the spectral radius can be set ideally to zero. This pro-
cess is named Parallel General Norton (PGN). However, 
PGN itself is not scalable beyond two partitions, making 
this preconditioning step unusable for large-scale high-
performance cluster computing. The purpose of this paper 
is to introduce an important extension of PGN: PGNME, 
which will greatly extend the method of [35] and [36] to an 
arbitrary number of partitions. The demonstration of the 
scalability of PGNME will include the conditions under 
which small spectral radius, and thus minimal relaxation 
iterations and maximum parallel computing gain, can be 
forced by a set of preconditioning tests on an arbitrary par-
tition.  

In the following section, it is shown that a decomposed 
linear power system network can be solved in parallel with 
rapid convergence by manipulating the spectral radius 
ρ(W) through proper selection of boundary admittance 
values by the PGNME process. 

3 ALGORITHM DEVELOPMENT 
In this section, the derivation of the complete algorithm 

of PGNME is demonstrated.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.  Illustration of the decomposition of the graph representing (12) into subgraphs formed by cutting n edges in the original graph. At every 
jth cut edge two variables are formed, X2j-1 and X2j, where only one edge state-variable existed before. 

 



 

 

3.1 Boundary bus definition  
To illustrate the PGNME algorithm, we will start by ex-

plaining the graph representation of the power system net-
work and how the interface variables are defined in this 
paper to decouple a network.  

As a geographically distributed system, a power system 
network can be conveniently represented as an intercon-
nected graph. Each bus is treated as a node, and each 
branch is treated as an edge. Based on a given graph parti-
tioning algorithm, appropriate edge cuts can be made, and 
then the original graph is decomposed into various sub-
graphs. Throughout this paper, these subgraphs are re-
ferred as “subsystems”. Then the cut edges between the 
subsystems can be represented by units named “boundary 
buses”. Boundary buses act as the interface to complete 
each subsystem and represent the effects of external sys-
tem states on the boundary conditions of a specific subsys-
tem. Since boundary buses are introduced to represent lin-
ear subgraphs, they can be simply represented by their 
Norton equivalent forms, consisting of a controlled current 
source, namely, a boundary state variable (denoted by S) in 
parallel with a boundary admittance (denoted by G). It also 
can be defined that each boundary bus is connected 
through a “port” to its attached subsystem. After terminat-
ing each cut edge with a boundary bus, a complete “sub-
problem” can be obtained. A subproblem can also be re-
ferred to as a partition. It is expected that boundary buses 
can reconcile with their associated subgraphs in a coordi-
nated way to ensure the interface conditions between sub-
problems are satisfied, and thus to guarantee the validity 
of the solution.    

As an example, as shown in Fig. 3 (a), we consider a gen-
eral system that is decomposed into various subsystems. It 
is assumed that within the many subsystems, subsystem X 
is connected to subsystem Y through an edge yXY which 
now becomes a cut edge. If we denote the ports resulting 
from cut edge yXY port j ( [1, ]j n∈ ) for subsystem X and 
port k ( [1, ]k m∈ ) for subsystem Y, the representation of the 
boundary bus j and k is shown in Fig. 3 (b). Assume that 
subsystem X has a total of n edges connected to it that are 
cut and subsystem Y has a total of m edges connected to it 
that are cut. Based on the previous boundary bus defini-
tion, subsystem X can be considered an n-port system and 
similarly subsystem Y can be considered an m-port system.   

3.2 PUR method 
In this subsection, the general concept of the Parallel 

Updating Relaxation (PUR) strategy is explained.  
Without losing generality, consider subsystem X as an 

example. Since each subgraph resulting from the graph-
based partitioning can be considered a linear passive net-
work, simulating subsystem X requires solving the follow-
ing network equation: 

                                      1
sub sub sub

−=V Y I  (8) 
where Isub and Vsub denote the node current and voltage 
within subsystem X respectively, Ysub denotes the nodal 
admittance matrix. After the boundary buses are added, 
under the assumption that the boundary bus voltage is de-
noted as Vdxj ( [1,n]j∈ ) and the boundary bus current in-
jection is denoted as Sxj, then the expanded nodal admit-
tance matrix can be defined in the form of:  
                                  1

mod mod mod
−=V Y I  (9) 

where Vmod= [𝐕𝐕subT  Vdx1 Vdx2 … Vdxn]T, Imod= [𝐈𝐈subT  Sx1 Sx2 … 
Sxn]T, and the expanded admittance matrix with boundary 
buses included is denoted as Ymod. 

Particularly, at the port j of subproblem X, based on the 
fundamental Kirchhoff’s Current and Voltage Laws (KCL 
and KVL), a set of algebraic equations governing the inter-
actions of subsystem X and boundary bus j can be derived 
in the form of: 
                                    1 0dxj xj xj xyV V I y−− − =  (10-a) 

                                    xj dxj xj xjG V S I= −   (10-b) 

As the equivalent representation of subproblem Y is 
symmetric to subproblem X, the same form of equations as 
used in Eq. (10) work for subproblem Y as well. In order 
for boundary bus k/boundary bus j to reproduce the sub-
system Y/subsystem X accordingly, the constraints that 
link subproblem X to subproblem Y include the current 
flowing through the admittance of the cut branch yxy and 
the terminal voltage at the ports Vxj and Vyk. Based on the 
aforementioned discussion on iterative methods, these two 
constraints can be relaxed and expressed in the Jacobi-like 
iterative form of: 

                                    
( ) ( )
( ) ( )

1

1
dxj

xj yk

ykV l V

I l

l

lI

 +

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 (11-a) 

                                    
( ) ( )
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I l
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 +

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 (11-b) 

where l is the iteration index. Based on Eq. (11), the corre-
sponding parallel updating strategy for the controllable 
boundary state variable Sxj and Syk can be obtained as: 

( ) ( ) ( ) ( ) ( )1 1 1dxj xj yk yxj xj xj kS l G V l I G I ll V l+ = + + + = −   

 (12-a) 
( ) ( ) ( ) ( ) ( )1 1 1dyk yk xj xyk yk yk jS l G V l I G I ll V l+ = + + + = −   

 (12-b) 
This updating routine is repeated every relaxation iter-

ation until the convergence criteria is met. In this case, the 
mismatch between the port currents is chosen as the con-
vergence criteria in the form of: 
                               ( ) ( )xj ykI l I l σ+ ≤  (13) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.  Boundary bus creation and reconciliation 
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Subproblem Y: 



 

 

where σ is the convergence threshold. For all simulation 
results shown in section 5, σ =1×10-6 is used.  

Therefore, beginning in the l-th relaxation iteration, the 
reconciliation process for each subproblem using the PUR 
technique can be summarized as follows: 

Step.1: Apply Sx1(l), Sx2(l)… Sxn(l) at each boundary bus 
of subproblem X and Sy1(l), Sy2(l),… Sym(l) at each boundary 
bus of subproblem Y respectively.  

Step.2: Solve Eq. (9) to obtain the boundary bus voltages 
Vdx1(l), Vdx2(l), …. Vdxn(l) and all the port voltages Vxj(l) 
(j=1,2…n) and then Eq. (11-a) for currents Ixj(l) for subprob-
lem X. The same procedure can be performed on subprob-
lem Y to derive the port voltage Vyk(l) and current Iyk(l) 
(k=1,2…m) for each port using Eq. (11-b).   

Step.3: Update Sxj(l+1) (j=1,2…n) based on Eq. (12-a) for 
subproblem X and update Syk(l+1) (k=1,2…m) based on Eq. 
(12-b) for subproblem Y.  

Step.4: Check convergence criteria described by Eq. (13) 
for each port between subsystem X and Y as well as the 
iteration number limit, if the constraints for all the ports 
are satisfied, then the parallel updating process ends; if not 
satisfied, l=l+1 and PUR repeats at Step 1. 

Note that while the PUR steps are defined and ex-
plained in the context of subproblem X and Y, the same 
reconciliation procedure applies to all the boundary buses 
across the ensemble of subproblems. At each relaxation it-
eration, all of the subsystems are solved and then recon-
ciled in a simultaneous manner until a global convergence, 
which takes account of the boundary conditions of all the 
subproblems, is satisfied. 

Now we have developed the reconciliation strategy for 
the basic PUR method. However, as mentioned in the pre-
vious section, a critical issue that affects the performance 
of this process is the convergence rate.  

A common way that has been suggested in the literature 
lies in the network partitioning algorithm. It is recom-
mended that by exploiting the inherent topological struc-
ture and unique properties of the power grid (such as stiff-
ness, coherency of machines, localized phenomena), sub-
problems that have strong self-similarities and weak inter-
connections to other subproblems can be effectively iden-
tified. This approach lacks three critical aspects: 1) the sup-
port of rigorous mathematics to understand and analyze 
the underlying relationship between system characteristics 
and convergence properties to design an “optimal” itera-
tive process; 2) robustness when the complexity of the 
problem grows with the size of the network; 3) when 
global partitioning across ownership boundaries is not an 
available option due to reasons such as privacy and secu-
rity. In the following discussion, we shall focus on demon-
strating a spectral radius reduction mechanism that ex-
ploits the analytical convergence properties of the pro-
posed PUR method and the aforementioned convergence 
evaluation techniques to achieve improved convergence 
through preconditioning of the sub-problems rather than 
relying solely on the partitioning strategy. Later, it will be 
concluded that preconditioning can be augmented by par-
titioning optimization to maximize the gain from parallel 
computing. 

3.3 PGNME preconditioning 
Since each subsystem is linear, according to the multi-

port equivalent theory, an equivalent form can be com-
puted for each subsystem in terms of each port. Consider 
an arbitrary subsystem X, the multi-port equivalent of 
which can be defined in the following form: 
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2 2 212 2
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 (14) 

where Ixj denotes the current flowing into port j ( 1,...j n∈  
) , Vxj denotes the voltage at port j, yxj denotes the self-ad-
mittance of port j, hxji ( 1,... ,i n i j∈ ≠   ) indicates the port 
coupling parameters between port i and port j within the 
subsystem X, more specifically, between port current xjI  

at port j and port voltage Vxi at port i, and Dxj denotes the 
effects of active current sources within subsystem X at port 
j. Similarly, other subproblems can be described using 
their multi-port equivalent representations in the form of 
Eq. (14) as well.  

3.3.1 Deriving the row entries of the W matrix 
Eq. (14) suggests that for port j ( 1,...j n∈   ), the follow-

ing representation is valid: 
                                    xj xj xj xjI y V C= +  (15) 

where 
1,

n
xj xi xji xj

i i j
C V h D

= ≠
= +∑ . This indicates that as seen 

at port j, subsystem X can be represented using an equiva-
lent controlled current source Cxj and an equivalent admit-
tance yxj as shown in Fig. 4. Cxj accounts for the effects of 
voltages at the other ports and the active current sources 
within the subsystem. The value of Cxj is directly deter-
mined by the off-diagonal elements of the multi-port 
equivalent matrix hxji, the current voltages at the other 
ports, and a constant Dxj. Meanwhile, the self-dependency 
between the port voltage and port current at port j is rep-
resented using the diagonal element yxj. The multi-port 
equivalent matrix can be obtained through the following 
steps: 

1. Set all port voltages to zero, compute the current at 
each port to determine Dx for each port. 

2. Set the port voltage to zero at all ports but port j; 
3. Apply an arbitrary test voltage Vtest (Vtest = 1 V) at port 

j, solve the subsystem, and compute the current at each 
port. Then the diagonal entries and the off-diagonal entries 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.  The multi-port equivalent representation of subsystem X and Y  

  



 

 

of the multi-port equivalent matrix can be determined. 
This process can be described as: 

               ( )
( )  0

/
xj test xi i j

xj xj xj testV V and V
y I D V

≠= =

 
= −  
 

 (16-a) 

               ( )
( )  0

/
xj test xi i j

xji xi xi testV V and V
h I D V

≠= =
 = − 
 

 (16-b) 

Therefore, by solving subsystem X using Eq. (8) n times 
with the specified boundary conditions, the complete 
multi-port equivalent formulation as shown in Eq. (14) can 
be derived. 

Similarly, the same form of multi-port equivalent repre-
sentation can be derived for subsystem Y. Combining the 
general representation of the boundary bus and the equiv-
alent representation of the subsystem, at port j and port k, 
the equivalent schematic can be derived as shown in Fig. 
5. Instead of using Eq. (9) to calculate the boundary bus 
voltage (which will continue to be used in the actual simu-
lation following the application of the PGNME precondi-
tioning step) the following KCL equation can be derived at 
port j using the multi-port equivalent representation: 
                              0xj xj xj xjC I y V− + − =  (17) 

where the jth row of Eq. (14) (excluding the diagonal entry) 
forms the function Cxj. 

Substitute Eq. (10-b) into Eq. (10-a) to eliminate Vdxj and 
write it in the iterative form: 
           ( )1 1 1( 1) ( 1) ( 1)xy xj xj xj xj xjy G I l G S l V l− − −+ + = + − +  (18) 

Now, substitute Eq. (12-a) into Eq. (18) to eliminate 
Sxj(l+1),  
      ( ) ( ) ( )1 1 1( 1) ( 1)xj xy xj xj yk xj ykV l y G I l V l G I l− − −+ + + + = −  (19) 

This equation when repeated to form closed systems of 
equations that are solved for each boundary bus current is 
the basis for each row of the iteration matrix W. 

To eliminate Vxj and Vyk from both sides of Eq. (19), it is 
recognized that Eq. (14) can be solved for each port voltage 
on either side of the boundary bus and substituted into Eq. 
(19). Applying Cramer's rule to this system allows Vxj(l+1) 
to be solved as:  

                              
det( )

( 1)
det( )

j
xjV l + =

A
A

 (20) 

where A refers to the multi-port equivalent matrix defined 
in Eq. (14). 

Applying the Laplace expansion on the jth column to 
the numerator of Eq. (20) expands it to  

1,

( 1)( 1) det( )
( 1) I ( 1)

det( )

2j nxj jj
xj xi i x
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where 
( 1) det( )

det( )

i j
ij

ia
+−

=
M

A
 and Kx is a constant resulting 

from the active current sources Dx. 
For subsystem Y, a similar procedure is applied to solve 

for Vyk(l) by performing the Laplace expansion on the kth 
column. This results in 
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where 
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, 

and Ky denotes the constant factor resulting from active 
sources in subsystem Y. 

Expanding on the jth and kth columns, respectively, al-
lows the cofactors to depend on self and coupling admit-
tances only. As is shown next, the exclusion of Ix(l+1) and 
Iy(l) terms from the cofactor terms will allow the cofactor 
terms to form the row entries in the W matrix.  

By substituting Eq. (21) and Eq. (22) into Eq. (19), the 
left-hand side of the equation becomes: 

1,

det( )1 1 ( 1) I ( 1)
det( )

njj
xj xi i

i i jxy xj
I l l a

y G = ≠
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 (23-a) 

and the right-hand side of the equation becomes: 
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where K=Ky-Kx. 
Therefore, it is observed that a linearly weighted alge-

braic sum of all port currents of subsystem X updated to 
l+1 is equal to an algebraic sum formed by a single differ-
ence term 

                           
det( ) 1

det( )
kk

k
xjG

 
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 (24) 

multiplying the port k boundary bus current of subsystem 
Y at iteration l and a set of direct terms bi ( i k≠ ) that link to 
the other m-1 boundary bus currents of subsystem Y at it-
eration l.  

The process of expanding Eq. (19) for all ports of sub-
system X results in n independent equations like Eq. (23). 
Cramer’s rule could again be applied to solve for each 
Ixj(l+1), j ∈ [1,…n]; and doing so forms the n row entries of 
the W matrix due to subsystem X. This process can be re-
peated for each subsystem until all row entries in W are 
filled in.  

It is not the purpose of this paper to pursue forming the 
W matrix as a solution method, even though the process 
described in this subsection would enable such an ap-
proach provided that the constant vector G of Eq. (5) were 
derived as well. Instead, this subsection will conclude by 
reciting three basic remarks about what to expect from con-
structing the W matrix for the PUR solution and then the 
following subsection will set the degree of freedom (i.e. 

xjG ) of Eq. (23) to explicitly define the PGNME procedure 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.  The equivalent representation of the system as shown in Fig. 
3 (b) 

  



 

 

and to permit an evaluation of the procedure’s impact on 
the spectral radius. 

Rule 1: Each row of W will contain zeros in every posi-
tion multiplying a port current of the subsystem repre-
sented by the row. This will form a set of square block ma-
trices filled with zero entries along the main diagonal of W. 
Zeros along the diagonal of W are a fundamental property 
of the PUR method. 

Rule 2: Each row of W will contain a difference term sim-
ilar to Eq. (24) in every position multiplying a port current 
that updates the subsystem represented by the row. The 
“updating” port currents belong to the ensemble of sub-
systems directly connected to one or more of the n bound-
ary buses of the subsystem represented by the row. It will 
be shown in section 3.3.2 that these difference terms are 
where PGNME is defined and the benefits accrued, subject 
to limitations imposed by the “residue” which will also be 
defined in section 3.3.2. 

Rule 3: Each row of W will contain a direct term similar 
to bi of Eq. (22) for every bus current that does not update 
(the updating currents are covered by Rule 2) belonging to 
the ensemble of subsystems directly connected to one or 
more of the n boundary buses of the subsystem repre-
sented by the row. This is because every node voltage of a 
subsystem connected to the subsystem represented by the 
row directly influences the bus current being iterated when 
Eq. (9) and Eq. (10) are solved at each iteration step. It will 
be shown that the direct terms can impose additional limi-
tations on the benefits of PGNME. 

3.3.2 Modifying the difference term to define PGNME 
Combining the aforementioned rules on the general 

structure of the iteration matrix for PUR solution, W, and 
its convergence properties discussed in Eq. (5) to Eq. (7) in 
Section 2.4, in the following subsection, we shall focus on 
demonstrating the fundamental concept and derivation of 
PGNME preconditioning and how it can effectively opti-
mize the convergence properties (i.e. reduce the spectral 
radius ρ(W)). 

According to Gershgorin’s Theorem, Theorem 2.1 in 
[23] states that: 

Let A be a complex nxn matrix with entries aij, every ei-
genvalues of matrix A satisfies: 
                       { }, 1,2,...,ii ij

i j
a a i nλ

≠
− ≤ ∈∑  (25) 

Lemma 1. For W, the following derivation is valid: 
                           { }, 1,2,...,ij

i j
a i nλ

≠
≤ ∈∑  (26) 

Proof.  From Rule 1, all entries along the diagonal of it-
eration matrix W are zero, therefore all aii are zero. Thus 
based on Eq. (25), Lemma 1 can be derived.  

Lemma 1 indicates that the upper bound of the spectral 
radius of W can be determined by the sum of the absolute 
values of the non-diagonal entries on the i-th row. This 
leads to the result that if the absolute values of the off-di-
agonal entries can be reduced, the upper bound of the 
spectral radius can also be reduced.  

Based on Rule 2 and Rule 3, the off-diagonal entries of 
W contain broadly two types of entries, difference terms 
(described by Rule 2) and direct terms (described by Rule 
3). In addition, each difference term is in a form similar to 

k∆  of Eq. (24), while each direct term is in the form similar 
to bi of Eq. (22). This suggests that although one may not 
be able to find the precise minimum and maximum eigen-
values for iteration matrix, the estimated boundaries of the 
spectrum may still be obtained by exploring the general 
structures of these two terms. Per Lemma 1, the upper limit 
of ρ(W) can be assessed and tuned to improve the conver-
gence properties of the PUR solution. 

Although the port dependencies within a multi-port 
subsystem can be dependent on various factors and system 
specifications, an estimate that generally holds true is that 
when the resistance distances (as defined in [24], [25]) be-
tween ports become greater, the port dependencies be-
come weaker. In other words, when the size of the system 
is sufficiently large compared to the number of the ports 
within the system, then it becomes naturally likely that the 
port coupling coefficients are small. If this assumption is 
valid, the off-diagonal entries of the multi-port equivalent 
matrices described in Eq. (14) become insignificant; there-
fore, it can be assumed the multi-port equivalent matrices 
are row diagonally dominant in the form of: 
                                       ii ij

j i≠
≥ ∑m m  (27) 

where m  denotes the multi-port equivalent matrices for a 
subsystem. 
Lemma 2. If all the multi-port equivalent matrices within a 
partitioned system are row diagonally dominant, then by 
performing the so-called PGNME preconditioning, the dif-
ference terms within W matrix can be reduced to residues.   

Proof. According to Corollary 2.3 and Theorem 2.6 in 
[34], the determinant of a row diagonally dominate matrix 
can then be approximated by the products of its diagonal 
elements. In other words, for the difference term k∆  of Eq. 
(24), we have 
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where τ and δ are small “errors” incurred in estimating the 
determinants using the product of the entries on the main 
diagonal of each matrix, and the upper bounds of these er-
rors can be calculated using Theorem 2.6 as well. Based on 
Eq. (28) and Eq. (24), the difference term can now be shown 
to be 
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where the residue term becomes an error ε due to the diag-
onal approximation. The question is, how significant is the 
magnitude of ε? If ε is normalized by yyk-1, it can be shown 
that: 
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It is not hard to realize from Eq. (30) that if the error 
terms τ and δ are small compared to the products they are 
summed with in Eq. (28-a) and Eq. (28-b), respectively, 
then the residue in Eq. (29) will also be small compared to 



 

 

the other admittances. Eq. (30) is useful for testing the as-
sertion of row diagonal dominance during the analysis of 
the numerical simulation results.  

Eq. (29) indicates that the difference term can be approx-
imated by ( )1 1

yk xjy G− −−  when all the multi-port equivalent 

matrices resulted from the partitioning are row diagonally 

dominant, and by setting 1 1
xj ykG y− −=  or equivalently 

xj ykG y= , the difference term Δk  can be reduced to a 

mere residue which suggests that the upper bound of ρ(W) 
is also reduced according to Lemma 1. This allows PGNME 
to be formally defined as a preconditioning step where the 

boundary bus admittance is set to xj ykG y= , where yyk is 

the self-admittance of the kth port of subsystem Y that 
shares a cut boundary bus with the j-th port of subsystem 
X as shown in Fig. 4, so that the first binomial term of Eq. 
(29), namely, the PGNME difference term, vanishes and the 
difference term is left with a residue term. (In Fig. 4 PGNME 
would require Gyk = yxj also.) This decision to settle the de-
gree of freedom this way is prompted by previous litera-
ture [35-36]. It will be shown by example in section 4 that 
PGNME will reduce the spectral radius; and in some spe-
cial cases reduce it to zero.  

But Eq. (29) also shows that in general the application of 
PGNME alone should not be expected to reduce the spec-
tral radius or its upper bound to zero, because the second 
binomial term of Eq. (29)  ε, the “residue” of PGNME, is 
not automatically zero. Instead, an example in section 4 
will show that the off-diagonal terms of the W matrix 
formed by the residues and the direct terms are propor-
tional to port coupling admittances (i.e., the hij of the A and 
B matrices). Therefore, the effectiveness of PGNME ap-
plied alone will depend upon the critical condition that the 
size of the system is sufficiently large compared to the 
number of the ports within the system, so that the port de-
pendencies within each partition can be considered weak. 
We shall demonstrate this observation in the results shown 
in section 6.  

Note that during the simulation it is assumed that sys-
tem topologies and configurations are approximately sta-
tionary, therefore the partitioning schemes, equivalent ad-
mittances and the modified nodal admittance matrices stay 
approximately unchanged during the simulation proce-
dure. However, it is not necessary that they stay identically 
stationary because as long as the spectral radius is less than 
one, then PUR will iterate until a solution converges. In 
fact, if the spectral radius starts small due to initializing 
with PGNME, then small changes to the system may not 
cause an increase in the number of iterations needed to 
converge until the changes become significant. If the struc-
ture of the system has drastically changed due to large-
scale events, then the simulation may need to be paused 
and reinitialized/repartitioned in order to maintain the 
performance of the simulation, which is easily recognized 
by tracking the iteration count. 

3.4 Complexity analysis of PGNME 
Considering a generic power system network in the 

form of Fig. 2 decomposed into p subgraphs through a total 

number of m branch cuts, under the assumption that the 
system is decomposed to subsystems that are roughly 
about the same size, and each partition roughly contains a 
total number of n buses plus 2m/p boundary buses re-
sulted from the partitioning process, then the size of the 
original network can be represented as N=pxn. Define r as 
the number of iterations until the global convergence, tc as 
the communication cost to send/received MPI messages, 
and q as the total number of processing units (in our con-
text, cores) that the calculation is being distributed to (q>1), 
the total computation cost of PGNME can be mathemati-
cally quantified as follows:  

3.4.1 For factorization 
Taking a conventional sparse matrix solution LU de-

composition for example, the computational complexity of 
factorizing an NxN nodal admittance matrix used in Eq. (3) 
is O(N3) or O(p3 n3). Using PGNME, all the factorization be-
come completely independent. Since each partition now 
consists of a ( 2 ) ( 2 )n m p n m p+ × +  nodal admittance ma-
trix with boundary buses added, the total cost of factoriz-
ing all p partitions using a total number of q cores can be 
represented as: 
                               3

1( 2 )F k n m p p qφ = +     (31) 
where k1 is the scaling coefficient. For a large system, it can 
be assumed that the total number of boundary buses 2m 
are far less than the total number of buses n. Under this 
assumption, Eq. (31) demonstrates that for factorization, 
PGNME scales as O(p/q). While this complexity reduction 
seems significant, this factorization is only a small portion 
of the total simulation. The benefit from this portion will 
be more realizable when the structure of the nodal admit-
tance matrix changes often during simulations such as load 
shedding, switching events, etc. 

3.4.2 For solving 
For LU methods, the complexity for solving the original 

problem is O(N2), while using PGNME, the solving is in-
dependent but there is also an iterative updating strategy. 
Therefore, for p number of partitions, the total computa-
tional cost of complexity for each iteration can be derived 
as 2

2( 2 ) [ / ]L k n m p p qφ = +  where k2 is the scaling coeffi-
cient. Since the above process needs to be redone for a total 
of r times, and consider the overhead of data communica-
tions among the processors, the total cost of the solving 
part of PGNME can be represented as: 
                  ( )2

2 3( 2 )L ck n m p p q r k t m p rφ = + +    (32) 
where k3 is the scaling coefficient for the communication 
overhead. Under the assumption that m n  and the com-
munication cost tc can be considered trivial, Eq. (32) 
demonstrates that for the solving stage of PGNME, the 
computational cost scales as O([p/q]r). 

Based on Eq. (31) and Eq. (32), it can be observed that 
the main computational advantage of PGNME as a Jaco-
bian-like decomposition algorithm is that all the subgraphs 
can be solved independently. This translates to an almost 
linear scaling of the computational cost of PGNME with 
the number of subsystems while the original network so-
lution computation suffers from a superlinear scaling. 



 

 

However, it should also be noted in Eq. (32) that the com-
putational cost also scales linearly with the number of iter-
ations. Therefore, controlling the convergence of the over-
all reconciliation process also plays a critical role in the de-
termination of the computational performance of PGNME. 

 

4 EXAMPLES WITH PGNME 
In this section, we focus on demonstrating how the gen-

eral concept of PGNME developed in Section 3 can be uti-
lized in parallelizing practical power system simulation 
problems. We start with a very simple two-subgraph prob-
lem that has been discussed in literature and show that the 
general derivation of PGNME can be applied and leads to 
the same outcome that was concluded in the literature. 
Then we will present a more general multi-subgraph, 
multi-port example as the proof-of-concept to show the 
convergence improvement effect of PGNME.  

4.1 A two-subgraph, single-port example 
In this example, we consider the decomposition for a 

simple 7-node system shown in Fig. 6 (a). After the branch 
cut at yab, two subsystems can be formed, namely, subsys-
tem 1 and subsystem 2. Boundary bus 1 and 2 are created 
and attached to the terminal of subsystem 1 and 2 respec-
tively. Unlike the multi-port case considered in the general 
PGNME derivation, in this example both subsystem 1 and 
2 contain only one port. Therefore, this example can be 
considered a simplified application of PGNME without 
multi-port equivalent calculation, or just simply PGN. 

In order to develop the analytical model of the reconcil-
iation process for this two-subgraph system, the equivalent 
representations of subsystem 1 and 2 need to be identified 
in the first place. Since there are no other ports existing in 
both of the subsystems, the equivalent representation of 
the subsystems can be obtained by following the steps de-
fined in Section 3.3.1. Once the equivalent current sources 
and admittances are determined, we can construct the 
complete equivalent representation for each subproblem 
as shown in Fig. 6 (b). Based on Eq. (15), the equivalent ma-
trix for subsystem 1 and 2 can be formulated as 
                                       a a aI V C= +A  (33-a) 
and 
                                       b b bI V C= +B  (33-b) 
respectively, where A=ya, B=yb. 

Compare Eq. (33) with the general representation con-
sidered in Eq. (15), it can be observed that since each sub-
problem only contains one single-port, the linear port de-
pendency hxji ( , 1,... ,i j n i j∈ ≠   ) doesn’t exist in this exam-
ple, therefore, the equivalent current sources (denoted by 
Ca and Cb) are solely determined by the internal current 
sources in subsystem 1 and 2 respectively. 

Based on Eq. (23), the iterative process for this example 
can be written:  

        ( )
1 1

1 1 1 1 1( 1)a b a
ab a b

I l I l k
y G y y G

   
+ + + = − +      

   
 (34-a) 

for subsystem 1. And 

       ( )
2 2

1 1 1 1 1( 1)b a b
ab b a

I l I l k
y G y y G

   
+ + + = − +      

   
 (34-b) 

for subsystem 2, where ka and kb denote the constant fac-
tors. It is noted that the residues of the difference terms in 
Eq. (34) are zero because the det(Mkk) = 1 and det(B) = yb in 
Eq. (34-a) or ya, in Eq. (34-b). This occurs whenever the sub-
system on the opposite side of the cut edge is a single-port 
subsystem because the Norton equivalent looking into this 
port is an exact reduced order model of the subsystem. 

Rewriting Eq. (34) in the first-order linear stationary 
form defined in Eq. (5) results in Eq. (35) below: 

                 ( )
( )

( )
( )

1

2

1 0
1 0

aa a

bb b

kI I ll
kI Il l

λ
λ

 +      
⋅ +   
    

=   +    
 (35) 

where ( )( ) 11 1 1 1 1
1 11 b ab ay G y G yλ

−− − − − −+− +=  and  

( )( ) 11 1 1 1 1
2 22 a ab by G y G yλ

−− − − − −+− += .  

It is then obvious that the spectral radius of the iteration 
matrix can be obtained by inspection of Eq. (35) to be  
                                  ( ) 1 2ρ λ λ=W   (36) 

It can be clearly observed from Eq. (35) that in this ex-
ample, the convergence property of the iterative process is 
directly determined by the values of which can be reduced 
to 0 by setting the boundary admittances G1 and G2 con-
tained in the boundary buses to the equivalent admittance 
ya and yb. This outcome justifies our conclusion made on 
the PGNME difference term in Section 3.3.2.  Meanwhile, 
this example and the general usage of PGN should be con-
sidered only a “special case” as there are no port depend-
encies existing within the subsystems. The direct effect of 
this simplification is that the general multi-port equivalent 
matrix in Eq. (14) is reduced to a scalar, and the direct 
terms ai and bi in Eq. (23) also become zero. Therefore, we 
could easily manipulate the iteration matrix W and set its 
spectral radius to zero for the ideal case of instantaneous 
convergence.  

While this example is sufficiently intuitive to explain the 
basic motivation and procedure for PGNME precondition-
ing, PGN is of little practical use by itself because it is 
strictly applicable to a graph partitioned into only two sub-
graphs. Even the average personal computer has more 
than two cores available for the opportunity to parallelize 
the solution, but truly large problems that could be run on 
a general purpose high-performance cluster computer can 
benefit from hundreds or thousands of partitions, as will 
be demonstrated by the simulation results reported in sec-
tion 6. Therefore, the previous literature [35-36] describing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. A two-subgraph, single-port example is shown in (a) while its 
equivalent representation is shown in (b) 

  



 

 

PGN is inapplicable and unfeasible for practical problems 
of any size when the system is decomposed into p subsys-
tems, where p > 2. In the next subsection, we will consider 
a more complicated example which represents the practi-
cal challenge in decomposing large-scale power system 
networks.  

4.2 A multi-subgraph, multi-port example  
In this example, we consider a system as shown in Fig. 

7 where three two-port subsystems are tied together by 
three branches that will become cut edges in the decom-
posed system. Unlike the previous example where no port 
dependencies exist, in this example, each subproblem 
contains two ports that are directly coupled; thus PGN 
becomes immediately inapplicable. In the following 
discussion, we will focus on demonstrating how to apply 
the general derivation shown in Eq. (23) to evaluate the 
convergence properity of the PUR solutions for this 
example and further examining the three basic rules 
summazied in subsection 3.3.1 and the effect of PGNME 
preconditioning on the specturla radius upper bound 
reduction illustrated in subsection 3.3.2.  

To start with, the equivalent representations of each 
subsystem can be calculated using the steps defined in sub-
section 3.3.1. Using the notations defined in Fig. 7, it can be 
assumed that the multi-port equivalent matrices can be de-

rived as 1 21

12 2

x x
x

x x
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 
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A , 
1 21
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A  for subsystem X, Y, and Z respectively. 

Writing six independent equations based on Eq. (23) and 
then solving for the six bus currents at iteration l+1, the it-
erative process can be represented by Eq. (37) below: 
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 (37) 
By inspection of Eq. (37) it is obvious that the iteration 

matrix W conforms to Rule 1 reported in subsection 3.3.1 
which states that the block matrices on the main diagonal 
of W are zero matrices.  

For the sake of brevity, in the following discussion, we 
mainly focus on studying the iterative process involving 
subproblem X as an example of the overall iterative pro-
cess described by Eq. (37). However, the iterative processes 
for the other subproblems can be formulated and evalu-
ated in the same manner. 

The iterative process of subproblem X is governed by 
the first two rows of the iteration matrix in Eq. (37). Based 
on the detailed formulations for each entry (as shown in 
the appendix), we can categorize the entries included in 
the off-diagonal block matrices of W into two types: entries 
that contain difference terms (labelled by Greek letter α) 
and entries that contain only direct terms (labelled by Eng-
lish letter a). The difference terms are associated with port 

currents Iy1 and Iz2 which are directly connected to subsys-
tem X as shown in Fig. 7. The direct terms are associated 
with port currents Iy2 and Iz1 which are the other two port 
currents associated with the two subsystems directly con-
nected to subsystem X that can affect the boundary condi-
tions of subsystem X through the port dependencies exist-
ing in subsystem Y and Z respectively. This result precisely 
conforms to Rule 2 and Rule 3 stated in subsection 3.3.1. 
Another observation we can make based on the detailed 
formulations of each entry found in the appendix is that 
both the direct terms and the residues of the difference 
terms are proportional to products of the port coupling 
coefficeints (i.e., h coefficients in Eq. (14)). Therefore, we 
can conclude that the convergence properties of the PUR 
solution when applied to a multi-subgraph, multi-port 
system are directly affected by the port dependencies 
within each subproblem and the ensemble of subproblems 
it is connected to.   

Applying PGNME preconditioning to the iteration pro-
cess of this example, based on the procedures illustrated in 
subsection 3.3.1, the boundary bus admittances contained 
in each boundary bus Gx1, Gx2, …,Gz2 can be set accordingly 
to yz2, yy1, …, yx1. Following this procedure, the iteration 
matrix shown in Eq. (37) can be reduced to: 
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W  (38) 

It can be clearly observed that PGNME preconditioning 
effectively reduces the upper bound of ρ(W`) compared 
with ρ(W) under the assumption that Ax, Ay and Az are all 
row diagonally dominant.  

5 PGNME IMPLEMENTATION 
In this section, we brief explain how to map the struc-

ture of the proposed PGNME method onto the parallel 
computing architecture and develop a simulation program 
to implement, test and evaluate the performance of 
PGNME preconditioning when applied to parallel power 
system dynamic simulation.  

5.1 Hardware and software setup 
The HPC platform used in this study is a state-of-art 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.  Network decomposition and boundary bus creation of a 3-pariti-
toned 14-node system 
  



 

 

HPC cluster “Shadow II” available to us at the High Per-
formance Computing Collaboratory at Mississippi State 
University. Shadow II consists of 110 nodes, each node 
containing 512 GB of RAM and 2 Intel E5-2680 v2 Ivy 
Bridge processors, which are each 10 core and operate at 
2.8 GHz. The communication system is FDR InfiniBand (56 
Gb/s). 

The implementation of the reconciliation processes 
among subproblems is through the Intel® MPI Library 
based on the MPI 3.0 standard [37-38]. This MPI/OpenMP 
approach uses an MPI model for communicating between 
nodes while utilizing groups of threads running on each 
computing node in order to take advantage of multi-
core/many-core architectures. A more detailed documen-
tation of MPI 3.0 standard can be found in [38].  

To map the subproblems into the hardware, in the re-
sults section the number of MPI processes required is al-
ways equal to the number of partitions(subproblems) plus 
one (an additional process needs to be created to manage 
the overall reconciliation process). Within all simulations 
there is a simple one to one mapping of processes to a 
physical core. While this is the current setup to examine 
the performance of PGNME, alternative reconciliation 
structures such as point-to-point and hierarchical reconcil-
iation strategies could be considered in future work. 

5.2 Graph partitioning 
Based on the aforementioned discussion, a power sys-

tem network presented in the form of a graph needs to be 
first decomposed into subgraphs for parallel simulation 
during the initialization stage. The graph-based partition-
ing tool adopted in this study is the well-known program 
hMeTiS [31]. More specifically, the unweighted, multi-
level based hMeTiS partitioning algorithm is used for all 
the case studies as the main purpose for the graph parti-
tioner is to generate roughly even size subgraphs and min-
imize the inter-connections between subgraphs for the 
purpose of load balancing and inter-node communication 
reduction. While our aforementioned discussion indicate 
that an appropriate partitioning algorithm could poten-
tially help extend the breakpoint of PGNME to gain more 
parallelism, it is not the focus of this paper and thus is not 
considered.  

5.3 Subgraph solver 
After the decomposition, each subproblem still needs a 

numerical solver to solve the partitioned subgraph. A com-
monly used sparse matrix solver SuperLU_sequential [40-
41] is deployed in this paper. Note that SuperLU_sequen-
tial is chosen for its simplicity and robustness for imple-
mentation, but any existing sequential linear solver could 
be utilized with the proposed parallel updating strategy. 

6 SIMULATION RESULTS 
Simulation results are provided in this section to assess 

the performance of PGNME preconditioning in terms of 
accuracy, computational efficiency, and scalability. More 
specifically, two case studies are presented to demonstrate 
the operation and performance of PGNME when tackling 
the main challenge of this paper: parallel dynamic simula-
tion for large-scale systems. We will start with case study 

1 where a power network of roughly 28,000 buses which is 
on the same scale of the Eastern Interconnection (EI) is sim-
ulated. In case study 2, an arbitrary system that consists of 
over 258,000 buses is studied. We argue that even a power 
grid of such scale does not exist in any practical application 
yet, by examining the performance of PGNME on the ex-
treme scale, we can directly observe the scalability of the 
proposed approach and explore both the algorithmic and 
hardware limitations.   

6.1 Case study 1 
The performance of PGNME is firstly tested on an arbi-

trary network that contains roughly 28,647 buses which 
approximates the size of the current EI system. In order to 
emulate the ever-changing component dynamics, arbitrary 
excitations are also added to the generator and load buses. 
By controlling the magnitude and the frequency of the ex-
citations, it becomes possible for us to observe the perfor-
mance of PGNME when the system is within steady-state 
operating condition and when the system is subject to 
wide-area, quick spreading perturbations such as faults or 
other dynamic events.   

To start with, we compared the performance of un-pre-
conditioned PUR and PGNME with regards to the average 
number of iterations (a.n.i) when applied to the system un-
der study. The averaging process can be described as: 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.  The performance comparison between un-preconditioned 
PUR and PGNME under slow-dynamics in terms of averaged relaxa-
tion iterations  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. The average number of iterations using PGNME for test sys-
tem 1  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10.  The overall speed up obtained by utilizing PGNME for test 
system 1 
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N

=                                 (39) 

where Niteration refers to the total number of iterations 
counted from the beginning of the simulation to the end of 
the simulation and Nstep denotes the total number of time 
steps. Note that the one iteration count means the MPI 
communication has happened and the convergence has 
been checked2. Through the averaging process, we are able 
to make an overall more accurate and more comprehensive 
observation of the performance of PGNME when the sys-
tem is partitioned in different ways. The comparison is 
shown in Fig. 8. It can be clearly observed that while PUR 
suffers from an intractable number of iterations and in 
some cases, do not even converge within 100 iterations 
(those cases are marked as “NC” in Fig. 8), PGNME can 
always maintain improved convergence rates under differ-
ent partitioning schemes. Specifically, Fig. 9 has shown 
that before the number of partitions reach 40, PGNME is 
able to achieve convergence in one iteration which can be 
considered “instantaneous”. When the number of parti-
tions increases, it can be observed that after 40 partitions, 
roughly one extra iteration is added in the convergence 
process. This effect becomes more evident after 80 parti-
tions, where the a.n.i for PGNME quickly exceeds two and 
stays over four until the end of the testing; however, com-
pared with its control, the un-preconditioned PUR, 
PGNME always provides a considerable reduction in the 
a.n.i throughout the comparison.  

This observation directly validates the previous predic-
tion made based on the general structure of W and Lemma 
2, which suggests that once the total number of partitions 
becomes sufficiently large, the assumption underpinning 
PGNME becomes less and less dominant as the coupling 
parameters becomes generally more and more significant 
compared with the equivalent admittance at the port. In 
other words, the multi-port equivalent matrices for the 
partitioned subsystems cannot be guaranteed to be ade-
quately independent of loading imposed by the connection 
to other subsystems at the other ports on the boundary of 
the same subsystem. This explains the extra iterations 
gained at 40 and 80 partitions as the iterative process needs 
to utilize additional iterations to compensate the effect of 
close subproblem internal couplings. Therefore, it can be 
concluded that by utilizing PGNME, an iterative process 
with greatly improved and more traceable convergence 
properties can be obtained to decompose and solve the 
nodal network equations described by Eq. (3) in parallel. 
Although the convergence enhancement effect of PGNME 
can no longer be guaranteed when the sizes of the subsys-
tems become significantly large, it still offers a great ad-
vantage and the necessary computational capability espe-
cially when the size of the original system is sufficiently 
large, which is the challenge we aimed to address, and the 
total number of processors (subsystems) are limited, which 
is always the case for actual applications. We will demon-
strate this conclusion particularly in the next case study.  

The computational speed-up gained by adopting 
PGNME is shown in Fig. 10. It can be observed that with 
PGNME preconditioning, a roughly 22 times speed up can 
be obtained with 60 processes.  

6.2 Case study 2 
In case study 2, we study a much larger network to in-

vestigate and ensure PGNME’s performance at larger 
scales, which is our primary concern and motivation for 
this paper. An arbitrary 258066 bus system was created for 
this case study. We took a similar approach as performed 
in literature such as [15], which assembles the arbitrary 
power system by spawning a group of randomly variated 
standard IEEE-118 bus systems, and then creating random 
inter-connections between these variated parts to form the 
properly scaled system that can be used for the test. The 
size of the generated system matches the potential size of 
future EU mega-grid envisioned in [42]. Similar to the first 
case study, the results presented in this case study are all 
obtained under arbitrary dynamic profiles. 

The average number of iterations PGNME takes to con-
verge for test system 2 with different number of partitions 
are shown in Fig. 11. The simulation results indicate that 
when the size of the system grows (roughly 10 times larger 
than test system 1), the performance of PGNME extends 
accordingly. More specifically, PGNME is capable of main-
taining an average number of iterations of 2 until 140 par-
titions. The overall average speed up for case study 2 is 
shown in Fig. 12. The peak of the speedup curve is at 160 
partitions with a maximum 101 times speed up. Compar-
ing with the subsequent partitions, it can be clearly ob-
served that the speed up declines after 160 partitions due 
to the limitations of the hardware platform, particularly 
the communication overheads, since 180-240 partitions 
maintain roughly the same convergence properties (with 
an average of 3 iterations). This further proves that the SRR 
technique included in PGNME is able to effectively im-
prove the convergence properties of the iterative process 
especially when the size of the system is adequately large 
compared with the number of partitions. It also suggests 
that PGNME is capable of fully utilizing the computational 
resources used in this case study to gain speedup, because 
if there were no such hardware limitations, the speedup 
curve shown in Fig. 12 would have kept rising until 240 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11.  The average number of iterations PGNME takes to converge 
for test system 2 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12.  The overall speed up for test system 2 using PGNME 

 
 



 

 

partitions at which point the iteration count begins to rise 
unacceptably as shown in Fig. 11. This clearly indicates 
that PGNME, as a domain decomposition algorithm, is a 
natural fit for applications that require dynamic simula-
tions of massive scale power systems.   

7 CONCLUSION 
This paper proposes a novel network decomposition 

technique, namely, PGNME and demonstrates its ad-
vantages when applied to large-scale power system simu-
lations. By greatly improving the convergence property of 
the iterative process, PGNME can be seen as the algorith-
mic enabler for solving a variety of emerging problems in 
the study of large-scale, interconnected power systems, 
such as look-ahead dynamic simulation, real-time opera-
tional enhancement, dynamic security assessment, and 
predictive protection and control using high-performance 
computing. 

While this paper focuses on describing and validating a 
novel method for decomposing and solving Eq. (3), future 
work will further address the complete decomposition and 
self-consistent solution of all the equations included in 
both Eq. (2) and Eq. (3). The performance limitation of 
PGNME will also be investigated. As demonstrated in the 
theoretical derivation and simulation results, PGNME be-
comes less likely to maintain the convergence properties 
when the sizes of the subsystems become relatively small. 
The consequence of this limitation, which is shown in Sec-
tion 6, is that the average number of iterations start to rise 
and can no longer stay within the expected range when the 
number of partitions exceeds a certain “threshold”. There-
fore, it becomes imperative to postpone or even overcome 
this performance threshold in order to gain massive paral-
lelism. Another aspect of the performance validation will 
include a comprehensive comparison between the pro-
posed DD approach and the common fine-grained data 
parallel solver such as PETSc to highlight the difference be-
tween a general-purpose parallel sparse linear solver pack-
age and a domain-specific preconditioning/reconciliation 
technique. These issues and challenges will be investigated 
further in future works. 
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