IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 1

CoreVA-MPSoC: A Many-core Architecture with
Tightly Coupled Shared and Local Data Memories

Johannes Ax, Gregor Sievers, Julian Daberkow, Martin Flasskamp, Marten Vohrmann,
Thorsten Jungeblut, Wayne Kelly, Mario Porrmann and Ulrich Riickert

Abstract—MPSoCs with hierarchical communication infras-
tructures are promising architectures for low power embedded
systems. Multiple CPU clusters are coupled using an Network-on-
Chip (NoC). Our CoreVA-MPSoC targets streaming applications
in embedded systems, like signal and video processing. In this
work we introduce a tightly coupled shared data memory to each
CPU cluster, which can be accessed by all CPUs of a cluster and
the NoC with low latency. The main focus is the comparison of
different memory architectures and their connection to the NoC.
We analyze memory architectures with local data memory only,
shared data memory only, and a hybrid architecture integrating
both. Implementation results are presented for a 28 nm FD-SOI
standard cell technology. A CPU cluster with shared memory
shows similar area requirements compared to the local memory
architecture. We use post place and route simulations for precise
analysis of energy consumption on both cluster and NoC level
using the different memory architectures. An architecture with
shared data memory shows best performance results in combina-
tion with a high resource efficiency. On average, the use of shared
memory shows a 17.2% higher throughput for a benchmark suite
of 10 applications compared to the use of local memory only.

Index Terms—C.1.4 Parallel Architectures; C.1.4.e Multi-
core/single-chip multiprocessors; C.1.4.g On-chip interconnection
networks; C.1.5.e Memory hierarchy

I. INTRODUCTION

Modern application areas, like the Internet of Things (IoT)
or mobile robotics, require high computational power combined
with low energy and manufacturing costs in embedded sys-
tems. For this reason, we have developed a resource-efficient
Multiprocessor System-on-Chip (MPSoC) with an appropriate
trade-off between performance, energy consumption and chip
area. An MPSoC architecture that meets these requirements is
called a Many-Core architecture. Many cores are defined by a
very high number of small-sized CPU cores, which are able to
run applications with high resource efficiency. The integration
of more and more processing cores on a single chip requires
an efficient on-chip communication infrastructure. Due to the
limited scalability of bus-based communication, state of the
art MPSoCs with dozens of cores introduce communication
networks, i.e., Network-on-Chips (NoCs). Hand in hand with

J. Ax, J. Daberkow, M. Flasskamp, M. Vohrmann, T. Jungeblut, M.Porrmann,
and U. Riickert are with Center of Excellence Cognitive Interaction Technology
(CITEC), Bielefeld University, Cognitronics and Sensor Systems, Bielefeld,
Germany (e-mail: jax @cit-ec.uni-bielefeld.de).

G. Sievers is a former group member and works now at dSPACE GmbH,
Paderborn, Germany

W. Kelly is with Queensland University of Technology, Science and
Engineering Faculty, Brisbane, Australia

Manuscript received March 29, 2017; revised December 5. 2017.

the communication infrastructure goes the on-chip memory
architecture, which also has a huge impact on performance
and energy efficiency.

The main focus of this paper is the comparison of different
memory architectures and their interaction with the NoC
for many core systems. Compared to traditional processor
systems, lots of many cores feature a different memory
management, which changes the requirements on memory
and NoC infrastructure. Traditional processor systems use a
memory hierarchy with several (private and shared) on-chip
caches, external DRAM, and a unified address space. This
allows for easy programming, but results in unpredictable
memory access times. Additionally, the cache logic and the
coherence handling require a high amount of chip area and
power. Therefore, a lot of Many-Core systems omit data caches
and use software-managed scratchpad memories instead, which
provide a resource-efficient alternative [1]. For performance
reasons, the scratchpad memories are tightly attached to each
CPU and communication between CPUs is initiated by software.
In [2] we showed that area and power consumption of a
single CoreVA CPU’s data memory increases by 10%, when
using a cache instead of scratchpad memory. Due to cache
coherence issues it can be expected that these values will even
increase for a cache-based many core system. Additionally,
software-managed scratchpad memories gives full control
of data communication to the programmer or an automatic
partitioning tool (cf. Section III-E) and allows for a more
accurate performance estimation.

The many core architecture considered in this work is
our CoreVA-MPSoC, which targets streaming applications in
embedded and energy-limited systems. Examples for streaming
applications are signal processing, video processing, or all kind
of tasks processing an incoming data stream (e.g. encryption).
To couple hundreds or thousands of CPUs, the CoreVA-MPSoC
features a hierarchical interconnect architecture with a NoC
interconnect that couples several CPU clusters. Each CPU
cluster tightly couples several VLIW (Very Long Instruction
Word) CPU cores via a bus-based interconnect using a
common address space. This hierarchical interconnect allows
for different memory architectures to tightly couple scratchpad
memories to CPUs.

The first memory architecture is a local scratchpad memory
tightly coupled to a single CPU with a low latency memory
access time of one (write access) or two (read access)
clock cycles. Within a cluster, CPUs can access each others
local scratchpad memory in a Non-Uniform Memory Access
(NUMA) fashion via a bus interconnect, which increases the

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/TPDS.2017.2785799

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 2

access latency. In [3] we compared different interconnects for
use in a CPU cluster. We analyzed different topologies (shared
bus, crossbar) and bus standards (AMBA AXI, OpenCores
Wishbone) for 8 to 32 CPU cores.

A second memory architecture is presented in [4], which
shows the integration of a tightly coupled shared data scratch-
pad memory into a CPU cluster of our CoreVA-MPSoC. The
tightly coupled shared data memory features a low latency
of one or two clock cycles as well, when it gets accessed by
any CPU within a cluster. Due to the uniform memory access
(UMA) within a CPU cluster, copying data can be omitted,
which results in high performance and high resource efficiency.
However, the tight coupling of CPUs and shared memory
requires a low latency, high performance interconnect. This
limits the maximum clock frequency of the system for a high
number of CPUs within a single cluster. Furthermore, multiple
physical memory banks are needed to minimize congestions
during concurrent memory accesses of multiple CPUs.

The contribution of this paper is the comparison of different
memory architectures and their connection to the NoC via
a novel network interface (NI) presented in [5]. This work
extents our previous work in [4] and [5] by using the tightly
coupled shared data memory within CPU clusters for NoC
communication. Therefore, the NI is tightly coupled to the
shared data memory of the CPU clusters to allow for a very
efficient data transfer between different clusters. Furthermore,
it supports sending requests from several CPUs in parallel
and reduces the CPU load in a DMA controller like fashion.
We analyze memory architectures with local data memory
only, shared data memory only, and a hybrid architecture
integrating both. Additionally, different MPSoC configurations
with varying number of CPUs per cluster are analyzed.

This paper is organized as follows. At first Section II
presents the related work and current state-of-the-art MPSoCs
with comparable architectures. Section III gives a detailed
overview of the CoreVA-MPSoC architecture including the
different levels of the hardware hierarchy: CPU core, cluster,
and NoC. Additionally, our software communication model and
the compiler toolchain are presented. This includes our compiler
for streaming applications, which performs an automatic parti-
tioning of applications to hundreds of CPUs [6]. In Section IV
we present the architecture of the tightly coupled shared data
memory and its connection to the NoC. Implementation results
using a 28 nm FD-SOI standard-cell technology are shown in
Section V. Section VI presents energy results for low-level data
transfers using different memory architectures. Performance
results for low-level data transfers and different streaming
application benchmarks are shown in Section VII. Finally, this
work is concluded in Section VIIL

II. RELATED WORK

Several energy efficient MPSoC architectures have been
developed in both research and industry. However, there is
not much research into the analysis of different memory
architectures in combination with NoC-based MPSoCs.

Kalray presents the hierarchical MPSoC MPPA-256 [7]. It
provides no global address-space on NoC level but uses a

shared address-space within each CPU cluster. A CPU cluster
composes multiple VLIW Cores with local cache memories
working on a shared L2 memory within each cluster. CPUs of
different clusters communicate via inter-process communication
across the NoC. This cache-based approach allows for easier
programming but decreases resource efficiency [1].

Adapteva’s Epiphany [8] is another commercial MPSoC and
a typical example for a many core architecture. The 64-Core
chip E64G401 uses 32-Bit-RISC CPUs with 32 kB local level-1
(L1) scratchpad memory each. A global address-space allows
the CPUs to directly and randomly access all memories of
the MPSoC. The Epiphany does not introduce a cluster-level
hierarchy but solely relies on NoC communication. Adapteva
announced a new chip with 1024 64-Bit-CPUs [18] for summer
2017 with a very similar interconnect and memory architecture.

Apart from these MPSoCs there are other MPSoC archi-
tectures that feature shared L1 memories on cluster level.
Rahimi et al. [9] connect several CPU cores with multi-
banked tightly coupled data memory using a synthesizable
logarithmic interconnect. Different CPU target frequencies and
cluster configurations are compared. A CPU read request has
a delay of a single clock cycle. This is achieved by using
a shifted clock for the memories which complicates clock
management and timing closure of the overall system. As the
VLIW CPU used in this article features a memory read delay
of 2 clock cycles, we can omit a shifted memory clock in our
architecture. Besides synthesis results using a 65 nm technology,
Rahimi et al. present architectures with up to 32 CPUs and
64 memory banks. The work of Rahimi et al. is extended in
[19] by a controllable pipeline stage between the CPUs and
memory banks to be more reliable and variation-tolerant. In
[10] a shared L1 data cache is presented. Using the logarithmic
interconnect network proposed by Rahimi et al., the best-case
read latency is one clock cycle. The cache shows an area
and power overhead compared to a shared L1 memory (5 %
to 30 %), but allows for easier programming of the system.
Gautschi et al. [11] present a cluster with four OpenRISC CPUs
and an 8-banked shared L1 memory. Using 28 nm FD-SOI
technology, the cluster operates at a near-threshold voltage of
0.6 V. The architecture of the 3-stage pipeline OpenRISC is
improved to increase the energy efficiency by 50 %. Dogan
et al. [12] present a multiprocessor system for biomedical
applications with 8 cores, a shared L1 data memory with 16
banks and a shared instruction memory with 8 banks. The
shared data memory can be configured to have banks that are
accessed by a single CPU exclusively (“private banks”). For this,
a memory management unit (MMU) is used to segment private
and shared memory banks. To allow for power gating of unused
memory banks, the MMU can be configured to access active
banks only. The Plurality HyperCore architecture [13] integrates
64 RISC-like CPU cores, a hardware scheduler, and shared L1
data and instruction caches. All CPUs and the two caches are
connected via a “smart interconnect”. No detailed information
about the architecture of the interconnect is provided, but
Plurality states that multicasting the same data to several CPUs
is supported. The proposed instruction cache has a size of
128 kB and the data cache a size of 2 MB.

The STMicroelectronics STHORM MPSoC [14] connects

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017

TABLE I
COMPARISON OF DIFFERENT STATE-OF-THE-ART MPSOCS WITH RESPECT TO THE DATA MEMORY ARCHITECTURE

Topology L1 Memory L2 Memory DMA
NoC Cluster Local Shared Cache Shared Cache
MPPA-256 [7] v v v - v v - v
Epiphany [8] v - v - - - - v
Rahimi et al. [9] - v - v - - -
Kakoee et al. [10] v - v v - -
Gautschi et al. [11] - v - v - - - -
Dogan et al. [12] - v - v - - - -
Plurality HyperCore [13] - v - v v - - -
STHORM [14] v v - v - - - v
Rossi et al. [15] - v - v - - - v
Loi and Benini [16] v - v - v v v
NVIDIA’s Pascal GPU [17] v - v v v v -
CoreVA-MPSoC (this work) v v v v - - - v

several CPU clusters via a Globally-Asynchronous Locally-
Synchronous (GALS)-based NoC. Within a cluster, 16 CPUs
can access a tightly coupled shared 256 kB 32-banked data
memory via a logarithmic interconnect. The CPU cores have
a private instruction cache. Each cluster integrates a 2-channel
DMA controller that can access the shared memory and the
NoC interconnect via an additional bus interconnect. The
MPSoC is programmable via OpenCL or a proprietary native
programming model.

Rossi et al. [15] optimize a similar architecture for ultra-low
power operations. The PULP platform features one CPU cluster
with four 32 bit CPUs, eight 2kB L1 memory banks, and 16 kB
L2 memory. In this architecture the DMA controller is tightly
coupled to the shared L1 memory with two additional ports to
allow access from an external 64 bit bus.

Loi and Benini [16] present a L2-Cache, which connects
multiple CPU clusters with shared L1 memories to an external
DRAM memory. Because of the uniqueness of the L2-Cache in
the system no coherence handling is required. A configurable
STBus interface is used to connect the CPU clusters with a
latency of 9 to 16 clock cycles. The cache has a maximum
clock frequency of 1 GHz in a 28 nm FD-SOI technology and
requires 20 % to 30 % more area compared to a scratchpad
memory with the same memory size.

In addition to MPSoC architectures many general purpose
graphical processing units (GPUs) integrate a shared L1 mem-
ory. NVIDIA’s Pascal GPU family features several partitions
including one Pascal shader core with 32 shader ALUs. Two of
these partitions share a dedicated 32-banked L1 data memory
with 64 kB [17]. Additionally, these two partitions share a L1
texture cache and L1 instruction cache. The high-end Tesla
P100 GPU contains 56 Pascal cores with a performance of
21.1 TFlops (half-precision) and consumes 300 W.

Table I classifies several state-of-the-art memory archi-
tectures and our CoreVA-MPSoC with respect to the data
memory architectures. The CoreVA-MPSoC targets streaming
applications in energy-limited systems. Streaming applications
are characterized by continuous processing of a data stream via
many different tasks. Due to the static data-flow between these
tasks, the CoreVA-MPSoC uses software-managed scratchpad
memories instead of caches, as they are used in [7], [10], [13],
[16], and [17]. In contrast to the Epiphany [8], our CoreVA-

MPSoC features a hierarchical communication infrastructure.
Tightly coupled tasks benefit from the low access latency within
a CPU cluster and the NoC allows to scale the number of these
CPU clusters.

The CPU cluster of our CoreVA-MPSoC uses a tightly cou-
pled shared memory architecture like [9] and [11]. Additionally,
we tightly couple the NoC to this shared memory, in a similar
manner to the concept of Rossi et al. [15]. As a new concept,
our CoreVA-MPSoC allows the coexistence of tightly coupled
local and shared data memories. The CoreVA-MPSoC can be
configured with local data memory only, shared data memory
only, or a hybrid architecture integrating both. These different
memory architectures are analyzed in Sections V, VI and VII
relating to their resource efficiency for streaming applications.

III. THE COREVA-MPSOC ARCHITECTURE

The CoreVA-MPSoC features a hierarchical interconnect
architecture and targets applications for embedded and energy-
limited systems. Our CoreVA CPUs can be easily extended
by application specific instructions and dedicated hardware
accelerators, as discussed in [20]. Generally, a CoreVA-CPU
can be used for general purpose applications, so that all kinds of
application domains can be addressed. However, currently our
CoreVA-MPSoC and especially our automatic partitioning tool
(cf. Section III-E) focuses on streaming applications, like signal
processing, video processing, or all kind of tasks processing
an incoming data stream (e.g. encryption). In [20] the CoreVA-
MPSoC is presented as a platform for Software-Defined-Radio
applications.

Its hierarchical infrastructure consists of a Network-on-
Chip (NoC) interconnect that couples several CPU clusters
(cf. Figure 1). Within each CPU cluster several VLIW CPU
cores are tightly coupled via a bus-based interconnect.

A. CPU Core

The CPU core used in our MPSoC is the 32bit VLIW
processor architecture CoreVA, which is designed to provide a
high resource efficiency [21]. It features a six-stage pipeline.
VLIW-architectures omit complex hardware schedulers and
leave the scheduling task to the compiler [22]. The CoreVA
architecture allows to configure the number of VLIW slots,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 4

@ &

CPU CPU CPU
Cluster Cluster Cluster
CPU CPU CPU
Cluster Cluster Cluster
CPU CPU CPU
Cluster Cluster Cluster

Fig. 1. Hierarchical CoreVA-MPSoC with a 3x3 mesh NoC.

their functional units, as well as the number of load/store units
(LD/ST) at design-time. Functional units are arithmetic-logic-
units (ALUs), dedicated units for multiply-accumulate (MAC)
and division (DIV). Almost all instructions have a latency of
one cycle, excluding memory loads, multiplications and MAC
operations, which have a latency of two cycles. Additionally,
both, ALU and MAC-units, support a 16 bit single instruction
multiple data (SIMD) mode. Due to the highly configurable
architecture it is possible to tailor the processor’s performance
to match the needs of a given application domain. As a typical
Harvard architecture, the CPU features separated instruction
and data memories (cf. Figure 1). In this work, we use a
CoreVA CPU configuration with 16kB instruction memory,
two VLIW slots with one ALU each, as well as one MAC,
DIV, and LD/ST unit. The local data memory is optional
if a shared data memory is present on cluster level (cf.
Section IV) and vice versa. In addition to the memory, the
CoreVA CPU can be extended via a generic interface to connect
to additional components via memory-mapped-I0 (MMIO).
These components are several dedicated hardware accelerators
and the bus master interface to access the cluster interconnect.
To avoid CPU stalls due to bus congestion, a small first in first
out (FIFO) buffer is used to decouple CPU bus writes from
the bus master interface. Additionally, the CPU integrates a
bus slave interface to enable access to the memories from the
bus.

To verify our physical implementation flow, performance and
power models, two chip prototypes based on the CoreVA CPU
architecture have been manufactured in a 65 nm process. The
CoreVA-VLIW chip contains four ALU, two MAC, two DIV
and two LD/ST units and is based on a conventional low power
standard-cell library from ST Microelectronics [23]. This chip
consumes about 100 mW at an operating clock frequency of
300 MHz. Additionally, a RISC-like ultra low power CPU, the
CoreVA-ULP, is build using a custom standard cell library
optimized for sub-threshold operation [24], [25]. Operation
voltage range from 1.2V down to 200mV and frequency from
94 MHz down to 10kHz. The CPUs lowest energy consumption

NI CPU Cluster
(s
Bus Interconnect
L L L
=sl=c/Mlzslzo
®© O D Q ® OED QD © O D D
353 353 353 o
CPUO CPU 1 CPUN
A ; T ;
Tightly Coupled Shared Data Mem.

per clock cycle of 9.94 pJ is observed at 325mV and a clock
frequency of 133 kHz. At this point the CPU core consumes
only 1.3 uW.

B. CPU Cluster

A CPU cluster tightly couples several CoreVA CPUs which
share a common address space within the cluster. In its basic
configuration, each CPU can read from and write to the local
data memories of the other CPUs via a bus-based interconnect
(cf. Figure 1). CPUs are attached to the cluster’s interconnect
via a FIFO buffer to prevent penalty cycles on interconnect
congestion for write operations. Bus standard (AXI, Wishbone),
data bus width, and the topology (partial or full crossbar, shared
bus) can be configured at design time. All of these different
interconnect fabrics are evaluated in [3]. For this work, we use
the AMBA AXI4 interconnect standard with a 32 bit or 64 bit
data bus width. AXI defines separate channels for address- and
data transfers. In addition, read and write (R/W) channels are
separated and allow for parallel R/W requests even for a shared
bus. This fact is a big advantage for our NoC and is picked
up in the next Section ITI-C.

Register stages can be added to the interconnect to simplify
place and route timing closure and to increase the maximum
clock frequency of the MPSoC. Outstanding read requests are
not supported as our VLIW architecture does not implement
out-of-order execution. The minimum CPU to CPU read
latency without register stages is 4 clock cycles. The shared
bus implementation requires five arbiters in total (1 per
channel), the crossbar interconnect two arbiters per slave (R/'W
address channel). Our interconnect does not support outstanding
transactions and therefore we can omit extra arbitration for the
data channels. We use a round robin arbitration scheme in this
work. The extension of a CPU cluster with a tightly coupled
shared data memory is presented in Section IV.

C. Network-on-Chip

To allow for large-scale MPSoCs with hundreds of CPU
cores, a Network-on-Chip (NoC) can be used to connect

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 5

multiple CPU clusters. The NoC features packet switching
and wormhole routing. Packets are segmented into small flits
each containing 64 bit payload data. Routers forward the flits
along a path of network links. Each router has a configurable
number of ports to allow for the implementation of different
network topologies at design-time. In this work, a 2D-mesh
topology (cf. Figure 1) in combination with a static XY-routing
algorithm is used. A crossbar within each router switches
between the ports and uses a round robin arbitration if multiple
input ports need access to the same output link. Each input
port is registered and uses a FIFO for buffering, which results
in a latency of two clock cycles per router. To increase the
average throughput, virtual channels can be introduced to each
router, which implies dedicated FIFO buffers in each port.

In [26] we presented an asynchronous router design, which
indicates a lower area and power consumption compared to the
synchronous NoC. Additionally, this asynchronous NoC allows
for a Globally-Asynchronous Locally-Synchronous (GALS)
chip design.

Communication between two CPUs across the NoC is
done via the Network Interface (NI, cf. Figure 1) presented
in [5]. Each CPU cluster is addressable via a unique X and
Y coordinate in the 2D-mesh topology of the NoC. Within a
cluster a shared address space is used for all memories and
components of the CPU cluster. The NI bridges between the
address-based communication within a CPU cluster and the
packet-based communication used by the routers in the network.
Therefore, it provides an efficient flow control between CPU
cores, while minimizing the CPU’s execution time for this
communication. For this, packet data is directly stored to and
read from each CPU’s local data memory. Hence, the CPUs
can benefit from the low access latency of its local memory.
Additionally, the NI acts like a DMA controller by sending and
receiving data concurrent to CPU processing. Within the basic
configuration, the NI is connected to the cluster interconnect
via an AXI master and an AXI slave port. Due to the separated
AXI channels for R/W transactions, sending and receiving of
packets can be done concurrently by the NI’s AXI master port.
The AXI slave port is used by the CPUs to configure the NI.
As a new approach the NI can be directly connected to the
shared data memory within a cluster (cf. Section IV).

D. Communication Model

The CoreVA-MPSoC platform particularly targets streaming
applications. Streaming applications consist of many different
tasks which are connected via a directed data flow graph.
An efficient communication model is required to allow com-
munication between the tasks executed on different CPUs.
Within the CoreVA-MPSoC a communication model with
unidirectional communication channels is used. This approach
promises more scalability and efficiency compared to shared
memory concepts where the memory access can become the
performance bottleneck [27].

In general, a task will read from one or more input channels
and write to one or more output channels. Each channel
manages one or more R/W data buffers. An application can
request a buffer to write to (getWriteBuf) and a buffer to

| CPUO || NI O | | NI 1 || CPU1 |
I I T T
. . | | I
getWriteBuf P | | | |
<
x | I I
] | | |
H | | |
setWriteBuf{ : 4J > I 5 : :
L=
SRRk et anc
! < g | getReadBuf
! —g o —> <
! I3 | M
| | | o
| | | B
| | |
| | acknowledgel I: e |]»setReadBuf
i < ———3

Fig. 2. Sequence diagram of the communication model for a NoC transfer.

read from (getReadBuf). The synchronization is managed at
the granularity of the buffer size. Requesting a buffer from a
channel blocks the CPU if sufficient data has not yet arrived or
if there is no free buffer available to write to. However, once
a buffer is received from the channel, the application is free to
randomly access any memory location within that buffer. Apart
from this, no further synchronization is required. When a task
has finished writing to or reading from a buffer, it must inform
the task it interacts with, so that the buffer can be read by the
reader (setWriteBuf) or reused by the writer (setReadBuf).

There are three different types of channels: A (i) Memo-
ryChannel for communication between tasks mapped to the
same CPU. A (ii) ClusterChannel handles the communication
between CPUs of the same cluster. A (iii) NoCChannel allows
for communication between CPUs of different clusters via the
NoC. Inter-CPU channels (ClusterChannel and NoCChannel)
maintain at least two separate buffers so that latency can be
hidden. This is called double buffering—one buffer can be
filled while a previous buffer is still being read.

In case of using local data memory, the data buffers are
allocated in the receiving CPU’s memory to avoid high read
latency of the bus. However, we prefer the shared memory
for data buffers if it is available in the cluster, to minimize
write latencies as well. For synchronization, one mutex pair
per buffer is used. One mutex is used for getWriteBuf and
setWriteBuf while the other one is used for getReadBuf and
setReadBuf. The programming interface remains the same for
a NoCChannel. The sequence of the communication model for
a NoCChannel is shown in Figure 2. For a NoCChannel, data
buffers are allocated at the sending and at the receiving cluster.
A NoCChannel is implemented as a pair of ClusterChannels,
one on the sending cluster and one on the receiving cluster.
The NI in the sending cluster acts as a consumer and the NI
in the receiving cluster acts as a producer.

E. Compiler Infrastructure

We developed an LLVM backend for the Core VA architecture
supporting VLIW and SIMD vectorization. Each CoreVA CPU
can be programmed in C individually. However, programming
a complex MPSoC and making effective use of its resources is
a challenging task for the programmer. For this reason we have

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 6

developed a parallelizing compiler for streaming applications
to assist in programming the CoreVA-MPSoC [6], [28]. This
compiler, called CoreVA-MPSoC compiler, processes applica-
tions written in the Streamlt language [29]. An application is
described independently from the target architecture and can
be represented by a structured data flow graph of its tasks.
Our CoreVA-MPSoC compiler considers applications with a
steady state and a static schedule at runtime, without the need
of dynamic task scheduling. The efficient mapping of tasks
to the processing elements of an MPSoC is a challenging
task. A typical optimization goal is to find a placement for
the application’s tasks which maximizes the throughput of an
application. Typically, optimization algorithms like simulated
annealing or evolutionary algorithms are used to explore the
large solution space for this issue [6], [30], [31].

Our CoreVA-MPSoC compiler utilizes an approach based
on simulated annealing. During the partitioning process the
compiler exploits three degrees of freedom to handle an
application’s data flow graph. Firstly, stateless tasks can be
cloned to exploit data parallelism. Secondly, the compiler
decides to which CPU each task is mapped to. Thirdly, the
granularity of work done in each iteration can be increased to
reduce the overhead of communication. The changes resulting
from these decisions are called mutations and lead to a huge
search space for the partitioning algorithm. All candidate
partitions are analyzed regarding the expected performance
but they are also checked for exceeded hardware limits. These
can be upper limits for, e.g., memory consumption per CPU
or the packet size in the NoC. Partitions that violate these
restrictions are marked as invalid but they are not immediately
rejected. This behavior enables the partitioning algorithm to
explore more parts of the search space. Finally, the best partition
is used to generate an individual C code file for each CPU
of the MPSoC. For each task the computational part and the
synchronization with other tasks are considered separately.

An important and time-consuming step of the partitioning
algorithm is the accurate evaluation of thousands of different
partitions of the application. The effectiveness of the algorithm
is based on two conflicting goals: Firstly, the faster the
evaluation of a single partition can be done the more different
partitions can be analyzed. Accordingly, the chance is higher
to derive a partition with optimal performance from the search
space of possible partitions. Secondly, the more accurate a
partition is evaluated the better is the compiler’s chance to
correctly select between solutions. Thus, the challenge is to
balance computation time against accuracy and find that trade-
off that leads to the best overall result independent of the
optimization algorithm.

The performance evaluation of an application can be per-
formed on various levels of abstraction at different levels
of accuracy and speed. A simple analytical model might
be evaluated faster compared to a post place and route
simulation but achieves a lower accuracy. Our approach is
called Simulation Based Estimation (SBE) and combines a
single execution-based simulation and an analytic approach [28].
The execution time of each tasks is measured only once
and independent of MPSoC configuration and task placement,
because all CPUs in our MPSoC have the same properties

like, e.g., clock frequency and number of VLIW slots (cf.
Section III-A). However, our asynchronous NoC presented
in [26] allows us to scale the frequency of individual CPU
clusters in the future, to save energy and to handle on-chip
variations. This will lead to different task runtime depending
on the used CPU core. Methods presented, e.g., in [32] can
help to identify the task runtime of specific CPUs due to on-
chip variations. Future work on our compiler will include the
handling of varying task runtime, by scheduling critical tasks
to fast CPUs.

MPSoC configurations with the same number of CPUs can
differ in many ways like topology, communication infrastructure
and memory architecture. All these characteristics must be
modeled for accurate estimations.

The performance of the application is limited by at least
one bottleneck, which can be a CPU or a communication
link with the highest load. A CPU’s work consists of the
computational work and synchronization costs of the executed
tasks as well as additional waiting cycles if the communication
infrastructure is overloaded. In addition, the non-bottleneck
CPUs are blocked while waiting for the bottleneck processor(s)
to complete its task. Computational work can be calculated
for each CPU by summing up the predetermined runtime of
all tasks partitioned onto this CPU. The runtime of all tasks
can be determined in advance for a specific type of CPU by
measuring the execution on a single CPU. Beside the placement
of a task, the communication between two tasks can influence
the performance as well. Depending on the used communication
infrastructure, there are additional software costs (in terms of
CPU cycles) for synchronizing and handling of communication
channels in software. These costs differ if a channel connects
two tasks on the same CPU or across a CPU cluster or the
NoC. The communication overhead is estimated with respect
to the target MPSoC, including the topology, communication
bandwidth, and latency of the MPSoC as well as software
costs for CPU-to-CPU synchronization. The software costs can
automatically be determined in advance on our cycle accurate
simulator.

Multiple tasks communicating concurrently on a communi-
cation link (e.g., a NoC link or a bus interconnect) may lead to
a load that is exceeding the link’s bandwidth. This can cause
a stall of the sending or receiving CPU and therefore results
in additional cycles. Our SBE models the communication
infrastructure of the MPSoC to determine the load of all
network links for a certain partition. The load of a network link
is the sum of all communication channels that communicate
via this link [33].

The available data memory is a critical resource in embedded
multiprocessor systems since its size is typically limited due to
chip costs and energy constraints. The type of communication
channel between two tasks influences the amount of required
memory as well. For instance, a channel inside a cluster
allocates data buffers at the receiving CPU’s memory whereas
a channel across the NoC allocates data buffers also at the
memory of the sending CPU (cf. Section III-D). Our SBE
model estimates the consumption of data memory and enables
the partitioning algorithm to reject partitions exceeding the
physically available memory.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 7

The load of all CPUs and communication links is estimated
individually as described above. This combination enables our
compiler to determine a fast but still accurate performance
estimation of an application’s partitions. Changing the place-
ment of tasks or the MPSoC configuration requires only a
simple reevaluation of the SBE model without executing or
simulating the application. Our partitioning algorithm utilizes
this estimation for balancing the load due to computation and
communication across the MPSoC. The SBE model shows
a speedup of 2848 and an average estimation error of 2.6 %
compared to cycle accurate instruction set simulation [28].

Currently our SBE model is being extended to estimate the
expected energy consumption of a partition.

More details about the programming model and the strategy
of our CoreVA-MPSoC compiler are presented in [6].

IV. TIGHTLY COUPLED SHARED MEMORY
ARCHITECTURE

In order to increase flexibility and bandwidth in terms
of CPU-to-CPU communication, a multi-banked shared data
memory is integrated as an addition to the CPUs local data
memory. This memory is connected to every CPU in a single
cluster and can be accessed easily via the CPU’s MMIO
interface. Additionally, the NI is connected to the shared
memory via multiple ports in order to allow for simultaneous
R/W accesses.

A shared memory conflict occurs if two consumers (CPU
or NI) are claiming access to the same memory bank during
the same clock cycle. In this case, a round robin arbitration is
used and the losing consumer gets stalled until the next cycle.
To minimize the amount of shared memory conflicts, the ratio
between consumers and memory banks (the banking factor)
needs to be high enough. Even though it has to be considered
that a higher banking factor leads to tighter requirements
regarding the shared memory’s interconnect.

State of the art tightly coupled shared memory implementa-
tions do not integrate any local data memory and frequently
choose a banking factor of 2, which has been shown to be a
good choice [11], [12], [14]. We were already able to show,
that the use of local data memory decreases the need for a
high banking factor significantly [4]. In order to take this into
account, we choose a factor of 2 as well, while considering
only the amount of CPUs and ignoring the additional ports that
belong to the NI. To decrease the probability of shared memory
conflicts even further, we achieve a fine-grained interleaving of
accesses by selecting the bank according to the least significant
address bits.

A. Interconnect

Since our CoreVA CPU reads from the local data memory
within two clock cycles, the same requirements are used
for the shared memory in order to prevent additional CPU
pipeline stages or stall cycles. Therefore, a fully combinational
interconnect is required to be able to route a read request to
the memory in the first and return the data to the CPU in
the second cycle. In the case of a memory conflict, the stall
signal needs to get routed back to the requesting CPU in the

same cycle, which represents a reasonably long path. Thus,
the shared memory interconnect becomes the critical path in
our design in terms of timing requirements and needs to be
considered in particular.

In [4] we integrated two different topologies regarding this
interconnect. We consider a full crossbar implementation, where
a single arbiter is used per memory bank and connected to
every consumer (cf. Figure 3a). The arbiter stores the ID of
the requesting consumer in order to route the answer of a read
request to its correct destination.

The second interconnect is based upon a logarithmic Mesh-
of-Trees (MoT) topology as proposed by [9]. This interconnect
is constructed by two opposing logarithmic trees (cf. Figure 3b).
The routing tree is used to route the request from the CPU to
the corresponding memory bank. The request gets arbitrated
by the second tree. In case of a read request, the routing nodes
store the path of their last request to backtrack the data towards
the correct consumer. The number of consumers and memory
ports of both interconnects can be configured individually at
design time.

B. NI Connection

To allow for inter-cluster communication that involves
utilization of the tightly coupled shared memory, a connection
is not only established to the CPUs, but also to the NI
(cf. Figure 4). Thereby, our NI extends the approach of
additional ports to the shared memory’s interconnect like the
DMA controller in [15]. This allows the NI to perform R/W
accesses directly to the shared memory which enables fast
NoC communication. In contrast to [15] our hybrid memory
architecture may also include local data memories which can
be accessed by the NI via the bus interconnect as well. Whether
an access needs to be addressed towards the shared memory
or the bus interconnect is determined by the address of the
specific memory access.

The NI is capable of sending and receiving data simul-
taneously. To retain this parallelism when accessing the
shared memory, R/W accesses are performed via distinct ports.
Additionally, the data width of our NoC-based communication
is 64 bits. The shared memory on the other hand, is using a
data width of only 32 bits in order to maintain homogeneity
regarding the local data memory of the CPUs. To still achieve
64 bit accesses at the shared memory during a single clock
cycle, the number of R/W ports are both doubled. This leads
to a total quantity of 4 shared memory ports that are utilized
by the NI.

V. IMPLEMENTATION RESULTS

Physical implementation results of different hardware con-
figurations are discussed in this section. Varying the hardware
architecture leads not only to different area requirements but
also to different maximum clock frequencies. For this reason,
Section V-A discusses the maximum clock frequency of differ-
ent shared memory configurations. Section V-B analyzes the
area requirements of different CoreVA-MPSoC configurations
by varying the number of CPUs per cluster and the data memory
architecture. Both analysis, maximum clock frequency and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 8

Crossbar

Arbitration

(a) Crossbar interconnect.

Arbitration Tree

Routing Tree

CPUO

CPU 1

CPU 2

CPU 3

0 [9Ae7]
[MELCE]
Z 1ere
L 10AT
0 lene

(b) Mesh-of-Trees interconnect [9].

Fig. 3. Shared memory interconnect topologies for 4 CPU cores and 8 memory banks.

NoC Interconnect
v

I
| Send Control | N| | Recv Control

| =" 1

| Slave Control

Memory Bank

Memory Bank

Master Control |
Z S S Y T

CoreVA CPU

Memory Bank

Memory Bank

Memory Bank

108UU02J9)U| SNY

Memory Bank CoreVA CPU

Memory Bank CoreVA CPU

Shared Data Memory Interconnect

CoreVA CPU

Memory Bank

Fig. 4. Four ports connect the NI to the tightly coupled shared memory
interconnect.

area requirements, are done on synthesis results of all different
hardware configurations. Post place and route results for a
specific MPSoC architecture are presented in Section V-C.

We utilize a 28 nm FD-SOI standard cell technology' with
regular-VT standard cells for the analysis in this work. Our
hierarchical standard-cell design-flow is based on Cadence
Innovus Implementation System (formerly Encounter). Basic
blocks of the analysis are hard macros of our CoreVA CPU in
a 2 VLIW slot configuration, 16 kB instruction memory, and
32KkB, 16 kB, or no local data memory respectively. The macro
with 16 kB and the macro without data memory feature a port
to the shared memory.

A. Maximum Clock Frequency

In this Section we investigate the maximum clock frequency
of different shared memory configurations within a CPU cluster.
The CPU cluster integrates 8 CPU cores without local data

ISTMicroelectronics, 10 metal layer, Worst Case Corner: 1.0V, 125°C

Frequency [MHz]

2 4 8 16 32

Crossbar

64 128 2 4 8
Mesh-of-Trees

16 32 64 128 # Memory

Banks

Fig. 5. Maximum clock frequencies for different memory interconnects,
number of memory banks, and 16 kB memory per bank.

memories. The number of memory banks varies from 2 to 128
and each shared memory bank has a size of 16 kB. For the MoT
interconnect and configurations with up to 8 banks, the clock
frequency is not limited by the shared memory subsystem but
by the AXI interconnect (813 MHz, cf. Figure 5). The critical
paths of all other considered configurations traverse the shared
memory interconnect. In detail, the path goes from one CPU
through the memory interconnect and the memory arbiter back
to another CPU. The memory hard macros are not part of this
critical path so area efficient high density memory blocks can
be used instead of high speed blocks. The MoT with 16 banks
has a slightly reduced maxium clock frequency of 800 MHz
whereas the MoT configurations with 32 to 128 banks achieve
only 704 MHz to 649 MHz. However, the crossbar interconnect
shows a linear decrease of the maximum clock frequency from
781 MHz (2 banks) to 689 MHz (128 banks). For 2 to 16
banks, the MoT interconnect shows an advantage compared
to crossbar, but for more than 16 banks the crossbar is faster.
Cluster configurations with 4 and 16 CPUs benefit from the
crossbar interconnect for higher bank counts as well.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 9

@ CPU Macros
Il Bus Interconnect

I Shared L1 Mem.

Area in mm?
w
:

zstste || [[[[T [T T

zszsa ||| [T AT

zststo | [[{TTTTTTTTIT IO

st |1 L.

4x2x4
gz [T

4x2x4
4x2x4
2x2x8

hybrid shared

Fig. 6. Area requirements of different CoreVA-MPSoC configurations, with
32 CPUs and 256 kB data memory in total, and 650 MHz.

B. Area Requirements

This section analyzes different CoreVA-MPSoC configu-
rations. For comparison of the different configurations the
total MPSoC layout is set to 32 CPUs and 1 MB shared data
memory. We vary the number of CPUs per cluster and the data
memory architecture. The number of CPUs per cluster is set
to 4, 8 or 16 which are connected via a 64 bit AXI crossbar in
each configuration. These different MPSoC configurations are
termed 4x2x4, 2x2x8 and 2x1x16, in which the NoC topology
is indicated by the first two digits (e.g. 4x2 mesh) and the
number of CPUs per cluster by the third digit.

To allow for a MPSoC with 32 CPUs, multiple of these
CPU clusters are connected via the NoC. Additionally, we
compare three different data memory architectures: 1) local
memory attached to each CPU, 2) shared memory and 3) a
hybrid memory architecture that integrates both. The number
of memory banks for the shared memory is set to twice the
number of CPUs, e.g. 32 memory banks for the configuration
with 16 CPUs per cluster.

As shown in the previous Section V-A, the maximum clock
frequency is limited by the shared memory interconnect for
more than 8 memory banks. The AXI interconnect integrates
two register stages so it does not limit the maximum clock
frequency of our design, likewise the NoC. For better com-
parison of the area requirements, the target clock frequency
is slightly reduced to 650 MHz for all analyzed MPSoC
configurations. This allows the synthesis tool to use more power
and area efficient cells, because timing is no longer critical.
We use a crossbar memory interconnect for the following
results. However, the memory interconnect of crossbar and
MoT does not differ significantly in area requirements [4]. Area
requirements of a CoreVA CPU macro are 0.15mm? (32kB
local data memory), 0.12mm? (16kB local data memory), or
0.08 mm? (no local data memory).

The bars of local in Figure 6 show the MPSoC configurations

without shared data memory and 32kB local data memory
per CPU. CPU macros contain the local data and instruction
memories. This local MPSoC configuration features a full AXI
crossbar (0.22 mm? for 16 CPUs) as bus interconnect to allow
for concurrent communication of multiple CPUs. All other
configurations use a shared AXI bus (0.15mm? for 16 CPUs),
because the shared data memory is used for data transfers
between the CPUs. In this case the AXI bus is used for
initialization, synchronization, and control of the CPUs and the
NI only. Especially for a larger CPU count per cluster the area
overhead of an AXI crossbar is significantly larger compared to
a shared bus [3]. The area for the NoC components decreases
from 0.33mm? (4 CPUs per cluster) to 0.09 mm? (16 CPUs
per cluster) with a decreasing number of CPU clusters. In
contrast, the total bus area increases only slightly from the 4
CPU cluster to the 16 CPU cluster (both 0.44 mm?).

All hybrid MPSoC configurations use the 16kB CPU
macro and 512kB shared memory. With 512kB local data
memory in total, the CPUs require an area of 3.77 mm?. The
shared data memories vary from 8 to 32 memory banks with
8kB each, depending on the CPU count per cluster. Total
area requirements for all shared memory blocks and their
interconnects increase from 1.02mm? (4 CPUs per cluster)
to 1.22mm? (16 CPUs per cluster). The area requirement of
the NoC is similar to the Local Memory configuration. Router
area remains constant, only the NI area slightly increases from
0.20mm? to 0.22mm? due to the additional logic and ports
for the shared memory.

The shared MPSoC configurations use the CPU macro
without local data memory. To achieve larger shared data
memories we increase the size of a bank to 16 kB. The area
of the shared data memory within a single cluster varies from
0.25mm? (4 CPUs per cluster) to 1.12 mm? (16 CPUs per
cluster). An increasing amount of memory banks and hence a
larger interconnect is the reason for this.

The lowest area requirements are achieved by the MPSoC
configuration with 8§ CPUs per cluster and shared data memory
only. However, altogether there are only minor differences in
area requirements between all MPSoC configurations. Thus it
is required to consider the energy requirements (cf. Section VI)
and performance (cf. Section VII) of the different MPSoC
configurations.

C. Place and Route/Physical Implementation

Our hierarchical standard-cell design-flow includes three
stages to build a full MPSoC (cf. Figure 7). The basic block
for the place and route (P&R) layout used in this work is a
2 VLIW slot CPU macro with 16kB instruction and 16 kB
local data memory. Furthermore, we achieve the next level of
hierarchy by combining several CPU macros to a cluster node
macro. Multiple of these cluster node macros can be strung
together on a top level P&R step to build a scalable MPSoC
with a 2D-Mesh NoC. Due to the mesochronous NoC design
(cf. Section III-C) the additional area and power consumption
for the global clock tree is negligible on the top level P&R
step.

Within this section post P&R results are shown for a cluster
node layout including 4 CPUs using the hybrid data memory

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 10

Fig. 7. 3x3 2D-Mesh MPSoC layout using the hierarchical design flow with
cpu and cluster node macros

- §
Shared = | Shared

Mem.

Port 4

Fig. 8. Physical layout of a CPU cluster node with 4 CPU macros (16kB
local data memory each), 64 kB shared data memory and NoC components.
Area requirements are 0.817 mm?. Left: Placed design (shared memory and
its interconnect is marked blue) Right: Routed design with NoC ports marked

architecture (cf. Figure 8). For the shared data memory the
crossbar interconnect with 8 memory banks is used. The layout
corresponds with the block diagram in Figure 10. Additionally,
NoC components are included, like the NI and a router with
connection ports to all four directions. More detailed P&R
results of the CoreVA-MPSoC CPU clusters without the NoC
but more CPUs have been published in [4].

Figure 8 shows the placed design with the memory inter-
connect and the shared memory macros highlighted in blue.
The AXI interconnect is marked in red. All NoC components
are highlighted in green whereas the NI is lime-green and the
router dark-green. The routed design on the right hand side of
Figure 8 shows the connections to all four external ports of
the router. To achieve this the P&R tool can route across the
CPUs due to the fact that the top two routing layers are not
used by the CPU macros.

After synthesis, a CPU cluster with 8 memory banks shows a
maximum clock frequency of 750 MHz (cf. Figure 5). However,
after P&R the maximum clock frequency of the cluster node
macro decreases to 700 MHz. The total area requirements of
the node macro are 0.817 mm?.

Post P&R power estimation results show a total power
consumption of about 130 mW for the node macro. A detailed

power and energy analysis by using back-annotated simulations
is presented in the next section.

VI. ENERGY RESULTS

Our CoreVA-MPSoC is designed for embedded low power
systems. Therefore, we present results about the energy
consumption of the different MPSoC configurations. Main
focus of this analysis are the energy costs of data transfers
between CPUs by comparing different memory architectures
(shared vs. local data memory). Section VI-A presents energy
results for communication on CPU cluster level regarding
simple R/W transactions to the particular memory. Within
Section VI-B a synchronized and more complex data transfer
is analyzed for cluster and NoC communication.

For most 28 nm and smaller process technologies, the wire
load models are skipped during synthesis step. This results in
inaccurate energy results especially for interconnects (NoC and
AX]I) that are the main focus of this work. Hence, it is necessary
to use a full P&R design and not only a post synthesis netlist
for an accurate power analysis.

For all power analyses the post P&R layout of the node
macro presented in the previous Section V-C is taken as a basis.
It includes four CPUs with 16 kB local data memory each and
a 64 kB shared data memory per cluster. All power analyses
are based on a maximum clock frequency of 700 MHz. The
dynamic power has been estimated by extracting the traces
from a back-annotated simulation on the P&R layout, and
performing the power simulation with Cadence Voltus.

All analysis in this section are done on a low-level of
communication, which allows us to get very accurate energy
results for single data transfers. In future work, these results
can be used by our CoreVA-MPSoC compiler to optimize
application for energy.

A. Energy Consumption for Read/Write Transactions on Clus-
ter Level

Within a CPU-Cluster CPU-to-CPU communication is real-
ized as a remote memory access. Thus this section presents
the energy consumption of different memory accesses.

A synthetic benchmark, written in assembler, is used to
access the CPU’s local data memory (Local CPUO), the memory
of another CPU within the same cluster Local CPU1, and
the shared memory (Shared) respectively (cf. Figure 9). The
benchmark runs on a single CPU while all other CPUs of the
cluster are executing empty operations (NOPs) so as not to
interfere with the energy measurement. Figure 9 shows the
worst case energy consumption for reading or writing an all-
one 32 bit data word (OXxFFFFFFFF). Using other data words
results in slightly lower energy consumption (e.g. 13% less
for writing all-zeros). For comparison, Figure 9 also shows the
energy consumption of a NOP.

The energy consumption is divided into a static (due to
leakage current) and a dynamic portion (e.g., due to transistor
switching). Total static power consumption of the CPU-Cluster
is 13.2mW and 4.6 pJ per cycle per CPU. The execution of a
NOP requires 27.5 pJ with a dynamic portion of 22.8 pJ. About
20% of the overall energy is spent on the clock network. The

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 11

[Static Energy Il Dynamic Energy

100} -

80 -

60 [--

4O

Energy per Operation [pJ]

2

o o

T T

-

U _

n

= _

-

o

n

= _

-

U _

n

o [
i i

Local CPUO Local CPU1 Shared NOP

Fig. 9. Energy per memory operation in the CoreVA-MPSoC.

instruction memory requires about 12% of the overall energy
as the benchmark requires the read of a 64 bit instruction every
second cycle.

An access to the local memory (Local CPUO) requires 37.1 pJ
(write) and 32.6 pJ (read). A write access to a remote memory
(Local CPU1) results in 45.2 pJ per operation. This increase of
21.7% is due to the FIFO of the CPU’s MMIO-interface and
the register stages of the AXI interconnect. A read access lasts
six cycles and requires 114.0 pJ. The reading CPU has to be
stalled for five cycles till the requested data is read from the
memory and send back via the AXI interconnect. These results
show that read requests via the AXI interconnect should be
avoided. In our CoreVA-MPSoC, we achieve this by using a
tailored communication model (cf. Section III).

A request to the shared memory increases the energy
consumption only slightly by 0.01% (read) and 1.5% (write)
in comparison to a local memory access. In case of a bank
conflict a CPU needs to be stalled for at least one clock cycle.
However, with 32.63 pJ for a read and 37.68 pJ for a write, the
access to the shared memory is more favorable than an access
to the local memory of another CPU.

B. Energy Consumption on NoC Level

To determine the energy costs for CPU-to-CPU communica-
tion including NoC components we have implemented another
low-level synthetic benchmark. This synthetic benchmark
includes two simple tasks mapped to two CPUs of different
clusters. One task produces random data and sends it via a
NoC channel to the consuming task. Sending is done only once
to isolate a single NoC transfer. We assume that the sending
data is already available in the memory next to the sending
CPU. The storing of data to the local memory is usually done
during the work process of the specific task and does not
need to be considered for communication costs. CPUs are set
to sleep mode once they finished their synchronization and
communication tasks. The sequence of the communication
used in the benchmark is nearly identical to the sequence of
Figure 2. It includes costs for synchronization but excludes
the costs for the work process. We varied the data volume to
be transfered between 8 B and 4 kB. For the back-annotated

@ il K<) >
= =4 = L
E Sle
CPU CPU CPU
L gL sl |
Shared § Shared § Shared
Meii. [Mem. A Mem.
= | 2 |
g P
o CPU] CPU
Port 4 Port 4

Fig. 10. Block diagram of two connected cluster node macros. Components
involved in NoC communication using shared data memory are highlighted.

simulation we use a MPSoC design with two node macros
which are attached to each other during the top level P&R step.
The scenario is shown in Figure 10.

Results for power and energy consumption of NoC com-
munication using the shared data memory are shown in
Table II. The table presents the power consumption of the
different components that are involved in the communication
phase during a data transfer of 1kB. These components are
highlighted in Figure 10. The influence of bus interconnect
on the energy consumption is negligible, because it is only
used for a single write access to trigger the NI's sending
job. As a reference, Table II shows the power consumption
during their inactive or idle phase. In idle mode CPUs and
memory blocks have a very low power consumption compared
to the other components because they can be clock gated.
However, components of the communication infrastructure have
to be available for communication tasks of other CPUs. During
the process of communication tasks the power consumption
increases from 4.4 mW to about 26 mW for CPUs and from
1.1mW to about 14mW for the shared memory. Power
consumption for router and NI increases only slightly from
4.5mW to about 6 mW and from 2.4mW to about 5mW,
respectively. The values for the individual components vary
marginally, depending on their receiving or sending task (e.g
sending NI 3.9mW and receiving NI 5.5 mW).

Furthermore, Table II presents the energy requirements,
considering the active time of the different components during
communication. The third row shows the absolute energy
requirement for the communication task of the individual
components. The relative energy requirement is displayed
in the fourth row. It excludes the energy that would have
been consumed during the idle mode anyway. In future, these
relative energy requirements can be used during the energy
optimization process of our compiler (cf. Section III-E). It
solely considers the additional energy costs for communication
and synchronization while mapping tasks to different cores.

Figure 11 shows the relative energy costs for NoC com-
munication using shared or local data memories transferring
different packet sizes. The energy costs for shared and local
data memory are very similar. Except for very large packets
local memories have a minor advantage. The shared memory
consumes 32.2nJ for the transfer of 4 kB, which is 4 % more

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 12

TABLE II
POWER AND ENERGY CONSUMPTION FOR NOC TRANSFERS USING SHARED DATA MEMORY.

Sending Cluster Node

Receiving Cluster Node

CPU Shared Mem. NI Router Router NI Shared Mem. CPU
Power in mW Idle 44 1.0 2.4 44 44 2.4 1.0 4.4
Active 25.5 13.6 3.8 6.0 5.6 53 15.4 253
Eneroy in nJ Absolute 1.7 3.0 0.8 1.3 1.2 1.2 34 1.6
& Relative 1.5 2.7 03 04 03 06 3.1 13
32768 »
2 +-Local Mem. 512 »
£ 16384 » -+-Local Mem. /
> Shared Mem. 256 o
2 @ Shared Mem.
c b 4 ° 4
© 8192 3 128
e Py 3 /
64
409 o o 6O
32
2048 16
e8I ETEIF *es83EEELEEIF
packet size in bytes packet size in bytes
(a) Relative energy costs.
Fig. 12. Total latency in number of cycles for a NoC data transfer using
512 ¢ shared or local data memories transferring different packet sizes.
2 256 N +-Local Mem.
C
© 128 . Shared Mem. . .
= o4 ° transfer. We used the same synthetic benchmark which has
o already been used for energy measurements (cf. Section VI-B).
<3 32 L8 . . .
3 16 @ One task is producing data and sends it via a NoC channel to
2 Y—e A the consuming task. The measurement of the minimum latency
o 8 oO—Q . . .
4 starts when the sending CPU triggers the NI for the sending
) job and ends when the receiving NI signals the consuming
) CPU that all data has been arrived.
© o o ¥ ¥ g N x x ¥ Figure 12 shows the minimum latency for a single NoC

- Q& ©
packet size in bytes
(b) Energy costs per byte.
Fig. 11. Relative energy costs for NoC communication using shared or local
data memories transferring different packet sizes.

compared to local memory. For small packet sizes the energy is
dominated by the static part. This includes the synchronization
tasks on the CPUs and the setup time of the NI to initialize the
transfer. However, for packets larger than 256 bytes the energy

increases nearly linear with the packet size (cf. Figure 11a).

This behavior is shown more clearly in Figure 11b which shows
the energy per byte decreasing from 466 pJ for 8 bytes to 8 pJ
for 4kB.

VII. PERFORMANCE RESULTS
The performance of NoC communication can be measured on
different levels. Section VII-A shows results for the minimum
latency of a single NoC data transfer by using the shared or the
local data memory. Performance results on application level
are presented in Section VII-B.

A. Minimum Latency on NoC Level

This section shows minimum latency results for a single NoC

data transfer using shared or local data memories transferring
different packet sizes. The shared memory outperforms the
local memory for all packet sizes by saving about 6 clock cycles
per transfer (e.g. 26 vs. 32 cycles for 8 bytes, cf. Figure 12).
For packets larger than 2kB the effect becomes negligible
because of the NI's ability to burst data transfers.

B. Performance on Application Level

To determine the impact of shared memory on application
performance, we use a set of 10 different streaming applications.
These applications are derived from the StreamlIt benchmark
suite [29]. The benchmark suite features applications from the
signal processing domain, sorting algorithms, and encryption.
We use our MPSoC compiler (cf. Section III-E) to automatically
partition the different tasks of the benchmarks to our CoreVA-
MPSoC. In this work, the compiler is forced to optimize the
partition of each application to achieve the best data throughput
for the benchmarks. However, our compiler can optimize for
minimum latency on application level, as well

Three different hierarchical CoreVA-MPSoC configurations
with 32 CPUs and 1 MB data memory are considered:
4x2x4, 2x2x8 and 2x1x16. In addition, three different memory
configurations are used. The local memory configuration

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 13

features 32 kB local memory per CPU and no shared memory.
The hybrid memory configuration uses 16 kB local memory
per CPU and a balanced amount of shared memory per
cluster. Which means 64 kB shared memory per cluster for
the configuration with 4 CPUs per cluster (4x2x4), 128 kB for
the configuration with 8 CPUs per cluster (2x2x8) and 256 kB
for the configuration with 16 CPUs per cluster (2x1x16). For
hybrid, the heap and the stack of each task are located in
the local memory whereas the communication data buffers are
stored in the shared memory. The shared memory configuration
solely uses a balanced amount of shared memory per cluster
without any local memories. For this configuration heap, stack,
and communication buffers are allocated in the shared memory.

In [4] we have shown that the hybrid memory configuration
outperforms other configurations within a single cluster. In
that context we only considered a single way of partitioning
for each application which results in identical memory access
patterns. However, within this work the compiler is authorized
to consider the particular memory configuration to benefit from
the flexibility of a shared memory. Additionally, we analyze
larger MPSoCs including NoC communication.

Figure 13 shows the speedup of data throughput of se-
lected benchmarks for the considered MPSoC configurations
compared to a single CPU. The memory architecture has
almost no effect on algorithms like FFT, which have a very
homogeneous structure. Some applications with special memory
access pattern benefit from the shared data memory, especially
when some CPUs require more memory than others (like
LowPassFilter). In this case the compiler is able to allocate
a larger amount of memory in the shared memory for the
critical CPU, while other CPUs get less. Additionally, these
kind of applications do also benefit from clusters including a
higher number of CPUs and a larger shared data memory. The
column Average shows the mean speedup of all 10 applications
of our benchmark suite which shows that the use of shared
data memory increases the throughput by 17.2% (shared
compared to local). Due to its higher flexibility the shared
only configuration shows slightly better results compared to

3 local I hybrid m— shared‘
35 T T T T

251

201

Speedup

Average

R

DES

4x2x4
2x2x8
2x1x16
4x2x4
2x2x8
2x1x16
4x2x4
2x2x8
2x1x16

1
T
J

LowPassFilter

Fig. 13. Speedup of MPSoC configurations with different number of receive
channels per NI compared to a single CPU. Average over ten applications and
three MPSoC configurations.

the hybrid configuration (4 % in average). However, for some
special memory access patterns hybrid outperforms shared due
to bank congestions of the shared data memory. In this case
the hybrid configuration benefits from fewer accesses to the
shared data memory because heap and stack of each CPU are
stored in their local memories.

VIII. CONCLUSION

This work investigates different memory architectures for
our CoreVA-MPSoC, which targets streaming applications
in embedded and energy-limited systems. Due to the static
data-flow of streaming applications, the CoreVA-MPSoC uses
software-managed scratchpad memories instead of caches.
The CoreVA-MPSoC has a hierarchical architecture with a
NoC interconnect coupling several CPU clusters. We analyzed
different memory topologies for tightly coupled data memory
within a CPU cluster. A CPU cluster can integrate local data
memories, shared memory, or a hybrid architecture that utilizes
both. Particularly this work introduces the efficient coupling
of a cluster’s shared memory to the network interface (NI) for
highly efficient NoC communication.

Physical implementation results utilizing a 28 nm FD-SOI
standard cell technology show only minor differences in area
and energy requirements between the use of tightly coupled
shared and local data memory architectures. However, shared
memory outperforms local memories for NoC communication
in terms of application throughput. The NoC communication
benefits from a lower access latency to the shared memory.
Additionally, the applications benefit from more memory
allocation flexibility introduced by the shared memories. On
average, this results in about 17.2 % higher throughput for a
benchmark suite of 10 applications compared to local memory
only.

Overall, hierarchical MPSoCs with a software-managed
shared data memory on cluster level and a tightly coupled
NoC are a best choice architecture for streaming applications
in embedded systems. For future work we plan to extend
our CoreVA-MPSoC compiler in a way that it optimizes the
combined utilization of local and shared memory. If possible
heap and/or stack may be allocated in a small local memory
or in the shared data memory otherwise.

ACKNOWLEDGMENT

This work was funded as part of the DFG Cluster of Excel-
lence Cognitive Interaction Technology *CITEC’ (EXC 277),
Bielefeld University and the BMBF Leading-Edge Cluster
“Intelligent Technical Systems OstWestfalenLippe” (it’s OWL),
managed by Project Management Agency Karlsruhe (PTKA).

REFERENCES

[1] R. Banakar et al., “Scratchpad Memory: Design Alternative for Cache
On-Chip Memory in Embedded Systems,” in Int. Symp. on Hard-
ware/Software Codesign (CODES). ACM Press, 2002, pp. 73-78.

[2] T. Jungeblut et al., “Design Space Exploration for Memory Subsystems
of VLIW Architectures,” in 5th IEEE International Conference on
Networking, Architecture, and Storage, 2010, pp. 377-385.

[3] G. Sievers et al., “Evaluation of Interconnect Fabrics for an Embedded
MPSoC in 28nm FD-SOL,” in ISCAS, 2015.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, POST-PRINT , DECEMBER 2017 14

[4]

[8]
[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

, “Comparison of Shared and Private L1 Data Memories for an
Embedded MPSoC in 28nm FD-SOL” in International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC). IEEE, sep
2015.

J. Ax et al., “System-Level Analysis of Network Interfaces for Hi-
erarchical MPSoCs,” in International Workshop on Network on Chip
Architectures (NoCArc). ACM Press, 2015.

W. Kelly et al., “A Communication Model and Partitioning Algorithm
for Streaming Applications for an Embedded MPSoC,” in Int. Symp. on
System on Chip (SoC). IEEE, 2014.

B. D. de Dinechin et al., “A clustered manycore processor architecture for
embedded and accelerated applications,” in 2013 IEEE High Performance
Extreme Computing Conference (HPEC). 1EEE, sep 2013.

Adapteva, “E64G401 Epiphany 64-Core Microprocessor Datasheet,” 2014,
http://www.adapteva.com/.

A. Rahimi et al., “A Fully-Synthesizable Single-Cycle Interconnection
Network for Shared-L1 Processor Clusters,” in DATE. 1EEE, 2011.
M. R. Kakoee et al., “A Multi-Banked Shared-L1 Cache Architecture for
Tightly Coupled Processor Clusters,” in Int. Symp. on System on Chip
(SoC). IEEE, 2012.

M. Gautschi et al., “Customizing an Open Source Processor to Fit in an
Ultra-Low Power Cluster with a Shared L1 Memory,” in Great Lakes
Symp. on VLSI (GLSVLSI). ACM Press, 2014, pp. 87-88.

A. Y. Dogan and others., “Multi-Core Architecture Design for Ultra-Low-
Power Wearable Health Monitoring Systems,” in Design, Automation &
Test in Europe - DATE. 1EEE, 2012, pp. 988-993.

J. Turley, “Plurality Gets Ambitious with 256 CPUs,” Microprocessor
Report, 2010.

L. Benini et al., “P2012: Building an Ecosystem for a Scalable, Modular
and High-Efficiency Embedded Computing Accelerator,” in Design,
Automation & Test in Europe (DATE). IEEE, 2012, pp. 983-987.

D. Rossi et al., “A 60 GOPS/W, -1.8V to 0.9V Body Bias ULP Cluster
in 28nm UTBB FD-SOI Technology,” Solid-State Electronics, vol. 117,
pp. 170-184, mar 2016.

I. Loi and L. Benini, “A Multi Banked - Multi Ported - Non Blocking
Shared L2 Cache for MPSoC Platforms,” in Design, Automation & Test
in Europe (DATE). 1EEE, 2014.

D. Kanter, “Nvidia Hits HPC First With Pascal,” Microprocessor Report,
2016.

A. Olofsson, “Epiphany-V: A 1024 processor 64-bit RISC System-On-
Chip,” Adapteva, Tech. Rep., 2016.

M. R. Kakoee er al., “A Resilient Architecture for Low Latency
Communication in Shared-L1 Processor Clusters,” in DATE. IEEE,
2012, pp. 887-892.

G. Sievers et al., The CoreVA-MPSoC: A Multiprocessor Platform
for Software-Defined Radio. Cham: Springer International Publishing,
2017, pp. 29-59. [Online]. Available: http://dx.doi.org/10.1007/978-3-
319-49679-5_3

B. Hiibener et al., “CoreVA: A Configurable Resource-Efficient VLIW
Processor Architecture,” in Int. Conf. on Embedded and Ubiquitous
Computing (EUC). 1IEEE, 2014, pp. 9-16.

J. A. Fisher, “Very Long Instruction Word architectures and the ELI-512,”
in ISCA’83. ACM, 1983, pp. 140-150.

G. Sievers et al., “Design-Space Exploration of the Configurable 32 bit
VLIW Processor CoreVA for Signal Processing Applications,” in 2013
NORCHIP, 2013.

S. Liitkemeier et al., “A 65 nm 32 b Subthreshold Processor With 9T
Multi-Vt SRAM and Adaptive Supply Voltage Control,” IEEE Journal
of Solid-State Circuits, vol. 48, no. 1, pp. 8-19, 2013.

M. Vohrmann et al., “A 65 nm Standard Cell Library for Ultra Low-power
Applications,” in ECCTD. IEEE, 2015.

J. Ax et al., “Comparing synchronous, mesochronous and asynchronous
NoCs for GALS based MPSoC,” in IEEE 11th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC-17), 2017.
T. Marescaux et al., “The Impact of Higher Communication Layers on
NoC Supported MP-SoCs,” in International Symposium on Networks-on-
Chip (NOCS). IEEE, may 2007, pp. 107-116.

M. Flasskamp et al., “Performance estimation of streaming applications
for hierarchical MPSoCs,” in Workshop on Rapid Simulation and
Performance Evaluation (RAPIDO). ACM Press, 2016.

W. Thies et al., “Streamlt: A Language for Streaming Applications,” in
International Conference on Compiler Construction (CC). Springer,
2002, pp. 179-196.

Z. Wang and M. F. O’Boyle, “Partitioning Streaming Parallelism for
Multi-cores,” in International Conference on Parallel Architectures and
Compilation Techniques (PACT). ACM Press, sep 2010, p. 307.

[31] L. Thiele et al., “Mapping Applications to Tiled Multiprocessor Em-
bedded Systems,” in Seventh International Conference on Application
of Concurrency to System Design (ACSD 2007). 1EEE, jul 2007, pp.
29-40.

A. Rahimi er al, “Task scheduling strategies to mitigate hardware
variability in embedded shared memory clusters,” in Design Automation
Conference (DAC), 2015 52nd ACM/EDAC/IEEE. 1EEE, 2015, pp. 1-6.
J. AX et al., “An Abstract Model for Performance Estimation of the
Embedded Multiprocessor CoreVA-MPSoC (v1.0),” Universitit Bielefeld,
Tech. Rep., 2015.

Johannes Ax received the Dipl.-Ing. degree (equiv. M.Sc.) in electrical
engineering from the University of Paderborn, Germany, in 2011. Since 2011
he worked as a research assistant at the Cognitronics and Sensor Systems
group of the Center of Excellence Cognitive Interaction Technology (CITEC),
Bielefeld University. His research focuses on the development of multiprocessor-
system-on-a-chip (MPSoC) for embedded applications with focus on NoC
interconnects.

[32]

[33]

Gregor Sievers received the Dipl.-Ing. degree (equiv. M.Sc.) in electrical
engineering from the University of Paderborn, Germany, in 2009. In 2016 he
received the Ph.D. degree in electrical engineering from Bielefeld University,
Germany, for his work on the design-space exploration of tightly coupled
multiprocessors.

Currently, he works as an application engineer at ASPACE GmbH, Paderborn,
Germany.

Julian Daberkow is a masters student in intelligent systems at Bielefeld
University, Germany, where he received the B.Sc. in cognitive informatics in
2014. He is part of the research group Cognitronics and Sensor Systems, CITEC,
Bielefeld University. His work focuses on the development of embedded
multiprocessor-system-on-a-chip (MPSoC) architectures.

Martin Flasskamp received the Dipl.-Ing. degree (equiv. M.Sc.) in electrical
engineering from the University of Paderborn, Germany, in 2012. Currently,
he is a member of the research group Cognitronics and Sensor Systems,
CITEC, Bielefeld University. His research focuses on the development of
multiprocessor-system-on-a-chip (MPSoC) for embedded applications.

Marten Vohrmann received the Dipl.-Ing. degree (equiv. M.Sc.) in electrical
engineering from the University of Paderborn, Germany, in 2012. Currently, he
is a member of the research group Cognitronics and Sensor Systems, CITEC,
Bielefeld University. His research focuses on the development of low power
circuits for ASIC designs.

Thorsten Jungeblut Dr. Thorsten Jungeblut graduated as Dipl.-Ing. (equiv.
M.Sc.) in electrical engineering at the University of Paderborn, Germany,
in 2005. In 2011 he received the Ph.D. degree in electrical engineering
from Bielefeld University, Germany, for his work on the design-space
exploration of resource-efficient VLIW processors. Since 2011, he is head
of the team Nanoelectronics in the research group Cognitronics and Sensor
Systems, CITEC, Bielefeld University, Germany. His research focuses on the
development of resource-efficient multiprocessor architectures.

Wayne Kelly received a B.Sc. Honours degree majoring in Computer Science
from the University of Queensland in 1989. In 1996 he completed his Ph.D
in Computer Science from the University of Maryland, College Park. He is
a Senior Lecturer at the Queensland University of Technology in Australia.
His research interests include Static Program Analysis and Reasoning about
Parallelism.

Mario Porrmann is Academic Director in the research group Cognitronics
and Sensor Systems, CITEC, Bielefeld University. He graduated as Diplom-
Ingenieur in Electrical Engineering at the University of Dortmund, Germany, in
1994. In 2001 he received the Ph.D. degree in electrical engineering from the
University of Paderborn, Germany. From 2001 to 2009 he was “Akademischer
Oberrat” and from 2010 to March 2012 Acting Professor of the research group
System and Circuit Technology at the Heinz Nixdorf Institute, University
of Paderborn. His main scientific interests are in on-chip multiprocessor
systems, dynamically reconfigurable hardware and resourceefficient computer
architectures.

Ulrich Riickert received the Diploma degree in computer science and the
Dr.-Ing. degree in electrical engineering from the University of Dortmund,
Germany, in 1984 and 1989, respectively. From 1985 to 1994 he worked at
the Faculty of Electrical Engineering, University of Dortmund, and at the
Technical University of Hamburg-Harburg, Germany. In 1995 he joined as
a Full Professor the Heinz Nixdorf Institute at the University of Paderborn,
Germany, heading the research group System and Circuit Technology and
working on massive-parallel and resourceefficient systems. Since 2009 he is
a Professor at Bielefeld University, Germany heading the Cognitronics and
Sensor Systems group of the CITEC. His main research interests are now
bio-inspired architectures for nanotechnologies and cognitive robotics.

