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Abstract

Convergence of classical parallel iterations is detected by performing a reduction op-
eration at each iteration in order to compute a residual error relative to a potential
solution vector. To efficiently run asynchronous iterations, blocking communication re-
quests are avoided, which makes it hard to isolate and handle any global vector. While
some termination protocols were proposed for asynchronous iterations, only very few
of them are based on global residual computation and guarantee effective convergence.
But the most effective and efficient existing solutions feature two reduction operations,
which constitutes an important factor of termination delay. In this paper, we present
new, non-intrusive, protocols to compute a residual error under asynchronous itera-
tions, requiring only one reduction operation. Various communication models show
that some heuristics can even be introduced and formally evaluated. Extensive experi-
ments with up to 5600 processor cores confirm the practical effectiveness and efficiency
of our approach.

Keywords: asynchronous iterations; convergence detection; global residual; distributed
snapshot; parallel computing

1 Introduction
Reducing the impact of communication on the efficiency of a parallel computation is often
achieved by optimizing a graph of data dependency between the computing units. However,
for iterative methods, another important aspect to take into account is how often data
transfers occur. Indeed, in a classical parallel procedure, the computation has to pause
each time a remote data is needed due to dependency. This can result in a notable global
slowdown of the procedure, according to the properties of the underlying communication
platform. Asynchronous iterations are thus interesting to minimize the impact of this second
aspect. By not requiring synchronization at each iteration, asynchronous methods avoid
idling while waiting for a data exchange, thus ideally reduce the wasted time. This kind of
iterative methods was first experienced in [28] as part of a study on the simulation of parallel
processing. It follows from the asynchronism that the components of a global vector are
iteratively computed without the precedence order ensured by synchronous iterations, which
obviously introduces some convergence issues. A first convergence result was established in
[12] for the solution of algebraic linear systems, then non linear systems were investigated
as well (see, e.g., [14, 26]). Performance comparison against synchronous iterations was
first conducted on a parallel computer in [4]. Many studies confirmed the efficiency of
asynchronous methods in various mathematical fields such as the obstacle problem (see,
e.g., [5, 30, 10]), dynamic programming (see, e.g., [31]), optimization and flow problems
(see, e.g., [7, 11]), partial differential equations (see, e.g., [21, 18]), differential-algebraic
systems (see, e.g., [1]) Markov chains and optimal control (see, e.g., [19]).

∗Université Paris-Saclay, CentraleSupélec, Gif-sur-Yvette, France (correspondence, fred-
eric.magoules@hotmail.com).

†IRT SystemX, Palaiseau, France (guibenissan@gmail.com).

Preprint December 4, 2017

ar
X

iv
:2

31
2.

17
55

8v
1 

 [
cs

.D
C

] 
 2

9 
D

ec
 2

02
3



Nowadays, asynchronous parallel algorithms are particularly investigated for taking full
advantage of massively parallel architectures and largely distributed platforms. Indeed, in
such environments, the most part of the efficiency of parallel algorithms relies on the man-
agement of interprocess communication. Yet, these new computational environments raise
efficiency and accuracy issues about evaluating the convergence state of asynchronous paral-
lel iterative processes. Indeed, with such increasing communication loads, there is no trivial
efficient way to compute a consistent residual error from the distributed components of a
global, potential solution, vector. Therefore, a well designed detection technique is required,
in order to avoid both untimely and delayed termination. In this paper, we propose new
efficient methods to accurately evaluate the residual of a computation during asynchronous
iterations. Such a matter is not related to conditions under which an asynchronous itera-
tive algorithm is guaranteed to converge, but rather consists in designing some efficient and
effective way of asserting that an ongoing asynchronous iterative computation has actually
reached its convergence state.

Section 2 gives a brief overview of main existing approaches and protocols for terminating
asynchronous iterations. Section 3 presents the asynchronous iterations model that is under
consideration, then formally states the convergence detection problem that is addressed in
this study. Section 4 details basic ideas of snapshot protocols, leading to our propositions
for asynchronous iterations termination in First-In-First-Out (FIFO) communication envi-
ronments. Then, Section 5 tackles various non-FIFO communication contexts. Two new
protocols are proposed for arbitrary non-FIFO communication, another one for non-FIFO
communication only on messages which have different labels, and at last two others based
on heuristics, for non-FIFO communication only within successive finite sets of exchanged
messages. Section 6 comments some experimental results on two different computation plat-
forms, using up to 5600 processor cores. Effectiveness and efficiency are discussed against
two existing termination methods. Section 7 summarizes our conclusions.

2 Related works
The problem of terminating asynchronous iterations was well discussed in, e.g., [6], where
the authors introduced a first approach which consists in altering the asynchronous itera-
tive algorithm such that it terminates in finite time and then applying one of the classi-
cal termination detection protocols available in the distributed algorithms field (see, e.g.,
[13, 17, 27, 24]). Indeed, these termination protocols are designed for parallel applications
that are executed in a finite number of steps, that is to say, there is a point, during their
execution, from where all single processes are idle. Since this is not natively the case for
a large class of iterative algorithms, different modifications have been proposed (see, e.g.,
[29, 15, 9]) for detecting their convergence by means of a classical distributed termination
protocol. Basically, any process under some local conditions (relative to local convergence)
stops sending new data to its neighbors in the communication graph, so that the termination
condition may consist of having all processes under this local condition, without any message
in transit. Another kind of alteration has been discussed in [16], which consists in turning
back to synchronous iterations at some point of the execution where local convergence seems
to persist on one of the processes.

A second approach, called supervised termination, consists in using a supervisory algo-
rithm to take a snapshot of the computation, in order to construct and evaluate a global
solution in parallel of the iterative process. Considering the well-known snapshot proto-
col due to K. M. Chandy and L. Lamport [8], it is still interesting to see how it applies
for asynchronous iterations termination in a simplified form (see Section 4.2). Yet, the
main disadvantage of such a protocol is the FIFO property required on the communication
channels. Attempts to achieve general non-FIFO snapshots are based either on message
acknowledgment and delayed delivering, or on piggybacking of control information on top
of application messages (see [20] for an introductory overview). Such approaches thus turn
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out to be quite intrusive and, furthermore, not easy to implement. In [29], some supervised
termination protocols, more or less centralized, were designed over both star and tree net-
work topologies, introducing a new non-FIFO, but simplified, snapshot. The less centralized
approach therein involves a spanning tree over the network graph where local convergence
notifications propagate from the leaves to the root process. This one then triggers the sim-
plified snapshot allowing each process to evaluate a globally coherent local solution. The
centralization is thus limited to the notifications gathering phase for coordination purpose.
Consistency, for non-FIFO channels, is guaranteed by inserting computation message data
into the snapshot messages, which introduces a non-negligible overhead for communication.

A third approach in [3] is based on a leader election protocol on tree topology [22,
Section 4.4.3] wherein the authors introduced cancellation messages to manage the false
convergence issue. The algorithm however requires to estimate an upper bound on the
communication delay between any two processes. Then, in [2], these authors proposed a new
solution which takes off this requirement, as well as cancellation messages, by performing a
verification phase after a presumed global convergence. The leading idea is to monitor the
persistence of this convergence state within a period which must last enough to have every
dependencies updated with data at least as recent as the presumed detection time. Global
convergence is confirmed if during this period no process ever left its local convergence state.
As an inconvenient for non-FIFO environments, piggybacking techniques must be used to
distinguish data emitted within the verification phase period. While such an approach
can avoid premature termination with a high probability, it does not provide a way of
evaluating a consistent global residual. Yet, its reliability could be guaranteed by mixing it
with the formal analysis from [25] where the convergence tests are based on the diameter of
successive nested sets, which are identified by means of macro-iterations defined as minimal
sets of iterations within which all of the solution vector components are updated at least
once. Nevertheless, just as in [29], this third approach also features a first gathering phase
through the leader election, which actually acts as a dynamically centralized coordination.

In summary, second and third approaches allow us to detect the convergence of asyn-
chronous iterations without altering the main computation process. But for both, current
solutions somehow require two gathering phases, one for coordination and another for con-
vergence state evaluation. In very large distributed systems, such reduction operations would
constitute the most costly part of these convergence detection protocols. We investigate here
new methods, mostly non-intrusive, to evaluate the convergence residual of a computation
during asynchronous iterations, using only one reduction operation. Furthermore, some non-
FIFO cases are managed through strong heuristics, without piggybacking or over-exchange
of computation data.

3 Problem formulation

3.1 Asynchronous iterations
Let X = X1 × · · · ×Xn be a product of vector spaces, and let us consider a mapping

f : X1 × · · · ×Xn → X1 × · · · ×Xn,
x = (x1, . . . , xn) 7→ (f1(x), . . . , fn(x)),

where fi : X → Xi, i ∈ {1, . . . , n}, are given. Now let {Ik}k∈N be a sequence of integer
subsets such that

∀k ∈ N, Ik ⊆ {1, . . . , n}, Ik ̸= ∅.

Asynchronous iterations exhibit a sequence {xk}k∈N of vectors in X such that

xk+1
i =

{
fi(x

ρi
1(k)

1 , . . . , x
ρi
n(k)

n ), i ∈ Ik,
xk
i , i /∈ Ik,

(1)
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where ρij , with i, j ∈ {1, . . . , n}, are integer-valued functions on N, satisfying

ρij(k) ≤ k, ∀k ∈ N,

which denotes a delay on the version of the component j used to update the component
i. Ik is thus the set of components updated at iteration k. For convergence analysis, the
computational model (1) is generally completed by the two following assumptions, which en-
sure that, for any given k0 ∈ N before convergence, no component sequence {xk0

i , xk0+1
i , . . .}

definitively freezes or is generated by using some other fixed component xk1
j , k1 ∈ N.

Assumption 1. ∀i ∈ {1, . . . , n}, card{k ∈ N|i ∈ Ik} = +∞.

Assumption 2. ∀i, j ∈ {1, . . . , n}, lim
k→+∞

ρij(k) = +∞.

3.2 Convergence detection
Let us consider a sequence {xk}k∈N of vectors in X satisfying the asynchronous iterations
model (1), and define n sequences {y1,k}k∈N, . . . , {yn,k}k∈N of vectors in X such that

yi,k = (x
ρi
1(k)

1 , . . . , x
ρi
n(k)

n ), ∀i ∈ {1, . . . , n},∀k ∈ N. (2)

yi,k thus denotes the global vector used to update the component i of the solution vector x
at the iteration k + 1. Additionally, we assume to have

ρii(k) = k, ∀i ∈ {1, . . . , n},∀k ∈ N. (3)

At last, let x̄ be a vector in X given by

x̄ = (y1,k1

1 , . . . , yn,kn
n ), k1, . . . , kn ∈ N,

which denotes a global vector built from an arbitrary version of each local component. We
will address in this paper the problem of evaluating a relation

∥f(x̄)− x̄∥ < ε, ε ∈ R, (4)

where ∥.∥ is a norm on X. To solve this problem, attention will be mainly paid to the
computation of f(x̄).

One notices that synchronous iterations correspond to the case where we have Ik =
{1, . . . , n} and ρij(k) = k, for all k ∈ N and all i, j ∈ {1, . . . , n}. It follows that by taking
x̄ = (y1,k1 , . . . , yn,kn ), for any k ∈ N, we obtain, for all i ∈ {1, . . . , n},

fi(x̄) = fi(y
1,k
1 , . . . , yn,kn ),

= fi(x
k
1 , . . . , x

k
n),

= fi(x
ρi
1(k)

1 , . . . , x
ρi
n(k)

n ),

= xk+1
i ,

which implicitly gives f(x̄) = (y1,k+1
1 , . . . , yn,k+1

n ).
We point out that the relation (4) can be more generally given by:

x̄ ∈ S∗, (5)

where S∗ is the set of admissible solutions, as also suggested in [29]. Then actually, the
quality of the solution x̄ would depend on the suitable choice of a residual evaluation function
r(x̄), which is application-dependent, regardless the context of asynchronous iterations. By
considering however a residual evaluation function of the form (4), we intend to provide a
better understanding of the subsequent discussions, without losing their general applicability
to (5).
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Algorithm 1 CLS protocol
1: if initiator then
2: if state not recorded then
3: Record state
4: Send a marker to each neighbor in the communication graph
5: end if
6: end if
7: if marker received then
8: if state not recorded then
9: Record state

10: Send a marker to each neighbor in the communication graph
11: end if
12: if marker received from each neighbor then
13: Return state and state of each reception channel
14: end if
15: end if
16: if computation message received then
17: if state recorded and marker not received from the sender then
18: Add the message to the state of the corresponding reception channel
19: end if
20: end if

p

q

Snapshot
start

Snapshot
end

e1 e3 e5 e8 e9

e2 e4 e6 e7 e10

Figure 1: Example of a CLS protocol execution with two processes.

4 Determining a global solution vector

4.1 The Chandy–Lamport snapshot (CLS)
The basic idea within the CLS protocol is to record, not only the local state of each process,
but also the state of each communication channel. Any process (possibly several processes)
can initiate the protocol by recording its local state and sending a “marker" to all of its
neighbors in the communication graph. Non-initiators do the same when they receive a
marker for the first time. As soon as a process records its local state, it starts recording the
state of its reception channels. From then, and before marker reception on any channel, any
message received is appended to the state of this channel. Consequently, the recording ends
when a marker is received from all of the neighboring processes. Algorithm 1 outlines the
rules that fully describe the protocol.

To give an intuitive understanding of the consistency of the global state built by this
snapshot protocol, we show, in Figure 1, a simple example involving two processes, denoted
by p and q. Let us consider events consisting in sending and receiving a message. In this
example, the process p records its local state after the event e1 and sends a marker (dotted
arrow) to the process q. On reception of the marker, the process q records its local state
after the event e4, then records the state of its reception channel as an empty set, and finally,

5



Algorithm 2 AIS protocol 1

1: if ∥yi,ki − y
i,ki

0
i ∥ < ε, with yi,ki = y

i,ki
0+1

i , i ∈ Ik
i
0 then

2: if ȳii undefined then
3: ȳii := yi,ki

4: for all process j ̸= i do
5: Send a marker to j
6: end for
7: end if
8: end if
9: if marker received from a process j ̸= i then

10: ȳij := yi,kj

11: if ȳii undefined then
12: ȳii := yi,ki

13: for all process j ̸= i do
14: Send a marker to j
15: end for
16: end if
17: if ȳij defined for all j then
18: return ȳi

19: end if
20: end if

sends the marker back to the process p. Before receiving the marker from the process q, the
process p received a computation message from q as event e5. Therefore, the state of the
reception channel of the process p corresponds to the set {e5}. It is clear from this example
that the communication channels need to be FIFO. Otherwise, if for instance the marker
sent by the process q is received by the process p before the event e5, therefore the state of
the channel is an empty set, which causes an information lost about the event e5.

This example builds a global state relative to last events {e1, e4} and records the set of
pending messages relative to event e5. However, according to the events sequence, this state
does not match any of the states the system actually went through. Indeed, one can see
that the event e3 should be taken into account as we consider the state of the system just
after the event e4. Therefore, let us highlight what is relevant about the state recorded by
an execution of the CLS protocol.

Theorem 1 (Chandy & Lamport, 1985). Let S(C) = {st}t∈N denote the global states se-
quence generated by a computation C. Let s̄ be the global state recorded by an execution of
the CLS protocol on C. Then there exists an equivalent permutation P(C) of C such that
s̄ ∈ S(P(C)).
Proof. See [8].

4.2 New asynchronous iterations snapshots (AIS)
Let again sequences {xk}k∈N and {yi,k}k∈N, i ∈ {1, . . . , n}, be defined as in Section 3.2. Let
us suppose an associated parallel computation involving n processes, and let each process
i ∈ {1, . . . , n} record a vector ȳi ∈ X by following the rules described either in Algorithm 2
or in Algorithm 3. We should mention that the variable k therein may have different values
at different places in the algorithms, as the rules conditions may be fulfilled at different
times. To be more precise, we would then have

ȳi = (y
i,ki,1

1 , . . . , yi,ki,n
n ), ki,j ∈ N, i, j ∈ {1, . . . , n}.

One can notice that, contrarily to the CLS protocol, there is no rule for channel record
at computation message reception. More, in Algorithm 3, recording the local state is not
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Algorithm 3 AIS protocol 2

1: if ∥yi,ki − y
i,ki

0
i ∥ < ε, with yi,ki = y

i,ki
0+1

i , i ∈ Ik
i
0 then

2: if ȳii undefined then
3: ȳii := yi,ki

4: for all process j ̸= i do
5: Send a marker to j
6: end for
7: end if
8: end if
9: if marker received from a process j ̸= i then

10: ȳij := yi,kj

11: end if
12: if ȳij defined for all j then
13: return ȳi

14: end if

required at the first marker reception. However, for both algorithms, we still need the
following preliminary assumptions.

Assumption 3. Each process performs at least one iteration, which means :

∀i ∈ {1, . . . , n}, ∃k < ki,i : i ∈ Ik.

Assumption 4. After computation of yi,k+1
i (i.e., i ∈ Ik), yi,k+1

i is sent to each process
j ̸= i, before any other communication toward j.

Assumption 5. Communication channels are FIFO.

A consistent global solution vector, under asynchronous iterations, is then given by the
following result.

Proposition 1. Let a sequence {xk}k∈N, satisfying the asynchronous iterations model (1),
be generated by a computation C involving n processes. Let sequences {y1,k}k∈N, . . . , {yn,k}k∈N
be defined by the rewriting (2). Let, at last, ȳ1, . . . , ȳn be the vectors returned by an execution
of either the AIS protocol 1 or the AIS protocol 2 on C. Then, under Assumptions 3 to 5,
we have

ȳ1 = ȳ2 = · · · = ȳn.

Proof. Let i, j ∈ {1, . . . , n} be two any process identifiers. According to the local state
recording rule and Assumption 3, there exists ki0 < ki,i, with i ∈ Ik

i
0 , satisfying :

∀k ∈ {ki0 + 1, . . . , ki,i − 1}, i /∈ Ik,

so that we have
y
i,ki,i

i = y
i,ki,i−1
i = · · · = y

i,ki
0+1

i .

With Assumptions 4 and 5, it follows that there also exists kj0 ∈ N, kj0 ≤ kj,i, such that

y
j,kj

0
i = y

i,ki
0+1

i .

Assumption 5 implies that

∀k ∈ {kj0 + 1, . . . , kj,i}, yj,ki = y
j,kj

0
i .

Then, in particular, we have

y
j,kj,i

i = y
j,kj

0
i = y

i,ki
0+1

i = y
i,ki,i

i ,
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j

i

e2

e1

j

i

e2

e1

Figure 2: Non-FIFO snapshot issues.

and thus
ȳii = ȳji , ∀i, j ∈ {1, . . . , n}, (6)

which concludes the proof.

We can thus have a vector x̄ = (ȳ11 , . . . , ȳ
n
n), so that we implicitly obtain

f(x̄) = (f1(ȳ
1), . . . , fn(ȳ

n)).

Assumptions 3 and 4 are pretty natural conditions that are easily satisfied in an iterative
loop where the AIS protocol rules are called after the main computation and message sending
part. They are necessary to be mentioned, however, especially for multi-threaded processes.
Assumption 5 is then the sole actual constraint in the above protocols. The next section
discusses about taking off such requirement.

5 New non-FIFO asynchronous iterations snapshots

5.1 Arbitrary non-FIFO communication
The FIFO condition is essential to avoid the two situations depicted in Figure 2, where a
marker (dotted arrow) crosses a computation message. In such cases, the equality in (6) is
no more satisfied. Then, one can apply ideas from [29] to AIS protocols 1 and 2, as described
by Algorithms 4 and 5, respectively. Here, markers contain computation data, so that these
solutions actually even handle crossed computation messages. Proposition 1 becomes the
following, which does not need any of the previous assumptions :

Proposition 2. Let a sequence {xk}k∈N, satisfying the asynchronous iterations model (1),
be generated by a computation C involving n processes. Let sequences {y1,k}k∈N, . . . , {yn,k}k∈N
be defined by the rewriting (2). Let, at last, ȳ1, . . . , ȳn be the vectors returned by an execution
of either the non-FIFO AIS protocol 1 or the non-FIFO AIS protocol 2 on C. Then, we have

ȳ1 = ȳ2 = · · · = ȳn.

Proof. By construction, we trivially satisfy the equality in (6).

5.2 Inter-protocol non-FIFO communication
In the communication model considered now, FIFO channels are used at least for compu-
tation messages. This is a highly realistic model, as being a natural expectation to achieve
minimum delays during asynchronous iterations, and moreover, it is a requirement for clas-
sical iterations. Still, the problem of markers crossing computation messages remains. We
propose, with Algorithm 6, a snapshot solution which, outrightly, do not need marker ex-
change, and is based on only computation messages, even without piggybacking. Here, just
as local solution buffers, each process i maintains access to the two latest received messages,
for all neighbor processes j ̸= i. Then, process i can detect by itself local convergence of pro-
cess j and immediately record the last value received. Proposition 1 becomes the following
:

8



Algorithm 4 Non-FIFO AIS protocol 1

1: if ∥yi,ki − y
i,ki

0
i ∥ < ε, with yi,ki = y

i,ki
0+1

i , i ∈ Ik
i
0 then

2: if ȳii undefined then
3: ȳii := yi,ki

4: for all process j ̸= i do
5: Send a marker ȳii to j
6: end for
7: end if
8: end if
9: if marker ȳjj received from a process j ̸= i then

10: ȳij := ȳjj
11: if ȳii undefined then
12: ȳii := yi,ki

13: for all process j ̸= i do
14: Send a marker ȳii to j
15: end for
16: end if
17: if ȳij defined for all j then
18: return ȳi

19: end if
20: end if

Algorithm 5 Non-FIFO AIS protocol 2

1: if ∥yi,ki − y
i,ki

0
i ∥ < ε, with yi,ki = y

i,ki
0+1

i , i ∈ Ik
i
0 then

2: if ȳii undefined then
3: ȳii := yi,ki

4: for all process j ̸= i do
5: Send a marker ȳii to j
6: end for
7: end if
8: end if
9: if marker ȳjj received from a process j ̸= i then

10: ȳij := ȳjj
11: end if
12: if ȳij defined for all j then
13: return ȳi

14: end if

Proposition 3. Let a sequence {xk}k∈N, satisfying the asynchronous iterations model (1),
be generated by a computation C involving n processes. Let sequences {y1,k}k∈N, . . . , {yn,k}k∈N
be defined by the rewriting (2). Let, at last, ȳ1, . . . , ȳn be the vectors returned by an execution
of the non-FIFO AIS protocol 3 on C. Then, we have

ȳ1 = ȳ2 = · · · = ȳn.

Proof. Let i, j ∈ {1, . . . , n} be two any process identifiers. Remind ȳij = y
i,ki,j

j , ki,j ∈ N.
Then according to (2) and (3), we have

ȳij = x
ρi
j(ki,j)

j = x
ρj
j(ρ

i
j(ki,j))

j = y
j,ρi

j(ki,j)

j .

By construction, we satisfy

ρij(ki,j) = kjj + 1, y
j,kj,j

j = y
j,kj

j+1

j ,
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Algorithm 6 Non-FIFO AIS protocol 3

1: if ∥yi,ki − y
i,ki

i
i ∥ < ε, with yi,ki = y

i,ki
i+1

i , i ∈ Ik
i
i then

2: if ȳii undefined then
3: ȳii := yi,ki

4: end if
5: end if
6: if ∥yi,kj − y

i,ki
j

j ∥ < ε, with ρij(k
i
j) = kjj , ρ

i
j(k) = kjj + 1 then

7: if ȳij undefined then
8: ȳij := yi,kj

9: end if
10: end if
11: if ȳij defined for all j then
12: return ȳi

13: end if

and thus
ȳij = y

j,kj
j+1

j = y
j,kj,j

j = ȳjj ,

which concludes the proof.

5.3 Non-FIFO communication with bounded number of cross mes-
sages

In case of very large problems, non-FIFO AIS protocols 1 to 3 may introduce non-negligible
overhead costs, either for communication or for memory. But on another hand, for such
large problems, deciding to compute a solution may depend on guaranteeing a minimum
performance level of the parallel computation platform. Especially, when a given maximum
execution time is expected, this most likely includes to ensure a bound on communication
delays. We thus reasonably make here a preliminary assumption.

Assumption 6. A message can cross at most η other messages.

Let us then consider Algorithm 7. Here, a process i sends its marker to a process j ̸= i
only when local convergence persists on process i for some iterations kil , with i ∈ Ik

i
l and

l ∈ N. Such iterations will be referred to as ‘steady iterations’. This way, even if the marker
is received on the process j before the latest message sent by the process i, the message
recorded by the process j is still relevant in the sense that the two latest messages from
process i contain very close data (due to the persistence of the local convergence). Then, a
second type of marker (dashed arrow in Figure 3) is sent by the process i to transmit a binary
flag after some additional iterations. If local convergence still persists during these iterations,
the flag is armed, which confirms the relevance of the message data recorded by the process
j, even if it corresponds to the message sent by the process i after the first marker (again,
due to local convergence persistence after sending the first marker). Otherwise, processes i
and j discard the corresponding records and try again. One can also see that the algorithm
still works even in the case where the flag-marker crosses the first one, as depicted in Figure 3
(right).

As a particular case of this communication model, one may further assume that the
crossing ability is tightly related to the size of the messages. Indeed, if control messages
(e.g., markers) are transmitted far faster than computation messages (due to the difference
in size), we may assume that, from a process to another process, a computation message
sent later than a control message cannot be received earlier than this one. Then in such
case, flagged markers would not be necessary any more, which rather simplifies the protocol
and provides Algorithm 8.
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Algorithm 7 Non-FIFO AIS protocol 4

1: if ∥yi,t+1
i − yi,ti ∥ < ε,∀t ∈ {ki0, . . . , k − 1} : i ∈ It then

2: if ȳii undefined then
3: ȳii := yi,ki

4: for all process j ̸= i do
5: Send a marker to j
6: end for
7: ki,i := k
8: Mark ϕi

i as undefined
9: end if

10: end if
11: if ∥yi,t+1

i − yi,ti ∥ < ε,∀t ∈ {ki,i, . . . , k − 1} : i ∈ It then
12: if ϕi

i undefined then
13: ϕi

i := 1
14: for all process j ̸= i do
15: Send a flagged marker ϕi

i to j
16: end for
17: end if
18: else
19: if ϕi

i undefined then
20: ϕi

i := 0
21: for all process j ̸= i do
22: Send a flagged marker ϕi

i to j
23: end for
24: Mark ȳii as undefined
25: end if
26: end if
27: if marker received from a process j ̸= i then
28: ȳij := yi,kj

29: end if
30: if flagged marker ϕj

j received from a process j ̸= i then
31: ϕi

j := ϕj
j

32: if ϕi
j = 0 then

33: Mark ȳij as undefined
34: end if
35: end if
36: if ȳij defined and ϕi

j = 1 for all j then
37: return ȳi

38: end if

j

i

j

i

Figure 3: Examples of issues handled by non-FIFO AIS protocol 4.

Now, let us define the mapping

g : Xn → X1 × · · · ×Xn,
(y1, . . . , yn) 7→ (f1(y

1), . . . , fn(y
n)),

11



Algorithm 8 Non-FIFO AIS protocol 5

1: if ∥yi,t+1
i − yi,ti ∥ < ε,∀t ∈ {ki0, . . . , k − 1} : i ∈ It then

2: if ȳii undefined then
3: ȳii := yi,ki

4: for all process j ̸= i do
5: Send a marker to j
6: end for
7: end if
8: end if
9: if marker received from a process j ̸= i then

10: ȳij := yi,kj

11: end if
12: if ȳij defined for all j then
13: return ȳi

14: end if

and the vector ȳ = (ȳ1, . . . , ȳn), so that we implicitly obtain

g(ȳ) = (f1(ȳ
1), . . . , fn(ȳ

n)).

In the following, we establish the reliability of the approximated residual

∥g(ȳ)− x̄∥, x̄ = (ȳ11 , . . . , ȳ
n
n),

compared to the exact one given by ∥f(x̄) − x̄∥. Let then ∥.∥(i), i ∈ {1, . . . , n}, be a given
norm defined on Xi, and let us consider Lp-norms, p ∈ [1,+∞), defined on X by

∥x∥p =

(
n∑

i=1

∥xi∥(i)
p

)1/p

.

Maximum norms could be considered as well, as particular cases. We assume the following
property for the mapping f .

Assumption 7. For any i and j in {1, . . . , n}, there exists δi,j in R+∗ such that :

∥xj − x′
j∥(j) < ε

implies
∥fi(x)− fi(x1, . . . , x

′
j , . . . , xn)∥(i) < δi,jε,

with x and x′ in X.

Notation 1. δ(f) =
n

max
i=1

n∑
j=1

δi,j(f), where δi,j(f) are the smallest δi,j satisfying Assump-

tion 7.

At last, we also need the following assumption.

Assumption 8. A process sends its markers and armed flag-markers after at least η steady
iterations.

Then, we give an essential result about the accuracy of our heuristics.

Proposition 4. Let a sequence {xk}k∈N, satisfying the asynchronous iterations model (1),
be generated by a computation C involving n processes. Let sequences {y1,k}k∈N, . . . , {yn,k}k∈N
be defined by the rewriting (2). Let, at last, ȳ1, . . . , ȳn be the vectors returned by an execution
of the non-FIFO AIS protocol 4 on C. Then, under Assumptions 4 and 6 to 8, we have

∥f(x̄)− x̄∥p − ∥g(ȳ)− x̄∥p < n1/pηδ(f)ε,

with ȳ = (ȳ1, . . . , ȳn) and x̄ = (ȳ11 , . . . , ȳ
n
n).

12



Proof. Let us take again
ȳij = y

i,ki,j

j , ∀i, j ∈ {1, . . . , n},

with ki,j ∈ N. Then according to (2) and (3), we have

ȳji = y
j,kj,i

i = x
ρj
i (kj,i)

i = x
ρi
i(ρ

j
i (kj,i))

i = y
i,ρj

i (kj,i)
i .

Assumptions 4, 6 and 8 ensure∣∣∣{k ∈ {ρji (kj,i), . . . , ki,i − 1} | i ∈ Ik
}∣∣∣ ≤ η. (7)

Let us then consider

{ki1, . . . , kimi
} =

{
k ∈ {ρji (kj,i), . . . , ki,i − 1} | i ∈ Ik

}
,

with mi ∈ N∗. It follows

∥ȳii − ȳji ∥(i) = ∥yi,ki,i

i − y
i,ρj

i (kj,i)
i ∥(i),

= ∥y
i,ki

mi
+1

i − y
i,ki

1
i ∥(i),

= ∥y
i,ki

mi
+1

i − y
i,ki

mi
i + y

i,ki
mi

i − y
i,ki

mi−1

i

+ · · ·+ y
i,ki

2
i − y

i,ki
1

i ∥(i),

≤ ∥y
i,ki

mi
+1

i − y
i,ki

mi
i ∥(i)

+ ∥y
i,ki

mi
i − y

i,ki
mi−1

i ∥(i)

+ · · ·+ ∥yi,k
i
2

i − y
i,ki

1
i ∥(i),

< miε.

Now take, as always, x̄ = (ȳ11 , . . . , ȳ
n
n). Then we have, for all i ∈ {1, . . . , n},

∥fi(x̄)− fi(ȳ
i)∥(i) = ∥fi(ȳ11 , . . . , ȳnn)

− fi(ȳ
i
1, . . . , ȳ

i
n)∥(i),

≤ ∥fi(ȳ11 , . . . , ȳnn)
− fi(ȳ

i
1, ȳ

2
2 , . . . , ȳ

n
n)∥(i)

+ ∥fi(ȳi1, ȳ22 , . . . , ȳnn)
− fi(ȳ

i
1, ȳ

i
2, ȳ

3
3 , . . . , ȳ

n
n)∥(i)

+ · · ·
+ ∥fi(ȳi1, . . . , ȳin−1, ȳ

n
n)

− fi(ȳ
i
1, . . . , ȳ

i
n)∥(i).

Accounting Assumption 7 on f , it follows

∥fi(x̄)− fi(ȳ
i)∥(i) <

n∑
j=1
j ̸=i

δi,j(f)mjε.

13



Consider finally ȳ = (ȳ1, . . . , ȳn). Then we have

∥f(x̄)− x̄∥p = ∥f(x̄)− g(ȳ) + g(ȳ)− x̄∥p,
≤ ∥g(ȳ)− x̄∥p

+

(
n∑

i=1

∥fi(x̄)− fi(ȳ
i)∥(i)

p

)1/p

,

< ∥g(ȳ)− x̄∥p

+

 n∑
i=1

 n∑
j=1
j ̸=i

δi,j(f)mjε


p

1/p

,

< ∥g(ȳ)− x̄∥p + n1/p n
max
i=1

n∑
j=1
j ̸=i

δi,j(f)mjε.

Applying (7), which means mj ≤ η, and using Notation 1, we conclusively obtain

∥f(x̄)− x̄∥p < ∥g(ȳ)− x̄∥p + n1/pηδ(f)ε.

Relatively to weighted maximum norms, defined on X by

∥x∥w∞ =
n

max
i=1

∥xi∥(i)
wi

, w ∈ (R+∗)n,

let us assume that f is contractive, i.e.:

Assumption 9. There exists a real α < 1 such that

∥f(x)− f(x′)∥w∞ ≤ α∥x− x′∥w∞, ∀x, x′ ∈ X.

Then, one may want to apply the following practical result.

Proposition 5. Let a sequence {xk}k∈N, satisfying the asynchronous iterations model (1),
be generated by a computation C involving n processes. Let sequences {y1,k}k∈N, . . . , {yn,k}k∈N
be defined by the rewriting (2). Let, at last, ȳ1, . . . , ȳn be the vectors returned by an execution
of the non-FIFO AIS protocol 4 on C. Then, under Assumptions 4, 6, 8 and 9 :

∥g(ȳ)− x̄∥w∞ ≤ ε =
ε′

1 + ηminni=1 wi

implies
∥f(x̄)− x̄∥w∞ < ε′,

with ȳ = (ȳ1, . . . , ȳn), x̄ = (ȳ11 , . . . , ȳ
n
n) and ε′ ∈ R.

Proof. Considering the proof of Proposition 4, we recall

∥ȳii − ȳji ∥(i) < miε, i, j ∈ {1, . . . , n}.

According to Assumption 9, we have

∥f(x̄)− f(ȳi)∥w∞ ≤ α∥x̄− ȳi∥w∞, ∀i ∈ {1, . . . , n},

14



and then, in particular,

∥fi(x̄)− fi(ȳ
i)∥(i) ≤ wi α∥x̄− ȳi∥w∞,

≤ wi α
n

max
j=1

∥ȳjj − ȳij∥(i)
wj

,

< wi α
n

max
j=1

mj

wj
ε.

It follows

∥f(x̄)− x̄∥w∞ ≤ ∥g(ȳ)− x̄∥w∞ +
n

max
i=1

∥fi(x̄)− fi(ȳ
i)∥(i)

wi
,

< ∥g(ȳ)− x̄∥w∞ + α
n

max
j=1

mj

wj
ε.

Accounting mj ≤ η and α < 1, we deduce

∥f(x̄)− x̄∥w∞ < ∥g(ȳ)− x̄∥w∞ + η
n

max
i=1

1

wi
ε.

Then, by ensuring ∥g(ȳ)− x̄∥w∞ ≤ ε, and taking

ε =
ε′

1 + ηminni=1 wi
,

we conclusively satisfy
∥f(x̄)− x̄∥w∞ < ε+ η

n
min
i=1

wiε,

< ε′.

6 Numerical results

6.1 Problem and experimental settings
We are now interested in showing some experimental behavior of such asynchronous itera-
tions snapshot protocols. For that, we consider the convection-diffusion problem

∂u

∂t
− ν∆u+ a⃗.∇u = s, t ∈ R+,

where u and s are functions defined on R+ × ([0, 1])3. Conditions and parameters are set to
arbitrary values 

u(0, x, y, z) = 0, ∀x, y, z ∈ (0, 1),
u(t, x, y, z) = 0, ∀x, y, z ∈ {0, 1},∀t ∈ R+,
ν = 0.5,
a⃗ = (0.1,−0.2, 0.3),

just as the function s given by

s(t, x, y, z) = sin(x) sin(y) sin(z),

∀x, y, z ∈ [0, 1], ∀t ∈ R+. By using a finite-difference discretization and the backward Euler
integration scheme, we obtain a sparse linear system

AU ti = Bti,ti−1 ,
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Figure 4: Domain discretization and partitioning (16 sub-domains).

with U ti , Bti,ti−1 ∈ Rm, m ∈ N, at each time ti ∈ R+, i ∈ N∗, t0 = 0, for which we find an
approximated solution Ũ ti by means of successive relaxations of the form

U ti,k+1 := M−1NU ti,k +M−1Bti,ti−1 ,

with k ∈ N, and A = M−N being a convergent splitting. While plenty of parallel executions
were conducted using synchronous and asynchronous iterations k, we comment here only
few of them which however accurately represent the overall results. Figure 4 illustrates the
geometrical discretization and distribution of the domain ([0, 1])3 over parallel processes.
Each process handles exactly one sub-domain, and the number of processes always equals
the number of processor cores used. Most of the simulations have been run for 5 time steps
of size ∆t = 0.01. We implemented the synchronous and asynchronous iterative methods
using JACK [23], our MPI-based communication library where we additionally introduced
the various convergence detection methods.

6.2 Effectiveness
First experiments are led on a cluster of 68 nodes SGI Altix ICE 8400 LX with Quad Data
Rate (QDR) Infiniband interconnect (40 Gbit/s). Each node consists of two 6-cores Intel
Xeon X5650 Central Processing Units (CPU) at 2.66 GHz, and 21 GB Random Access
Memory (RAM) allocated to parallel jobs. The Message Passing Interface (MPI) library
SGI-MPT is loaded as communication middleware.

On practical aspects, we make few remarks about the proposed methods. First, non-
FIFO AIS protocols 1 (NFAIS1) and 2 (NFAIS2) are very close to AIS protocols 1 (AIS1) and
2 (AIS2), respectively, and differ only on the content of the marker. Furthermore, AIS2 turns
out to be a particular instance of the non-FIFO AIS protocol 5 (NFAIS5), when one consider
η = 0. Second, the non-FIFO AIS protocol 4 (NFAIS4) is a generalization of NFAIS5, based
on a behavior not likely to occur in most single-site high performance computing platforms.
At last, the non-FIFO AIS protocol 3 (NFAIS3) is designed for very specific circumstances
where markers exchange in NFAIS2 is to be avoided. Table 1 thus summarizes accuracy
results of NFAIS1, NFAIS2 and NFAIS5, which are similar to the other AIS protocols. Not
surprisingly, as shown by these test cases, we did not face premature termination for any of
our simulation runs. It is even noticeable that for any of the featured termination methods,
the final residual tends to revolve around 5.5e-7 (± 1e-7), regardless of both the number of
processor cores and the size of the linear system. Such an experimental behavior strengthen
the reliability of our protocols. Yet, compared to synchronous iterations which terminate at
8.3e-7, a few delay of 2.8e-7 (± 1e-7) is introduced, however, as we shall see in the sequel,
this does not prevent asynchronous iterations from terminating earlier than synchronous
ones, in terms of execution time.
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Table 1: Effectiveness of AIS protocols, with residual threshold set to 1e-6.

Sync. iter. NFAIS1
n 3

√
m

48 150
120 150
240 150
240 180
360 180
504 180

min ri max ri
8.3e-7 8.3e-7
8.3e-7 8.3e-7
8.3e-7 8.3e-7
8.3e-7 8.3e-7
8.3e-7 8.3e-7
8.3e-7 8.3e-7

min ri max ri
4.6e-7 6.9e-7
3.3e-7 5.0e-7
4.6e-7 5.6e-7
4.8e-7 6.5e-7
4.6e-7 5.5e-7
4.6e-7 5.8e-7

NFAIS2 NFAIS5
n 3

√
m

48 150
120 150
240 150
240 180
360 180
504 180

min ri max ri
5.4e-7 6.7e-7
4.6e-7 6.1e-7
3.8e-7 6.3e-7
4.5e-7 5.6e-7
5.0e-7 5.6e-7
4.8e-7 5.5e-7

min ri max ri
5.2e-7 6.1e-7
5.2e-7 6.5e-7
4.8e-7 6.2e-7
4.7e-7 7.2e-7
4.3e-7 6.4e-7
5.5e-7 5.9e-7

ri = ∥AŨ ti −Bti,ti−1∥∞, Ũ ti , Bti,ti−1 ∈ Rm.
n : number of processors.

Table 2: Efficiency of AIS protocols, for 5 time step resolutions, 1803 unknowns and 504
cores.

method time mean #it. mean #ss mean ri
Sync. iter.
SB96 [29]

BCVC08 [2]
NFAIS1
NFAIS2
NFAIS5

806
651
642
626
620
624

131867
182004
180782
176203
174429
175072

131867
13
8

1143
107
111

8.3e-7
8.5e-7
5.3e-7
5.2e-7
5.1e-7
5.6e-7

time : total execution time, in seconds.
#it. : maximum number of local iterations over the set of processes.

#ss. : number of snapshots.

6.3 Efficiency
Table 2 features total execution times and some mean measurements for one time step
resolution. We introduce implementation of two other termination methods from [29] (SB96)
and [2] (BCVC08), respectively, as described in Section 2. While discussing the effectiveness
of these other methods is beyond the scope of this paper, we successfully verify that our
AIS protocols do not introduce larger termination delays, regarding both execution times
and maximum numbers of iterations. The maximum number of iterations over the set of
processes quite well describes the resolution speed, as it produces the same ranking than
execution time.

It is noticeable that our approach was more efficient despite a higher number of snapshots.
Indeed, as the communication overhead cost is very low and that our methods run faster
(only one reduction operation), they are more often executed to more quickly detect the
actual convergence time, without impacting the iterations speed.

A part of the experiments involving much more processor cores has been conducted
on another cluster of 5040 nodes Bullx B510, also with QDR Infiniband interconnect. Each
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Table 3: Efficiency of AIS protocols, for 5 time step resolutions and more than 1000 cores.

Sync. iter. SB96
n 3

√
m

1024 180
2048 185
5600 185

time mean ri
251 8.3e-7
453 8.3e-7
530 8.4e-7

time mean ri
132 7.0e-7
195 7.7e-7
112 2.9e-7

BCVC08 AIS1
n 3

√
m

1024 180
2048 185
5600 185

time mean ri
126 8.8e-7
185 7.4e-7
108 5.3e-7

time mean ri
124 7.0e-7
179 8.5e-7
99 8.1e-7

node consists of two 8-cores Intel Sandy Bridge E5-2680 CPUs at 2.7 GHz, and 64 GB RAM.
The Bullxmpi (OpenMPI) library is used as communication middleware. Here, we present
in Table 3 some results for AIS1 protocol in an environment which however does not surely
satisfy the FIFO assumption. First, we see that, with such a data transfer rate, Assumption 6
could be considered for AIS1 as well, with η sufficiently small to avoid premature termination,
even without implementing some adaptation of Proposition 5. Secondly, it turned out that
this slightly weakened version of AIS1 led to final residuals much closer to synchronous
iterations ones, compared to results in Table 1. At last, regarding execution times, its
efficiency is confirmed, again compared to existing methods.

7 Conclusion
Asynchronous iterations raise a non-trivial convergence detection issue that has been tackled
in many various ways. Very few existing termination protocols are based on the computation
of a global residual error, while mostly, more or less robust heuristics have been investigated.
The most prominent approaches however require to perform two reduction operations, while
we managed here to achieve effective convergence detection, using only one. On practical
aspects, it is noticeable that highly robust heuristics not based on global residual lead to quite
intrusive, and often complicated, solutions which do not necessarily provide a substantial
efficiency gain.

We proposed in this paper seven new asynchronous iterations termination methods based
on global residual, under various communication models. For FIFO communication envi-
ronments, we proposed two protocols, AIS1 and AIS2, which we extended as NFAIS1 and
NFAIS2 to any arbitrary non-FIFO communication model. Rightly considering that FIFO
communication is however essential for computation messages in parallel iterative processes,
we exhibited a possible fifth protocol (NFAIS3) which avoids control messages in a con-
text where the FIFO delivering is not guaranteed for messages of different types. This
solution can however be slightly intrusive at implementation, and should be considered if
marker-based non-FIFO methods are not easily applicable. We then characterized a gen-
eral non-FIFO model where, on every channel (in one direction), the number of messages
that a given message can cross is bounded. The arbitrary non-FIFO model actually corre-
sponds to the particular case where this maximum number always exceeds the number of
messages emitted. We showed here how strong heuristics (NFAIS4 and NFAIS5) could be
used to avoid including computation data into control messages, which constitutes an im-
provement of NFAIS1 and NFAIS2, in terms of communication overhead costs. We formally
established the reliability of these heuristics, providing a practical way of accurately setting
the convergence residual threshold. Finally, experiments on supercomputers confirmed the
effectiveness and efficiency of our approach versus prominent existing methods.
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