
1

Efficient Realization of Householder Transform
through Algorithm-Architecture Co-design for

Acceleration of QR Factorization
Farhad Merchant, Tarun Vatwani, Anupam Chattopadhyay, Senior Member, IEEE, Soumyendu Raha,

S K Nandy, Senior Member, IEEE, and Ranjani Narayan

Abstract—QR factorization is a ubiquitous operation in many engineering and scientific applications. In this paper, we present efficient
realization of Householder Transform (HT) based QR factorization through algorithm-architecture co-design where we achieve
performance improvement of 3-90x in-terms of Gflops/watt over state-of-the-art multicore, General Purpose Graphics Processing Units
(GPGPUs), Field Programmable Gate Arrays (FPGAs), and ClearSpeed CSX700. Theoretical and experimental analysis of classical
HT is performed for opportunities to exhibit higher degree of parallelism where parallelism is quantified as a number of parallel
operations per level in the Directed Acyclic Graph (DAG) of the transform. Based on theoretical analysis of classical HT, an opportunity
re-arrange computations in the classical HT is identified that results in Modified HT (MHT) where it is shown that MHT exhibits 1.33x
times higher parallelism than classical HT. Experiments in off-the-shelf multicore and General Purpose Graphics Processing Units
(GPGPUs) for HT and MHT suggest that MHT is capable of achieving slightly better or equal performance compared to classical HT
based QR factorization realizations in the optimized software packages for Dense Linear Algebra (DLA). We implement MHT on a
customized platform for Dense Linear Algebra (DLA) and show that MHT achieves 1.3x better performance than native implementation
of classical HT on the same accelerator. For custom realization of HT and MHT based QR factorization, we also identify macro
operations in the DAGs of HT and MHT that are realized on a Reconfigurable Data-path (RDP). We also observe that due to
re-arrangement in the computations in MHT, custom realization of MHT is capable of achieving 12% better performance improvement
over multicore and GPGPUs than the performance improvement reported by General Matrix Multiplication (GEMM) over highly tuned
DLA software packages for multicore and GPGPUs which is counter-intuitive.

Index Terms—Parallel computing, dense linear algebra, multiprocessor system-on-chip, instruction level parallelism

F

1 INTRODUCTION

QR factorization plays pivotal role in computing solution of linear
systems of equation, solving linear least square problems, and
computing eigenvalues. Such problems arise in navigation to
wireless communication systems. For a matrix A of size m × n,
QR factorization is given by

A = QR (1)

where Q is m × m orthogonal and R is m × n upper triangle
matrix [1]. There are several methods in the literature to perform
QR factorization namely Givens Rotation (GR), Householder
Transform (HT), Modified Gram-Schmidt (MGS), and Cholesky
QR. Following are the two real life application examples, Kalman
Filtering (KF) and QR algorithm where QR factorization is used
as a tool to solve certain computational problems.
Application 1: Kalman Filtering

KF is used in navigation to econometrics since it is capable
of filtering out noisy data and at the same time it also facilitates

• Farhad Merchant, Tarun Vatwani, and Anupam Chattopadhyay are with
School of Computer Science and Engineering, Nanyang Technological
University, Singapore
E-mail: {mamirali,tarun,anupam}@ntu.edu.sg

• Soumyendu Raha and S K nandy are with Indian Institute of Science,
Bangalore

• Ranjani Narayan is with Morphing Machines Pvt. LTd.

Manuscript received April 19, 2005; revised August 26, 2015.

prediction of the next state. A simplistic multi-dimensional KF
is shown in the figure 1. In the KF there is an initial state that
contains state matrix and process co-variance matrix. Based on
the current state and the previous state, next state is predicted as
shown in the figure 1. Based on the predicted state and co-variance
matrix, and measured input, Kalman Gain (KG) is computed and
KG is used to predict the next state. Using KG and the predicted
state, error in the process is computed. A new state matrix and co-
variance matrices are output of the iteration that becomes previous
state for the next iteration.

Fig. 1: Multi Dimensional Kalman Filter

An iteration of KF requires complex matrix operations ranging
from matrix multiplication to computation of numerical stable
matrix inverse. One such classical GR based numerical stable
approach is presented in [2]. From figure 1, matrix inverse being

ar
X

iv
:1

61
2.

04
47

0v
1

 [
cs

.P
F]

 1
4

D
ec

 2
01

6

2

the most complex operation in KF, and computation of inverse
using QR factorization being a numerical stable process, proposed
library based approach is the most suitable for such applications.
Application 2: Eigenvalue Computation

Algorithm 1 QR Algorithm

1: Let A(0) = A
2: for K do = 1,2,3...
3: Obtain the factors Q(k)R(k) = A(k−1)

4: Let A(k) = R(k)Q(k)

5: end for

Computation of eigenvalues is simplified due to QR algorithm
where QR algorithm is based on the QR factorization given in
equation 1. Eigenvalue computation is shown in the algorithm 1.
As a result of QR iteration, eigenvalues appear on the diagonal of
the matrix A while columns of the matrix Q are the eigenvectors
[3]. QR algorithm has gained immense popularity for computing
eigenvalues and eigenvectors. Some of the examples where eigen-
values and eigenvectors are useful are in communication where
eigenvalues and eigenvectors are computed to determine the theo-
retical limit of the communication medium for the transfer of the
information, dimentionality reduction in the principle component
analysis for face recognition, and graph clustering [4][5].

Considering important engineering and scientific applications
of QR factorization, it is momentous to accelerate QR factoriza-
tion. Traditionally, for scalable realization of QR factorization,
library based approach is favored due to modularity and efficiency
[6][7]. Graphical representations of HT based QR factorization
(XGEQR2) and HT based block QR factorization (XGEQRF)
routines in Linear Algebra Package (LAPACK) are shown in
figure 2 where X stands for double/single precision version of
the routine. It can be observed in the figure 2 that the routine
XGEQR2 is dominated by General Matrix-vector (XGEMV) op-
erations while XGEQRF is dominated by General Matrix-matrix
(XGEMM) operations. Performance of XGEQRF is observed to
be magnitude higher than XGEQR2 due to highly optimized
XGEMM operations. XGEMV and XGEMM are part of Basic
Linear Algebra Subprograms (BLAS). Typically, performance of
LAPACK routines can be measured as a relative performance
of BLAS XGEMM since in routines like XGEQRF (QR factor-
ization), XGETRF (LU factorization with partial pivoting), and
XPBTRF (Cholesky factorization), XGEMM is dominant and the
performance achieved is usually 80% of the performance achieved
by XGEMM for the underlying platform.

Fig. 2: DGEQR2 and DGEQRF Routines

Contemporary multicore and General Purpose Graphics Pro-
cessing Units (GPGPUs) are considered as an ideal platform
for efficient realization of BLAS and LAPACK. Multicores are

optimized for sequential programs and they are highly efficient
in exploiting temporal parallelism exhibited by the routines while
GPGPUs are more suitable for the routines that exhibit spatial
parallelism [8][9][10][11]. Experimentally, none of these plat-
forms are capable of exploiting parallelism that is exhibited by the
BLAS and LAPACK routines very efficiently. Moreover, routines
in BLAS and LAPACK can be further examined for attaining
higher degree of parallelism. We quantify parallelism by depict-
ing routines as a Directed Acyclic Graphs (DAGs) and average
number of operation per level (β) in the DAGs is considered as
a measure for fine-grained parallelism exhibited by the routine.
Higher β means more parallelism in the routine.

For exploiting spatio-temporal parallelism in BLAS and LA-
PACK, domain specific customizations are recommended in the
platform that is executing these routines [12][13][14]. We choose
REDEFINE as a platform for our experiments. REDEFINE is
a Coarse-grained Reconfigurable Architecture (CGRA) in which
several Tiles are connected through a Network-on-Chip (NoC)
[15][16][17]. Each Tile contains a router for communication and a
Compute Element (CE). CEs in REDEFINE can be enhanced with
Custom Function Units (CFUs) specifically tailored for domain
of interest. CFUs can be Application Specific Integrated Circuits
(ASICs), Reconfigurable Data-path (RDP), and/or micro/macro
reprogrammable units [18][19]. In the presented approach we
rearrange computations in LAPACK routines vis-à-vis amend
CFU presented in [19] that can efficiently exploit parallelism
exhibited by the modified routine. Thus our approach becomes
algorithm-architecture co-design. Considering importance of QR
factorization in scientific computing, in this paper we focus
on efficient realization of HT based QR factorization through
algorithm-architecture co-design. Contributions in this paper are
as follows:

• Firstly, we discuss evaluation of routines of BLAS and
LAPACK on Intel multicore processors and Nvidia GPG-
PUs. We identify limitations of these machines in ex-
ploiting parallelism exhibited by the routines. It is shown
that even with highly optimized Dense Linear Algebra
(DLA) software packages, the contemporary multicore and
GPGPUs are capable of achieving only 0.2-0.3 Gflops/watt

• XGEQR2 routine of LAPACK that computes HT based
QR factorization is revisited where it is identified that
the computations in the classical HT can be re-arranged
to exhibit higher degree of parallelism that results in
Modified HT (MHT). Empirically, it is shown that realiza-
tion of MHT (DGEQR2HT) achieves better performance
than realization of classical HT (DGEQR2) and better or
similar performance compared to DGEQRF in LAPACK
while through quantification of parallelism, theoretically
it is shown that the parallelism available in the MHT is
higher than that of exploited by contemporary multicore
and GPGPUs. Realization of MHT on multicore and
GPGPU is presented and compared with the state-of-the-
art tuned software packages for DLA. Source code of our
implementation on multicore and GPGPU is supplied with
the exposition

• To exploit available parallelism in MHT, we realize MHT
on Processing Element (PE) presented in [19]. We adopt
methodology presented in [20] and identify macro opera-
tions in DAGs of MHT that can be realized on RDP result-
ing in 1.2-1.3x performance improvement over classical

3

HT realization on the PE. MHT is capable of achieving
99.3% of the theoretical peak performance achieved by
DGEMM in the PE shown in figure 14(c) which is counter-
intuitive as for multicore and GPGPU, the performance
achieved by DGEQRF is mostly 80-85% of the perfor-
mance achieved by DGEMM.

• Compared to multicore, GPGPU, and ClearSpeed
CSX700, 3-80x performance improvement in terms of
Gflops/watt is attained. Realization of MHT, outperforms
realization of DGEMM as shown in figure 14(d). We also
show scalability of our solution by attaching PE as a CFU
in REDEFINE

Due to availability of double precision floating point arith-
metic unites like adder, multiplier, square root, and divider, we
emphasize on the realization of DGEQR2, and DGEQRF using
HT and MHT [21][22]. Organization of the paper is as follows: In
section 2, we briefly discuss about REDEFINE and some of the
recent realization of QR factorization. In section 3, case studies of
DGEMM, DGEQR2, and DGEQRF is presented and limitations
of the recent multicore and GPGPU in exploiting parallelism are
identified. In section 4, HT is revisited and MHT is presented
and realization of MHT on multicore and GPGPU is presented.
In section 5, custom realization of HT and MHT is presented in
PE. Parallel realization of MHT is also discussed in section 5. We
summarize our work in 6.
Nomenclature:
BLAS DGEMM: Legacy realization of DGEMM

LAPACK DGEQR2: Legacy realization of HT based QR factorization

LAPACK DGEQRF: Legacy realization of HT based block QR factorization

LAPACK DGEQR2HT: Realization of MHT based QR factorization

LAPACK DGEQRFHT: Realization of MHT based block QR factorization

PLASMA DGEQRF: Legacy realization of HT based tiled QR factorization

PLASMA DGEQRFHT: Realization of MHT based block QR factorization

MAGMA DGEQR2: Legacy realization of HT based QR factorization

MAGMA DGEQRF: Legacy realization of HT based block/tile QR factorization

MAGMA DGEQR2HT: Realization of MHT based QR factorization

MAGMA DGEQRFHT: Realization of MHT based block/tile QR factorization

2 BACKGROUND AND RELATED WORK

We revisit REDEFINE micro-architecture briefly and discuss
performance of some of the recent DLA computations realized
on REDEFINE. Classical HT and its WY representation of HT
is also discussed [1]. In the latter part of the section, we discuss
some of the recent realization of QR factorization in the literature
and their shortcomings.

2.1 REDEFINE and DLA on REDEFINE

A system level diagram of REDEFINE is shown in figure 3 where
a PE designed for efficient realization of DLA is attached. Micro-
architecture of the PE is depicted in figure 4.

The PE is taken through several architectural enhancements to
improve the performance of the PE and also to ensure maximal
overlap of computations and communication [19]. Performance
variations in the PE due to architectural enhancements is shown
in figure 5(a) while change in the performance in terms of
Gflops/watt due to each enhancement is depicted in figure 5(b).
Further details of PE can be found in [19], and [24]. Due to unique

Fig. 3: REDEFINE at System Level

Fig. 4: Processing Element Design

features of PE and REDEFINE, we choose PE for our methodol-
ogy of algorithm-architecture co-design for HT. It can be observed
in figure 5(c) that the PE achieves almost 3-140x performance
improvement over some of the commercially available multicore,
FPGA, and GPGPUs for DGEMM [23]. It is also shown in [23]
that when PE used as a CFU in REDEFINE, facilitates scalable
parallel realization of BLAS.

2.2 Classical HT
In this section, we briefly explain HT and its WY representation.
Householder matrix for annihilation of m−1 elements in a matrix
A of size m× n is given by

Pm×m = Im×m − 2vm×1v
T
1×m (2)

where P is orthogonal (for real matrices, and Hermitian for
complex matrices) and v is householder vector.

Computations steps for computing householder vector are as

follows for matrix A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

:

α = −sign(a21)

√√√√ 3∑
j=1

a2j1

r =

√
1

2
(α2 − a11α)

From α and r, we can compute v as follows:

v =

v1v2
v3

 (3)

where v1 = a11−α
2r , v2 = a21

2r , and v3 = a31
2r . From v

vector, P can be computed that annihilates a21, and a31. P matrix
is then multiplied with second and third columns of A. In the
next iterations, similar procedure is followed to annihilate updated

4

 AE0 AE1 AE2 AE3 AE4 AE5
0

10

20

30

40

50

60

70

80

20x20
40x40
60x60
80x80
100x100

Architectural Enhancements

P
e

rc
e

n
ta

g
e

(a) Percentage of Theoretical Peak of PE attained in
DGEMM with Each Architectural Enhancement

AE0
AE1

AE2
AE3

AE4
AE5

AE0
AE1

AE2
AE3

AE4
AE5

AE0
AE1

AE2
AE3

AE4
AE5

AE0
AE1

AE2
AE3

AE4
AE5

0

5

10

15

20

25

30

35

40

20x20
40x40
60x60
80x80
100x100

Architectural Enhancements

G
fl

o
p

s
/w

a
tt

0.2 GHz
0.33 GHz

0.95 GHz

1.81 GHz

(b) Gflops/watt for DGEMM at 0.2GHz, 0.33GHz,
0.95GHz, and 1.81GHz

In
te

l C
ore

Nvi
dia

 G
TX48

0
SM

Alte
ra

 S
tra

tix
 IV

Cle
ar

Spee
d C

SX70
0

In
te

l C
ore

 i7
 H

as
sw

el
l

Nvi
dia

 T
es

la
 C

20
50

0

10

20

30

40

50

60

70

80

90

Platforms

P
e

rf
o

rm
a

n
c

e
 I

m
p

ro
v

e
m

e
n

t
In

-t
e

rm
s

 o
f

G
fl

o
p

s
/w

a
tt

(c) Performance Comparison of PE with Other Plat-
forms

Fig. 5: Performance of DGEMM in PE [23]

Fig. 6: DAGs for Householder Transform

a32 by previous iteration. Directed Acyclic Graphs (DAGs) for
annihilation of a31 and a21 are shown in figure 6.

It can be observed in the figure 6 that there exist minimal
parallelism in computation of v vector. Major source of paral-
lelism is matrix-vector operations and matrix-matrix operations
encountered in computation of P matrices. As per Amdahl’s law,
the performance of the routine is limited by the piece of program
that can not be parallelized that is computation of v vectors [25].

2.3 Related Work

HT was first presented in [26] by Alston S. Householder in 1958
that showed significant improvement in terms of computations
over classical Givens Rotation (GR). Since then there were several
innovations at algorithmic and technology level that prompted
different styles of realizations for HT proposed in [26]. First
breakthrough arrived with advent of efficient processors with
memory hierarchy that induced innovation in efficient realization
of Level-3 BLAS [27]. Considering efficiency of Level-3 BLAS
in the processors at that juncture, there was a successful attempt
to realize higher level routines in terms of Level-3 operations.
This attempt gave rise to LAPACK, a successor of LINPACK
that uses matrix-matrix operations as a basic building block for
realization of routines like LU, QR, and Cholesky factoriza-
tions [6]. Simultaneously, there was an innovation in HT that
resulted in WY-representation of HT presented in [28]. The WY-
representation proposed in [28] is storage efficient and exploits

memory hierarchy of the underlying platform more efficiently
due to heavy use of Level-3 BLAS operations at comparable
operations to its predecessor proposal in [29]. Since then WY-
representation of HT is preferred due to its computational density
and over the years there have been several realizations of HT
on contemporary platforms like multicore, GPGPUs, and FPGAs.
LAPACK DGEQR2 was the first implementation that was domi-
nant in matrix-vector operations (also depicted in figure 2) while
improved version of LAPACK DGEQR2 is LAPACK DGEQRF
that performs block QR factorization based on HT rich in matrix-
matrix operations.

In the recent years, with advent of multicore and GPG-
PUs, two major packages are developed namely Parallel Lin-
ear Algebra Software for Multicore Architectures (PLASMA)
for multicore architectures and Matrix Algebra for GPU and
Multicore Architectures (MAGMA) for heterogeneous com-
puting environment [7][30]. Corresponding routine realized in
PLASMA is PLASMA DGEQRF that uses LAPACK DGEQR2
and BLAS DGEMM along with Queuing and Runtime for Ker-
nels (QUARK) for efficient realization of HT based QR factor-
ization on multicore platforms [31]. Similarly, MAGMA uses
efficiently realized MAGMA BLAS and MAGMA DGEQR2 for
realization of MAGMA DGEQRF. Software stacks of PLASMA
and MAGMA are explained in section 4.1. There have been
several attempts for scalable parallel realization of HT based
QR factorization on FPGAs [32][33]. The approach presented
in [33] is a multicore based approach emulated on FPGA while
LAPACKrc presented in [32] is a scalable parallel realization of
LU, QR and Cholesky factorizations. FPGA based realizations
clearly outperform multicore and GPGPU based realizations. A
major drawback of FPGA based realization is the energy efficiency
of the final solution. It is shown in [23] that CFU tailored for DLA
computations clearly outperforms multicore-, GPGPU, and FPGA
based solutions and is an ideal platform for our experiments.
Surprisingly, multicore, GPGPU, and FPGA based solutions for
HT based QR factorization dwell on efficient exploitation of
memory hierarchy but none of them focus on rearrangement of
computations to expose higher degree of parallelism in HT. In
this paper, we present modification to classical HT where we
maintain same computation count and memory access of classical
HT. We also realize proposed MHT in PLASMA and MAGMA
and show marginal improvement in multicore and no improvement
in GPGPU.

5

3 CASE STUDIES

We present case study on different available realizations of
DGEMM, DGEQR2, and DGEQRF in LAPACK, PLASMA, and
MAGMA, and discuss results on multicore and GPGPU platforms.

3.1 DGEQR2

Algorithm 2 Pseudo code of DGEQR2

1: Allocate memory for input matrix
2: for i = 1 to n do
3: Compute Householder vector v
4: Compute P where P = I − 2vvT

5: Update trailing matrix using DGEMV
6: end for

Pseudo code of DGEQR2 is described in algorithm 2. It can
be observed in the pseudo code in the algorithm 2 that, it contains
three steps, 1) computation of a householder vector for each
column 2) computation of householder matrix P , and 3) update of
trailing matrix using P = I − 2vvT (from equation 2). Cycles-
per-Instruction (CPI) attained for LAPACK DGEQR2 executed
on commercially available micro-architectures is shown in figure
7(a). For our experiments, we use Intel C Compiler (ICC) and
Intel Fortran Compiler (IFORT). We also use different compiler
switches to improve the performance of LAPACK DGEQR2 on
Intel micro-architectures. It can be observed in the figure 7(a)
that in Intel Core i7 4th Gen machine which is a Haswell micro-
architecture, CPI attained saturates at 1.1. It can be observed in
figure 7(b) that attained Gflops saturates at 3 Gflops. Similarly, it
can be observed that the percentage of peak performance saturates
at 7-8% of the peak performance in case of Intel Haswell micro-
architectures as observed in figure 7(d). In case when compiler
switch −mavx is used that enables use of Advanced Vector
Extensions (AVX) instructions, the CPI attained is increased. This
behavior is due to AVX instructions that use Fused Multiply Add
(FMA). Due to this fact, the CPI reported by VTune™can not be
considered as a measure of performance for the algorithms and
hence we accordingly double the instruction count reported by
VTune™.

In case of GPGPUs, MAGMA DGEQR2 is able to achieve
up to 16 Gflops in Tesla C2050 which is 3.1% of the theoretical
peak performance of Tesla C2050 while performance in terms of
Gflops/watt is as low as 0.04 Gflops/watt.

3.2 DGEMM

Pseudo code for BLAS DGEMM routine in BLAS is shown
in algorithm 3. It can be observed in the algorithm 3 that
DGEMM has three nested loops in the algorithm. DGEMM is
Level-3 BLAS and it has applications in realization of block
algorithms in the DLA software packages since computations
in DGEMM are regular in nature and easy to parallelize. CPI
attained in BLAS DGEMM is 0.37 as shown in figure 7(a) for
Intel Haswell micro-architectures. We have used Netlib BLAS
for our experiments with platform specific compiler and all
the compiler optimizations enabled. BLAS DGEMM is able to
achieve up to 8.5 Gflops in Intel Haswell micro-architectures with
all optimizations as shown in figure 7(b) which is 17% of the
theoretical peak performance of the micro architecture as depicted
in figure 7(d). In case of GPGPU, MAGMA DGEMM is able to

achieve up to 295 Gflops in Nvidia Tesla C2050 which is 57%
of the peak performance as shown in the figures 7(c) and figure
7(d) respectively. In-terms of Gflops/watt, LAPACK DGEMM
is capable of attaining 0.12 Gflops/watt in Intel Haswell micro
architecture while for Tesla C2050, it is 1.21 Gflops/watt in
MAGMA DGEMM.

Algorithm 3 Pseudo code of DGEMM

1: Allocate memories for input and output matrices and initialize
input matrices

2: for i = 1 to m do
3: for j = 1 to n do
4: for k = 1 to n do
5: C(i,j) = A(i,k)B(k,j) + C(i,j)
6: end for
7: end for
8: end for

3.3 DGEQRF

Algorithm 4 Pseudo code of DGEQRF

1: Allocate memories for input matrix
2: for i = 1 to n do
3: Compute Householder vectors for block column m× k
4: Compute P matrix where P is Computed using House-

holder vectors
5: Update trailing matrix using DGEMM
6: end for

Pseudo code for DGEQRF routine is shown in algorithm 4. In
terms of computations, there is no difference between algorithms
2, and 4. In a single core implementation, LAPACK DGEQRF
is observed to be 2-3x faster than LAPACK DGEQR2. The
major source of efficiency in LAPACK DGEQRF is efficient
utilization of processor memory hierarchy and BLAS DGEMM
routine which is a compute bound operation [34][35]. CPI attained
in LAPACK DGEQRF is 0.43 as shown in figure 7(a) which is
much lower than the CPI attained by LAPACK DGEQR2. In-
terms of Gflops, LAPACK DGEQRF is 2-3x better than LA-
PACK DGEQR2 as shown in figure 7(b) while the performance
attained by LAPACK DGEQRF is 85% of the performance at-
tained by LAPACK DGEMM. LAPACK DGEQRF achieves 6-7
Gflops in Intel Haswell micro-architecture as shown in figure 7(b).
In Nvidia Tesla C2050, MAGMA DGEQRF is able to achieve
up to 265 Gflops as shown in figure 7(c) which is 51.4 % of
theoretical peak performance of Nvidia Tesla C2050 as shown
in the figure 7(d) which is 90.5% of the performance attained
by MAGMA DGEMM. In MAGMA DGEQR2, performance at-
tained in terms of Gflops/watt is as low as 0.05 Gflops/watt
while for MAGMA DGEMM and MAGMA DGEQRF it is 1.21
Gflops/watt and 1.09 Gflops/watt respectively in Nvidia Tesla
C2050 as shown in figure 7(e). In case of PLASMA DGEQRF,
the performance attained is 0.39 Gflops/watt while running
PLASMA DGEQRF for four cores.

Based on our empirical case studies of DGEQR2, DGEMM,
and DGEQRF, we make following observations.

• Due to presence of bandwidth bound operations like
DGEMV in DGEQR2. the performance of DGEQR2 is
not satisfactory in Intel or Nvidia micro-architectures.

6

 1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10
0

0.2

0.4

0.6

0.8

1

1.2

LAPACK_DGEMM (Intel Core i7 4th Gen)
LAPACK_DGEMM (Intel Core i5 4th Gen)
LAPACK_DGEQR2 (Intel Core i7 4th Gen)
LAPACK_DGEQR2 (Intel Core i5 4th Gen)
LAPACK_DGEQRF (Intel Core i7 4th Gen)
LAPACK_DGEQRF (Intel Core i5 4th Gen)

Matrix Size

C
P

I

X 103

(a) CPI Attained in LAPACK DGEMM, LA-
PACK DGQR2, and LAPACK DGEQRF in Intel
Haswell Micro-architectures

 1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10
0

1

2

3

4

5

6

7

8

9

LAPACK_DGEMM (Intel Core i7 4th Gen)
LAPACK_DGEMM (Intel Core i5 4th Gen)
LAPACK_DGEQR2 (Intel Core i7 4th Gen)
LAPACK_DGEQR2 (Intel Core i5 4th Gen)
LAPACK_DGEQRF (Intel Core i7 4th Gen)
LAPACK_DGEQRF (Intel Core i5 4th Gen)

Matrix Size

G
fl

o
p

s

X 103

(b) Performance of LAPACK DGEMM, LA-
PACK DGEQR2, and LAPACK DGEQRF In-
terms of Gflops in Intel Haswell Micro-architectures

 1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10
0

50

100

150

200

250

300

350

LAPACK_DGEMM
MAGMA_DGEMM
MAGMA_DGEQRF
MAGMA_DGEQR2
PLASMA_DGEQRF
LAPACK_DGEQR2
LAPACK_DGEQRF

Matrix Size

G
fl

o
p

s

X 103

(c) Performance of LAPACK/MAGMA DGEMM,
LAPACK/PLASMA/MAGMA DGEQR2, and
LAPACK/PLASMA/MAGMA DGEQRF in
Intel Haswell and Nviida Tesla C2050 Micro-
architectures

X 103

(d) Performance Attained In-terms of Theoretical
Peak Performance of Underlying Platform

 1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

MAGMA_DGEMM
MAGMA_DGEQRF
MAGMA_DGEQR2
PLASMA_DGEQRF
LAPACK_DGEQR2
LAPACK_DGEQRF

Matrix Size

G
fl

o
p

s
/w

a
tt

X 103

(e) Performance Attained In-terms of Gflops/watt
for Underlying Platforms

Fig. 7: Performance of LAPACK/PLASMA/MAGMA DGEQR2, LAPACK/PLASMA/MAGMA DGEMM, and
LAPACK/PLASMA/MAGM DGEQRF on the State-of-the-art Multicore and GPGPU

• Despite presence of compute bound operations like
DGEMM in LAPACK DGEQRF, PLASMA DGEQRF,
and MAGMA DGEQRF, these routines are able to
achieve only 8-16% of the peak Gflops in Intel Haswell
and 51.5% of the peak Gflops in Nvidia Tesla C2050
respectively.

• Performance achieved by DGEQR2, DGEMM, and DGE-
QRF in Intel Haswell and Nvidia C2050 is as low as 0.05-
1.23 Gflops/watts

Based on above observations, we see a scope in optimization
of DGEQR2 and furthermore improvement in DGEQRF routines
in LAPACK. In the next section, we continue our quest for
optimizations of these routines for commercially available micro-
architectures.

4 MODIFIED HOUSEHOLDER TRANSFORM

In this section, we revisit the classical HT described in algorithm
2 and look for further tuning of the algorithm assuming infinite
memory bandwidth and infinite number of arithmetic units re-
quired for computingRmatrix. It can be observed in the algorithm
2 that the computations of Householder vector is Level-1 BLAS
operation and there is no further scope for optimization in compu-
tation of Householder vector. The computations that are dependent
on the computation of Householder vector are computation of P
matrix which is a Householder matrix and trailing matrix update
of the input matrix A. In classical HT, the trailing matrix update

is performed by pre-multiplying matrix A with the Householder
matrix P as shown in equations 5 and 11.

P = I − 2vvT (4)

PA = A− 2vvTA (5)

Algorithm 5 Pseudo code of Householder Transform

1: Allocate memories for input matrix
2: for i = 1 to n do
3: Compute Householder vectors for block column m× k
4: Compute P matrix where P = I − 2vvT

5: Compute PA where PA = A− 2vvTA
6: end for

Equation 5 in algorithm form is shown in 5. It can be
observed in the algorithm 5 that the computation of 2vvTA and
computation of A − 2vvTA can be merged. Routine where we
merge these two loops is shown in algorithm 6.

Algorithm 6 Pseudo code of Modified Householder Transform

1: Allocate memories for input matrix
2: for i = 1 to n do
3: Compute Householder vectors for block column m× k
4: Compute PA where PA = A− 2vvTA
5: end for

7

Fig. 8: DAGs of MHT

MHT for 3× 3 matrix is shown in figure 8. It can be observed
from the figure 6 and 8 that due to fusing of the inner and
intermediate loops in MHT, the depth of the graph decreases. It
can also be observed that there are more operations per level in
the graph. If we take number of operations per level in the DAG
of HT as β then average β is given by equation 6.

β =
Total Number of Computations in the routine
Number of Levels in the DAG of the routine

(6)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Matrix Size (Square)

R
a

ti
o

Fig. 9: Ratio

In case of MHT, since there is a decrease in the number of
levels in the DAG of the algorithm, βMHT > βHT where βMHT

is β for MHT and βHT is β for HT. Quantifying β for HT and
MHT,

βHT =
Number of Operations in HT

Number of Levels in DAG of HT
(7)

βMHT =
Number of Operations in MHT

Number of Levels in DAG of MHT
(8)

Considering ratio of βHT and βMHT ,

θ =
βHT
βMHT

(9)

=
Number of Levels in DAG of MHT
Number of Levels in DAG of HT

(10)

The parameter θ in equation 9 is ratio of quantified parallelism
in HT and MHT respectively. For our analysis θ is independent of
the computations since there is no change in the computations and
it is also independent of communication since the communication
pattern remain identical in HT and MHT. As value of θ decreases

the parallelism in MHT is more. For HT and MHT, θ saturates
at 0.749 as shown in figure 9. The method used here to quantify
the parallelism in the routine is simple since the computations
are regular in nature. For complex algorithms, method described
in [36] can be used. To support proposition of improvement in
the parallelism in MHT, we experiment on several commercially
available multicore and GPUs. For our experiments on multicore,
we have used LAPACK available in the Netlib with vendor
specific optimizations and we have ensured to use LAPACK
program semantics while realizing and integrating realization of
MHT in LAPACK [6]. For GPGPUs we have used highly tuned
MAGMA package and ensured that the program semantics of
MAGMA DGEQR2HT confirms with MAGMA semantics for
ease of integration with the package [30].

4.1 Realization on Multicore and GPGPU

We realize MHT on two different commercially available Intel
Haswell and AMD Bulldozer micro-architectures as shown in fig-
ure 11(a). Figure 11(a) also depicts performance of DGEQRFHT
where DGEQRFHT is blocked algorithm analogous to DGEQRF
in LAPACK. Since PLSAMA is developed using LAPACK as
shown in figure 10(a), we integrate LAPACK DGEQRFHT in
PLASMA for experiments.

Pseudo code of LAPACK DGEQR2HT is shown in algorithm
7. The routine is implemented as dgeqr2 ht.f in the source code
provided with this exposition. Pseudo code of BLAS UPDATE
function that is implemented as update1.f is shown in algorithm 8.
It can be observed in the algorithms 7 and 8 that BLAS UPDATE
function forms a major computationally intensive part of LA-
PACK DGEQR2HT. BLAS UPDATE function becomes part of
BLAS that is used inside LAPACK as a basic building block.
The routines shown in algorithms 7 and 8 and their wrappers
to integrate these routines in LAPACK are supplied with this
exposition where directory structure of legacy LAPACK software
package is maintained. LAPACK along with Queuing and Runtime
for Kernels (QUARK) are used in the PLASMA software stack for
multicore realization of LAPACK software package as depicted in
figure 10(a) [7].

Algorithm 7 LAPACK DGEQR2HT

1: Input: Matrix A of size M ×N
2: do
3: Norm = 0, S = 0, B =0
4: Norm = -SIGN(DNRM2(L,X,1), X(1)
5: Beta = (X(1) - Norm)
6: Tau = -Beta/Norm
7: L = M - I + 1
8: UPDATE(L, A(I:M,I), A, LDA, I, M, N, Beta, Norm)
9: while (I!=N)

Similarly, for realization of MHT on GPGPU, we use
MAGMA software stack described in figure 10(b). MHT when
implemented for GPGPU is shown in algorithm 9.

It can be observed in the algorithm 9 that the
computationally intensive part of MAGMA DGEQR2HT is
MAGMABLAS UPDATE function shown in algorithm 10.
Similar to BLAS UPDATE in LAPACK DGEQR2HT where
BLAS UPDATE is part of BLAS, MAGMABLAS UDATE is
part of MAGMABLAS. MAGMA UPDATE is realized as a series

8

(a) PLASMA Software Stack [7] (b) MAGMA Software Stack [30]

Fig. 10: PLASMA and MAGMA Software Stacks

1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10
0

0.5

1

1.5

2

2.5

3

3.5

DGEQR2HT (AMD FX 8150)

DGEQRFHT (AMD FX 8150)

DGEQR2 (AMD FX 8150)

DGEQRF (AMD FX 8150)

DGEQR2HT (Intel Core i7 4th Gen)

DGEQRFHT (Intel Core i7 4th Gen)

DGEQR2 (Intel Core i7 4th Gen)

DGEQRF (Intel Core i7 4th Gen)

Matrix Size

T
im

e
 (

S
e

co
n

d
s)

x103

x103

(a) Performance Comparison of LA-
PACK DGEQR2, LAPACK DGEQRF, LA-
PACK DGEQR2HT, and LAPACK DGEQRFHT
on Intel and AMD Micro-architectures (from [24])

 1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10
0

5

10

15

20

25

30

PLASMA_DGEQRF
PLASMA_DGEQRFHT
LAPACK_DGEQRF
LAPACK_DGEQRFHT
LAPACK_DGEQR2HT
LAPACK_DGEQR2

Matrix Size

G
fl

o
p

s

X 103

(b) Performance Comparison of
PLASMA DGEQR2, PLASMA DGEQRF,
DGEQR2HT, and DGEQRFHT on Intel Haswell
Mirco-architecture

 1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10
0

50

100

150

200

250

300
MAGMA_DGEQRF
MAGMA_DGEQR2
MAGMA_DGEQ2HT
MAGMA_DGEQRFHT

Matrix Size

G
fl

o
p

s

X 103

(c) Performance Comparison of
MAGMA DGEQR2, MAGMA DGEQRF,
MAGMA DGEQR2HT, and
MAGMA DGEQRFHT on Nvidia Tesla C2050

Fig. 11: Performance of DGEQR2, DGEQRF, DGEQR2HT, and DGEQRFHT on Commercially Available Micro-architectures

Algorithm 8 BLAS UPDATE

1: do
2: B = A(K,I)*Beta
3: S = DDOT(L-1, X(2:L),1, A(K+1:M,I),1)
4: B = B+S
5: B = B/(Norm*Beta)
6: A(K,I) = A(K,I) + (Beta*B)
7: I = K+1
8: do
9: A(J,I) = A(J,I) + A(J,K)*B

10: J = K+1
11: while (J!=M)
12: while (I!=N)

of kernels in CUDA C shown in the algorithms 11, 12, 13, 14, 15,
and 16.

It can be observed in figure 11(a) that in AMD Bull-
dozer micro-architecture LAPACK DGEQR2HT performs bet-
ter than LAPACK DGEQR2, LAPACK DGEQRF, and LA-
PACK DGEQRFHT. The performance of LAPACK DGEQRFHT
and LAPACK DGEQRF is observed to be same in AMD
Bulldozer. In Intel Core i7 4th Gen which is a Haswell
micro-architecture, the performance of LAPACK DGEQRFHT
and LAPACK DGEQRF is same. Apart from that LA-
PACK DGEQRFHT and LAPACK DGEQRF perform around
10% better than LAPACK DGEQR2HT. When we integrate LA-

Algorithm 9 MAGMA DGEQR2HT

1: Input: Matrix A of size M ×N
2: cublasHandle t handle
3: magma int t m, magma int�n
4: magmaFloat ptr dA, magma int t ldda
5: magmaDouble ptr dtau,
6: magmaDouble ptr dwork
7: magma queue t queue
8: magma int t *info
9: k = min(M,N)

10: for i = 0 to k − 1 do
11: MAGMABLAS UPDATE(handle, M-i, N-i, dA(i,i),

dtau+i, dA(i,i) ldda, dwork, queue)
12: end for

PACK DGEQR2HT in PLASMA, the attained performance is
depicted in the figure 11(b) that results in PLASMA DGEQRFHT
since the trailing matrix update is using LAPACK DGEMM
along with QUARK. For integration of LAPACK DGEQR2HT in
PLASMA, we have replaced the instance of LAPACK DGEQRF
in PLASMA with the instance of LAPACK DGEQR2HT. It can
be observed in the figure 11(b) that the performance attained by
PLASMA DGEQRFHT is 10% worse than that of performance
attained by PLASMA DGEQRF.

Performance of MAGMA DGEQR2HT,
MAGMA DGEQR2, MAGMA DGEQRF, and

9

Algorithm 10 MAGMABLAS UPDATE

1: if (m%BLOCK SIZE != 0) then
2: dim3 grid ((m/BLOCK SIZE)+1, 1,1)
3: threads (BLOCK SIZE,1,1)
4: else if (m%BLOCK SIZE = 0) then
5: dim3 grid ((m/BLOCK SIZE), 1,1)
6: threads (BLOCK SIZE,1,1)
7: end if
8: cublasDgemv(handle, cublas trans const(MagmaTrans), M,

N, &alpha, dC, lddc, dv, 1, &beta, dtau,1)
9: dtemp<<<1, 1, 0, queue → cuda stream()>>>(dC(0,0),

dtau, dwork)
10: dcnst<<<grid, threads, 0, queue → cuda stream()>>>(n,

dC(0,0), lddc, dtau, dwork)
11: ddoff<<<1,1,0,queue → cuda stream()>>>(dC(0,0),

dwork, dwork)
12: drow1<<<grid, threads, 0, queue→ cuda stream(()>>>(n,

dC(0,0), lddc, dtau, dwork)
13: dtmup<<<n,threads,0,queue → cuda stream()>>>(m,

dC(0,0), lddc, dtau, dv)
14: htcns<<<grid,threads,0,queue → cuda stream()>>>(m,

dv, dtau, dwork)

Algorithm 11 dtemp

1: Inputs: dot, matrix
2: beta = sqrt(dot)
3: temp = -copysign(beta, matrix)

Algorithm 12 dcnst

1: Inputs: N, matrix, ldda, temp
2: i = blockIdx.x*blockDim.x + threadIdx.x
3: if (i<N) then
4: dot[i] = MAGMA D DIV(dot[i], temp[0]*(matrix[0] -

temp[0])) - MAGMA D DIV(matrix[ldda*i], (matrix[0] -
temp[0]))

5: end if

Algorithm 13 ddiff

1: Inputs: matrix, temp
2: diff = matrix - temp

Algorithm 14 drow1

1: Inputs: matrix, ldda, dot, diff
2: i = blockIdx.x*blockDim.x + threadIdx.x
3: if (i<N) then
4: ltemp = matrix[ldda*i] + MAGMA D MUL(dot[i], diff)
5: matrix[ldda*i] = ltemp
6: end if

Algorithm 15 dtmup

1: Inputs: M, matrix, ldda, dot, vector
2: tx = threadIdx.x
3: dot = dot+blockIdx.x
4: matrix = matrix + blockIdx.x*ldda
5: if (blockIdx.x 6= 0) then
6: tmp = dot[0]
7: for j = M-tx-1 to 0 do
8: matrix[j] = matrix[j] + tmp*vector[j]
9: end for

10: end if

Algorithm 16 htcns

1: Inputs: M, vector, dtau, diff
2: i = blockIdx.x*blockDim.x + threadIdx.x
3: if (i == 0) then
4: *dtau = -(diff/vector)
5: end if
6: if (i>0 && i<M) then
7: vector[i] = vector[i]/diff
8: end if

MAGMA DGEQRfHT is shown in figure 11(b). It can
be observed that the performance of MAGMA DGQER2
and MAGMA DGEQR2HT is almost similar on Nvidia
Tesla C2050 while the performance of MAGMA DGEQRF
and MAGMA DGEQRFHT is also similar. Unlike Intel or
AMD micro-architectures, performance of MHT in Nvidia
is nowhere close to the performance of MAGMA DGEQRF
)or MAGMA DGEQRFHT). This performance figures are not
satisfactory since βMHT ≥ βHT , and we expect that the perfor-
mance achieved in LAPACK/PLASMA/MAGMA DGEQR2HT
is 1.1-1.3x better over LAPACK/PLASMA/MAGMA DGEQR2.
We also expect that LAPACK/PLASMA/MAGMA DGEQR2HT
outperforms LAPACK/PLASMA/MAGMA DGEQRF. Due to
lack of domain customizations for BLAS and LAPACK, we
are not able to exploit parallelism that is available in MHT and
hence we achieve marginally better performance in multicores
while we achieve same performance in GPGPU for realization
MHT compared to realization of HT. In this section, we
presented modification to classical HT and arrived at MHT where
significant improvement in β is observed. We further see scope
for improvement in realization of MHT where we identify macro
operations in MHT and realize them on a specialized RDP that
can efficiently execute identified macro operations.

5 CUSTOM REALIZATION OF HOUSEHOLDER
TRANSFORM AND RESULTS

In this section we present custom realization for HT and show
that through algorithm-architecture co-design, performance of the
algorithms can be improved significantly. We adopt methodology
presented in [37], and [19], and design a Processing Element (PE)
that is efficient in overlapping computations and communication.
The PE presented here is also efficient in exploiting Instruction
Level Parallelism (ILP) exhibited by BLAS [23][24]. We use this
PE as a CFU for REDEFINE for parallel realization to show
scalability of algorithms and architecture.

10

Fig. 12: Design of Processing Element

5.1 Processing Element Design and Algorithm-
architecture Co-design for HT
Design of PE is depicted in figure 12 and it is also shown .
It can be observed that PE is separated into two modules: 1)
Floating Point Sequencer (FPS), and 2) Load-Store CFU. All the
double precision floating point computations are performed in the
FPS while Load-Store CFU is responsible for loading/storing data
from/to Global Memory (GM) to Local Memory (LM) and LM
to Register File, where GM is next level of memory in parallel
realization while LM is the private memory of PE, and Register
File is small memory of 256 registers [19][21]. Operation of PE
can be described in following steps:

• Step 1: Send a load request to GM for input matrices and
store the arriving elements of the input matrices to LM

• Step 2: Store input matrix elements from LM to Register
File

• Step 3: Perform computations in FPS
• Step 4: Store the final/intermediate results from Register

File to LM in the Load-Store CFU
• Step 5: Store final result to GM

In our implementation of DGEQR2, DGEQRF, DGEQR2HT,
and DGEQRFHT, we use similar mechanism. FPS has several
resources to perform computations. In this exposition, we use care-
fully designed DOT4, a square root, and a divider for realization
of DGEQR2, DGEQRF, DGEQR2HT, and DGEQRFHT routines
[21][22]. Logical place of arithmetic units is shown in the figure
12 and structure of DOT4 is shown in figure 13.

DOT4 can perform inner product of a 4-element vector. DOT4
is a reconfigurable data-path that can be reconfigured to act as
different macro operations encountered in the algorithms [19].

In DGEQR2HT, due to fusion of inner most and intermediate
loops, we identify a new macro operation apart from usual macro
operations. We explain this with an example of a 3 × 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

. Applying DGEQR2HT to the matrix A

to annihilate a31 and a21, we compute Householder matrix P and
pre-multiply with A as shown in the equation 11.

PA = A− 2vvTA (11)

where v =

v1v2
v3

 is Householder vector as explained in section 2.

PA =

a12 a13
a22 a23
a32 a33

− 2

v1v2
v3

 [v1 v2 v3
] a12 a13
a22 a23
a32 a33


=

a12 − 2v1α1 a13 − 2v1α2

a22 − 2v2α1 a23 − 2v2α2

a32 − 2v3α1 s33 − 2v3α2

 (12)

where α1 = v1a12 + v2a22 + v3a23 and α2 = v1a13 + v2a23 +
v3a33.

Taking a close look at the expressions of the updated matrix
PA in equation 12, we observe a new macro operation in the
expression a12 − 2v2(v1a12 + v2a22 + v3a23). For a 3 × 3
matrix there are 6 such macro operation encountered as shown in
equation 12. We realize this macro operation on DOT4 hardware
structure as shown in figure 13. For larger matrices, we break the
expressions to fit on the DOT4 hardware structure. Performance

11

after realization of DGEQR2, DGEQRF, DGEQR2HT, and DGE-
QRFHT is depicted in figure 14(a).

Fig. 13: DOT4 and New Configuration of DOT4 for Realization
of DGEQR2HT

It can be observed in figure 14(a) that DGEQR2HT achieves
2x better performance over DGEQR2, 1.23x over DGEQRF,
and 1.23x over DGEQRFHT. Interestingly, DGEQR2HT achieves
close to 74% of the peak performance that is 99.3% of the
performance attained by DGEMM in the PE as shown in figure
14(b) In terms of Gflops/watt DGEQR2HT achieves 2x better per-
formance compared to DGEQR2, 1.23x over DGEQRF, and 1.2x
over DGEQRFHT. Surprisingly, compared to some of the state-
of-the-art realizations of HT based QR factorization, the proposed
MHT based QR factorization attains 3-90x better performance
which is better than the performance improvement reported for
DGEMM in [23]. Such an unexpected result is attained since for
the state-of-the-art platforms, the performance attained by LA-
PACK/PLASMA/MAGMA DGEQRF is mostly 80-85% of the
peak performance attained by DGEMM in the platform while in
the PE the performance attained by MHT based QR factorization
is 99.3% of the performance attained by DGEMM.

5.2 Parallel Implementation of HT
For parallel realization of DGEQR2, DGEQRF, DGEQR2HT, and
DGEQRFHT routines, we use simulation environment depicted in
figure 12. We attach PE to the Routers in the Tiles of REDEFINE
except the last column. In the last column, we attach CFUs with
memories that contain same address space. We use this memory
as Global Memory (GM).

To show scalability, for experiments, we consider three
configurations with different sizes of Tile arrays like 2 × 2,
3 × 4, and 4 × 4. Two configurations are shown in figure
15 namely Configuration 1 and Configuration 2 wherein
Configuration 1 is composed of 2× 2 Tile array as a fabric for
computations and Configuration 2 is composed of 3 × 3 Tile
array as a fabric for computations. Matrix partitioning schemes
for different configurations is also depicted in the figure 15 along
with configurations. In the matrix partitioning scheme, we have
followed an approach that is used in [7] where input matrix is di-
vided into sub-matrix blocks. For a K×K fabric of computations
andN×N matrix size, we divide matrix in to the blocks of NK×

N
K

sub-matrices. Since, objective of our experiments is to show
scalabillity, we choose N and K such that N%K = 0. Results
for parallel implementation of DGEQR2, DGEQRF, DGEQR2HT,
and DGEQRFHT routines are depicted in the figure 14(e). It can
be observed in the figure 14(f) that the speed-up in parallel real-
ization of DGEQR2, DGEQRF, DGEQR2HT, and DGEQRFHT
approaches K×K when realized using Tile array of size K×K .

In figure 14(e) speed-up attained in parallel realization of any
routine is the speed-up over corresponding sequential realizations
of the routines. Percentage of theoretical peak performance at-
tained by DGEQR2, DGEQRF, DGEQR2HT, and DGEQRFHT is
shown in figure 14(f). It can be observed in the figure 14(f) that
DGEQR2HT is capable of attaining 66% of the theoretical peak
of the Tile array utilized for computations while DGEQR2 attains
16%, DGEQRF attains 39.5%, and DGEQRFHT attain 42% of
the theoretical peak performance in REDEFINE. DGEQR2HT
in REDEFINE clearly outperforms all other routines as depicted
in the figure 14(f) while REDEFINE scales well for DGEQR2,
DGEQRF, DGEQR2HT, and DGEQRFHT.

6 CONCLUSION

Performance attained by Householder Transform based QR fac-
torization in the state-of-the-art multicore and GPGPUs is usually
80-85% of the performance attained by General Matrix Multi-
plication. In this paper, we achieved performance in Modified
Householder Transform similar to the performance of General
Matrix Multiplication in terms of Gflops which is contrary to the
performance attained in the conventional multicore and GPGPU
platforms with the state-of-the-art software packages for Dense
Linear Algebra. We moved away from classical approach where
optimized Basic Linear Algebra Subprograms are used for realiza-
tion of Householder Transform based QR factorization and fused
inner loops in the Householder Transform based QR factorization
based routine (DGEQR2 routine) that resulted in higher degree of
parallelism. A simplistic approach for quantification of parallelism
was adopted to show 1.3 times higher parallelism in Modified
Householder Transform. The classical Householder Transform
based QR factorization and Modified Householder Transform
based QR factorization along with their optimized block imple-
mentations were evaluated on the state-of-the-art multicore and
GPGPU where it was observed that the parallelism exhibited
by Modified Householder Transform is not fully exploited by
these platforms. Design of an existing Processing Element was
amended to support the macro operations encountered in Modified
Householder Transform by adding a new configuration in the Re-
configurable Data-path in the Processing Element. The approach
of realizing macro operations on a Reconfigurable Data-path
resulted in 2x performance improvement in Modified Householder
Transform over classical Householder Transform in the PE. Real-
ization of Modified Householder Transform could also outperform
custom realization of block Householder Transform based QR
factorization by 1.2-1.3x. Performance improvement of 3-80x is
reported in terms of Gflops/watt over multicore, GPGPU, FPGA,
and ClearSpeed CSX700. The performance improvement reported
is higher than that of General Matrix Multiplication due to counter-
intuitive results obtained in Modified Householder Transform.
Finally, it is shown that Processing Element as a Custom Function
Unit in REDEFINE results in scalable high performance realiza-
tion of Householder based and Modified Householder based QR
factorization.

REFERENCES

[1] G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[2] C. Thornton and G. Bierman, “Givens transformation techniques for
kalman filtering,” Acta Astronautica, vol. 4, no. 78, pp. 847 – 863,
1977. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0094576577900170

http://www.sciencedirect.com/science/article/pii/0094576577900170
http://www.sciencedirect.com/science/article/pii/0094576577900170

12

 2x2 4x4 6x6 8x8 10x10 12x12
0

0.5

1

1.5

2

2.5 Speed-up over DGEQRFHT
Speed-up over DGEQRF
Speed-up over DGEQR2

Matrix Size

S
p

e
e

d
-u

p

X 10

(a) Speed-up in DGEQR2HT over DGEQRFHt,
DGEQR2, and DGEQRF

 2x2 4x4 6x6 8x8 10x10 12x12
0

20

40

60

80

100

120

Peak of the PE in DGEQR2 Peak of the PE in DGEQRF
Peak of the PE in DGEQRFHT Peak of the PE in DGEQR2HT
Peak of the DGEMM in DGEQR2 Peak of the DGEMM in DGEQRF
Peak of the DGEMM in DGEQRFHT Peak of the DGEMM in DGEQR2HT

Matrix Size

P
e

rc
e

n
ta

g
e

X 10

(b) Performance Comparison of DGEQR2HT,
DGEQRFHT, DGEQR2, and DGEQRF In-terms
of Theoretical Peak Performance of the PE and
In-terms of the Percentage of Peak Performance
Attained by DGEMM in [23]

 2x2 4x4 6x6 8x8 10x10 12x12
0

5

10

15

20

25

30

35

40
DGEQR2 DGEQRF
DGEQRFHT DGEQR2HT

Matrix Size

G
fl

o
p

s
/w

a
tt

X 10

(c) Performance Comparison of REDEFINE-PE
with Other Platforms

In
te

l C
ore

Nvi
dia

 G
TX48

0
SM

Alte
ra

 S
tra

tix
 IV

Cle
ar

Spee
d C

SX70
0

In
te

l C
ore

 i7
 H

as
sw

el
l

Nvi
dia

 T
es

la
 C

20
50

0

10

20

30

40

50

60

70

80

90

100

Performance Improvement In-terms of
Gflops/watt in DGEMM
Performance Improvement In-terms of
Gflops/watt in DGEQR2HT

Platforms

P
e

rf
o

rm
a

n
c

e
 I

m
p

ro
v

e
m

e
n

t
In

-t
e

rm
s

 o
f

G
fl

o
p

s
/w

a
tt

(d) Performance Comparison of REDEFINE-PE
with Other Platforms

0

2

4

6

8

10

12

14

16 2x2 (DGEQR2HT)
3x3 (DGEQR2HT)
4x4 (DGEQR2HT)
2x2 (DGEQR2)
3x3 (DGEQR2)
4x4 (DGEQR2)
2x2 (DGEQRF)
3x3 (DGEQRF)
4x4 (DGEQRF)
2x2 (DGEQRFHT)
3x3 (DGEQRFHT)
4x4 (DGEQRFHT)

Matrix Size

S
p

e
e

d
-u

p

(e) Performance Comparison of REDEFINE-PE
with Other Platforms

0

10

20

30

40

50

60

70

80
2x2 (DGEQR2HT) 3x3 (DGEQR2HT) 4x4 (DGEQR2HT) 2x2 (DGEQR2)
3x3 (DGEQR2) 4x4 (DGEQR2) 2x2 (DGEQRF) 3x3 (DGEQRF)
4x4 (DGEQRF) 2x2 (DGEQRFHT) 3x3 (DGEQRFHT) 4x4 (DGEQRFHT)

Matrix Size

P
e

rc
e

n
ta

g
e

(f) Performance Comparison of REDEFINE-PE
with Other Platforms

Fig. 14: Performance of DGEQR2, DGEQRF, DGEQR2HT, and DGEQRFHT in PE

Fig. 15: Simulation Environment for Parallel Realization of DGEQR2, DGEQRF, DGEQR2HT, and DGEQRFHT Routines

[3] H. Rutishauser, “Computational aspects of f. l. bauer’s simultaneous
iteration method,” Numerische Mathematik, vol. 13, no. 1, pp. 4–13,
1969. [Online]. Available: http://dx.doi.org/10.1007/BF02165269

[4] A. Joseph and B. Yu, “Impact of regularization on spectral clustering,”
in 2014 Information Theory and Applications Workshop (ITA), Feb 2014,
pp. 1–2.

[5] G. Strang, Linear Algebra and Its Applications. Brooks Cole, February
1988. [Online]. Available: http://www.amazon.ca/exec/obidos/redirect?
tag=citeulike09-20{&}path=ASIN/0155510053

[6] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney,
J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen,
“Lapack: A portable linear algebra library for high-performance

computers,” in Proceedings of the 1990 ACM/IEEE Conference on
Supercomputing, ser. Supercomputing ’90. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1990, pp. 2–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=110382.110385

[7] J. Kurzak, P. Luszczek, A. YarKhan, M. Faverge, J. Langou,
H. Bouwmeester, and J. Dongarra, “Multithreading in the plasma library,”
2013.

[8] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition:
A Quantitative Approach, 5th ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011.

[9] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer,
M. Smelyanskiy, M. Girkar, and P. Dubey, “Can traditional programming

http://dx.doi.org/10.1007/BF02165269
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20{&}path=ASIN/0155510053
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20{&}path=ASIN/0155510053
http://dl.acm.org/citation.cfm?id=110382.110385

13

bridge the ninja performance gap for parallel computing applications?”
Commun. ACM, vol. 58, no. 5, pp. 77–86, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2742910

[10] S. Kestur, J. D. Davis, and O. Williams, “Blas comparison on
fpga, cpu and gpu,” in Proceedings of the 2010 IEEE Annual
Symposium on VLSI, ser. ISVLSI ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 288–293. [Online]. Available:
http://dx.doi.org/10.1109/ISVLSI.2010.84

[11] L. Hu, X. Che, and S.-Q. Zheng, “A closer look at gpgpu,” ACM
Comput. Surv., vol. 48, no. 4, pp. 60:1–60:20, Mar. 2016. [Online].
Available: http://doi.acm.org/10.1145/2873053

[12] A. Pedram, S. Z. Gilani, N. S. Kim, R. A. van de Geijn, M. J. Schulte, and
A. Gerstlauer, “A linear algebra core design for efficient level-3 blas,” in
ASAP, 2012, pp. 149–152.

[13] A. Pedram, R. A. van de Geijn, and A. Gerstlauer, “Codesign tradeoffs
for high-performance, low-power linear algebra architectures,” IEEE
Trans. Computers, vol. 61, no. 12, pp. 1724–1736, 2012. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/TC.2012.132

[14] Z. E. Rákossy, F. Merchant, A. A. Aponte, S. K. Nandy, and A. Chat-
topadhyay, “Efficient and scalable cgra-based implementation of column-
wise givens rotation,” in ASAP, 2014, pp. 188–189.

[15] M. Alle, K. Varadarajan, A. Fell, R. R. C., N. Joseph, S. Das,
P. Biswas, J. Chetia, A. Rao, S. K. Nandy, and R. Narayan, “REDEFINE:
Runtime reconfigurable polymorphic asic,” ACM Trans. Embed. Comput.
Syst., vol. 9, no. 2, pp. 11:1–11:48, Oct. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1596543.1596545

[16] A. Fell, P. Biswas, J. Chetia, S. K. Nandy, and R. Narayan, “Generic
routing rules and a scalable access enhancement for the network-on-chip
reconnect,” in SoCC, 2009, pp. 251–254.

[17] F. Merchant, A. Chattopadhyay, G. Garga, S. K. Nandy, R. Narayan,
and N. Gopalan, “Efficient QR decomposition using low complexity
column-wise givens rotation (CGR),” in 2014 27th International
Conference on VLSI Design and 2014 13th International Conference
on Embedded Systems, Mumbai, India, January 5-9, 2014, 2014, pp.
258–263. [Online]. Available: http://dx.doi.org/10.1109/VLSID.2014.51

[18] S. Das, K. T. Madhu, M. Krishna, N. Sivanandan, F. Merchant,
S. Natarajan, I. Biswas, A. Pulli, S. K. Nandy, and R. Narayan, “A
framework for post-silicon realization of arbitrary instruction extensions
on reconfigurable data-paths,” Journal of Systems Architecture -
Embedded Systems Design, vol. 60, no. 7, pp. 592–614, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.sysarc.2014.06.002

[19] F. Merchant, A. Maity, M. Mahadurkar, K. Vatwani, I. Munje, M. Kr-
ishna, S. Nalesh, N. Gopalan, S. Raha, S. Nandy, and R. Narayan,
“Micro-architectural enhancements in distributed memory cgras for lu
and qr factorizations,” in VLSI Design (VLSID), 2015 28th International
Conference on, Jan 2015, pp. 153–158.

[20] Z. E. Rákossy, F. Merchant, A. A. Aponte, S. K. Nandy,
and A. Chattopadhyay, “Scalable and energy-efficient reconfigurable
accelerator for column-wise givens rotation,” in 22nd International
Conference on Very Large Scale Integration, VLSI-SoC, Playa del
Carmen, Mexico, October 6-8, 2014, 2014, pp. 1–6. [Online]. Available:
http://dx.doi.org/10.1109/VLSI-SoC.2014.7004166

[21] F. Merchant, N. Choudhary, S. K. Nandy, and R. Narayan, “Efficient real-
ization of table look-up based double precision floating point arithmetic,”
in 29th International Conference on VLSI Design, VLSID 2016, Kolkata,
India, January 4-8, 2016.

[22] F. Merchant, A. Chattopadhyay, S. Raha, S. K. Nandy, and
R. Narayan, “Accelerating BLAS and LAPACK via efficient floating
point architecture design,” CoRR, vol. abs/1610.08705, 2016. [Online].
Available: http://arxiv.org/abs/1610.08705

[23] F. Merchant, T. Vatwani, A. Chattopadhyay, S. Raha, S. K. Nandy,
and R. Narayan, “Accelerating BLAS on custom architecture through
algorithm-architecture co-design,” CoRR, vol. abs/1610.06385, 2016.
[Online]. Available: http://arxiv.org/abs/1610.06385

[24] ——, “Achieving efficient qr factorization by algorithm-architecture co-
design of householder transformation,” in 29th International Conference
on VLSI Design, VLSID 2016, Kolkata, India, January 4-8, 2016.

[25] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1109/MC.2008.209

[26] A. S. Householder, “Unitary triangularization of a nonsymmetric matrix,”
J. ACM, vol. 5, no. 4, pp. 339–342, Oct. 1958. [Online]. Available:
http://doi.acm.org.ezlibproxy1.ntu.edu.sg/10.1145/320941.320947

[27] J. Dongarra, J. D. Croz, S. Hammarling, and I. S. Duff, “A
set of level 3 basic linear algebra subprograms,” ACM Trans.
Math. Softw., vol. 16, no. 1, pp. 1–17, 1990. [Online]. Available:
http://doi.acm.org/10.1145/77626.79170

[28] R. Schreiber and C. V. Loan, “A storage-efficient wy representation
for products of householder transformations,” SIAM Journal on Scientific
and Statistical Computing, vol. 10, no. 1, pp. 53–57, 1989. [Online].
Available: http://dx.doi.org/10.1137/0910005

[29] R. Schreiber and B. Parlett, “Block reflectors: Theory and computation,”
SIAM Journal on Numerical Analysis, vol. 25, no. 1, pp. 189–205, 1988.
[Online]. Available: http://dx.doi.org/10.1137/0725014

[30] B. J. Smith, “R package magma: Matrix algebra on gpu and multicore
architectures, version 0.2.2,” September 3, 2010, [On-line] http://cran.r-
project.org/package=magma.

[31] A. YarKhan, J. Kurzak, and J. Dongarra, “Quark users’ guide: Queueing
and runtime for kernels,” Innovative Computing Laboratory, University
of Tennessee, Tech. Rep., 2011.

[32] J. Gonzalez and R. C. Nez, “Lapackrc: Fast linear algebra
kernels/solvers for fpga accelerators,” Journal of Physics: Conference
Series, vol. 180, no. 1, p. 012042, 2009. [Online]. Available:
http://stacks.iop.org/1742-6596/180/i=1/a=012042

[33] Y.-G. Tai, C.-T. D. Lo, and K. Psarris, “Scalable matrix decompositions
with multiple cores on {FPGAs},” Microprocessors and Microsystems,
vol. 37, no. 8, Part B, pp. 887 – 898, 2013, embedded Multicore Systems:
Architecture, Performance and Application. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933112001007

[34] J. A. Gunnels, C. Lin, G. Morrow, and R. A. van de Geijn,
“A flexible class of parallel matrix multiplication algorithms,”
in IPPS/SPDP, 1998, pp. 110–116. [Online]. Available: http:
//dx.doi.org/10.1109/IPPS.1998.669898

[35] J. Wasniewski and J. Dongarra, “High performance linear algebra
package for FORTRAN 90,” in Applied Parallel Computing, Large Scale
Scientific and Industrial Problems, 4th International Workshop, PARA
’98, Umeå, Sweden, June 14-17, 1998, Proceedings, 1998, pp. 579–583.
[Online]. Available: http://dx.doi.org/10.1007/BFb0095385

[36] G. G. Lee, H.-Y. Lin, C.-F. Chen, and T.-Y. Huang, “Quantifying
intrinsic parallelism using linear algebra for algorithm/architecture
coexploration,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 5,
pp. 944–957, May 2012. [Online]. Available: http://dx.doi.org/10.1109/
TPDS.2011.230

[37] M. Mahadurkar, F. Merchant, A. Maity, K. Vatwani, I. Munje,
N. Gopalan, S. K. Nandy, and R. Narayan, “Co-exploration of NLA
kernels and specification of compute elements in distributed memory
cgras,” in XIVth International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation, SAMOS 2014, Agios
Konstantinos, Samos, Greece, July 14-17, 2014, 2014, pp. 225–232.
[Online]. Available: http://dx.doi.org/10.1109/SAMOS.2014.6893215

Farhad Merchant Farhad Merchant is a Re-
search Fellow at Hardware and Embedded Sys-
tems Lab, School of Computer Science and
Engineering, Nanyang Technological University,
Singapore. He received his PhD from Computer
Aided Design Laboratory, Indian Institute of Sci-
ence, Bangalore, India. His research interests
are algorithm-architecture co-design, computer
architecture, reconfigurable computing, develop-
ment and tuning of high performance software
packages

Tarun Vatwani Tarun Vatwani is a fresh B.Tech.
graduate from Indian Institute of Technology,
Jodhpur, India, His research interests are com-
puter architecture, high performance computing,
machine learning, performance tuning of differ-
ent software packages.

http://doi.acm.org/10.1145/2742910
http://dx.doi.org/10.1109/ISVLSI.2010.84
http://doi.acm.org/10.1145/2873053
http://doi.ieeecomputersociety.org/10.1109/TC.2012.132
http://doi.acm.org/10.1145/1596543.1596545
http://dx.doi.org/10.1109/VLSID.2014.51
http://dx.doi.org/10.1016/j.sysarc.2014.06.002
http://dx.doi.org/10.1109/VLSI-SoC.2014.7004166
http://arxiv.org/abs/1610.08705
http://arxiv.org/abs/1610.06385
http://dx.doi.org/10.1109/MC.2008.209
http://doi.acm.org.ezlibproxy1.ntu.edu.sg/10.1145/320941.320947
http://doi.acm.org/10.1145/77626.79170
http://dx.doi.org/10.1137/0910005
http://dx.doi.org/10.1137/0725014
http://stacks.iop.org/1742-6596/180/i=1/a=012042
http://www.sciencedirect.com/science/article/pii/S0141933112001007
http://dx.doi.org/10.1109/IPPS.1998.669898
http://dx.doi.org/10.1109/IPPS.1998.669898
http://dx.doi.org/10.1007/BFb0095385
http://dx.doi.org/10.1109/TPDS.2011.230
http://dx.doi.org/10.1109/TPDS.2011.230
http://dx.doi.org/10.1109/SAMOS.2014.6893215

14

Anupam Chattopadhyay Anupam Chattopad-
hyay received his B.E. degree from Jadavpur
University, India in 2000. He received his MSc.
from ALaRI, Switzerland and PhD from RWTH
Aachen in 2002 and 2008 respectively. From
2008 to 2009, he worked as a Member of Con-
sulting Staff in CoWare R&D, Noida, India. From
2010 to 2014, he led the MPSoC Architectures
Research Group in RWTH Aachen, Germany as
a Junior Professor. Since September, 2014, he
is appointed as an assistant Professor in SCE,

NTU.

Soumyendu Raha Soumyendu Raha obtained
his PhD in Scientific Computation from the Uni-
versity of Minnesota in 2000. Currently he is a
Professor of the Computational and Data Sci-
ences Department at the Indian Institute of Sci-
ence in Bangalore, which he joined in 2003, after
having worked for IBM for a couple of years. His
research interests are in computational mathe-
matics of dynamical systems, both continuous
and combinatorial, and in co-development and
application of computing systems for implemen-

tation of computational mathematics algorithms.

Ranjani Narayan Dr. Ranjani Narayan has over
15 years experience at IISc and 9 years at
Hewlett Packard. She has vast work experience
in a variety of fields computer architecture, op-
erating systems, and special purpose systems.
She has also worked in the Technical University
of Delft, The Netherlands, and Massachusetts
Institute of Technol- ogy, Cambridge, USA. Dur-
ing her tenure at HP, she worked on various
areas in operating systems and hardware moni-
toring and diagnostics systems. She has numer-

ous research publications.She is currently Chief Technology Officer at
Morphing Machines Pvt. Ltd, Bangalore, India.

S K Nandy S. K. Nandy is a Professor in the De-
partment of Computational and Data Sciences
of the Indian Institute of Science, Bangalore. His
research interests are in areas of High Perfor-
mance Embedded Systems on a Chip, VLSI ar-
chitectures for Reconfigurable Systems on Chip,
and Architectures and Compiling Techniques for
Heterogeneous Many Core Systems. Nandy re-
ceived the B.Sc (Hons.) Physics degree from the
Indian Institute of Technology, Kharagpur, India,
in 1977. He obtained the BE (Hons.) degree

in Electronics and Communication in 1980, MSc.(Engg.) degree in
Computer Science and Engineering in 1986, and the Ph.D. degree in
Computer Science and Engineering in 1989 from the Indian Institute
of Science, Bangalore. He has over 170 publications in International
Journals, and Proceedings of International Conferences, and 5 patents.

	1 Introduction
	2 Background and Related Work
	2.1 REDEFINE and DLA on REDEFINE
	2.2 Classical HT
	2.3 Related Work

	3 Case Studies
	3.1 DGEQR2
	3.2 DGEMM
	3.3 DGEQRF

	4 Modified Householder Transform
	4.1 Realization on Multicore and GPGPU

	5 Custom Realization of Householder Transform and Results
	5.1 Processing Element Design and Algorithm-architecture Co-design for HT
	5.2 Parallel Implementation of HT

	6 Conclusion
	References
	Biographies
	Farhad Merchant
	Tarun Vatwani
	Anupam Chattopadhyay
	Soumyendu Raha
	Ranjani Narayan
	S K Nandy

