
1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—In this work, we conduct a detailed memory

characterization of a representative set of modern data-
management software (Cassandra, MongoDB, OrientDB and
Redis) running an illustrative NoSQL benchmark suite (YCSB).
These applications are widely popular NoSQL databases with
different data models and features such as in-memory storage.
We compare how these data-serving applications behave with
respect to other well-known benchmarks, such as SPEC
CPU2006, PARSEC and NAS Parallel Benchmark. The
methodology employed for evaluation relies on state-of-the-art
full-system simulation tools, such as gem5. This allows us to
explore configurations unattainable using performance
monitoring units in actual hardware, being able to characterize
memory properties. The results obtained suggest that NoSQL
application behavior is not dissimilar to conventional workloads.
Therefore, some of the optimizations present in state-of-the-art
hardware might have a direct benefit. Nevertheless, there are
some common aspects that are distinctive of conventional
benchmarks that might be sufficiently relevant to be considered
in architectural design. Strikingly, we also found that most
database engines, independently of aspects such as workload or
database size, exhibit highly uniform behavior. Finally, we show
that different data-base engines make highly distinctive demands
on the memory hierarchy, some being more stringent than
others.

Index Terms—Memory Hierarchy, Big-data, NoSQL, Cache
Hierarchy, Benchmark characterization.

I. INTRODUCTION
ONCERNING Information Technologies, one of the
broad fields with a large social and economic impact is

Big-data Analytics. This term includes a wide technology
spectrum with increasing influence in such different areas as
Biology, Economics or Healthcare. In these heterogeneous
scenarios, the most relevant feature from the computing
perspective depends on the nature of the data analyzed.
Compared to conventional applications, Big-data applications
need to handle an unprecedented volume of and highly
heterogeneous data (5Vs model, volume, velocity, variety,

Submission Date:
This work was supported in part by the Spanish Government (Secretaría de

Estado de Investigación, Desarrollo e Innovación) under Grants TIN2015-
66979-R and TIN2016-80512-R.

All the authors are with the Computer Engineering Group, University of
Cantabria, Santander, 39005 Cantabria, Spain (e-mail: [colasoa, prietop,
herreroja, abadp, gregoriol, vpuente, monaster]@unican.es).

value and veracity). In recent years, software has rapidly
evolved to provide support for Big-data environments.
Centralized storage and processing, able to manage data
analytics through relational models and SQL querying, are
gradually being replaced by alternatives more focused on the
software side to cope with the need for scalability under
constrained cost. These approaches are based on fully
distributed storage and processing frameworks running with
commodity hardware [1]. Alternative data models (defined as
NoSQL (Not only SQL) databases), such as those based on
columns [2], graphs [3] or documents [4] seem to be much
more appropriate in this environment [5][6]. Additionally, the
adoption of mechanisms which are able to meet data
processing speed demands becomes essential, with solutions
such as in-memory storage [7] or high-performance processing
frameworks [8].
In contrast to this software-centric paradigm shift, the
underlying hardware has, in general, little to no specialization.
In most cases, these complex software stacks run on top of
computer clusters, made up of low-cost commodity hardware.
For this reason, there is great interest in evaluating how this
HW-SW distinctiveness can affect system behavior and
performance. Numerous previous works [9][10][11][12] have
made a remarkable effort in the characterization of Big-data
applications. These works make use of benchmark suites
covering broad application scenarios, in most cases running on
current hardware. Therefore, they rely on hardware
performance monitoring units for characterization. That
approach has enabled the detection of some relevant
mismatches between the demands of Big-data workloads and
today’s processor micro-architecture [9][13].
Despite the relevant findings of all these characterization
works, the methodology employed has a significant limitation,
which is the fixed nature of the microarchitecture under study.
This limitation leaves many questions unanswered such as:
what is the appropriate size for instruction caching? and for
data? Are these applications responsive to performance
mechanisms such as replacement policy or prefetching? What
is the sharing degree in these multi-threaded applications?
In this paper, we conduct the experiments required to provide
answers to these questions making use of an alternative
methodology: using a full system simulation tool capable of
(1) allowing the large software stack to be executed without
changes and, (2) being fast enough in performing the complex
warmup of the applications in a feasible amount of time. As

Memory Hierarchy Characterization of NoSQL
Applications through Full-system Simulation

Adrian Colaso, Pablo Prieto, Jose A. Herrero, Pablo Abad, Lucia G. Menezo, Valentin Puente, Jose A.
Gregorio

C

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

the core of our methodology we use gem5 [14] which provides
an adequate framework to achieve such goals. Beyond the
full-system simulation framework, the YCSB benchmarking
tool [15] has been used to characterize in detail a
representative set of NoSQL databases: Cassandra [16],
MongoDB [17], OrientDB [18] and Redis [19]. Our results
confirm some of the previous findings about this kind of
applications (such as the large instruction working-set
[13][9][20]) and, thanks to the simulation framework, provide
a much more detailed description of the cache-hierarchy
implications:

• We observe homogeneous behavior in many aspects
of these applications. Despite their differences, the
four databases present a similar fraction of load/store
operations (extremely homogeneous in the case of
stores), as well as similar data working sets.

• In general, we found that NoSQL applications
present cache-friendly behavior, similarly to
conventional benchmark suites. The evaluated
workloads benefit from an increased cache size.

• We are able to quantify the instruction cache capacity
required by NoSQL applications in order to reduce
MPKI levels to those observed in conventional
benchmarks.

• We evaluate the effect of alternative multi-level
cache configurations on memory performance,
showing the benefits of improving the L1 capacity in
contrast to the small benefit of increased LLC size.

• We observe that LLC replacement policies are
critical for this kind of applications, in contrast to the
results obtained for conventional workloads.

• Finally, we have also been able to provide detailed
information about different prefetching policies and
the sharing degree of instruction and data blocks in
the LLC.

The rest of the paper is organized as follows: section II
describes the YCSB framework, NoSQL databases and the
simulation tools. Section III defines all the aspects concerning
the evaluation methodology. Sections IV and V present our
results and characterization. Finally, we describe some related
work and summarize our main conclusions in sections VI and
VII respectively.

II. SIMULATION STACK
In this section, we describe the framework employed for

characterization, including both the software and hardware
stacks.

A. YCSB FRAMEWORK
In order to run all NoSQL applications under fair conditions

we make use of the Yahoo! Cloud Serving Benchmark
(YCSB) [15]. This framework has been designed to assist in
the evaluation of different cloud serving systems and is
intensively employed for database performance evaluation and
comparison (more than 350 citations according to the ACM
Digital Library). Additionally, some individual workloads of

this benchmark are currently being used as part of alternative
benchmarks, such as SPEC Cloud IaaS 2016 [21] (focused on
measuring the performance of cloud implementations) and
CloudSuite [9] (benchmarking dominant scale-out workloads).
The YCSB architecture consists of a synthetic generator for
database operations and multiple interfaces for different
commercial software. The Workload Generation Client is
responsible for the generation of the data to be loaded into the
database. It is also in charge of the later definition of the
operation-mix that characterizes each workload. The
properties defining these workloads include aspects such as
read/write mix and distribution (latest, uniform, etc.) of the
database records as well as size and number of fields in each
record. The core package includes a set of pre-defined
workloads that tries to model different applications (such as
picture tagging, user status updates or threaded conversations).

The Database Interface Layer is the module in charge of
translating simple requests from client threads into calls to
specific databases. Currently, this component implements
interfaces for multiple software suites (more than 25 according
to the github repository), covering the different data models of
NoSQL applications (column-group, document, graph) and
multiple existing read/write performance optimizations.

B. NoSQL AND CONVENTIONAL APPLICATIONS
To make characterization feasible, we limit our evaluation to

four of the wide range of available applications. The ones
selected try to cover multiple features present in today’s
NoSQL data serving, such as alternative data models (column,
graph and document-based) and performance optimizations
(distributed disk and in-memory storage). To provide a
reference point, we evaluate under the same conditions
conventional benchmarks such as: SPEC CPU2006 [22],
PARSEC [23] and NPB [24]. Next, a brief description of all
the characterized software is provided.
1) Cassandra (NoSQL database, column oriented)

Apache Cassandra [16] is currently one of the most popular
wide-column store databases [25]. This distributed data
management system has been designed to work with large data
volumes on top of commodity hardware, providing high
availability and fault tolerance features. With a completely
decentralized operation, data is distributed throughout the
cluster, there is no master node and every node has a
homogeneous role. Fault-tolerance is implemented through the
automatic replication of data into multiple nodes. Cassandra
makes use of its own query language (Cassandra Query
Language or CQL) and also has Hadoop [1] integration
(MapReduce support). Nowadays, more than 600 companies
employ Cassandra software, with major users such as
Microsoft, IBM, Facebook or Apple [26].
2) MongoDB (document-oriented data model)

MongoDB [17] is a document-oriented database software
designed to provide scalability, performance and high
availability. Documents are stored as binary JSON objects
(schemas), supporting field and range queries as well as
regular expression searches. Data distribution across multiple
machines is implemented through sharding. In this way, it

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

supports very large data sets at high throughput rate. High
availability and fault-tolerance is implemented through replica
sets. Writes and reads are done on the primary replica while
secondary replicas maintain a copy of the data. When a
primary replica fails, the replica set automatically conducts a
selection process to determine which secondary should
become the primary. As in the case of Cassandra, MongoDB
is also one of the most popular document stores, with a large
diversity of users [25].
3) Redis (In-memory Store)

Redis [19] is an in-memory data structure store, used as a
database, cache and message broker. It supports a large
number of different data structures (strings, hashes, lists, sets,
bitmaps…), it has built-in replication, different levels of on-
disk persistence and it provides high availability. Automatic
data partitioning is performed across Redis nodes, and master-
slave replication is implemented and employed for both
scalability and data redundancy. A list of well-known
companies using Redis includes Twitter, Github,
StackOverflow, Pinterest, among many others.
4) OrientDB (graph data model)

OrientDB [18] is a multi-model database where
relationships are managed as graph databases, with direct
connections between records. It supports schema-less,
schema-full and schema-mixed modes. OrientDB also has a
master-less distributed architecture where each server can read
and write, allowing horizontal scale-up without bottlenecks.
Typical SQL querying language can be used by simply adding
the necessary extensions to enable graph functionality.
According to the DB-Engines graph database ranking [25],
OrientDB is one the most popular graph databases.
5) SPEC, PARSEC & NPB (Conventional Benchmarking)

SPEC CPU2006 [22], PARSEC [23] and NAS Parallel
Benchmark [24] are three of the most significant benchmark
suites in computer architecture research. The characterization
of these suites has been addressed by previous research works
[27][23] and their workloads are widely employed for micro-
architecture research and evaluation. In many Big-data
characterization works both PARSEC and SPEC benchmarks
have usually been employed as a reference [9][13][28][11],
highlighting the main differences between emerging scale-out
applications and these suites. Following a similar approach, in
this work we will also include the three aforementioned suites
in the characterization process. SPEC CPU2006 is an industry-
standardized suite of serial programs (not intended for parallel
machine evaluation) designed to stress both the processor and
memory subsystem. In contrast, PARSEC and NPB focus on
the evaluation of parallel machines.

C. HARDWARE (Simulation Framework)
For the proposed characterization we make use of the gem5

simulation framework [14]. Gem5 provides detailed CPU and
memory system models, as well as supporting most
commercial ISAs. The Gem5 simulator is broadly available
(BSD license) through a publicly accessible source repository,
constantly updated by the gem5 community. Our framework
version has been forked from an up-to-date repository commit.

We have fixed/implemented the necessary features to conduct
the experiments for all the workloads under consideration.
Original code has been modified to support an Ethernet
network interface, switch and the corresponding links. Thus,
we can simulate a whole cluster and hence support multi-node
environments, which is the common case in NoSQL-based
applications. The framework supports the simulation of any
number of nodes (each of them with its own configuration)
connected through Ethernet devices.
Our framework also includes virtual machine (VM) based
simulation acceleration [29]. During boot and warmup phases,
the VM will run a replica of the simulated machine at native
speed. The VM and simulated system state are synchronized at
coarse time intervals. The support for multithreaded event
queues in gem5 allows each CPU to be run in the simulated
system in a separate process in the VM. This enables near
native speed even in multinode simulated systems. Using this
approach, the applications are “fast-forwarded” to their
interest point in a reasonable amount of time. In the case of
NoSQL applications, where large databases must be generated
prior to evaluation, the fastest non-vm-assisted simulation
mode (i.e. atomic) would require weeks or even months of
simulation to reach the region of interest, which would make
the study unfeasible.
Besides the mentioned modifications, the checkpointing,
simulation and profiling processes have been completely
automated through scripting. The automation eases the
characterization process, where the generation of a large
number of results is required. The source code of the
simulation framework, prepared to run NoSQL applications,
has been made publicly available through an online repository
at: https://github.com/abadp/gem5-NoSQL.

III. METHODOLOGY

A. Software Stack Configuration (YCSB & NoSQL Apps)
Every application evaluated runs on top of a GNU/Linux

OS (Debian 8 using gem5 compatible kernel v3.18.34). YCSB
and NoSQL applications make use of Oracle’s open source
Java Virtual Machine, 1.7 version (python, 2.7.9 Version). We
have employed up-to-date software versions for all the
NoSQL applications: Cassandra-2.2.5, MongoDB-3.2.11,
Redis-2.8.17, OrientDB-2.1.2 (community edition).
Concerning conventional benchmarks, the latest version
available is used in all cases (SPEC CPU2006 V1.2, PARSEC
3.0 and NPB3.3).
Client and database configuration are two key aspects for the
correct characterization of NoSQL workloads. As mentioned
before, the content of the database has been generated through
the YCSB client. The number of records required to load the
database is calculated so that it has an overall size of 1GB.
This database size has been chosen to fit into the 4GB Main
Memory of the simulated machines (see section C). This is the
recommended configuration in scale-out applications for
optimal database performance [11]. Every NoSQL engine is
configured making use of the default parameters described in
YCSB repository. Before evaluation, each NoSQL workload

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

was fine-tuned to provide the maximum performance. Making
use of the simulation framework (gem5), we perform a whole
run of all workloads for each application, gradually increasing
the number of client threads. Throughput results provided by
YCSB are collected, identifying the number of threads that
maximizes performance. This is the value selected for the
whole characterization process.

B. Workload Generation
Simulation-based methodologies are usually limited by the

execution time overhead caused by detailed hardware
simulation. To achieve a feasible characterization, we only use
accurate hardware simulation during the execution of a
significant fraction of the Region of Interest (ROI) of each
application. On reaching the interest point with VM
acceleration, a checkpoint (which includes all architectural
cluster state, i.e. processor, memory, network, etc.) is taken.
The checkpoint will be loaded subsequently in detailed
architectural simulation. Starting from each checkpoint, the
memory hierarchy is warmed up for a sufficient number of
cycles before starting to collect statistics. In this way we
minimize the effect of compulsory (cold) misses and warm-up
non-architectural states (prefetchers, replacement policy, etc.).

TABLE 1: CONVENTIONAL WORKLOADS
SPEC CPU2006 INT

astar, bzip2, gcc, gobmk, h264ref, hmmer, libquantum, mcf,
omnetpp, sjeng, xalancbmk
10 Billion instructions simulated (500M warmup). Checkpoint
taken after the execution of half of the iterations in the main
loop. Input size: reference.

SPEC CPU2006 FP
GemsFDTD, bwaves, cactusADM, calculix, dealII, games,
gromacs, lbm, leslie3d, milc, namd, povray, soplex, sphinx3, wrf,
zeusmp
10 Billion instructions simulated (500M warmup). Checkpoint
taken after the execution of half of the iterations in the main
loop. Input size: reference.

PARSEC 3.0
blackscholes, bodytrack, canneal, dedup, facesim, ferret,
fluidanimate, freqmine, raytrace, streamcluster, swaptions, vips,
x264
10 Billion instructions simulated (500M warmup). Checkpoint
taken at the beginning of annotated ROI. Input size: simlarge.

NPB 3.3.1
BT, CG, FT, IS, LU, MG, SP, UA
2 Iterations of the main loop inside ROI simulated (500M cycles
warmup). Checkpoint taken at the middle iteration of main loop.
Input Size: B class.

For multi-core architectures, one thread per simulated core is
employed in the case of parallel applications. SPEC
applications execute one instance of the same workload per
available core. In this special case, we implement a
synchronization process that guarantees that each application
instance is executing ROI instructions during the
characterization process.
YCSB provides a package of standard workloads (See Table 2
for details), with pre-defined operation mixes and access
patterns [15]. These workloads are employed for the
characterization process. The preparation of YCSB workloads
for detailed simulation requires a different process. In this case

the definition of a ROI is not required, because the whole
workload run is employed. As mentioned previously, database
generation is performed through VM-assisted simulation. A
checkpoint is taken after the load process is finished. This
process might take a few minutes in real hardware. The
execution time of detailed simulation can be controlled
through YCSB runtime parameters, in this case the total
number of operations performed by YCSB clients. For each
database, we gradually increase the number of records
performed at runtime until reaching a value that requires the
execution of approximately 10 Billion instructions, a similar
simulation length to the one employed for PARSEC, SPEC
and NPB workloads. Table 1 includes a brief description of all
the workloads generated for the evaluation process, detailing
for each of them the benchmark suite, input size and other
relevant information.

TABLE 2: NOSQL WORKLOADS
YCSB

Database size ~1GByte
Operation count Equivalent to 10 Billion Instructions
Insertion retry limit/
interval

1 / 3 secs.

WORKLOAD A B C D E F
Field Count / Length 10/100 10/100 10/100 10/100 10/100 10/100
Read proportion 0.5 0.95 1 0.95 -- 0.5

Read all fieldstrue true true true -- true
Update proportion 0.5 0.05 -- -- -- --
Insert proportion -- -- -- 0.05 0.05 --

Insert order-- -- -- --
Scan proportion -- -- -- -- 0.95 --

Scan length/distr.-- -- -- -- 100/uni --
RWM proportion -- -- -- -- -- 0.5
Request Distribution zipfian zipfian zipfian latest zipfian zipfian

C. System & Simulation Configuration
Sections IV and V make use of different configurations for

the processor and cache hierarchy. Basic cache features
evaluated in Section IV, run in a system architecture with a
single core and the cache hierarchy is made up of one level,
separating data and instructions. In contrast, for the rest of the
characterization process, performed in Section V, we model
up two servers with a 4-core CMP with a realistic multi-level
cache hierarchy. The first two levels of the cache hierarchy are
private for each core, in contrast to the shared Last Level
Cache (LLC). In all cases the gem5 implementation of X86-64
is employed. The main parameters associated with this
memory hierarchy are summarized in Table 2.
When client-server applications are simulated (NoSQL
databases), we model a “clustered” configuration made up of
two different nodes connected through Ethernet devices. The
client node runs YCSB client instances while the server node
is devoted to NoSQL applications. Thus we eliminate the
possible software interference that the memory hierarchy
could undergo. Statistics are collected only for the server-side
node. Given the limited amount of resources and time
available for simulation (the simulation of multiple nodes
exponentially increases memory footprint and simulation
time), we limit our evaluation to single-node databases.
Making use of Cassandra, we have compared main simulation

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

results (instruction mix, cache hierarchy miss rate) for two
different configurations, 1-node and 2-node databases,
observing in all cases minor differences. Additionally, in order
to limit simulation time the appropriate number of operations
has also been validated. We have measured the MPKI
evolution for a number of operations ranging from 10 to
10,000 (notice that the number of operations in [11] is
100,000). Three different Data Cache sizes (16Kb, 128Kb and
8Mb) were evaluated. The results show that no significant
variations are found over 1,000 operations. For the rest of
experiments, we apply a minimal 5× margin (5,000
operations) to ensure correctness.

TABLE 3: MULTI-LEVEL HIERARCHY CONFIGURATION

Pr
iv

at
e

C
ac

he
s

(L1)Size/Associativity /
Block Size / Access Time

32KB I/ 32KB D, 8-way,
64B, 1 cycle

(L2)Size / Associativity /
Blck Size / Access Time /
Type

256KB Unified, 8-way, 64B, 4
cycles, Exclusive with L1

Sh
ar

ed
 L

3

Size / Associativity / Block
Size/Type

8MB, 16-way, 64B, Mostly
Inclusive

NUCA Mapping Static, interleaved by LSB
Coherence Protocol MOESI snooping
Data Slice Size/Access
Time 2MB / 6 cycles

Mem.
Capacity/Access Time
/Bandwidth 4GB /240 cycles / 32GB/s

D. Validation
In those cases where the comparison is possible, we use the

processor performance counters to validate the simulation
results. These tests are run using the client-server model,
replicating the database content (generated with the same
YCSB commands) and using the same workloads (WA to
WF). In our setup, each node makes use of one Intel Xeon
X5650 chip running at 2.67 GHz and a main memory of
48GB. We access the Performance Monitoring Unit (PMU) of
the processor through the Linux perf tool [30].

IV. APPLICATION CHARACTERIZATION
In this section, we analyze the basic aspects concerning

cache hierarchy design. For each workload, the number of
executed instructions is profiled and data/instruction cache
sensitivity is evaluated. To improve the readability of the
results, graphs only include minimum, maximum and average
values for conventional benchmarks.

A. Instruction Profile
To understand the potential effect that load/store

instructions have on performance, the first step consists of the
evaluation of the fraction of memory operations in the
instruction mix. Figure 1 represents the number of memory
operations per thousand instructions for each workload,
distinguishing between Load (LPKI bar) and Store (SPKI bar)
instructions.
Focusing on the results of NoSQL applications, the fraction of
memory operations seems to remain consistent despite the
different access patterns of each workload. Only Workload E,
querying short ranges of records (instead of individual
records), presents a different fraction of memory operations.

Each NoSQL application seems to deal with these short ranges
in a contrasting way. In some cases, the number of load/stores
grows (MongoDB) while in others it decreases (OrientDB,
Redis).

Figure 1. Instruction profile, number of memory operations for each 1000
instructions retired.

Compared to NoSQL applications, conventional benchmarks
present much more dissimilar behavior concerning memory
operations. From Min to Max bars, the number of load/store
instructions can double (PARSEC) or even be 5 times larger
(SPEC). Both conventional and NoSQL suites present similar
average values for memory operations, close to 25% of total
instructions executed. However, SPKI results reveal relevant
differences in the number of store operations. NoSQL
workloads nearly double the number of store operation
compared to the average results of conventional benchmarks.
This means that improving Store efficiency could have a
larger performance impact in this kind of applications.

Figure 2. Comparison of Load/Store profile making use of two different
characterization methodologies (Simulation & PMU).

This set of results has been validated with the methodology
described in section III.D. Running the same YCSB
commands and making use of the hardware counters, we re-
calculate the fraction of Load and Store operations for each
workload. Figure 2 shows the results obtained for validation.
Solid bars represent simulated results while dotted bars show
the numbers obtained with perf. As can be seen, deviation is
minimal (less than 5% on average and a maximum of 12%)
and the uniformity of NoSQL workloads is confirmed, as well

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

as the simulated stack consistency.

Figure 3. Data working-set for each benchmark. Y-axis represents number of
misses for each 1000 instructions retired (MPKI).

B. Data Working set
For each workload, we conduct a cache sensitivity analysis

through the simulation of multiple cache sizes. We modeled a
single-level cache hierarchy ranging from 16KB to 8MB. The
16KB configuration is directly mapped, 32KB cache is 2-way
associative, 64KB cache is 4-way associative and so on. Every
configuration makes use of 64B blocks and true LRU
replacement policy. Figure 3 presents the results obtained
from all the simulations performed. The x-axis represents the

different cache sizes simulated on a logarithmic scale, whereas
the y-axis shows the number of cache misses per one thousand
instructions. It should be noted that the y-axis is not constant
for every graph in the figure, ranging from 25 (NoSQL
benchmarks) to 100 (NPB).
The D-cache sensitivity analysis reveals that, as well as
conventional workloads, NoSQL applications exhibit cache
friendly behavior (larger cache sizes lead to lower miss rates).
Cassandra and MongoDB applications show a highly uniform
cache behavior independently of the workload characteristics.
The variability increases for Redis and OrientDB, where some
differences arise depending on the workload simulated.
OrientDB exhibits the worst data cache performance for those
workloads with a significant fraction of read operations.
Workloads WB, WC and WF nearly double the mpki results
of the rest of applications. These results confirm prior work
observations about the larger memory footprint of OrientDB
on read operations. Despite this, in all cases the cache miss
rate shows smooth exponentially decreasing behavior with
increasing cache sizes. Conventional benchmarks exhibit
much more dissimilar results, with planar behavior
(streamcluster, libquantum or LU) or sudden drops (x264, lbm
or CG) not seen in NoSQL results.

Figure 4. Working-set evolution for different database sizes. Cassandra
(above) and MongoDB (below) results.

Absolute MPKI results vary in a much larger range in the case
of conventional benchmarks, reaching for some specific
applications, initial values close to 100 (mcf or bwaves).
However, looking only at average values (geometric mean),
we can conclude that both conventional and NoSQL
workloads have similar MPKI. Miss results for the smallest
cache size range from 10 to 20 for all the benchmarks
analyzed. We can also analyze the amount of cache required

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

by each benchmark to reach an average MPKI value below 1,
finding the following results: SpecInt: 4MB, SpecFP: 512KB,
NPB: >4MB, Parsec: 128KB, Cassandra: 4MB, MongoDB:
4MB, Redis: 128KB, OrientDB: 2MB. Excluding NPB, with a
much larger working set, we can conclude that both
conventional and NoSQL benchmarks have a similar data
footprint.

C. Data Working-set sensitivity to Database Size
The results obtained in the previous section seem to indicate

that the data working-set seen by the cache hierarchy has little
relation with the size of the data stored by the database
software. To confirm this observation, we carry out an
additional experiment analyzing the working-set evolution for
different database sizes. Figure 4 shows the results obtained
for four different database sizes (32MB, 512MB, 1GB and
2GB) under two applications, Cassandra and MongoDB. For
each workload and size, we repeat the working-set evaluation
performed in the previous section, cache size ranging from
16Kbyte to 8Mbyte. As can be seen, few or no differences can
be observed in the results obtained. This behavior is consistent
for all the NoSQL applications evaluated, and confirms our
previous assumption. The working-set observed by the cache
hierarchy has no direct relation with the amount of data stored
and managed by the NoSQL application.

Figure 5. Working-set evolution for Uniform record distribution. MongoDB
results.

D. Data Working-set Sensitivity to Record Distribution
Most of the core workloads defined by YCSB make use of a

record distribution that exploits data locality (latest for WD
and zipfian for WA, WB, WC, WE, WF). We repeat a similar
experiment to the one performed in previous section to
evaluate the effect of the record distribution chosen on data
working-set. Figure 5 shows the differences observed when
the distribution of each core workload moves from its original

value to a uniform one. The application employed is
MongoDB. As can be seen, the differences are minimal in
most cases, being WE the only workload where uniform
records slightly increase the working-set observed.
We conduct a second experiment, making use in this case only
workload WA, evaluating all the distributions available in
YCSB code. As well as the previously mentioned
distributions, we include Hotspot, Sequential and Exponential
patterns in the results of Figure 6. We also observe in this case
that the record distribution has a minimal effect on the Data
working-set of the applications evaluated.

Figure 6. Working-set evolution for different record distributions. MongoDB
results.

E. Instruction Working set
A separate single cache instruction with sizes ranging from

4KB to 8MB will be used. Direct mapping for smallest size
and associativity growing along with size, 64B blocks and
LRU replacement. Figure 7 shows the results obtained, again
measuring misses per thousand instructions for every
workload. In this case, the y-axis is constant for every
benchmark analyzed.

The results show that instruction access pattern is cache
friendly for Big-data benchmarks. Significant differences can
be observed among NoSQL engined, being Redis the
application with the largest instruction working-set. The
possible cause behind this behavior might be the intensive
utilization of TCP-related system calls to access the in-
memory data [31]. Concerning variability, NoSQL results
seem to be much more uniform than for the rest of
benchmarks. The working set values observed for each
workload of the same database present minimal differences.
This is an expected result, because the different workloads in
each NoSQL graph make use of the same software stack (only
recording mix changes). In contrast, each line of SPEC, NPB
and PARSEC figures corresponds to a different application,
with a different instruction footprint.

If we analyze absolute MPKI values, we observe significant
differences between NoSQL and conventional suites. NoSQL
workloads exhibit a much larger instruction working-set, with
similar MPKI values as those observed for data (notice that for
small cache sizes instructions exhibit a larger MPKI). This
result confirms the findings of previous characterization works
[32][33][34][9][13], where the L1 cache size is the main
performance bottleneck of current cache hierarchies.

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Figure 7. Instruction working-set. Y-axis represents the number of misses for
each 1000 instructions retired (MPKI).

V. MULTI-LEVEL HIERARCHY PERFORMANCE
In this section, we make use of a three-level cache hierarchy

for evaluation. This configuration attempts to mimic the cache
configuration of current commercial processors. The main
parameters of this configuration are listed in Table 2. As well
as a preliminary MPKI evaluation, we also include results
evaluating the sensitivity of NoSQL applications to
replacement policy and hardware prefetching. Additionally,
we conduct a final experiment measuring the sharing degree of

the cache blocks, attempting to understand the possible
implications for memory coherence/consistency.

A. MPKI across the Memory Hierarchy
Figure 8 represents the miss rate obtained at each cache

level for the configuration in Table 2, where the y-axis
represents the number of misses per one thousand instructions.
As well as this configuration, labeled BASE in the graphs, we
include an additional bar corresponding to a different L1
configuration, so that we can confirm the trend shown in the
previous section. With L1x2 we show the results when
doubling the L1D and L1I capacity (from 32KB to 64 KB).
Moreover, the LLC graph includes a third configuration,
labeled L3x2, where the LLC cache size is doubled. The rest
of the configuration values remain constant for every
simulation. In order to improve graph readability, we only
represent min/gmean/max values for the conventional
benchmarks and employ the same y-axis scale.

One of the key observations in these results is the high
impact of instruction working-set on NoSQL applications. As
can be seen, the number of misses in L1I is considerably
larger for any of the NoSQL workloads. Additionally,
doubling L1I capacity significantly improves MPKI results for
NoSQL workloads. In some cases, such as MongoDB and
Redis, the number of misses in first-level instruction cache
exceeds those in the data cache. These results confirm the
relevance of instruction working-set in these emerging
applications, as pointed out in the exploration performed in
previous section.

L2 results reveal a side effect caused by increasing L1
capacity. The MPKI values of NoSQL applications improve in
L2 when L1 size is doubled, while conventional benchmarks
obtain similar values in both cases. Concerning LLC, results
show that even at this level NoSQL applications reveal a
cache-friendly behavior. Doubling their capacity clearly has a
beneficial effect on most of the workloads analyzed, reducing
MPKI by 30% in some cases.

B. Replacement Policy
In order to compare the degree of temporal locality of both

NoSQL and conventional applications, we evaluate miss-rate
in the presence of two different replacement policies. We
make use of the well-known LRU policy in contrast to a
simple random victim selection (RAND). Figure 9 shows the
results obtained for both, the first private (L1D) and the last
shared (LLC) cache levels. For each experiment, LRU and
RAND policies are applied to the evaluated cache level, while
the rest of the cache hierarchy uses LRU policy (e.g. in the
LLC evaluation of RAND policy, the L1 and L2 caches take
advantage of LRU policy). Graphs show normalized LRU
misses. To improve readability we only provide maximum,
minimum and geometric mean values for the conventional
benchmarks analyzed.

The results obtained for the L1 Data cache seem to indicate
that both NoSQL and conventional workloads present a
similar degree of temporal locality. Most applications present
a similar MPKI improvement in this level. Cassandra seems

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Figure 8. Three-level cache hierarchy performance. Average values of conventional benchmarks are calculated through the geometric mean.

to be the NoSQL data-base engine with least sensitivity to
replacement policy, but even in this case, LRU provides better
results. In contrast, results show that some conventional
applications behave better when RAND policy is applied
(SFP-MAX). Analyzing the differences between workloads,
all NoSQL applications behave similarly independently of the
workload type. Only MongoDB seems to be able to extract
certain benefit from replacement policy. For the rest of the
applications, LRU replacement barely reduces MPKI by 5%.
In contrast to the uniformity observed in L1, the results
obtained for LLC show dissimilar results for conventional and
NoSQL benchmarks. In the case of conventional benchmarks,
in many applications most of the locality has been filtered by
private cache levels. The direct consequence is that LRU
replacement policy has a much lower impact on this level.
This observation has previously been confirmed by many
authors, who have demonstrated that replacement policies

relying on reuse frequency provide better results than LRU-
like ones [35]. Looking at the NoSQL benchmarks’ results we
observe that in this case, there is still enough temporal locality
in LLC to obtain benefits from LRU replacement policy. This
result is consistent for three of the four applications evaluated.
It is remarkable that both Cassandra and Orientdb are
characterized by much higher MPKI improvements in LLC
than those observed in the L1D. These results suggest that it
might be necessary to revisit many of the non-LRU
replacement policies proposed in the literature. Their
performance under a novel set of workloads might not be
necessarily like the one observed in conventional workloads
(which are the inspiration for the proposals).

C. Hardware Prefetching
Through an evaluation process like the one carried out in

the previous section, we analyze the spatial locality of the

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

applications under evaluation. We measure miss-rate values in
the presence of simple prefetching policies and compare the
results to those obtained without hardware prefetching. The
chosen prefetch algorithms are the well-known Tagged
Prefetcher [36] and an Arbitrary Stride Prefetcher [37]. Both
prefetchers use a degree of 2 blocks (generate prefetches for
the next 2 blocks). Figure 10 shows the results obtained for
both the first private (L1D) and the last shared (LLC) cache
levels. For each experiment, Tagged or Stride policies are
applied to the evaluated cache level, while the rest of cache
hierarchy does not make use of any prefetching (this means
that, in the LLC evaluation there is no prefetcher in L1
caches). Graphs show the results normalized to those obtained
by a system with no prefetching at all. To improve figure
readability we only provide maximum, minimum and
geometric mean values for the conventional benchmarks
analyzed.

Figure 9. Replacement policy effect on MPKI. LRU results are presented,
normalized to RAND values.

The results obtained suggest that spatial-locality is unable to
compensate for the pollution introduced in L1D. This is
especially true for Redis where prefetching, especially the
Tagged prefetcher, under-performs the baseline (no
prefetching). This is a well-known issue with this aggressive
prefetcher, which benefits applications with a high degree of
spatial locality, but penalizes applications with little locality,
as can be seen in the max and min results of conventional
benchmarks. From NoSQL applications, MongoDB can
outperform MPKI by more than 20% on this level with tagged
prefetching and OrientDB achieves an improvement of up to
60%, although they seem to be far from the average
conventional results. Something similar happens with the
prefetcher on LLC, although cache pollution has less impact
on this level, and the behavior is generally better. From the
results in both figs, it can be concluded that NoSQL
applications have a relatively average behavior in relation to
prefetching, MongoDB being the one that can benefit the most,

up to 20% and 60% in L1D and LLC caches respectively, with
a consistent behavior among the different workloads.

Figure 10. Hardware prefetching effect on MPKI. Results have been
normalized to the values obtained in the absence of prefetching.

D. LLC Data & Instruction Sharing
This final experiment focuses on the evaluation of data and

instruction sharing degree in the Last Level Cache. Since most
coherence protocols propose a scaling mechanism that uses
sharing characteristics of common workloads, this study might
provide some insights about how they will react with these
benchmarks.

To do so, we extend gem5 to keep track of the different
private cache levels “visited” by each block in the cache
hierarchy. Sharing statistics are updated at every LLC
eviction. Figure 11 shows, for the 4-core configuration
employed in previous sections, the fraction of shared and
private blocks. The shared blocks are divided according to the
number of sharers. We also provide isolated results for
instructions and data blocks. As SPEC 2006 applications are
all single-threaded, only the results of “conventional” NPB
and PARSEC benchmarks are provided.

Comparing NoSQL applications to conventional workloads
we can observe some similarities. In both cases, block sharing
seems to be much more relevant for instructions. Comparing
data and instruction results, we observe that the sharing ratio
for instructions at least doubles the values for data. Focusing
on instruction results, we observe that Redis workloads have a
similar behavior to the ones obtained in PARSEC and NPB. In
both cases the fraction of non-private instructions is similar,
also being dominated by blocks shared by all the available
cores in the system (4-SH). Cassandra, MongoDB and
OrientDB exhibit different behavior. For these workloads, the
fraction of shared blocks is slightly lower and the number of
sharers is more uniformly distributed among the three
possibilities. Moving on to data-sharing results, we observe
different sharing patterns depending on the database
evaluated. This variability is also present in PARSEC
applications. In contrast, NPB workloads show a minimal

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

fraction of shared blocks.

Figure 11. Sharing degree for instructions and data (up and mid graphs).

Contribution of instructions and data to private (striped) and shared (solid
color) blocks in Last Level Cache.

VI. RELATED WORK
The relevance of Big-data computing systems is visible in

the number of studies devoted to the analysis of software
applications for such environments [38]. In many cases the
absence of well-known benchmarking tools has forced
researchers to design their own application suites. Some of
these benchmarks, such as HiBench [20] or YCSB [15], have
been designed to evaluate specific scenarios. HiBench was
developed to evaluate Hadoop [1] performance, while YCSB
targets evaluating NoSQL databases. In contrast, other
benchmarks such as CloudSuite [9], BigDataBench [13] and
DCBench [28] try to cover a wider range of application
domains. Both CloudSuite and BigDataBench have been
implemented making use of the full software stack
(application and database) and provide workloads targeting
domains such as offline analytics, real-time analytics and
online services. Alternative multi-domain benchmark suites
such as DCBench are also available, limiting the software
stack to algorithms and synthetic implementations of basic
operations.

Making use of all these benchmarking tools, many research
works have focused on the microarchitectural characterization
and profiling of these scale-out applications [20][9][13][28]
[10][11][39][12][40]. Most of these works follow a similar
methodology in their evaluation process. Software runs in an

actual hardware platform and architectural behavior is
analyzed through performance-profiling tools such as perf [30]
or VTune [41]. Finally, in some cases the CPI stack is
reconstructed following the Top-Down methodology proposed
in [42].

Cache Hierarchy results are provided in many of the cited
works as part of the characterization process. In [9], the
proposed CloudSuite benchmark suite is employed to evaluate
the inefficiencies of the Intel X5670 processor micro-
architecture. L1 and L2 MPKI is evaluated, and a LLC
sensitivity analysis is carried out, making use of polluting
threads. This work highlights the high instruction-cache miss
rate as well as the hardware prefetching inefficiencies detected
in our characterization. Trying to overcome methodological
limitations (no hardware modifications available), some
authors make use of diverse processor models, Xeon E5310
vs. Xeon E5646 in [13] or Xeon E5-2420 vs. Atom C2758 in
[12]. In both cases a per-level MPKI analysis is performed,
comparing results from both processor models. In [13], the
sensitivity of data volume in MPKI is also evaluated, reaching
similar conclusions to those in our work, but limited to their
specific architectures. All these works make use of extremely
heterogeneous workloads and employ a similar methodology
based on profiling tools. Focusing on a concrete family of
applications and extending characterization through
simulation, our work is able to provide much richer
conclusions about memory hierarchy effects.

Among all the profiling works, some of them show great
similarity to the characterization carried out in this paper. The
authors in [11] make use of a similar software stack (YCSB as
workload generator) and focus on the same specific kind of
applications, that is, modern databases. By making use of
profiling tools, performance and scalability of different
commercial databases are analyzed. However, again due to the
profiling-based methodology, results concerning cache
hierarchy are limited to the per-level MPKI analysis. This
work claims that the miss-rate observed in L1D cache for
NoSQL applications is over 50%, however, we have
reproduced these experiments and have not been able to
validate this affirmation.

The simulation-based methodology employed in our work
represents a key difference compared to all the previous
characterization works. This methodology is not new and, in
contrast to Big-data benchmark suites, “conventional” suites
such as SPEC CPU2006 or PARSEC 3.0 have been
characterized previously following a similar methodology to
the one employed in this work. In [27] instrumentation-driven
simulation is employed to completely characterize the memory
behavior of SPEC workloads. In [43], PARSEC applications
are also characterized through the simulation tools. However,
to the best of our knowledge, this is the first work
characterizing the memory hierarchy of NoSQL applications
by employing a full system simulation stack.

VII. CONCLUSIONS
In this work, we have conducted a simulation-driven

characterization of four modern NoSQL databases: Cassandra,

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

MongoDB, OrientDB and Redis. We have compared their
memory behavior to that observed in benchmark suites
designed for micro-architecture evaluation: SPEC CPU2006,
PARSEC and NPB. Thanks to the flexibility provided by our
methodology, the experiments have allowed us to gain deeper
understanding of the cache-hierarchy utilization of NoSQL
applications. The results suggest that NoSQL applications
present similar behavior to conventional workloads in many
cache-hierarchy aspects. Their miss-rate is responsive to cache
capacity and performance benefits can be obtained from some
hardware mechanisms. In contrast, some other design aspects
are unlike conventional benchmarks, and might be relevant
enough to require architectural enhancements that take them
into account.

Focusing on NoSQL benchmarking, we have found
surprisingly uniform behavior in some aspects. The marginal
effect of database size on cache performance or the constant
fraction of store instructions remains independent of the
application or the workload evaluated. The large software
stack seems to hide the peculiarities of each application from
the underlying micro-architecture. Surprisingly, the dissimilar
specifications of each database management software are not
reflected in the cache hierarchy. Finally, the characterization
work has also highlighted the differences observed between
database engines. They present distinctive demands on the
memory hierarchy in aspects such as cache capacity,
replacement policy or hardware coherence.

The proposed methodology enables a large range of
research opportunities. Available workloads could be extended
to alternative Big-data benchmark suites, such as CloudSuite
or HiBench. Additionally, the simulated environment enables
the evaluation of how microarchitectural proposals will react
under these workloads.

REFERENCES
[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop

Distributed File System,” in 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), 2010, pp. 1–10.

[2] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
database systems,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1664–
1665, Aug. 2009.

[3] R. Angles and C. Gutierrez, “Survey of graph database models,”
ACM Comput. Surv., vol. 40, no. 1, pp. 1–39, Feb. 2008.

[4] A. Nayak, A. Poriya, and D. Poojary, “Type of NOSQL Databases
and its Comparison with Relational Databases,” Int. J. Appl. Inf.
Syst., vol. 5, no. 4, pp. 16–19, 2013.

[5] J. Pokorny, “NoSQL databases,” in Proceedings of the 13th
International Conference on Information Integration and Web-
based Applications and Services - iiWAS ’11, 2011, p. 278.

[6] N. Leavitt, “Will NoSQL Databases Live Up to Their Promise?,”
Computer (Long. Beach. Calif)., vol. 43, no. 2, pp. 12–14, Feb.
2010.

[7] B. Fitzpatrick, “Distributed caching with memcached,” Linux J.,
vol. 2004, no. 124, p. 5, Aug. 2004.

[8] M. Zaharia, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, I.
Stoica, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X.
Meng, J. Rosen, and S. Venkataraman, “Apache Spark,” Commun.
ACM, vol. 59, no. 11, pp. 56–65, Oct. 2016.

[9] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D.
Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the Clouds: A Study of Emerging Scale-out Workloads on
Modern Hardware,” in ASPLOS’12, 2012, vol. 40, no. Asplos, pp.
37–48.

[10] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade,
“Performance Characterization of In-Memory Data Analytics on a
Modern Cloud Server,” in 2015 IEEE Fifth International
Conference on Big Data and Cloud Computing (BDCloud), 2015,
pp. 1–8.

[11] R. Panda, C. Erb, M. LeBeane, J. H. Ryoo, and L. K. John,
“Performance Characterization of Modern Databases on Out-of-
Order CPUs,” in 27th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), 2015,
pp. 114–121.

[12] M. Malik, S. Rafatirah, A. Sasan, and H. Homayoun, “System and
Architecture Level Characterization of Big Data Applications on
Big and Little Core Server Architecture,” in IEEE International
Conference on Big Data (Big Data), 2015, pp. 85–94.

[13] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu,
“BigDataBench: A big data benchmark suite from internet
services,” in Proceedings - International Symposium on High-
Performance Computer Architecture, 2014, pp. 488–499.

[14] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M.
D. Hill, D. A. Wood, B. Beckmann, G. Black, S. K. Reinhardt, A.
Saidi, A. Basu, J. Hestness, D. R. Hower, and T. Krishna, “The
gem5 simulator,” ACM SIGARCH Comput. Archit. News, vol. 39,
no. 2, p. 1, 2011.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, “Benchmarking cloud serving systems with YCSB,” in
Proceedings of the 1st ACM symposium on Cloud computing -
SoCC ’10, 2010, p. 143.

[16] A. Lakshman and P. Malik, “Cassandra,” ACM SIGOPS Oper. Syst.
Rev., vol. 44, no. 2, p. 35, Apr. 2010.

[17] “MongoDB.” [Online]. Available: https://www.mongodb.com.

[18] O. T. LTD, “OrientDB,” Available: https://orientdb.com. [Online].
Available: https://orientdb.com.

[19] S. Sanfilippo, “Redis,” Available: https://redis.io.

[20] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench
benchmark suite: Characterization of the MapReduce-based data
analysis,” in Lecture Notes in Business Information Processing,
2011, vol. 74 LNBIP, pp. 209–228.

[21] S. Bast, M. Silva, and N. Wakou, “SPEC CloudTM IaaS 2016
Benchmark,” in Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering - ICPE ’17, 2017, pp.
423–423.

[22] SPEC Standard Performance Evaluation Corporation, “SPEC 2006,”
https://spec.org. .

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural implications,”
in Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, 2008, pp. 72–81.

[24] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of
NAS parallel benchmarks and its performance,” Natl. Aeronaut. Sp.
Adm. (NASA), Tech. Rep. NAS-99-011, Moffett Field, USA, no.
October, 1999.

[25] “DB-Engines Ranking.” [Online]. Available: http://db-
engines.com/en/ranking.

[26] “Apache Cassandra.” [Online]. Available:
http://cassandra.apache.org.

[27] A. Jaleel, “Memory characterization of workloads using
instrumentation-driven simulation,” Web Copy http//www. glue.

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787150, IEEE
Transactions on Parallel and Distributed Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

umd. edu/ajaleel/workload, 2010.

[28] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo, “Characterizing
data analysis workloads in data centers,” in Proceedings - 2013
IEEE International Symposium on Workload Characterization,
IISWC 2013, 2013, pp. 66–76.

[29] S. Bischoff, A. Sandberg, A. Hansson, D. Sunwoo, A. G. Saidi, M.
Horsnell, and B. M. Al-Hashimi, “Flexible and High-Speed System-
Level Performance Analysis using Hardware-Accelerated
Simulation,” vol. 39, no. 2, p. 2012, 2013.

[30] “perf: linux profiling with performance counters.” [Online].
Available: https://perf.wiki.kernel.org/.

[31] H. Zhang, B. M. Tudor, G. Chen, and B. C. Ooi, “Efficient in-
memory data management,” Proc. VLDB Endow., vol. 7, no. 10, pp.
833–836, 2014.

[32] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A.
Moshovos, “Temporal instruction fetch streaming,” in Proceedings
of the Annual International Symposium on Microarchitecture,
MICRO, 2008, no. 2008 PROCEEDINGS, pp. 1–10.

[33] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction
fetch,” Proc. 44th Annu. IEEE/ACM Int. Symp. Microarchitecture -
MICRO-44 ’11, p. 152, 2011.

[34] C. Kaynak, B. Grot, and B. Falsafi, “Shift,” Proc. 46th Annu.
IEEE/ACM Int. Symp. Microarchitecture - MICRO-46, pp. 272–283,
2013.

[35] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High
performance cache replacement using re-reference interval
prediction (RRIP),” Proc. 37th Annu. Int. Symp. Comput. Archit. -
ISCA ’10, p. 60, 2010.

[36] J. D. Gindele, “Buffer block prefetching method,” IBM Tech. Discl.
Bull., vol. 20, pp. 696–697, 1977.

[37] J.-L. Baer and T.-F. C. T.-F. Chen, “An effective on-chip preloading
scheme to reduce data access penalty,” Proc. 1991 ACM/IEEE Conf.
Supercomput. (Supercomputing ’91), pp. 176–186, 1991.

[38] R. Han, Z. Jia, W. Gao, X. Tian, and L. Wang, “Benchmarking Big
Data Systems: State-of-the-Art and Future Directions,”
arXiv1506.01494 [cs], vol. i, pp. 1–9, 2015.

[39] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G. Y. Wei, and D. Brooks, “Profiling a Warehouse-Scale
Computer,” IEEE Micro, vol. 36, no. 3, pp. 54–59, 2016.

[40] A. Yasin, Y. Ben-Asher, and A. Mendelson, “Deep-dive analysis of
the data analytics workload in CloudSuite,” in IISWC 2014 - IEEE
International Symposium on Workload Characterization, 2014, pp.
202–211.

[41] J. Reinders, VTune Performance Analyzer Essentials. Intel Press,
2005.

[42] A. Yasin, “A Top-Down method for performance analysis and
counters architecture,” in ISPASS 2014 - IEEE International
Symposium on Performance Analysis of Systems and Software,
2014.

[43] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural implications,”
Proc. Int. Conf. Parallel Archit. Compil. Tech., 2008.

Adrian Colaso received his BS and MS in
Computing Engineering from the University of
Cantabria, Spain, in 2011. He currently has a
University of Cantabria grant to work on his
PhD in the Computer Architecture group at the
same University. His research interests focus on

Emerging technologies and applications, as well
as their interaction with computer architecture
simulation tools.

Pablo Prieto received his BS, MS and PhD
degree from the University of Cantabria, Spain,
in 2006 and 2014 respectively. He currently
works as teaching assistant of Digital System
Design for the same University. His research
interests are focused on on-chip Cache
Hierarchies and Memory Controller design.

Jose Angel Herrero received his BS and MS
degree from the University of the Basque
Country, Spain, in 2006. He currently works as
teaching assistant of System Administration for
the University of Cantabria. He also works as
System Manager for the Computer Engineering
Department of the same University.

Pablo Abad received his BS, MS and PhD
degree from the University of Cantabria, Spain,
in 2003 and 2010 respectively. He currently
works as teaching assistant of Computer
Architecture for the Department of Computers
and Electronics at the same University. His
research interests are focused on the Cache
Hierarchy of on-chip multiprocessors, as well as
on-chip interconnection network design.

Lucia G. Menezo received her BS and MS
from the University of the Basque Country in
2007. In 2014 she received her PhD from the
University of Cantabria, where she has worked
as a researcher since. Her research interests
focus on the memory hierarchy, mainly on
cache coherence protocols for chip
multiprocessors (CMPs)

Valentin Puente received the BS, MS and
PhD degree from the University of Cantabria,
Spain, in 1995 and 2000 respectively. He is
currently an Associate Professor of Computer
Architecture at the Department of Computers
and Electronics of the same University. His
research interests focus on Memory Hierarchy
design and the impact that upcoming technology
changes might have on it.

Jose-Angel Gregorio received the BS, MS
and PhD in Physics (Electronics) from the
University of Cantabria, Spain, in 1978 and
1983 respectively. He is currently a professor of
Computer Architecture in the Department of
Computers and Electronics in the same
University. His main research interests focus on
chip multiprocessors (CMPs) with special
emphasis on the memory subsystem,
interconnection network and coherence protocol
of these systems

