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Abstract—In this work, we conduct a detailed memory 

characterization of a representative set of modern data-
management software (Cassandra, MongoDB, OrientDB and 
Redis) running an illustrative NoSQL benchmark suite (YCSB). 
These applications are widely popular NoSQL databases with 
different data models and features such as in-memory storage. 
We compare how these data-serving applications behave with 
respect to other well-known benchmarks, such as SPEC 
CPU2006, PARSEC and NAS Parallel Benchmark. The 
methodology employed for evaluation relies on state-of-the-art 
full-system simulation tools, such as gem5. This allows us to 
explore configurations unattainable using performance 
monitoring units in actual hardware, being able to characterize 
memory properties. The results obtained suggest that NoSQL 
application behavior is not dissimilar to conventional workloads. 
Therefore, some of the optimizations present in state-of-the-art 
hardware might have a direct benefit. Nevertheless, there are 
some common aspects that are distinctive of conventional 
benchmarks that might be sufficiently relevant to be considered 
in architectural design. Strikingly, we also found that most 
database engines, independently of aspects such as workload or 
database size, exhibit highly uniform behavior. Finally, we show 
that different data-base engines make highly distinctive demands 
on the memory hierarchy, some being more stringent than 
others.   
 

Index Terms—Memory Hierarchy, Big-data, NoSQL, Cache 
Hierarchy, Benchmark characterization. 
 

I. INTRODUCTION 
ONCERNING Information Technologies, one of the 
broad fields with a large social and economic impact is 

Big-data Analytics. This term includes a wide technology 
spectrum with increasing influence in such different areas as 
Biology, Economics or Healthcare. In these heterogeneous 
scenarios, the most relevant feature from the computing 
perspective depends on the nature of the data analyzed. 
Compared to conventional applications, Big-data applications 
need to handle an unprecedented volume of and highly 
heterogeneous data (5Vs model, volume, velocity, variety, 
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value and veracity). In recent years, software has rapidly 
evolved to provide support for Big-data environments. 
Centralized storage and processing, able to manage data 
analytics through relational models and SQL querying, are 
gradually being replaced by alternatives more focused on the 
software side to cope with the need for scalability under 
constrained cost. These approaches are based on fully 
distributed storage and processing frameworks running with 
commodity hardware [1]. Alternative data models (defined as 
NoSQL (Not only SQL) databases), such as those based on 
columns [2], graphs [3] or documents [4] seem to be much 
more appropriate in this environment [5][6]. Additionally, the 
adoption of mechanisms which are able to meet data 
processing speed demands becomes essential, with solutions 
such as in-memory storage [7] or high-performance processing 
frameworks [8]. 
In contrast to this software-centric paradigm shift, the 
underlying hardware has, in general, little to no specialization. 
In most cases, these complex software stacks run on top of 
computer clusters, made up of low-cost commodity hardware. 
For this reason, there is great interest in evaluating how this 
HW-SW distinctiveness can affect system behavior and 
performance. Numerous previous works [9][10][11][12] have 
made a remarkable effort in the characterization of Big-data 
applications. These works make use of benchmark suites 
covering broad application scenarios, in most cases running on 
current hardware. Therefore, they rely on hardware 
performance monitoring units for characterization. That 
approach has enabled the detection of  some relevant 
mismatches between the demands of Big-data workloads and 
today’s processor micro-architecture [9][13]. 
Despite the relevant findings of all these characterization 
works, the methodology employed has a significant limitation, 
which is the fixed nature of the microarchitecture under study. 
This limitation leaves many questions unanswered such as: 
what is the appropriate size for instruction caching? and for 
data? Are these applications responsive to performance 
mechanisms such as replacement policy or prefetching? What 
is the sharing degree in these multi-threaded applications? 
In this paper, we conduct the experiments required to provide 
answers to these questions making use of an alternative 
methodology: using a full system simulation tool capable of 
(1) allowing the large software stack to be executed without 
changes and, (2) being fast enough in performing the complex 
warmup of the applications in a feasible amount of time. As 
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the core of our methodology we use gem5 [14] which provides 
an adequate framework to achieve such goals. Beyond the 
full-system simulation framework, the YCSB benchmarking 
tool [15] has been used to characterize in detail a 
representative set of NoSQL databases: Cassandra [16], 
MongoDB [17], OrientDB [18] and Redis [19]. Our results 
confirm some of the previous findings about this kind of 
applications (such as the large instruction working-set 
[13][9][20]) and, thanks to the simulation framework, provide 
a much more detailed description of the cache-hierarchy 
implications: 

• We observe homogeneous behavior in many aspects 
of these applications. Despite their differences, the 
four databases present a similar fraction of load/store 
operations (extremely homogeneous in the case of 
stores), as well as similar data working sets. 

• In general, we found that NoSQL applications 
present cache-friendly behavior, similarly to 
conventional benchmark suites. The evaluated 
workloads benefit from an increased cache size. 

• We are able to quantify the instruction cache capacity 
required by NoSQL applications in order to reduce 
MPKI levels to those observed in conventional 
benchmarks. 

• We evaluate the effect of alternative multi-level 
cache configurations on memory performance, 
showing the benefits of improving the L1 capacity in 
contrast to the small benefit of increased LLC size. 

• We observe that LLC replacement policies are 
critical for this kind of applications, in contrast to the 
results obtained for conventional workloads. 

• Finally, we have also been able to provide detailed 
information about different prefetching policies and 
the sharing degree of instruction and data blocks in 
the LLC. 

The rest of the paper is organized as follows: section II 
describes the YCSB framework, NoSQL databases and the 
simulation tools. Section III defines all the aspects concerning 
the evaluation methodology. Sections IV and V present our 
results and characterization. Finally, we describe some related 
work and summarize our main conclusions in sections VI and 
VII respectively.  

II. SIMULATION STACK 
In this section, we describe the framework employed for 

characterization, including both the software and hardware 
stacks. 

A. YCSB FRAMEWORK 
In order to run all NoSQL applications under fair conditions 

we make use of the Yahoo! Cloud Serving Benchmark 
(YCSB) [15]. This framework has been designed to assist in 
the evaluation of different cloud serving systems and is 
intensively employed for database performance evaluation and 
comparison (more than 350 citations according to the ACM 
Digital Library). Additionally, some individual workloads of 

this benchmark are currently being used as part of alternative 
benchmarks, such as SPEC Cloud IaaS 2016 [21] (focused on 
measuring the performance of cloud implementations) and 
CloudSuite [9] (benchmarking dominant scale-out workloads).  
The YCSB architecture consists of a synthetic generator for 
database operations and multiple interfaces for different 
commercial software. The Workload Generation Client is 
responsible for the generation of the data to be loaded into the 
database. It is also in charge of the later definition of the 
operation-mix that characterizes each workload. The 
properties defining these workloads include aspects such as 
read/write mix and distribution (latest, uniform, etc.) of the 
database records as well as size and number of fields in each 
record. The core package includes a set of pre-defined 
workloads that tries to model different applications (such as 
picture tagging, user status updates or threaded conversations). 

The Database Interface Layer is the module in charge of 
translating simple requests from client threads into calls to 
specific databases. Currently, this component implements 
interfaces for multiple software suites (more than 25 according 
to the github repository), covering the different data models of 
NoSQL applications (column-group, document, graph) and 
multiple existing read/write performance optimizations.  

B. NoSQL AND CONVENTIONAL APPLICATIONS 
To make characterization feasible, we limit our evaluation to 

four of the wide range of available applications. The ones 
selected try to cover multiple features present in today’s 
NoSQL data serving, such as alternative data models (column, 
graph and document-based) and performance optimizations 
(distributed disk and in-memory storage). To provide a 
reference point, we evaluate under the same conditions 
conventional benchmarks such as: SPEC CPU2006 [22], 
PARSEC [23] and NPB [24]. Next, a brief description of all 
the characterized software is provided. 
1) Cassandra (NoSQL database, column oriented) 

Apache Cassandra [16] is currently one of the most popular 
wide-column store databases [25]. This distributed data 
management system has been designed to work with large data 
volumes on top of commodity hardware, providing high 
availability and fault tolerance features. With a completely 
decentralized operation, data is distributed throughout the 
cluster, there is no master node and every node has a 
homogeneous role. Fault-tolerance is implemented through the 
automatic replication of data into multiple nodes. Cassandra 
makes use of its own query language (Cassandra Query 
Language or CQL) and also has Hadoop [1] integration 
(MapReduce support). Nowadays, more than 600 companies 
employ Cassandra software, with major users such as 
Microsoft, IBM, Facebook or Apple [26]. 
2) MongoDB (document-oriented data model) 

MongoDB [17] is a document-oriented database software 
designed to provide scalability, performance and high 
availability. Documents are stored as binary JSON objects 
(schemas), supporting field and range queries as well as 
regular expression searches. Data distribution across multiple 
machines is implemented through sharding. In this way, it 
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supports very large data sets at high throughput rate. High 
availability and fault-tolerance is implemented through replica 
sets. Writes and reads are done on the primary replica while 
secondary replicas maintain a copy of the data. When a 
primary replica fails, the replica set automatically conducts a 
selection process to determine which secondary should 
become the primary. As in the case of Cassandra, MongoDB 
is also one of the most popular document stores, with a large 
diversity of users [25].  
3) Redis (In-memory Store) 

Redis [19] is an in-memory data structure store, used as a 
database, cache and message broker. It supports a large 
number of different data structures (strings, hashes, lists, sets, 
bitmaps…), it has built-in replication, different levels of on-
disk persistence and it provides high availability. Automatic 
data partitioning is performed across Redis nodes, and master-
slave replication is implemented and employed for both 
scalability and data redundancy. A list of well-known 
companies using Redis includes Twitter, Github, 
StackOverflow, Pinterest, among many others. 
4) OrientDB (graph data model) 

OrientDB [18] is a multi-model database where 
relationships are managed as graph databases, with direct 
connections between records. It supports schema-less, 
schema-full and schema-mixed modes. OrientDB also has a 
master-less distributed architecture where each server can read 
and write, allowing horizontal scale-up without bottlenecks. 
Typical SQL querying language can be used by simply adding 
the necessary extensions to enable graph functionality. 
According to the DB-Engines graph database ranking [25], 
OrientDB is one the most popular graph databases.  
5) SPEC, PARSEC & NPB (Conventional Benchmarking) 

SPEC CPU2006 [22], PARSEC [23] and NAS Parallel 
Benchmark [24] are three of the most significant benchmark 
suites in computer architecture research. The characterization 
of these suites has been addressed by previous research works 
[27][23] and their workloads are widely employed for micro-
architecture research and evaluation. In many Big-data 
characterization works both PARSEC and SPEC benchmarks 
have usually been employed as a reference [9][13][28][11], 
highlighting the main differences between emerging scale-out 
applications and these suites. Following a similar approach, in 
this work we will also include the three aforementioned suites 
in the characterization process. SPEC CPU2006 is an industry-
standardized suite of serial programs (not intended for parallel 
machine evaluation) designed to stress both the processor and 
memory subsystem. In contrast, PARSEC and NPB focus on 
the evaluation of parallel machines. 

C. HARDWARE (Simulation Framework) 
For the proposed characterization we make use of the gem5 

simulation framework [14]. Gem5 provides detailed CPU and 
memory system models, as well as supporting most 
commercial ISAs. The Gem5 simulator is broadly available 
(BSD license) through a publicly accessible source repository, 
constantly updated by the gem5 community. Our framework 
version has been forked from an up-to-date repository commit. 

We have fixed/implemented the necessary features to conduct 
the experiments for all the workloads under consideration. 
Original code has been modified to support an Ethernet 
network interface, switch and the corresponding links. Thus, 
we can simulate a whole cluster and hence support multi-node 
environments, which is the common case in NoSQL-based 
applications. The framework supports the simulation of any 
number of nodes (each of them with its own configuration) 
connected through Ethernet devices. 
Our framework also includes virtual machine (VM) based 
simulation acceleration [29]. During boot and warmup phases, 
the VM will run a replica of the simulated machine at native 
speed. The VM and simulated system state are synchronized at 
coarse time intervals. The support for multithreaded event 
queues in gem5 allows each CPU to be run in the simulated 
system in a separate process in the VM. This enables near 
native speed even in multinode simulated systems. Using this 
approach, the applications are “fast-forwarded” to their 
interest point in a reasonable amount of time. In the case of 
NoSQL applications, where large databases must be generated 
prior to evaluation, the fastest non-vm-assisted simulation 
mode (i.e. atomic) would require weeks or even months of 
simulation to reach the region of interest, which would make 
the study unfeasible. 
Besides the mentioned modifications, the checkpointing, 
simulation and profiling processes have been completely 
automated through scripting. The automation eases the 
characterization process, where the generation of a large 
number of results is required. The source code of the 
simulation framework, prepared to run NoSQL applications, 
has been made publicly available through an online repository 
at: https://github.com/abadp/gem5-NoSQL. 

III. METHODOLOGY 

A. Software Stack Configuration (YCSB & NoSQL Apps) 
Every application evaluated runs on top of a GNU/Linux 

OS (Debian 8 using gem5 compatible kernel v3.18.34). YCSB 
and NoSQL applications make use of Oracle’s open source 
Java Virtual Machine, 1.7 version (python, 2.7.9 Version). We 
have employed up-to-date software versions for all the 
NoSQL applications: Cassandra-2.2.5, MongoDB-3.2.11, 
Redis-2.8.17, OrientDB-2.1.2 (community edition). 
Concerning conventional benchmarks, the latest version 
available is used in all cases (SPEC CPU2006 V1.2, PARSEC 
3.0 and NPB3.3). 
Client and database configuration are two key aspects for the 
correct characterization of NoSQL workloads. As mentioned 
before, the content of the database has been generated through 
the YCSB client. The number of records required to load the 
database is calculated so that it has an overall size of 1GB. 
This database size has been chosen to fit into the 4GB Main 
Memory of the simulated machines (see section C). This is the 
recommended configuration in scale-out applications for 
optimal database performance [11]. Every NoSQL engine is 
configured making use of the default parameters described in 
YCSB repository. Before evaluation, each NoSQL workload 
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was fine-tuned to provide the maximum performance. Making 
use of the simulation framework (gem5), we perform a whole 
run of all workloads for each application, gradually increasing 
the number of client threads. Throughput results provided by 
YCSB are collected, identifying the number of threads that 
maximizes performance. This is the value selected for the 
whole characterization process. 

B. Workload Generation 
Simulation-based methodologies are usually limited by the 

execution time overhead caused by detailed hardware 
simulation. To achieve a feasible characterization, we only use 
accurate hardware simulation during the execution of a 
significant fraction of the Region of Interest (ROI) of each 
application. On reaching the interest point with VM 
acceleration, a checkpoint (which includes all architectural 
cluster state, i.e. processor, memory, network, etc.) is taken. 
The checkpoint will be loaded subsequently in detailed 
architectural simulation. Starting from each checkpoint, the 
memory hierarchy is warmed up for a sufficient number of 
cycles before starting to collect statistics. In this way we 
minimize the effect of compulsory (cold) misses and warm-up 
non-architectural states (prefetchers, replacement policy, etc.).  

TABLE 1: CONVENTIONAL WORKLOADS 
SPEC CPU2006 INT 

astar, bzip2, gcc, gobmk, h264ref, hmmer, libquantum, mcf,  
omnetpp, sjeng, xalancbmk 
10 Billion instructions simulated (500M warmup). Checkpoint 
taken after the execution of half of the iterations in the main 
loop. Input size: reference. 

SPEC CPU2006 FP 
GemsFDTD, bwaves, cactusADM, calculix, dealII, games, 
gromacs, lbm, leslie3d, milc, namd, povray, soplex, sphinx3, wrf, 
zeusmp  
10 Billion instructions simulated (500M warmup). Checkpoint 
taken after the execution of half of the iterations in the main 
loop. Input size: reference. 

PARSEC 3.0 
blackscholes, bodytrack, canneal, dedup, facesim, ferret, 
fluidanimate, freqmine, raytrace, streamcluster, swaptions, vips, 
x264 
10 Billion instructions simulated (500M warmup). Checkpoint 
taken at the beginning of  annotated ROI. Input size: simlarge. 

NPB 3.3.1 
BT, CG, FT, IS, LU, MG, SP, UA 
2 Iterations of the main loop inside ROI simulated (500M cycles 
warmup). Checkpoint taken at the middle iteration of main loop. 
Input Size: B class. 

 
For multi-core architectures, one thread per simulated core is 
employed in the case of parallel applications. SPEC 
applications execute one instance of the same workload per 
available core. In this special case, we implement a 
synchronization process that guarantees that each application 
instance is executing ROI instructions during the 
characterization process. 
YCSB provides a package of standard workloads (See Table 2 
for details), with pre-defined operation mixes and access 
patterns [15]. These workloads are employed for the 
characterization process. The preparation of YCSB workloads 
for detailed simulation requires a different process. In this case 

the definition of a ROI is not required, because the whole 
workload run is employed. As mentioned previously, database 
generation is performed through VM-assisted simulation. A 
checkpoint is taken after the load process is finished. This 
process might take a few minutes in real hardware. The 
execution time of detailed simulation can be controlled 
through YCSB runtime parameters, in this case the total 
number of operations performed by YCSB clients. For each 
database, we gradually increase the number of records 
performed at runtime until reaching a value that requires the 
execution of approximately 10 Billion instructions, a similar 
simulation length to the one employed for PARSEC, SPEC 
and NPB workloads. Table 1 includes a brief description of all 
the workloads generated for the evaluation process, detailing 
for each of them the benchmark suite, input size and other 
relevant information. 

TABLE 2: NOSQL WORKLOADS 
YCSB 

Database size ~1GByte 
Operation count Equivalent to 10 Billion Instructions 
Insertion retry limit/ 
interval 

1 / 3 secs. 

WORKLOAD A B C D E F 
Field Count / Length 10/100 10/100 10/100 10/100 10/100 10/100 
Read proportion 0.5 0.95 1 0.95 -- 0.5 

Read all fieldstrue true true true -- true 
Update proportion 0.5 0.05 -- -- -- -- 
Insert proportion -- -- -- 0.05 0.05 -- 

Insert order-- -- --   -- 
Scan proportion -- -- -- -- 0.95 -- 

Scan length/distr.-- -- -- -- 100/uni -- 
RWM proportion -- -- -- -- -- 0.5 
Request Distribution zipfian zipfian zipfian latest zipfian zipfian 

C. System & Simulation Configuration 
Sections IV and V make use of different configurations for 

the processor and cache hierarchy. Basic cache features 
evaluated in Section IV, run in a system architecture with a 
single core and the cache hierarchy is made up of one level, 
separating data and instructions. In contrast, for the rest of the 
characterization process, performed in Section V, we model 
up two servers with a 4-core CMP with a realistic multi-level 
cache hierarchy. The first two levels of the cache hierarchy are 
private for each core, in contrast to the shared Last Level 
Cache (LLC). In all cases the gem5 implementation of X86-64 
is employed. The main parameters associated with this 
memory hierarchy are summarized in Table 2. 
When client-server applications are simulated (NoSQL 
databases), we model a “clustered” configuration made up of 
two different nodes connected through Ethernet devices. The 
client node runs YCSB client instances while the server node 
is devoted to NoSQL applications. Thus we eliminate the 
possible software interference that the memory hierarchy 
could undergo. Statistics are collected only for the server-side 
node. Given the limited amount of resources and time 
available for simulation (the simulation of multiple nodes 
exponentially increases memory footprint and simulation 
time), we limit our evaluation to single-node databases. 
Making use of Cassandra, we have compared main simulation 
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results (instruction mix, cache hierarchy miss rate) for two 
different configurations, 1-node and 2-node databases, 
observing in all cases minor differences. Additionally, in order 
to limit simulation time the appropriate number of operations 
has also been validated. We have measured the MPKI 
evolution for a number of operations ranging from 10 to 
10,000 (notice that the number of operations in [11] is 
100,000). Three different Data Cache sizes (16Kb, 128Kb and 
8Mb) were evaluated. The results show that no significant 
variations are found over 1,000 operations. For the rest of 
experiments, we apply a minimal 5× margin (5,000 
operations) to ensure correctness. 

TABLE 3: MULTI-LEVEL HIERARCHY CONFIGURATION 

Pr
iv

at
e 

C
ac

he
s 

(L1)Size/Associativity / 
Block Size / Access Time 

32KB I/ 32KB D, 8-way,  
64B, 1 cycle 

(L2)Size / Associativity / 
Blck Size / Access Time / 
Type 

256KB Unified, 8-way, 64B, 4 
cycles, Exclusive with L1 

Sh
ar

ed
 L

3 

Size / Associativity / Block 
Size/Type 

8MB, 16-way, 64B, Mostly 
Inclusive  

NUCA Mapping Static, interleaved by LSB  
Coherence Protocol MOESI snooping 
Data Slice Size/Access 
Time 2MB / 6 cycles 

Mem. 
Capacity/Access Time 
/Bandwidth 4GB /240 cycles / 32GB/s 

D. Validation 
In those cases where the comparison is possible, we use the 

processor performance counters to validate the simulation 
results. These tests are run using the client-server model, 
replicating the database content (generated with the same 
YCSB commands) and using the same workloads (WA to 
WF). In our setup, each node makes use of one Intel Xeon 
X5650 chip running at 2.67 GHz and a main memory of 
48GB. We access the Performance Monitoring Unit (PMU) of 
the processor through the Linux perf tool [30]. 

IV. APPLICATION CHARACTERIZATION 
In this section, we analyze the basic aspects concerning 

cache hierarchy design. For each workload, the number of 
executed instructions is profiled and data/instruction cache 
sensitivity is evaluated. To improve the readability of the 
results, graphs only include minimum, maximum and average 
values for conventional benchmarks. 

A. Instruction Profile 
To understand the potential effect that load/store 

instructions have on performance, the first step consists of the 
evaluation of the fraction of memory operations in the 
instruction mix. Figure 1 represents the number of memory 
operations per thousand instructions for each workload, 
distinguishing between Load (LPKI bar) and Store (SPKI bar) 
instructions. 
Focusing on the results of NoSQL applications, the fraction of 
memory operations seems to remain consistent despite the 
different access patterns of each workload. Only Workload E, 
querying short ranges of records (instead of individual 
records), presents a different fraction of memory operations. 

Each NoSQL application seems to deal with these short ranges 
in a contrasting way. In some cases, the number of load/stores 
grows (MongoDB) while in others it decreases (OrientDB, 
Redis). 

 
Figure 1. Instruction profile, number of memory operations for each 1000 
instructions retired. 

Compared to NoSQL applications, conventional benchmarks 
present much more dissimilar behavior concerning memory 
operations. From Min to Max bars, the number of load/store 
instructions can double (PARSEC) or even be 5 times larger 
(SPEC). Both conventional and NoSQL suites present similar 
average values for memory operations, close to 25% of total 
instructions executed. However, SPKI results reveal relevant 
differences in the number of store operations. NoSQL 
workloads nearly double the number of store operation 
compared to the average results of conventional benchmarks. 
This means that improving Store efficiency could have a 
larger performance impact in this kind of applications. 

 
Figure 2. Comparison of Load/Store profile making use of two different 
characterization methodologies (Simulation & PMU). 

This set of results has been validated with the methodology 
described in section III.D. Running the same YCSB 
commands and making use of the hardware counters, we re-
calculate the fraction of Load and Store operations for each 
workload. Figure 2 shows the results obtained for validation. 
Solid bars represent simulated results while dotted bars show 
the numbers obtained with perf. As can be seen, deviation is 
minimal (less than 5% on average and a maximum of 12%) 
and the uniformity of NoSQL workloads is confirmed, as well 
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as the simulated stack consistency.  

 

 

 

 
Figure 3. Data working-set for each benchmark. Y-axis represents number of 
misses for each 1000 instructions retired (MPKI). 

B. Data Working set 
For each workload, we conduct a cache sensitivity analysis 

through the simulation of multiple cache sizes. We modeled a 
single-level cache hierarchy ranging from 16KB to 8MB. The 
16KB configuration is directly mapped, 32KB cache is 2-way 
associative, 64KB cache is 4-way associative and so on. Every 
configuration makes use of 64B blocks and true LRU 
replacement policy. Figure 3 presents the results obtained 
from all the simulations performed. The x-axis represents the 

different cache sizes simulated on a logarithmic scale, whereas 
the y-axis shows the number of cache misses per one thousand 
instructions. It should be noted that the y-axis is not constant 
for every graph in the figure, ranging from 25 (NoSQL 
benchmarks) to 100 (NPB).
The D-cache sensitivity analysis reveals that, as well as 
conventional workloads, NoSQL applications exhibit cache 
friendly behavior (larger cache sizes lead to lower miss rates). 
Cassandra and MongoDB applications show a highly uniform 
cache behavior independently of the workload characteristics. 
The variability increases for Redis and OrientDB, where some 
differences arise depending on the workload simulated. 
OrientDB exhibits the worst data cache performance for those 
workloads with a significant fraction of read operations. 
Workloads WB, WC and WF nearly double the mpki results 
of the rest of applications. These results confirm prior work 
observations about the larger memory footprint of OrientDB 
on read operations. Despite this, in all cases the cache miss 
rate shows smooth exponentially decreasing behavior with 
increasing cache sizes. Conventional benchmarks exhibit 
much more dissimilar results, with planar behavior 
(streamcluster, libquantum or LU) or sudden drops (x264, lbm 
or CG) not seen in NoSQL results. 

  

  
Figure 4. Working-set evolution for different database sizes. Cassandra 
(above) and MongoDB (below) results. 

Absolute MPKI results vary in a much larger range in the case 
of conventional benchmarks, reaching for some specific 
applications, initial values close to 100 (mcf or bwaves). 
However, looking only at average values (geometric mean), 
we can conclude that both conventional and NoSQL 
workloads have similar MPKI. Miss results for the smallest 
cache size range from 10 to 20 for all the benchmarks 
analyzed. We can also analyze the amount of cache required 
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by each benchmark to reach an average MPKI value below 1, 
finding the following results: SpecInt: 4MB, SpecFP: 512KB, 
NPB: >4MB, Parsec: 128KB, Cassandra: 4MB, MongoDB: 
4MB, Redis: 128KB, OrientDB: 2MB. Excluding NPB, with a 
much larger working set, we can conclude that both 
conventional and NoSQL benchmarks have a similar data 
footprint. 

C. Data Working-set sensitivity to Database Size 
The results obtained in the previous section seem to indicate 

that the data working-set seen by the cache hierarchy has little 
relation with the size of the data stored by the database 
software. To confirm this observation, we carry out an 
additional experiment analyzing the working-set evolution for 
different database sizes. Figure 4 shows the results obtained 
for four different database sizes (32MB, 512MB, 1GB and 
2GB) under two applications, Cassandra and MongoDB. For 
each workload and size, we repeat the working-set evaluation 
performed in the previous section, cache size ranging from 
16Kbyte to 8Mbyte. As can be seen, few or no differences can 
be observed in the results obtained. This behavior is consistent 
for all the NoSQL applications evaluated, and confirms our 
previous assumption. The working-set observed by the cache 
hierarchy has no direct relation with the amount of data stored 
and managed by the NoSQL application. 

   

   

Figure 5. Working-set evolution for Uniform record distribution. MongoDB 
results. 

D. Data Working-set Sensitivity to Record Distribution 
Most of the core workloads defined by YCSB make use of a 

record distribution that exploits data locality (latest for WD 
and zipfian for WA, WB, WC, WE, WF). We repeat a similar 
experiment to the one performed in previous section to 
evaluate the effect of the record distribution chosen on data 
working-set. Figure 5 shows the differences observed when 
the distribution of each core workload moves from its original 

value to a uniform one. The application employed is 
MongoDB. As can be seen, the differences are minimal in 
most cases, being WE the only workload where uniform 
records slightly increase the working-set observed. 
We conduct a second experiment, making use in this case only 
workload WA, evaluating all the distributions available in 
YCSB code. As well as the previously mentioned 
distributions, we include Hotspot, Sequential and Exponential 
patterns in the results of Figure 6. We also observe in this case 
that the record distribution has a minimal effect on the Data 
working-set of the applications evaluated. 

 
Figure 6. Working-set evolution for different record distributions. MongoDB 
results. 

E. Instruction Working set 
A separate single cache instruction with sizes ranging from 

4KB to 8MB will be used. Direct mapping for smallest size 
and associativity growing along with size, 64B blocks and 
LRU replacement. Figure 7 shows the results obtained, again 
measuring misses per thousand instructions for every 
workload. In this case, the y-axis is constant for every 
benchmark analyzed. 

The results show that instruction access pattern is cache 
friendly for Big-data benchmarks. Significant differences can 
be observed among NoSQL engined, being Redis the 
application with the largest instruction working-set. The 
possible cause behind this behavior might be the intensive 
utilization of TCP-related system calls to access the in-
memory data [31]. Concerning variability, NoSQL results 
seem to be much more uniform than for the rest of 
benchmarks. The working set values observed for each 
workload of the same database present minimal differences. 
This is an expected result, because the different workloads in 
each NoSQL graph make use of the same software stack (only 
recording mix changes). In contrast, each line of SPEC, NPB 
and PARSEC figures corresponds to a different application, 
with a different instruction footprint. 

If we analyze absolute MPKI values, we observe significant 
differences between NoSQL and conventional suites. NoSQL 
workloads exhibit a much larger instruction working-set, with 
similar MPKI values as those observed for data (notice that for 
small cache sizes instructions exhibit a larger MPKI). This 
result confirms the findings of previous characterization works 
[32][33][34][9][13], where the L1 cache size is the main 
performance bottleneck of current cache hierarchies.  
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Figure 7. Instruction working-set. Y-axis represents the number of misses for 
each 1000 instructions retired (MPKI). 

V. MULTI-LEVEL HIERARCHY PERFORMANCE 
In this section, we make use of a three-level cache hierarchy 

for evaluation. This configuration attempts to mimic the cache 
configuration of current commercial processors. The main 
parameters of this configuration are listed in Table 2. As well 
as a preliminary MPKI evaluation, we also include results 
evaluating the sensitivity of NoSQL applications to 
replacement policy and hardware prefetching. Additionally, 
we conduct a final experiment measuring the sharing degree of 

the cache blocks, attempting to understand the possible 
implications for memory coherence/consistency. 

A. MPKI across the Memory Hierarchy  
Figure 8 represents the miss rate obtained at each cache 

level for the configuration in Table 2, where the y-axis 
represents the number of misses per one thousand instructions. 
As well as this configuration, labeled BASE in the graphs, we 
include an additional bar corresponding to a different L1 
configuration, so that we can confirm the trend shown in the 
previous section. With L1x2 we show the results when 
doubling the L1D and L1I capacity (from 32KB to 64 KB). 
Moreover, the LLC graph includes a third configuration, 
labeled L3x2, where the LLC cache size is doubled. The rest 
of the configuration values remain constant for every 
simulation. In order to improve graph readability, we only 
represent min/gmean/max values for the conventional 
benchmarks and employ the same y-axis scale. 

One of the key observations in these results is the high 
impact of instruction working-set on NoSQL applications. As 
can be seen, the number of misses in L1I is considerably 
larger for any of the NoSQL workloads. Additionally, 
doubling L1I capacity significantly improves MPKI results for 
NoSQL workloads. In some cases, such as MongoDB and 
Redis, the number of misses in first-level instruction cache 
exceeds those in the data cache. These results confirm the 
relevance of instruction working-set in these emerging 
applications, as pointed out in the exploration performed in 
previous section. 

L2 results reveal a side effect caused by increasing L1 
capacity. The MPKI values of NoSQL applications improve in 
L2 when L1 size is doubled, while conventional benchmarks 
obtain similar values in both cases. Concerning LLC, results 
show that even at this level NoSQL applications reveal a 
cache-friendly behavior. Doubling their capacity clearly has a 
beneficial effect on most of the workloads analyzed, reducing 
MPKI by 30% in some cases. 

B. Replacement Policy 
In order to compare the degree of temporal locality of both 

NoSQL and conventional applications, we evaluate miss-rate 
in the presence of two different replacement policies. We 
make use of the well-known LRU policy in contrast to a 
simple random victim selection (RAND). Figure 9 shows the 
results obtained for both, the first private (L1D) and the last 
shared (LLC) cache levels. For each experiment, LRU and 
RAND policies are applied to the evaluated cache level, while 
the rest of the cache hierarchy uses LRU policy (e.g. in the 
LLC evaluation of RAND policy, the L1 and L2 caches take 
advantage of LRU policy). Graphs show normalized LRU 
misses. To improve readability we only provide maximum, 
minimum and geometric mean values for the conventional 
benchmarks analyzed. 

The results obtained for the L1 Data cache seem to indicate 
that both NoSQL and conventional workloads present a 
similar degree of temporal locality. Most applications present 
a similar MPKI improvement in this level. Cassandra seems
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Figure 8. Three-level cache hierarchy performance. Average values of conventional benchmarks are calculated through the geometric mean. 

 

to be the NoSQL data-base engine with least sensitivity to 
replacement policy, but even in this case, LRU provides better 
results. In contrast, results show that some conventional 
applications behave better when RAND policy is applied 
(SFP-MAX). Analyzing the differences between workloads, 
all NoSQL applications behave similarly independently of the 
workload type. Only MongoDB seems to be able to extract 
certain benefit from replacement policy. For the rest of the 
applications, LRU replacement barely reduces MPKI by 5%. 
In contrast to the uniformity observed in L1, the results 
obtained for LLC show dissimilar results for conventional and 
NoSQL benchmarks. In the case of conventional benchmarks, 
in many applications most of the locality has been filtered by 
private cache levels. The direct consequence is that LRU 
replacement policy has a much lower impact on this level. 
This observation has previously been confirmed by many 
authors, who have demonstrated that replacement policies 

relying on reuse frequency provide better results than LRU-
like ones [35]. Looking at the NoSQL benchmarks’ results we 
observe that in this case, there is still enough temporal locality 
in LLC to obtain benefits from LRU replacement policy. This 
result is consistent for three of the four applications evaluated. 
It is remarkable that both Cassandra and Orientdb are 
characterized by much higher MPKI improvements in LLC 
than those observed in the L1D. These results suggest that it 
might be necessary to revisit many of the non-LRU 
replacement policies proposed in the literature. Their 
performance under a novel set of workloads might not be 
necessarily like the one observed in conventional workloads 
(which are the inspiration for the proposals). 

C. Hardware Prefetching 
Through an evaluation process like the one carried out in 

the previous section, we analyze the spatial locality of the 
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applications under evaluation. We measure miss-rate values in 
the presence of simple prefetching policies and compare the 
results to those obtained without hardware prefetching. The 
chosen prefetch algorithms are the well-known Tagged 
Prefetcher [36] and an Arbitrary Stride Prefetcher [37]. Both 
prefetchers use a degree of 2 blocks (generate prefetches for 
the next 2 blocks). Figure 10 shows the results obtained for 
both the first private (L1D) and the last shared (LLC) cache 
levels. For each experiment, Tagged or Stride policies are 
applied to the evaluated cache level, while the rest of cache 
hierarchy does not make use of any prefetching (this means 
that, in the LLC evaluation there is no prefetcher in L1 
caches). Graphs show the results normalized to those obtained 
by a system with no prefetching at all. To improve figure 
readability we only provide maximum, minimum and 
geometric mean values for the conventional benchmarks 
analyzed.  

 
 

 
Figure 9. Replacement policy effect on MPKI. LRU results are presented, 
normalized to RAND values. 

The results obtained suggest that spatial-locality is unable to 
compensate for the pollution introduced in L1D. This is 
especially true for Redis where prefetching, especially the 
Tagged prefetcher, under-performs the baseline (no 
prefetching). This is a well-known issue with this aggressive 
prefetcher, which benefits applications with a high degree of 
spatial locality, but penalizes applications with little locality, 
as can be seen in the max and min results of conventional 
benchmarks. From NoSQL applications, MongoDB can 
outperform MPKI by more than 20% on this level with tagged 
prefetching and OrientDB achieves an improvement of up to 
60%, although they seem to be far from the average 
conventional results. Something similar happens with the 
prefetcher on LLC, although cache pollution has less impact 
on this level, and the behavior is generally better. From the 
results in both figs, it can be concluded that NoSQL 
applications have a relatively average behavior in relation to 
prefetching, MongoDB being the one that can benefit the most, 

up to 20% and 60% in L1D and LLC caches respectively, with 
a consistent behavior among the different workloads.  

 

 
Figure 10. Hardware prefetching effect on MPKI. Results have been 
normalized to the values obtained in the absence of prefetching. 

D. LLC Data & Instruction Sharing
This final experiment focuses on the evaluation of data and 

instruction sharing degree in the Last Level Cache. Since most 
coherence protocols propose a scaling mechanism that uses 
sharing characteristics of common workloads, this study might 
provide some insights about how they will react with these 
benchmarks. 

To do so, we extend gem5 to keep track of the different 
private cache levels “visited” by each block in the cache 
hierarchy. Sharing statistics are updated at every LLC 
eviction. Figure 11 shows, for the 4-core configuration 
employed in previous sections, the fraction of shared and 
private blocks. The shared blocks are divided according to the 
number of sharers. We also provide isolated results for 
instructions and data blocks. As SPEC 2006 applications are 
all single-threaded, only the results of “conventional” NPB 
and PARSEC benchmarks are provided. 

Comparing NoSQL applications to conventional workloads 
we can observe some similarities. In both cases, block sharing 
seems to be much more relevant for instructions. Comparing 
data and instruction results, we observe that the sharing ratio 
for instructions at least doubles the values for data. Focusing 
on instruction results, we observe that Redis workloads have a 
similar behavior to the ones obtained in PARSEC and NPB. In 
both cases the fraction of non-private instructions is similar, 
also being dominated by blocks shared by all the available 
cores in the system (4-SH). Cassandra, MongoDB and 
OrientDB exhibit different behavior. For these workloads, the 
fraction of shared blocks is slightly lower and the number of 
sharers is more uniformly distributed among the three 
possibilities. Moving on to data-sharing results, we observe 
different sharing patterns depending on the database 
evaluated. This variability is also present in PARSEC 
applications. In contrast, NPB workloads show a minimal 
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fraction of shared blocks. 

 

 

 
Figure 11. Sharing degree for instructions and data (up and mid graphs). 

Contribution of instructions and data to private (striped) and shared (solid 
color) blocks in Last Level Cache. 

VI. RELATED WORK 
The relevance of Big-data computing systems is visible in 

the number of studies devoted to the analysis of software 
applications for such environments [38]. In many cases the 
absence of well-known benchmarking tools has forced 
researchers to design their own application suites. Some of 
these benchmarks, such as HiBench [20] or YCSB [15], have 
been designed to evaluate specific scenarios. HiBench was 
developed to evaluate Hadoop [1] performance, while YCSB 
targets evaluating NoSQL databases. In contrast, other 
benchmarks such as CloudSuite [9], BigDataBench [13] and 
DCBench [28] try to cover a wider range of application 
domains. Both CloudSuite and BigDataBench have been 
implemented making use of the full software stack 
(application and database) and provide workloads targeting 
domains such as offline analytics, real-time analytics and 
online services. Alternative multi-domain benchmark suites 
such as DCBench are also available, limiting the software 
stack to algorithms and synthetic implementations of basic 
operations. 

Making use of all these benchmarking tools, many research 
works have focused on the microarchitectural characterization 
and profiling of these scale-out applications [20][9][13][28] 
[10][11][39][12][40]. Most of these works follow a similar 
methodology in their evaluation process. Software runs in an 

actual hardware platform and architectural behavior is 
analyzed through performance-profiling tools such as perf [30] 
or VTune [41]. Finally, in some cases the CPI stack is 
reconstructed following the Top-Down methodology proposed 
in [42].

Cache Hierarchy results are provided in many of the cited 
works as part of the characterization process. In [9], the 
proposed CloudSuite benchmark suite is employed to evaluate 
the inefficiencies of the Intel X5670 processor micro-
architecture. L1 and L2 MPKI is evaluated, and a LLC 
sensitivity analysis is carried out, making use of polluting 
threads. This work highlights the high instruction-cache miss 
rate as well as the hardware prefetching inefficiencies detected 
in our characterization. Trying to overcome methodological 
limitations (no hardware modifications available), some 
authors make use of diverse processor models, Xeon E5310 
vs. Xeon E5646 in [13] or Xeon E5-2420 vs. Atom C2758 in 
[12]. In both cases a per-level MPKI analysis is performed, 
comparing results from both processor models. In [13], the 
sensitivity of data volume in MPKI is also evaluated, reaching 
similar conclusions to those in our work, but limited to their 
specific architectures. All these works make use of extremely 
heterogeneous workloads and employ a similar methodology 
based on profiling tools. Focusing on a concrete family of 
applications and extending characterization through 
simulation, our work is able to provide much richer 
conclusions about memory hierarchy effects. 

Among all the profiling works, some of them show great 
similarity to the characterization carried out in this paper. The 
authors in [11] make use of a similar software stack (YCSB as 
workload generator) and focus on the same specific kind of 
applications, that is, modern databases. By making use of 
profiling tools, performance and scalability of different 
commercial databases are analyzed. However, again due to the 
profiling-based methodology, results concerning cache 
hierarchy are limited to the per-level MPKI analysis. This 
work claims that the miss-rate observed in L1D cache for 
NoSQL applications is over 50%, however, we have 
reproduced these experiments and have not been able to 
validate this affirmation. 

The simulation-based methodology employed in our work 
represents a key difference compared to all the previous 
characterization works. This methodology is not new and, in 
contrast to Big-data benchmark suites, “conventional” suites 
such as SPEC CPU2006 or PARSEC 3.0 have been 
characterized previously following a similar methodology to 
the one employed in this work. In [27] instrumentation-driven 
simulation is employed to completely characterize the memory 
behavior of SPEC workloads. In [43], PARSEC applications 
are also characterized through the simulation tools. However, 
to the best of our knowledge, this is the first work 
characterizing the memory hierarchy of NoSQL applications 
by employing a full system simulation stack. 

VII. CONCLUSIONS 
In this work, we have conducted a simulation-driven 

characterization of four modern NoSQL databases: Cassandra, 
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MongoDB, OrientDB and Redis. We have compared their 
memory behavior to that observed in benchmark suites 
designed for micro-architecture evaluation: SPEC CPU2006, 
PARSEC and NPB. Thanks to the flexibility provided by our 
methodology, the experiments have allowed us to gain deeper 
understanding of the cache-hierarchy utilization of NoSQL 
applications. The results suggest that NoSQL applications 
present similar behavior to conventional workloads in many 
cache-hierarchy aspects. Their miss-rate is responsive to cache 
capacity and performance benefits can be obtained from some 
hardware mechanisms. In contrast, some other design aspects 
are unlike conventional benchmarks, and might be relevant 
enough to require architectural enhancements that take them 
into account.  

Focusing on NoSQL benchmarking, we have found 
surprisingly uniform behavior in some aspects. The marginal 
effect of database size on cache performance or the constant 
fraction of store instructions remains independent of the 
application or the workload evaluated. The large software 
stack seems to hide the peculiarities of each application from 
the underlying micro-architecture. Surprisingly, the dissimilar 
specifications of each database management software are not 
reflected in the cache hierarchy. Finally, the characterization 
work has also highlighted the differences observed between 
database engines. They present distinctive demands on the 
memory hierarchy in aspects such as cache capacity, 
replacement policy or hardware coherence. 

The proposed methodology enables a large range of 
research opportunities. Available workloads could be extended 
to alternative Big-data benchmark suites, such as CloudSuite 
or HiBench. Additionally, the simulated environment enables 
the evaluation of how microarchitectural proposals will react 
under these workloads.  
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