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Abstract—In real simulation applications, simulations often involve large volumes of three-dimensinal (3D) moving objects. With

the rapid growth of the scale of simulation-problem domains, it has become a key requirement to efficiently manage massive

3D moving objects. Conventional indexing approaches for managing 3D moving objects during simulations generally suffer

from excessive update costs. Aiming to this problem, this paper first proposes an update-efficient indexing structure by fusing

a loose Octree and one update-memo structure, namely ML-Octree. ML-Octree significantly reduces the update costs of one

simulation involving massive 3D moving objects. Towards providing a more efficient indexing approach, this paper has explored

the feasibility of paralleling ML-Octree by employing Graphic Processing Unit (GPU). A load-balancing scheme is used to further

improve the update performance of the GPU-aided ML-Octree. Finally, a distributed GPU-aided ML-Octree is proposed for large-

scale simulations. The experimental results indicate that (1) ML-Octree can acquire the update-performance gain of an order of

magnitude similar to that of Octree, (2) the GPU-aided ML-Octree can accelerate 5.07× faster than a parallel ML-Octree with

8 CPU threads on average, (3) the load-balance scheme can improve GPU-aided ML-Octree by 2.3× on average, and (4) the

distributed GPU-aided ML-Octree can efficiently support large-scale simulations.

Index Terms—Simulation, Moving objects, Indexing structure, Update-Efficient

�

1 INTRODUCTION

SImulation is an essential technique in many ar-
eas of science and engineering since real-world

or physical experiments are extremely costly and
pure mathematical approaches or analytic models do
not adequately characterize the features of problems
in areas of science and engineering [1], [2], [3]. In
real simulation applications, simulations often involve
large volumes of 3D moving objects. For example,
in large cosmological simulations [4], [5], [6], the
universe is represented by N moving particles, and
the gravitational N-body simulation method is used
to simulate the particles’ interactions to deeply un-
derstand problems related to the universe, such as
dark matter, the halo abundance, etc. The 3D moving
objects represented by multi-agents [7] also appear in
the simulations for studying the collective behavior
of large aggregations of animals through the local
rules of interaction among the 3D moving objects. The
representative examples are bird flocks [8] and fish
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schools [9], [10]. With the rapid growth of both the
complexity and the scale of problem domains [11],
[12], [13], it has become a key requirement to effi-
ciently manage massive moving objects for accurate
and fast large-scale simulations [14].

Indexing approaches based on tree structures are
dominant for efficiently managing 3D moving objects
in such simulations. These indexing approaches make
use of tree structures, e.g., Octree [4], [15], [16] and
KD-tree [17], to recursively divide up the simulation
domain to sub-volumes and to index all moving
objects in a time-step simulation. Thus, a time-step
simulation with the tree-indexing structure contains
two phases: the query phase and update phase [18]. In
the query phase, each moving object can employ the
indexing structure to accurately and quickly obtain
the information of nearby objects and to compute
their new states (e.g., velocity, location, etc). After all
moving objects finish this query phase, the simulation
goes to the update phase, where the tree-indexing
structure is updated or rebuilt to again index all
moving objects for the next time-step simulation.

Previous works on the uses of tree-indexing struc-
tures in simulations mainly focus on optimizing their
query performances. These approaches exploit the
parallelism of tree-indexing structures for process-
ing queries with the techniques of high-performance
computing (HPC) such as supercomputers [4], [5],
General Purpose GPUs (GPGPUs) [17], [19] and Field-
Programmable Gate Array (FPGA) [6]. Nevertheless, a
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new challenge arises with the volume of 3D moving
objects becoming very large in current simulations.
For example, [4] presents a cosmological N-body sim-
ulation of more than 69 billion particles on 256K (218)
processors. That means each processor is responsible
evenly for indexing 218 particles at least. Thus, the
maintenance cost associated with updating or rebuild-
ing indexing structure in the update stage currently
has a major impact on the simulation performance.
Meanwhile, traditional indexing structures for simula-
tions such as Quadtree and Octree exhibit the inferior
performance for updating large-scale moving objects
with geometries [14]. This is because the sizes of these
minimum Quadtree (or Octree) enclosing cells depend
on the positions of the centroids of the objects and are
independent of the size of the objects. There exists a
pressing need for a new indexing approach for simu-
lations that supports the efficient frequent updates of
large-scale 3D moving objects with geometries.

To address the new research challenge, we first pro-
pose a new indexing structure that aims to support the
frequent updates of 3D moving objects with geome-
tries. The new structure has been constructed upon a
loose Octree [20] and an update-memo structure [21].
Inspired by loose Quadtree for indexing 2D moving
objects in [14], we employed a loose Octree (i.e., L-
Octree) to index 3D moving objects to accommodate
more frequent updates than that which occurs with
Octree as the loose Octree has less possible cells
associated with the 3D moving objects. Thus, the L-
Octree can process updates much more quickly than
the Octree can. Furthermore, we propose a L-Octree
with an update-memo structure called ML-Octree, like
RUM-tree (a R-tree with an update memo ) [21], for ef-
ficiently handling frequent updates when the changes
between consecutive updates are large. The update
memo can help L-Octree to eliminate the need to
delete the old data item during an update operation.
Thus, the cost of an update operation for ML-Octree
is approximately that of an insert operation.

Meanwhile, to gain more efficient update perfor-
mances of ML-Octree for simulations, we map ML-
Octree to the architecture of one Kepler GPU, namely
G-ML-Octree. G-ML-Octree is organized by multiple
1D arrays and one hash table in GPU memory. Then,
we parallelize the insertion operations of a large
number of moving objects on G-ML-Octree using a
dynamic load-balancing scheme on GPUs [22] and
the dynamic parallelism feature of Kepler GPUs [23].
Finally, we employ a two-level indexing scheme (i.e.,
one global spatial index and multiple local indexes)
to design a distributed G-ML-Octree on a GPU cluster
for large-scale simulations.

A number of experiments have been carried out to
evaluate the update performance of ML-Octree for 3D
moving objects in the N-body simulation. The Octree-
based indexing approach was referenced for the pur-
pose of comparison. Furthermore, G-ML-Octree has

been examined against the Central Processing Unit
(CPU)-based alternative. Finally, the distributed G-
ML-Octree has been evaluated on a GPU cluster with
four nodes. The experimental results indicate that
(1) the ML-Octree indexing structure can significantly
reduce maintenance costs compared with the Octree
indexing structure for the N-body simulation, (2) the
GPU-aided ML-Octree on a Kepler GPU [23] outper-
forms the ML-Octree in terms of update costs, (3) the
load-balancing scheme further improves the update
performance of G-ML-Octree, and (4) the distributed
G-ML-Octree is proved to be one way for large-scale
simulations of massive 3D moving objects.

The principle contributions of the paper are sum-
marized as follows:

1) We have proposed an update-efficient indexing
structure named ML-Octree that supports the
simulation of 3D moving objects with geome-
tries. ML-Octree employs the loose feature of
loose Octree cells and one update-memo struc-
ture to accommodate frequent indexing updates
during the simulation.

2) We have designed a parallel indexing structure
of ML-Octree on one GPU for fast index updat-
ing.

3) We have improved the update performance
of G-ML-Octree by combining one GPU load-
balancing scheme [22] and the Kepler GPU’s
dynamic parallelism feature.

4) We have presented a distributed G-ML-Octree
on a GPU cluster for large-scale simulations.

The remainder of this paper is organized as follows:
Section 2 presents the related work of indexing mov-
ing objects. Section 3 proposes the update-efficient in-
dexing structure (ML-Octree). Section 4 introduces the
design of ML-Octree on one GPU (i.e., G-ML-Octree)
and the load-balancing scheme for G-ML-Octree. Sec-
tion 5 introduces a distributed G-ML-Octree on a
GPU cluster. Section 6 presents the experiments and
results for the performance evaluation of the proposed
approaches. Section 7 concludes this paper with a
summary.

2 RELATED WORK

This section describes the most salient works along
indexing moving objects.

The indexing structures for moving objects can be
roughly classified into two categories, i.e., the cell-
based and the tree-based categories. The cell-based
structures employ a grid structure [24], [25], [26] to
partition the indexing space into equal-sized cells for
indexing moving objects. In [27], authors introduce a
novel grid index called DGI (Distributed Grid Index).
The server transmits DGI and the client examines the
received index to process spatial queries. The pro-
posed index structure and search algorithm support
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efficient spatial queries in a wireless broadcast envi-
ronment, shortening query search times. However, the
selection of cell size is non-trivial. Too large of a size
may cause too many moving objects residing in one
cell to decrease the query performance of the indexing
structure. On the contrary, too small of one can lead
to the high costs of space and time for building and
rebuilding their indexing structures [28].

The tree-based approaches index moving objects to
retrieve predicative answers or to approximate query
answers using tree-based indexing structures. Tradi-
tionally, tree-based approaches exploited the indexing
structures of R-tree and its variants. For instance, R*-
tree in [29] and TPR-tree in [30] are used to index
positions of moving objects to support queries. How-
ever, the R-tree and its variants were designed mainly
for static data. Thus, these indexing structures may
suffer from the high maintenance costs associated
with indexing moving objects since their indexing
structures are updated frequently with the contin-
uous changes of moving objects. Bottom-up update
approaches have been made to alleviate the update-
performance issue of the R-tree family. For example,
Lazy Update R-tree (LUR-tree) [31] updates the struc-
ture of the index only when an object moves out
of the corresponding minimum bounding rectangle
(MBR). If the new position of an object is in the
MBR, this changes only the position of the object in
the leaf node. The Frequently Updated R-tree (FUR-
tree) [32] extended the LUR-tree through a scheme
in which a certain object can move to one of its
siblings. However, the update performances of these
bottom-up methods degrade quickly when consecu-
tive changes are large. To deal with the drawback
of bottom-up methods, Y. N. Silva et al. proposed a
R-tree with an update memo (RUM-tree) to handle
moving-object updates more efficiently. The update
memo eliminates the need to delete the old data item
from the index during an update operation. In [33],
authors proposed a novel query indexing structure,
referred to as the Query Region tree (QR-tree), which
allows the server to cooperate with moving objects
efficiently by leveraging the available computational
resources of the moving objects to improve the overall
system performance.

For the large-scale simulations of moving objects, R-
tree indexing suffers from the heavy cost of rebalanc-
ing the R-tree structure [18]. Therefore, non-balanced
tree-based structures such as Quadtree, Octree and
KD-tree have been widely used in indexing mov-
ing objects in the large-scale simulations of moving
objects. For example, for 2D simulations, the loose
Quadtree structure is applied for indexing moving
objects with extents in games [14], and Sim-tree is
proposed for indexing vehicles for large-scale mi-
croscopic traffic simulations [18]. In the case of the
simulations of 3D moving objects, the Octree structure
[4], [15], [16] and the KD-tree [17] structure are used

for indexing moving objects (moving particles) for
the N-body simulation. In [34], a hybrid indexing
structure of grid and loose Octree called as GLOctree
is proposed to provide a general purpose spatial par-
titioning method for dynamic scenes. GLOctree holds
a great query performance with the grid structure
and an excellent update performance by loose Octree.
Similar to GLOctree, we utilize loose Octree for effi-
cient updates as well. Unlike GLOctree, we employ
GPU to gain a good update performance. As we
can see, the current most indexing structures for 3D
moving-object simulations still employ the traditional
Octree and KD-tree indexing structures. These index-
ing structures seldom consider the geometric feature
of moving objects and exhibit inferior performance in
updating large-scale moving objects with geometries
[14].

Different from existing indexing methods for mov-
ing objects, this paper targets the emerging challenge
of supporting efficient frequent updates of large-scale
3D moving objects with geometries during simula-
tions. Our indexing method gains a great update
performance through inheriting the merits of the loose
Octree and the update-memo structure, and through
exploiting the parallelism of GPU device and GPU
cluster.

3 THE UPDATE-EFFICIENT INDEXING AP-
PROACH

This section first formulates this problem. Then, the
details of the proposed indexing structure ML-Octree
are described. This section ends with a series of
algorithms and one deletion scheme upon ML-Octree.

3.1 Problem Formulation

We assume that the simulation space is a 3D Euclidean
space, and the geometric feature of the moving object
is considered. Then, we formulate the problem.

Definition 1 (A 3D moving object) : A 3D mov-
ing object with geometries in a 3D Euclidean space is
described as: o = (id,MBB, r, S). In Definition 1, id
is the identifier of the moving object. MBB = (pl+b,
pr+t) is a minimum bounding box that represents the
3D moving object, where pl+b = (x1, y1, z1) and pr+t

= (x2, y2, z2) represent the position coordinates of the
bottom-left corner and the top-right corner of the MBB
respectively, in a 3D Euclidean space. r is half the
length of a side of the minimum bounding hypercube
of MBB. S is a set of states that describes the moving
object. The content of S varies with different kinds of
moving objects.

Definition 2 (Simulation moving objects) : A
set of N moving objects in one simulation with S

timesteps. O is defined as a dynamic set over the
simulation timesteps: O = {oji | 1 ≤ i ≤ N ∧ 1 ≤ j ≤
S }. o

j
i represents the i-th moving object in the j-th

timestep of the simulation.
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Definition 3 (The indexing structure for O) :
The indexing structure for indexing the dynamic
set of moving objects O is defined as imbalanced
tree-based indexing structure T (O).

Here, the objective is to make the indexing structure
T (O) update efficient for large-scale simulations.

3.2 The Indexing Structure: ML-Octree

An update-efficient indexing structure based on a
loose Octree [20] and an update-memo structure [21]
is proposed for the simulation of 3D moving objects,
namely ML-Octree. ML-Octree is constructed by the
two phases of (1) loose Octree construction and (2)
update-memo incorporation.

3.2.1 Loose Octree construction

In our highly dynamical simulation environment, the
Octree structure suffers from the drawback that the
structure is frequently updated, as the size of the
its minimum-enclosing cell depends on the positions
of the moving objects. Thus, these sizes of Octree
cells require frequent change with the moving objects.
The loose Octree [20] can overcome this issue by
expanding the size of the space. It is spanned by
each Octree cell c of width w by a cell expansion
factor p ( p > 0). Thus, the expanded cell is of width
(1 + p) × w, and a moving object o = (id,MBB, r, S)
is associated with its minimum-enclosing expanded
Octree cell. Therefore, the procedure of inserting o

into the loose Octree is one of finding the smallest
Octree cell c that contains the centroid of o.MBB, and
whose expanded cell also contains o. To determine the
appropriate cell of width w for o, we use the following
formula described in [14]:

1

1 + p
≤

w

2× o · r
<

2

p
(1)

Let the root cell of the loose Octree have width 2g

so that all other cells have w = 2k (k ≤ g). One function
is used in [14]:

M(x) = 2k, (2k−1 < x ≤ 2k) (2)

The formula (2) is used to compute the number of
levels in the loose Octree at which the smallest Octree
cell c of the moving object o could possibly lie. It is
upper bounded by UB. The value of UB is:

UB = log
M(2/p)
2 − log

M(1/(1+p))
2 (3)

Thus, given p, moving object o can find the corre-
sponding cell with formula (1) for the cost of traveling
at most UB levels in the loose Octree. Fig. 1 provides
an example for constructing a loose Octree to index
a set of moving objects O (Ref O to Definition 1 in
Section 3.1) including three moving objects o1, o2, and
o3 given a specific simulation timestep. As we can see
in Fig. 1(a), the insertion of these three objects with the
above-mentioned insertion procedure leads to the cell

0 1

2

5

6 7

30 31

32 33
35

36 37

o1

o2

o3

(a) Cell decomposition induced

by the loose Octree

MBB

w

(1+p)w

move

32

32'

32

32

root

33

o2 o2

(b) Its tree representation

Fig. 1. An example for constructing loose Octree

decomposition of the loose Octree. Thus, the indexing
space is first partitioned into eight octants from cell
0 to cell 7. Then, cell 3 further is decomposed into
eight octants including the cells from cell 30 to cell
37. As a result, each moving object is assigned to one
Octree cell. That means o1 corresponds to cell 2, o2 is
in cell 32, and o3 falls under cell 33. The corresponding
tree representation is shown in Fig. 1(b). In Fig. 1(b),
we assume o2 moves away from cell 32 of width w.
Unlike the Octree, o2 should have been deleted and
reinserted. The loose Octree can avoid this reinsertion
since the centroid of MBB of o2 is still enclosed by the
expanded Octree cell 32’ of width (1 + p)w.

3.2.2 Update-memo incorporation

To further improve the update performance of the
loose Octree, we incorporate an update memo that has
been used in R-tree for frequent updates [21] into the
loose Octree called ML-Octree. The primary feature
behind ML-Octree is that the old entry in the tree
is allowed to co-exist with newer entries before it is
removed later, rather than deleting it when updating
moving objects. Like [21], garbage cleaners are also
used to remove old data entries in ML-Octree lazily.
Thus, the cost of an update operation is about the cost
of an insert operation.
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3

32

root

33

o2

(o2,s2)(o2,s1)

move

leaf entry leaf entry

Update Memo

Loose Octree

ML-Octree

Key TableH(o2.id)

Value Table(o2.id, s2, 1)

Fig. 2. Illustrating the structure of ML-Octree

In ML-Octree, each index entry in one leaf cell is
assigned a stamp by a global stamp counter when
the entry is inserted into the tree. The stamp places
a temporal relationship among leaf entries, i.e., an
entry with a smaller stamp is inserted before an entry
with a larger stamp. Normally, index entry e in the
loose Octree is represented with (o, stamp), where o

is the same as Definition 1 and stamp is the assigned
stamp number. To distinguish the latest entries from
the obsolete entries, the update-memo structure is
used as in [21]. Specially, the update-memo structure
is a hash table. It contains multiple < key, value >

pairs. Each entry is formed with < H(o.id), V >,
where H(o.id) is the hash value of o.id and where
V = (o.id, Slatest,Nold) represents one entry in the
update memo, in which o.id is the object identifier,
Slatest is the stamp of the latest entry of the object,
and Nold stands for the maximum number of obsolete
entries.

Fig. 2 shows an example of a hybrid structure with
the loose Octree and the update memo for indexing
moving objects. We assume that moving object o2
initially falls under cell 32 and then moves to cell 33.
This motion causes two changes in ML-Octree. First,
one new leaf entry (o2, s2) is inserted into cell 33,
while the old leaf entry (o2, s1) remains in cell 32,
holding the condition s2 > s1. Then, one key-value
pair < H(o2.id), V = (o2.id, s2, 1) > is inserted into
the update memo. Value V = (o2.id, s2, 1) means that
for moving object o2, the stamp of the latest entry is s2,
and there exists one obsolete entry, i.e., (o2.id, s1), in
the leaf nodes of ML-Octree. This processing avoids
the deletion of an old leaf entry (o2.id, s1), and the
latest entry of o2 is recorded in the update memo.
The deletion of (o2.id, s1) is done later by the clean-
on-touch way or garbage cleaners in the batch manner
through the update memo.

3.3 The Algorithms upon ML-Octree

This section describes insert/update and search algo-
rithms on ML-Octree. We present the deletion scheme
on ML-Octree as well.

3.3.1 Insert and update

The update procedure is similar to the insert proce-
dure except for the operations on the update memo.
Thus, given a 3D moving object o (see Definition 1),
and ML-Octree T with cell expansion factor p, we
present both insert and update procedures using the
pseudocode in algorithm 1. As we can see, initially,
we query the update memo with o.id (line 2) and
record the current timestamp (line 3). If there is no
record in memo, there are two cases. The first case is
that the moving object has been an existing object in
ML-Octree, so we first update the update memo (lines
4-8) and then update the index entry of o by an insert
operation (lines 10-20). Otherwise, o is a new moving
object. For this case, we generate a new index entry
and then execute an insert operation (lines 10-20) as
well. During the insert procedure, we use the search
algorithm in [14] to locate the tree cell holding the
index entry (lines 21-27).

3.3.2 Search

In our setting, the basic query type is the range query
used to find out index entries within a given range.
Let q be one range query and RS be one result set. The
search algorithm with the range query is presented in
algorithm 2. First, we search matched entries from the
root node (line 2) and then search its children (lines
3-15). For each child, we match its expanded cell with
the range query q. If there is overlap, the procedure
is recursively repeated (lines 9-11).

3.3.3 Delete

Since no moving objects are deleted during the sim-
ulation procedure, no delete operations happen on
the update memo. Thus, we focus only on how to
delete obsoleted index entries in L-Octree and we
employ the garbage-cleaning scheme in RUM-tree
[21]. Concretely, multiple cleaning tokens that are
logical objects for traveling tree nodes are used to
clean the old index entries in the traveled nodes. Note
that, unlike RUM-tree, where data are stored only in
leaf nodes, data are distributed in all nodes in ML-
Octree. Therefore, cleaning tokens are responsible for
all tree nodes rather than leaf nodes. Fig. 3 provides
an example of the deletion scheme, where Token
1 and Token 2 clean nine nodes and eight nodes,
respectively.

4 THE GPGPU-AIDED ML-OCTREE

We first map ML-Octree to GPU’s memory to form G-
ML-Octree, and then, we present a fast update scheme
for G-ML-Octree.
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Algorithm 1: Insert and Update on ML-Octree

1 InsertAndUpdate_Procedure(T, o, p)
2 memo_e ← retrieve index entry with the hash

value of o.id from the update memo
3 s = CurStampCount+1 /* the current

stampcount increases by one */

4 if memo_e == NULL then
5 if o is an existing object then
6 insert an index entry (o.id, s, 1) into the

memo
7 end
8 end
9 else

10 memo_e.Slatest = s,memo_e.Nold++
11 end
12 set one new index entry e = (o, s)
13 c = findMINCell(T, o, p) /* find the minimum

enclosing expanded Octree cell for

o */

14 if c == null then
15 create one cell satisfied with formula (1)

through recursively partitioning the indexing
space of T

16 end
17 e.s ← (stampcount = stampcount + 1) /* set

the e’s stamp through the global

stamp counter */

18 if c is not full then insert e into the cell c
19 ;
20 else split the cell into eight subcells and insert e

into one of them
21 ;
22 return

/* find the minimum enclosing

expanded Octree cell */

23 findMINCell(T, o, p)
24 rc = NULL;
25 for i = log

M(1/(p+1))
2 ; i < log

M(2/p)
2 ; i++ do

26 w ← 2(i+1) × M(o.r) /* computing the

width of the smallest possible

cell c containing o, M(.) see

formula(2) */

27 if o falls in the c with w in T then rc ← c;
break; ;

28 end
29 return rc

4.1 Data Structures for G-ML-Octree

ML-Octree has two components: one loose Octree and
one update memo. Thus, we achieve the structure
map through constructing the loose Octree and the
update memo on the GPU, respectively.

In [19], the Octree structure on one GPU has been
represented by multiple arrays. Different from the
structure in [19], in our setting, the indexed data
are 3D geometries rather than point data, and the

Algorithm 2: Search on ML-Octree

1 Search_Procedure(T.cell, q, RS) /* Input:

T.cell is the cell of a ML-Octree, q

is a range query; Output: RS is

the query results */

2 GetResults(T.cell, q, RS) /* return all

matched index entries in the T.root

node */

3 CellSet = findCells(T.cell, q) /* find all

subcells of T’s cell overlaps q */

4 for each cell c ∈ CellSet do
5 if c’s expended cell (i.e (1+ p)w ) overlaps q then
6 GetResults(c, q, RS)
7 CellSet = findCells(c.cell, q)
8 for each subcell subC ∈ CellSet do
9 if subC.(1 + p)w overlaps q then

/* recursive search */

10 Search_Procedure(subC, q, RS)
11 end
12 end
13 end
14 end
15 return RS

/* retrieve all matched query results

in one given cell */

16 GetResults(Cell, q, RS)
17 EntrySet ← get all entries in the Cell
18 for each index entry e ∈ EntrySet do
19 gain index entry memo_e with the hash value

of e.o.id from the update memo
20 isLatest = (e.stamp == memo_e.Slatest)?

TRUE:FALSE
21 if isLatest ∧ e.o.MBB overlaps q then
22 RS = RS ∪ {e}
23 end
24 end

expanded cell factor needs to be stored. Therefore,
we extend the data structure of Octree in [19] for
loose Octree. Fig. 4(a) shows that L-Octree in the GPU
memory consists of a cell array and a data array.
The cell array holds all Octree cells. Each element in
the cell array has eight sub-elements that represent
eight children, and the grey-filled sub-elements mean
they are leaf nodes. Meanwhile, each element in the
data array is used to store 3D geometry data and
the properties of each cell especially including the
expanded cell factor.

The update-memo structure in ML-Octree is rep-
resented by one hash table in our design. Thus, we
employ one parallel hash table structure on the GPU
[35] for ML-Octree. Fig. 4(b) illustrates the hash ta-
ble. As we can see, this hash table is one two-level
structure. The index entries first distributed smaller
buckets by a first-level hash function. Then, the index
items in each bucket are stored in three sub-tables by
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Token 1 Token 2

Fig. 3. Illustrating the deletion scheme of ML-Octree
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Fig. 4. Illustration of the structure of ML-Octree on

GPUs

a parallel cuckoo hashing algorithm [35].

4.2 Updating G-ML-Octree

After constructing G-ML-Octree on the GPU, we need
to update the indexing structure efficiently during the
update stage of the simulation procedure. However,
the construction procedure of Octree is a dynamic one,
since there is no information beforehand on how deep
each branch will be, based on the description in [22].

Task queue

Task queue

head

head

Time

Task queue

Task queue
...

Task queue

Task queue

group1

steal

t1 tk tk+1

group1group1

group2 group2 group2

Fig. 5. Illustrating the load-balancing scheme of G-ML-

Octree

This results in the load-unbalance problem of the GPU
threads for constructing our G-ML-Octree.

To address this issue, we propose one two-level
balance scheme. First, we use a task stealing scheme
in [22]. Each GPU thread group is assigned a set of
update tasks by one task queue and attempts to steal
tasks from another GPU thread group once it has
completed assigned tasks. The task assignment and
stealing are executed by CPU.

However, the issue of load unbalance still exists
when a GPU thread group executes sequentially
the tasks from its task queue since different tasks
have various workloads. One solution is to resize
the GPU thread group for different tasks by host-
calling kernels. Nevertheless, the Peripheral Compo-
nent Interconnect (PCI) traffics generated by multi-
ple kernel launches between the host and device re-
duce the update performance. We further employ the
dynamic parallelism feature provided by the NVIDIA’s
GPU based on the Kepler architecture to solve this
problem. Dynamic parallelism enables a CUDA kernel
to create and synchronize new nested work, using
the CUDA runtime API to launch other kernels and
optionally synchronize on kernel completion, with-
out CPU involvement. Thus, each thread group can
adaptively resize itself for incoming tasks with var-
ious workloads by using dynamic parallelism. Fig. 5
provides an example of our scheme of load balance.
First, two thread groups, i.e., group 1 and group 2, are
assigned two task queues and begin to execute indi-
vidual tasks at time point t1. Then, group 1 and group
2 change their sizes by using dynamic parallelism to
efficiently process different tasks as time escapes (e.g.,
at time point tk). At time point tk+1, group 1 steals
one task through one CPU thread from the tail of the
queue for group 2 since it has no tasks to execute.

5 A DISTRIBUTED G-ML-OCTREE ON A

GPU CLUSTER

Since the number of indexed moving objects is limited
by the size of GPU memory on one GPU device, one
GPU device may not index all 3D-moving objects in
large-scale simulations. Therefore, in this section, we
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propose a distributed G-ML-Octree on a GPU cluster.
We assume a GPU cluster contains n nodes and each
node is equipped with one GPU device. We index
N 3D-moving objects across n nodes. Concretely, the
indexing is composed of (1) a global spatial index, and
(2) n local G-ML-Octree indexes.

We employ one domain decomposition method for
parallel reservoir simulation [36] to design the global
spatial index. Concretely, the minimum global space
containing all 3D moving objects first is partitioned
into n disjoint domains D1, D2, ... , Dn (one for each
node) and each node t owns Dt only. The partition
scheme depends on the GPU memory size of each
node. That means VD1

: VD2
:, ..., : VDn

= Snode1 :
Snode2 :, ..., : Snoden . VDi

is the volume of Di and
Snodei represents the size of GPU memory of nodei.
Meanwhile, each node nodei holds a maximum ca-
pacity of holding moving objects MAXnodei . In the
procedure of simulation, one node may receive some
incoming moving objects from other nodes. Thus, we

assume
n∑

i=1

MAXnodei = α×N , where α is a capacity

expansion factor ( ≥ 1) to guarantee that each node
has enough GPU storage space to store incoming
moving objects and intermediate results. That means
we need deploy enough nodes in a cluster for large-
scale simulations. After then, each moving object o is
distributed into one domain D′ using the following
formula:

D′ = argmax
Di

[overlap(Di, o )] ∧ (CDi
≤ MAX

nodei
)

(4)
Where, overlap(Di, o) is the overlap of spatial re-

gion between Di and o, and CDi
is the current number

of moving objects in Di. To avoid network transfer
overhead, the global spatial index is replicated across
nodes in the cluster. Noted that, the global spatial
index only records the mapping relation between each
cluster node and its corresponding space domain.
Therefore, it only consumes a very small space over-
head. Thus, we simply store the global spatial index
in the host memory of each node. After distributing
all moving objects, we generate n local indexes on
n nodes by constructing n G-ML-Octrees. In the dis-
tributed case, the update procedure is still similar to
the insert procedure, we also present both insert and
update procedures using the pseudocode in algorithm
3 like algorithm 1. As we can see, we first need to
mark the incoming moving object o as obsolete one
on ns if o has not belonged to ns by global index
determination (lines 3-5), and then insert o into the
local index of the remote node n′ (line 6). Otherwise,
the moving object o still resides on ns. Thus, we only
insert o into the local index of ns again. A search
algorithm with the range query over a distributed G-
ML-Octree is presented in algorithm 4, for a range
query q on ns, we first find out all nodes overlap q

by using global index on ns, then forward q to these

nodes to execute search procedure in parallel, finally
all results are returned to ns and merged into a final
result.

Algorithm 3: Insert and Update on distributed G-
ML-Octree

1 InsertAndUpdate_Procedure(o, ns)/* o is a

moving object, ns is one local

node who initializes the operation

in the cluster */

2 n′ ← find the node holds o through ns’s global
spatial index

3 if n′ is not ns then
4 Mark o as an invalid object in the local index

of ns
5 end
6 Insert o into the local index of n′

Algorithm 4: Search on distributed G-ML-Octree

1 Search_Global_Procedure(q, ns, RS) /* Input:

q is a range query, ns is one node

who initializes the query q in the

cluster; Output: RS is the query

results */

2 NodeSet = findNodes(ns’s global index, q)
/* return all nodes whose region

overlap q */

3 for each node n ∈ NodeSet in parallel do
/* search local indexes */

4 Search_Local_Procedure(q, n′s local index,
RS′) Return RS′ to ns

5 end
6 ns merges all RS′ to from RS

7 return RS

6 PERFORMANCE EVALUATION

We have evaluated the performances of the proposed
indexing methods of ML-Octree and G-ML-Octree for
one 3D N-body simulation on one computer equipped
with a Kepler GPU (Titan Black), and the configura-
tions are presented in Table 1. Meanwhile, we also
evaluated the update performance of ML-Octree on
one high-performance rack server (see in Table 2).
Furthermore, the update performance of distributed
G-ML-Octree has been measured on a GPU cluster
with four nodes. These four nodes are connected via
one 100Mbps’s Ethernet. Table 3 gives major configu-
rations of the four nodes.

6.1 Experimental Setup

To evaluate the proposed indexing methods’ potential
in serving large-scale simulations for 3D moving ob-
jects with extents, we take the N-body simulation as a
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TABLE 1

Configurations of the Computer

Specifications of CPU
platforms

Computer

OS Linux Ubuntu 14.04

CPU i7-4790 (3.6GHz, 4 cores)

Memory 32GB DDR3

Specifications of GPU
platforms

GTX Titan Black

Architecture Kepler GK110

Memory 6GB DDR5

Bandwidth Bi-directional bandwidth
of 16GB/s

CUDA SDK 6.0

TABLE 2

Configurations of the Rack Server

Specifications of CPU
platforms

Server

OS Linux Ubuntu 14.04

CPU Intel Xeon E5-2609 v4
(1.7GHz, 8 cores)

Memory 32GB DDR4

case study. Concretely, we modify an open-source N-
body simulator REBOUND [37] to support 3D moving
objects and our indexing structures. In our following
experiments, one 3D moving object is a spheroid. The
modified simulator can generate numerous sphere
objects in the unit-volume space [0,1] × [0,1] × [0,1].
Each 3D moving object is represented by a set of
properties, including position, velocity, acceleration,
mass, and radius.

One time of simulation consists of multiple
timesteps. Each timestep has two stages by using
indexing structures: 1) the query stage, where each
object employs our indexing structure to search neigh-
boring objects to calculate new values for interaction
force and acceleration, and 2) the update stage, where
all object move to new positions and update indexing
structures according to individual new states and
collision rules in [37].

6.2 ML-Octree Evaluation

Here, we evaluate the update performance and space
cost of ML-Octree for the N-body simulation. For
comparison, we observe the update performance and
space cost of Octree, L-Octree, and ML-Octree. Since
REBOUND has employed an Octree to index mov-
ing objects, we implemented a L-Octree in [38] and
replace the Octree in REBOUND. Furthermore, to
realize ML-Octree, we obtained the source code about
RUM-tree [21] from authors, then incorporate the

update-memo structure of RUM-tree into L-Octree to
form ML-Octree. All these three indexing structures
have been constructed by using two double-precision
data structures (i.e., tree and hashing table) on one
computer equipped with CPU i7-4790 (3.6GHz) and
32GB memory (see in Table 1). For L-Octree and ML-
Octree, the cell expansion factor p is set to 0.999, which
is an optimal value according to the experimental re-
sults in [14]. The update performance is measured by
the operation number incurred by indexing updates
and the runtime speedup.

First, we fix the number of simulation timesteps as
20 and observe the the operation number incurred
by indexing updates and the runtime speedup for
various numbers of moving objects ranging from 10K
to 100K. These operations include query, delete, and
insert operations. The experimental results are pre-
sented in Fig. 6(a) show that L-Octree outperforms
Octree about an order of magnitude in terms of
operation number NOP . Moreover, ML-Octree only
uses half of the operations of L-Octree. Meanwhile,
the results of runtime speedup in Fig. 6(b) show that
L-Octree can gain a speedup of 6.98× compared with
Octree, while ML-Octree obtains a speedup of 12.4×
faster than Octree on average.

The reason for the great performance gains of L-
Octree and ML-Octree is that L-Octree and ML-Octree
can avoid numerous unnecessary updates through
their expended cells. On the other hand, ML-Octree
can further enhance the update performance using the
update-memo structure to delete old index data lazily
compared with L-Octree. In addition, we also perform
another experiment where the number of moving
objects is fixed to 100K and the number of timesteps
ranges from 5 to 30. The experimental results shown
in Fig. 7 are similar to those of the first one.

Moreover, we observe the space costs of ML-Octree,
Octree, and L-Octree for various numbers of moving
objects for one N-body simulation with 20 timesteps.
The space costs of the three indexing structures have
been measured in both single-precision and double-
precision cases. Fig. 8(a) shows that ML-Octree and
Octree have maximum and minimum space costs,
respectively, among the three indexing structure. This
reason is that L-Octree needs to maintain an addi-
tional loose factor than Octree, and ML-Octree needs
to incorporate an update memo into L-Octree. More-
over, we can see that the size of ML-Octree increases
with the increase of the timestep, while the sizes of
Octree and L-Octree are unchanged. That is because
that the update memo of ML-Octree is empty when
the simulation starts and then its size gradually ex-
pands as the simulation timestep increases (see in
3.2.2 Update-memo incorporation). Meanwhile, ML-
Octree adapts the lazy update scheme so that the
number of obsolete index entries increases as the
simulation timestep increases as well. In contrast to
ML-Octree, Octree and L-Octree have no such an
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TABLE 3

Major hardware and software features of four nodes in the cluster

Features node #1 node #2 node #3 node #4

Hardware

CPU i7-4790@3.6GHz i7-5820K@3.3GHz i7-5820K@3.3GHz i7-4790K@4.0GHz
Host memory 32GB 32GB 32GB 16GB

GPU GTX Titan Black GTX Titan X GTX Titan Black GTX 960
GPU memory 6GB 12GB 6GB 4GB

Software

OS Linux Ubuntu 14.04 Linux Ubuntu 15.04 Linux Ubuntu 16.10 Linux Ubuntu 15.04
CUDA 6.0 8.0 8.0 8.0
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Fig. 6. Evaluating the update performance of ML-Octree with 20 timesteps
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Fig. 7. Evaluating the update performance of ML-Octree with 100K moving objects

update scheme so that their sizes can keep unchange
in the simulation. Fig. 8(b) and (c) indicate the similar
results to the one in Fig. 8(a). Noted that, when the
size of ML-Octree becomes very large, the garbage
cleaning scheme (see in 3.3.3 Delete) can be triggered
to alleviate the issue of space cost.

Furthermore, from Fig. 9 we also observe that the
space cost of ML-Octree in the single-precision case
can on average decrease by 46% compared with the
space cost in the double-precision case. Meanwhile,
we compare the speedup of ML-Octree relative to
Octree for update time, in both single-precision and
double-precision cases. According to the experimental
results in Fig. 10, ML-Octree has almost the same up-
date performance in the single-precision and double-
precision cases.

6.3 G-ML-Octree Evaluation

The goal of this experiment is to investigate the
update performance of G-ML-Octree for N-body sim-
ulation and the effectiveness of our load-balancing
scheme. Thus, we first measure the update perfor-
mance of G-ML-Octree without load-balance scheme
with 10 timesteps. For comparison, we used one GPU-
aided KD-tree [17] structure for the N-body simula-
tion. For convenience, we denoted the GPU-aided KD-
tree as G-KDtree. Meanwhile, we also compared the
update performances of ML-Octree on two different
machines denoted as M1 and M2. M1 (see in Table
1) is one computer equipped with one CPU i7-4790
(3.6GHz, 4 cores) and 32GB memory. M2 (see in Table
2) is a rack server with one CPU Intel Xeon E5-2609
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(c) NOB=100K

Fig. 8. The comparison of space costs in the double-precision case
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Fig. 9. The comparison of space costs in the single-precision case
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Fig. 10. The comparison of update performance of

ML-Octree in the single-precision and double-precision

cases

v4 (1.7GHz, 8 cores) and 32GB memory. For the sake
of fairness, we implemented a parallel version of ML-
Octree on both M1 and M2 by using the similar paral-
lel method as distributed G-ML-Octree and OpenMP.
Since M1 has a 4-core CPU and M2 owns a 8-core
CPU, we only measured the update performance of
parallel ML-Octree with 8 CPU threads. For conve-
nience, we denoted the ML-Octree with 1 thread and
8 threads on M1 as ML-Octree-1 and ML-Octree-1+,
respectively. Similarly, the ML-Octrees with 1 thread
and 8 threads on M2 are represented as ML-Octree-
2 and ML-Octree-2+, individually. In addition, we
considered the data transfer time between CPU and
GPU when evaluating G-ML-Octree and G-KDtree.

Fig. 11 shows that the update time costs of ML-
Octree-1 and ML-Octree-2 range from 39.8s to 233s
and 59s to 335s, respectively, as the number of moving
objects changes from 100K to 500K. Comparing to ML-
Octree-1 and ML-Octree-2, ML-Octree-1+ and ML-
Octree-2+ can on average gain the speedups of 3.24×
and 6.78× due to the parallel acceleration of 4 CPU
cores on M1 and 8 CPU cores on M2. Furthermore, we
can see that G-KDtree can averagely accelerate 2.17×
and 1.53× , respectively, relative to ML-Octree-1+ and
ML-Octree-2+. The performance gain of G-KDtree is
attribute to its parallel construction algorithm in [17].
Finally, Fig. 11 reflects that G-ML-Octree averagely
has a speedup of 3.24× compared with G-KDtree. The
reason for the great performance of G-ML-Octree is
that the combination of the update scheme of ML-
Octree, multiple arrays and the parallel hash table can
cater to the feature of the parallel access of massive
GPU threads to progressively update its indexing
structure as the simulation timestep increases. Com-
paring to G-ML-Octree, G-KDtree has to continuously
reconstruct its structure since the space partition may
not be effective once one simulation timestep ends.

Meanwhile, we also observed the transfer time of
G-ML-Octree shown in Fig. 12 only takes 0.53% on
average, when the number of moving objects changes
from 100K to 500k. The reason for the results lies
in only two times of transfers happen during the
whole simulation, i.e., input indexing structure from
host to device before the simulation starts, and return
results from device to host after the simulation ends.

Page 15 of 18 Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JANUARY 2014 12

100K 200K 300K 400K 500K
0

50

100

150

200

250

300

350
R

un
tim

e(
s)

NOB

 ML-Octree-1
 ML-Octree-2
 ML-Octree-1+

 ML-Octree-2+

 G-KDtree
 G-ML-Octree

 

 

Fig. 11. Evaluating the update performance of G-ML-

Octree with 10 timesteps
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Fig. 12. Evaluating the transfer time of G-ML-Octree

with 10 timesteps

Meanwhile, the transfer bandwidth of the GPU device
is 16GB/s so that data can be quickly transferred
between host and device.

Finally, we evaluate the effectiveness of our load-
balancing scheme with 30 timesteps. For convenience,
we label the G-ML-Octree with the load-balancing
scheme as G-ML-Octree+. As we can see in Fig. 13,
compared with G-ML-Octree, G-ML-Octree+ gains
encouraging speedups that are 2.3× on average than
G-ML-Octree. The great acceleration performance re-
sults from the joint contributions of the task stealing
scheme and dynamic parallelism of the GPU.

6.4 Distributed G-ML-Octree Evaluation

We conduct experiments to verify the update perfor-
mance of the distributed G-ML-Octree for large-scale
N-body simulations. For comparison, We first build
different-size G-ML-Octrees on node #2 in the GPU
cluster (see in Table 3) by varying the number of mov-
ing objects NOB from 5M to 25M. Then we execute
N-body simulations with 10 timesteps on node #2.
After that, we set the value of α as one to construct
distributed G-ML-Octrees on the GPU cluster and
run the same experiments on the distributed G-ML-
Octrees. We compared the update time costs of G-
ML-Octrees on node #2 and distributed G-ML-Octrees
on the GPU cluster. For fairness, we considered the
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Fig. 13. Evaluating the scheme of load balance with

30 timesteps

maximum network transfer time for migrating mov-
ing objects between nodes and the time overhead for
synchronization of nodes in a timestep simulation.
The implementation of distributed G-ML-Octree em-
ployed a MPI message-passing library MPICH 3.2 for
communications between nodes.

Fig. 14(a) shows that the distributed G-ML-Octree
can averagely gain a speedup of 2.11× compared with
the G-ML-Octree. The major reason for such results is
that we dispatch the moving objects to four nodes
in the GPU cluster according to their capacities of
GPU memory. In our setting, the node #2 holds 12GB
GPU memory while the other three nodes own 16GB
GPU memory in all. Thus, node #2 is response for
about 42.8% workload for simulations while the other
three nodes hold 57.2 % workload. Therefore, the GPU
cluster can achieve about 2.33× faster than node #2
in theory. However, the network transfer overheads
in the GPU cluster, to a great extent, hinder this
theoretical gain. Fig. 14(b) reflects the network time
cost accounts for average 6.6% in the total update
cost of distributed G-ML-Octree. The results indicate
the network time cost only occupies for a relatively
small percentage in the whole update time overhead
of distributed G-ML-Octree.

7 CONCLUSIONS

In this paper, we propose an update-efficient indexing
structure for managing massive 3D moving objects
in large-scale simulations. The proposed indexing
method ML-Octree combines a loose Octree and an
update-memo structure to achieve a great update
performance. Furthermore, we implement the ML-
Octree structure on one Kepler GPU for a higher per-
formance gain. Finally, a distributed ML-Octree has
been implemented on a GPU cluster. The experimen-
tal results show that (1) ML-Octree can acquire the
update performance gain of an order of magnitude,(2)
the GPU-aided ML-Octree can accelerate 5.07× faster
than a parallel ML-Octree with 8 CPU threads on
average, (3) the load-balancing scheme can improve
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Fig. 14. Evaluating the update performance of distributed G-ML-Octree

the GPU-aided ML-Octree by 2.3× on average, and (4)
the distributed G-ML-Octree can efficiently support
large-scale simulations.
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