
TripleID-Q: RDF Query Processing
Framework Using GPU

Chantana Chantrapornchai and Chidchanok Choksuchat

Abstract—Resource Description Framework (RDF) data represents information linkage around the Internet. It uses Internationalized

Resources Identifier (IRI) which can be referred to external information. Typically, an RDF data is serialized as a large text file which

contains millions of relationships. In this work, we propose a framework based on TripleID-Q, for query processing of large RDF data

in a GPU. The key elements of the framework are 1) a compact representation suitable for a Graphics Processing Unit (GPU) and 2)

its simple representation conversion method which optimizes the preprocessing overhead. Together with the framework, we propose

parallel algorithms which utilize thousands of GPU threads to look for specific data for a given query as well as to perform basic query

operations such as union, join, and filter. The TripleID representation is smaller than the original representation 3-4 times. Querying

from TripleID using a GPU is up to 108 times faster than using the traditional RDF tool. The speedup can be more than 1,000 times

over the traditional RDF store when processing a complex query with union and join of many subqueries.

Index Terms—Query processing, parallel processing, entailment,TripleID, GPU, RDF

Ç

1 INTRODUCTION

LINKED data [1] utilize web resources to connect related
data around the Internet. They contain common data

such as DBpedia [2], biomedical data [3], geographical fea-
tures data [4], etc. These linked data are represented in
Resource Description Framework (RDF) [5] which is a stan-
dard and common framework to share and reuse data
across the Internet. RDF data contain relationships, each of
which is in a triple statement: subject, predicate, and object.
subject denotes the resource, predicate shows the property of
the subject and object is the value of the property. Each of
these, subject, predicate, and object, is usually an Interna-
tionalized Resource Identifier (IRI), which is a very long
string. RDF data contain millions of triple statements which
result in a significant data size. Thus, it is time consuming
to load and queries such those million triples.

With current parallel technology and architecture, it is
possible to utilize multi-threading to perform such tasks to
speedup the overall processing time. Current architecture
has been advanced allowing it to process applications using
multi-threading on many cores. Multi-threading can be in
the form of high-level concurrency using Java Executor
Service [6], [7] or low-level CPU threads such as OpenMP or

pthreads for a multi-core or many core computer. GPUs are
one of such hardware platforms that contain many thousand
cores. Due to its inexpensive cost, it becomes a cost-effective
platform to gain high-speed processing, especially for imag-
ing and graphic applications. Nowadays, a GPU has been
used for general-purpose computing in many other applica-
tion areas [8]. However, to use the GPU, applications must
be designed properly to support the GPU architecture.

Though there are many open source tools for querying
RDF data such as Redland [9], RDFlib [10], RDFsh [11],
HDT [12] etc., which are easy to use, some of them are
implemented in scripting languages which usually consume
lots of time to load data, to create the internal representation
as well as to query the model when the data become very
large. Some are the libraries interfacing with C or Java with
a complex data structure, making it difficult to port to
utilize GPU to speedup the processing. Free community
version can process limited number of triples (around
20 millions) [13]. The well-known open source one such
Virtuoso [14] can support larger number of triples but do
not support the use of GPUs. Blazegraph [15] is a high-
performance graph database supporting Semantic Web
(RDF) and SPARQL query on CPUs and GPUs with Java
language but it also is not offered as an open-source or
community-edition products on GPUs’ version.

To utilize a GPU for query processing, we have to consider
two main aspects: the GPU architecture and the nature of the
RDF query processing. For the first issue, a contemporary
GPU have thousand cores supporting many concurrent
threads. All these threads share the GPUmemories. TheGPU
memory size is limited and the data must be transferred to
the GPUmemory before these threads can start computing.

To process an RDF query, all RDF data must be entirely
loaded and stored in certain data structure. The aforemen-
tioned RDF libraries use graphs and heap storages to store

� C. Chantrapornchai is with the Department of Computer Engineering,
Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.
E-mail: fengcnc@ku.ac.th.

� C. Choksuchat was with Silpakorn University, Nakhon Pathom, 73000,
Thailand and is currently with Information and Communication Technol-
ogy Programme, Faculty of Science, Prince of Songkla University,
Songkhla, 90110, Thailand. E-mail: chidchanok.ch@psu.ac.th.

Manuscript received 31 Jan. 2017; revised 30 Nov. 2017; accepted 5 Mar.
2018. Date of publication 12 Mar. 2018; date of current version 8 Aug. 2018.
(Corresponding author: Chantana Chantrapornchai.)
Recommended for acceptance by T. El-Ghazawi.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2814567

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018 2121

1045-9219� 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8699-5736
https://orcid.org/0000-0002-8699-5736
https://orcid.org/0000-0002-8699-5736
https://orcid.org/0000-0002-8699-5736
https://orcid.org/0000-0002-8699-5736
https://orcid.org/0000-0002-8241-7090
https://orcid.org/0000-0002-8241-7090
https://orcid.org/0000-0002-8241-7090
https://orcid.org/0000-0002-8241-7090
https://orcid.org/0000-0002-8241-7090
mailto:
mailto:

RDF data. Some framework creates indexes for fast process-
ing such as Header Dictionary Triples (HDT) which extracts
common terms and creates dictionary as well as index triples
by subject [12]. This format compresses the original RDF
data very well. However, the implementation of these above
data structure mostly are based on a list iterator, or recursive
pointer. They contains deep pointers which are complex to
load data GPUmemory and let the threads to work on.

To process queries using GPU threads, data must be
transformed into a proper form. The format should be com-
pact so that all million triples can reside in a GPU memory.
Also, the data structure should allow threads to look for
proper relations with a high degree of parallelism.

Our research goal is to speedup large RDF query process-
ing using a GPU. In order to achieve this goal, the following
subproblems are investigated.

� How to design the compact representation for RDF
data that is suitable for the GPU memory layout.

� Decide the information that needs to be inside the
GPU memory for processing.

� How to utilize the GPU threads for concurrent
processing.

� How to integrate the tasks performed by a GPU and
CPU to obtain final query results.

To address the above issues, we propose a simplified
format, TripleID, which is a transformed representation to
encode the RDF data into unique IDs. The conversion to
TripleID can be done in linear time. Such a file is small and
can be easily loaded to the GPU memory. The data are kept
in GPU memory as long as needed.

We adapt the search algorithm to utilize GPU threads to
look for specific data according to a user query. The found
data are returned to the GPU host and then mapped back to
the corresponding name. The CPU side manages how to
store, and select the returned data properly. It sends new
data to the GPU for the next search. A CPU and GPU inter-
act with each other depending on query operations such as
union, intersection, or join. To lookup TripleID, the GPU
threads are invoked. There is no need to transfer data to the
GPU memory again. Some data returned from the GPU
may be removed due to redundancy and may be merged
with previous returned results. CUDA Merge-Join and
Thrust libraries are used to speedup the processing of inter-
mediate results [8], [16].

Such framework, TripleID-Q, can be used for querying
RDF data. In the experiments, we demonstrate the use of
the framework starting from taking RDF data in the triple
form (N-Triples and/or N3) [17] and converts them into
TripleID. Then, all IDs are loaded to the GPU memory.
The converted TripleID files are 2-4 times smaller than the
original NT files and the conversion time to TripleID is 3
times faster than other well-known representation. The
TripleID loading time is faster than the original NT file load-
ing time and common RDF store loading time. The frame-
work can process a simple query faster than traditional RDF
library. Especially for the complex queries with lots of inter-
mediate results, 1,000-time speed up ormore can be obtained
compared to querying using the traditional RDF store.

The outline of this paper is as follows: In Section 2,
background of RDF and a GPUs as well as related work
are presented. After that, our approach is presented in

Section 3 which includes data representation for GPU
search. Section 4 gives an example of adopting the repre-
sentation for different query operations. In Section 5, the
experiments comparing the data size reduction and con-
version time are presented. The query processing time of
our approach is compared with that of the traditional
tools. Section 6 concludes the paper and describes the
future work.

2 BACKGROUNDS

We introduce the Resource Description Framework, a
Graphics Processing Unit (GPU), then related works.

2.1 Resource Description Framework (RDF)

Resource Description Framework is a common format used
to describe data in a relation form. It is represented in a tri-
ple form, (subject, predicate, object) where each term is usu-
ally a Internationalized Resource Identifier which can be
linked to another web resource [18].

An example of the RDF triple is shown as:

<http://www.owl-ontologies.com/

BiodiversityOntologyFull.owl#Air>
<http://www.w3.org/2000/01/rdf-schema#sub

ClassOf>
<http://www.owl-ontologies.com/

BiodiversityOntologyFull.owl#AbioticEntity>

The above triple implies Air is a subclass of Abioti-
cEntity based on RDFS vocabulary. <http://www.owl-
ontologies.com/BiodiversityOntologyFull.owl#Air> is a
subject, hhttp://www.w3.org/2000/01/rdf-schema#sub
ClassOfi is a predicate, and <http://www.owl-ontologies.
com/BiodiversityOntologyFull.owl#AbioticEntity> is an
object. They all are IRIs and are obtained from biomedical
ontology [3].

Searching to the RDF data is done by the query language,
SPARQL [19]. A SPARQL’s SELECT statement is similar to
SQL SELECT statement. A given query can ask for subjects,
predicates, and/or objects of the triples. The query in
Listing 1 contains two subqueries, asking to “find all
authors of The Journal of Supercomputing”, adapted from
[20]. ?authors are variables whose values are the answers
for the SELECT statement. dc is an abbreviation prefix of
<http://purl.org/dc/elements/1.1/> which is a standard
vocabulary resource from Dublin Core [21].

Listing 1. Find all authors of The Journal of Supercomputing

If one would like to infer a subclass (rdfs:subClas-
sOf) between any two terms ?x,?z. We can create two sub-
queries that are connected via a temporary variable, i.e., if
?x is a subclass of ?y, and ?y is a subclass of ?z, then ?x is a
subclass of ?z [22] as shown in Listing 2.

2122 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.owl-ontologies.com/
http://www.owl-ontologies.com/BiodiversityOntologyFull.owl#Air
http://www.owl-ontologies.com/BiodiversityOntologyFull.owl#Air
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.owl-ontologies.com/BiodiversityOntologyFull.owl#AbioticEntity
http://www.owl-ontologies.com/BiodiversityOntologyFull.owl#AbioticEntity
http://purl.org/dc/elements/1.1/

Listing 2. Subclass transitivity

To process the above query, using a traditional RDF tool,
it is necessary to load all triples into the memory. The triples
are stored in data structures such as graph models. Each
subquery is then processed and the results from each sub-
query are kept for merging.

2.2 Graphics Processing Unit (GPU) and Compute
Unified Device Architecture (CUDA)

A Graphics Processing Unit is originally used to process
graphics objects for display. With the advanced hardware,
they contain thousand cores which can be used to do any
kind of general-purpose computations in parallel. Though
they have a lower clock speed than the CPU, the thousand
cores can process faster if they are utilized properly.

In general, a GPU, sometimes called device, resides in a
computer, called host. To utilize the GPU, a proper pro-
gramming framework is needed. Compute Unified Device
Architecture is one of the commonly used framework sup-
porting an NVIDIA GPU [8]. In CUDA, threads are orga-
nized as grids of thread blocks. Threads in a block are
executed simultaneously.

CUDA cores are grouped into Streaming Multiprocessor
(SM). One GPU card contains 4-26 SMs. A GPU has many
types of memories such as local, shared, global memories, etc.
Global memory can be accessed by all threads in all blocks
while the shared memory can be accessed by only threads
in the same block. Global memory has the largest sizes,
varying from 2G to 24 GB depending on the card models.
Even though the access time is slower than that of shared
memory, the shared memory usually has the size up to
112 KB. For general-purpose computing, the global memory
is commonly utilized since it is the largest and and it can be
both read and written. In some cases, for small frequently
accessed data, the shared memory may be used. The data
from the global memory must be copied to shared memory
before accessing them.

Under this architecture, the GPU memory transfer
latency can be an obstacle to improve the program execu-
tion time. Algorithms that utilize the GPU must be designed
in such a way that the required data needs to be kept inside
the GPU memory as long as possible to reduce the transfer
time, thus reducing the whole execution time.

In our case, all RDF data must be transferred to the GPU
memory before the querying process can be done. Since
RDF data is large, global memory is used to store all of
them. Compacting them will be advantageous since more
RDF data will be held. The search is performed by concur-
rent threads and the found triple positions are returned.
Complex queries processing can also be done inside the
GPU memory with proper data arrangement.

2.3 Related Work

Since we are interested in processing large RDF data using a
GPU or a parallel platform. Such a platform has lots of com-
puting nodes/cores which can be advantageous for parallel

processing. Also, the platform needs all data on the device’s
memory for processing while it has limited memory size.
Thus, we study the previous works in two aspects: 1) utili-
zation of a GPU or any parallel platform for information
processing 2) the advantage of compacting data for saving
memory storage or splitting data for concurrent processing.

2.3.1 RDF Processing with Parallel Platforms

With the advancement of parallel platforms with many
computing cores and bigger memory, large information can
be stored and processed inside the device. The information
processed can be in various forms such as database, large
text files, or RDF data etc. He et al. considered speeding up
relational database using the GPU [23]. The authors focused
on designing data-parallel primitives such as split, merge,
map, gather-scatter, sort, and join, for memory optimization.
The main problem in GPU programming is that the array in
the GPU memory must be allocated before the GPU kernel
is invoked. They developed the lock-free scheme for storing
result outputs where two phases are used: the first phase
was to examine the total size of the results for the GPU
memory allocation, the next step was to perform the opera-
tion on the result array in the GPU. Breß et.al. [24] proposed
a workload optimization scheme, called probability out-
sourcing. They considered benchmarking of 4 database
operations aggregate, select, sort, and join across GPU devices.
The implementation is based on CUDA framework.
Groppe, et al. focused on distributed merge join processing
for RDF triples [25]. They used partitioned Bþ tree for
indexed triples. The indices were built using a cluster of
seven computers. Another concurrent technology available
was Java stream and multithreading where Corcoglioniti
et al. [7] proposed a library tool for process RDF data sup-
porting filter,aggregrate, inference, deduplication. The tool pro-
cesses the data in a pipeline fashion.

Some researchers were interested in inferring knowledge
from RDF data, called RDF Schema (RDFS) entailment. RDFS
contains a standard set of rules for an RDF vocabulary which
new relations can be inferred from. One of the motivated
works to us was presented by Heino and Pan. The RDFS
entailment was performed on a cluster of CPUs with one
device, (and subdevices) [26]. Their algorithm was imple-
mented using OpenCL while the RDF graph representation
was used. The steps of the entailment were similar to [27]
while there was a synchronization between steps. The key
concept was to remove duplicate items before sending the
results back to the CPU to save the data transfer time and to
compact the transfered data. Liu et al [28] studied the prob-
lem of reasoning for RDF reasoning using streaming RDF tri-
ples over time. These reasoning rules can be implemented
using several subqueries. Makni [29]’s proposal focused on
social media data streamwhich can be often changed.

Table 1 summarizes the previous work mentioned and
compares them in the aspect of target tasks, representation
and platform tested. The works in [23], [24], [25] focus on
relational database operations while the work in [24] targets
at query plan optimization through various GPU devices.
Thework in [7], [26] targets the RDF processingwhere entail-
ment problem was considered in [26] and the later work in
[7] presents Java library for RDF processing. Most of these
work used hash table for speeding up the query while some

CHANTRAPORNCHAI AND CHOKSUCHAT: TRIPLEID-Q: RDF QUERY PROCESSING FRAMEWORK USING GPU 2123

utilizes indexing scheme such as Bþ tree. Our work in the
last row,we consider the similar common operatorswith Tri-
pleID representationwithout spending time to generate indi-
ces. The compact representation allows GPU to process large
number of triples as well as RDFS entailment.

In this work, optimization of RDF storage utilizing both
CPUs and GPUs was considered. The RDF data might be
stored and processed on GPUs or CPUs depending on the
speed up dynamic measurement. Reasoning algorithms that
are suitable for GPU computingwere selected. The approach
consists of three steps: optimizing SPARQL aggregate and
ordering using CUDA reduction, parallel constraint check
by GPUs, and dynamicmaterialization by the GPU.

2.3.2 Compressed Data Formats

Since the GPU memory size is limited and the copying time
to and from the GPU memory can degrade overall perfor-
mance, it is advisable to compact data before transferring.
One of the pioneer efforts on transforming and compressing
the RDF representation was by Atre et al. The representa-
tion was called BitMat, which stores relations in a bit matrix:
one matrix is created for one predicate [30]. Madduri and
Wu presented a FastBit software tool using bitmaps com-
pression [31]. Kim et al. [32] considered the binary Header-
Dictionary-Triple [12] form and processed RDF queries
using the GPUs. The bitmaps as well as dictionary in HDT
were loaded to the GPU memory. The prefix sum was
applied to compute predicate and object positions in bit-
maps. They experimented on a simple set of queries. HDT
is a popular compressed format. However, the conversion
to this form takes a lot of time and memory. For a larger
number of triples, HDT with Java interface was required to
increase Java heap memory to handle more elements in the
set and would take even more conversion time or C imple-
mentation should be applied. The paper, however, did not
address the issue of speeding up the conversion process
and data scaling. The bitmap itself is compact in a storage

but when queried, bitmaps, dictionary information are
needed. Such information must also be loaded into the GPU
memory for searching and the conversion from such data
structure to suit the GPU memory layout is required.

For a very large RDF file, Hexastore with MPI was used
to support a cluster processing [33]. Hexastore data can be
split across the nodes in the cluster so that a concurrent
query can be performed. Thus, a file splitting is another
approach to handle concurrent searches. Simple file split-
ting scripts take a lot of time to run, hence using MapRe-
duce to process large files is another possibility to run on a
cluster which is recognized as batch processing. We may
consider stream processing in the future with overlapping
the memory transfer and the computation. Interesting
Merge-Join operation in the GPU library introduced by
Baxter [34] is generic based on unified memory, and easy to
use. Often, the number of merged results may be too large;
thus, on a GPU host computer whose memory size equals
12G, it was possible to apply the libraries when the number
of elements of each vector was around 5-6 thousands.

In this work, we consider processing the RDF data. We
begin with considering the traditional search algorithm.
The search algorithm can be customized in the framework.
Although it is possible to use a fast search, the fast search
usually needs preprocessing such as creating prefix/suffix
tables or implicit state machines. The construction of the
preprocessed table requires space and time overhead for
different search strings [35]. Our framework assumes sim-
plicity by using thousand threads to do brute force match-
ing. From the preliminary study and previous work [36],
with thousand threads, the gained speedup with the opti-
mized search scheme may not be significant considering
preprocessing overhead.

The framework transforms the RDF data into the Tri-
pleID format which encodes IRI strings into IDs. The Tri-
pleID data are then transferred into the GPU memory. After
that, concurrent threads search the required triples accord-
ing to the given query. Indexing scheme is currently not
considered. It is possible to create an index based on a tree
structure such as HDT. The concurrent search scheme is
also possible with indexing e.g. by subjects [32]. Note that
the GPU memory is also required to store index information
for each tree level. With more indexing types, more memory
space is needed.

In the following section, the framework is first presented
and the algorithms for different query operations are
described based on TripleID.

3 TRIPLEID-Q: PROCESSING FRAMEWORK

The challenges of this research are to process the big data set
with the limited GPU memory and to simplify the represen-
tation properly for GPU computation. The design goal is as
follows. 1) The format should be simple so as to minimize
the conversion overhead. 2) It should not occupy too large
space. 3) Since the GPU has a lot of threads to help search, we
will not focus on the index construction, rather we intend to
use the large number of threads to look for the data.

TripleID-Q framework contains components to perform
input conversion, look for query answers, and return the
results based on such a representation, presented in Fig. 1.

TABLE 1
Comparison of Previous Works in RDF Processing

Schemes Using Parallel Technology

Previous

works

Platforms Representation Target tasks

He et al. [23] GPU/CUDA N/A Relational database

operation: join, sort,

gather-scatter, map

Heino and Pan

[26]

A cluster/ GPU/

OpenCL

std::vector RDFS entailment [27]

Breß et al.[24] GPU /CUDA N/A Optimization of work-

load of database opera-

tion aggregate, select, sort,

and join

Groppe et al.

[25]

Cluster of

computers

Bþ tree Distributed merge join

with indexing

Corcoglioniti

et al. [7]

Java/ Multithread HashMap RDF libraries for build-

ing RDF processing

pipeline

Our work GPU/CUDA TripleID RDF query select, union,

join, filter and RDFS

entailment

2124 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

The RDF file (N3/N-Triple type) is transformed into four
files as, Subject ID, Predicate ID, Object ID and TripleID files.
The first three files are in the same format containing tuples
in a form: (keyID, value), where key is an integer and
value is a string. The TripleID file contains only triples in
the form (SubjID, PredID, ObjID) and is a binary file
assuming each 32-bit unique ID. When loading these ID files
in to memory, zlib [37] may be used to encode the values to
save memory space for text. In theory, the size of IDs is
maxðlg n1; lg n2; lg n3Þwhere n1 is the total unique term used
for subjects, n2 for predicates, and n3 for objects respectively.

In Fig. 1, Subject ID, Predicate ID and Object ID ID files
are loaded into memory in Step (1). We use hash tables to
store the tuples, (key, value) pairs. The given query is
transformed into a triple form (? P ?) (2), where P is the
predicate ID. For example, to search ABCPress publishes

which journals, in Step 2, ABCPress and publishes are
transformed into SubjID, PredID, which are 1,2, respec-
tively. The query becomes 1,2,?. In Step 3, the Triple ID
file is split into chunks and the chunk is loaded into GPU
memory. Then, GPU threads concurrently look for 1,2, in
the GPU memory. The found triples are marked and
returned. In Step 5, the TripleID 1,2,1 is mapped back to
the values using the hash tables.

The framework is described as shown in Algorithm 1. A
TripleID file is read by chunks. It is assumed that the keys
to search are in array key.subj, key.pred, key.obj,
corresponding to Subject ID, Predicate ID, and Object ID
respectively, where value 0 is reserved to represent a free
variable “?”. For each thread, the kernel code, GPUSearch
is executed. GPUSearch depends on a selected search algo-
rithm. This work implements a brute-force matching which
finds the matches between given key.subj,key.pred,

key.obj, corresponding to Subject ID, Predicate ID, and
Object ID, accordingly.

A TripleID chunk is stored as dataArray in the GPU
main memory. Thread i compares dataArray[i],data-
Array[i+1],dataArray[i+2] to key.subj,key.

pred,key.obj, corresponding to Subject ID, Predicate ID,
and Object ID). DataArray has total size N , positionArray
has a size, N=3, since the only found triple positions i are
marked.

Each element of dataArray is ID type. The keycontains
three elements of ID (which is 32-bit each). Total memory
size used by all these arrays in GPU memory is
ðN þ N

3 þ 3Þ�sizeof (ID), whereN is the size of dataAr-
ray. For the positionArray, there may be other possible

implementation such as keeping the found positions in a list
and use atomic operation to eliminate the race condition in
updating a list of found positions. Compared to HDT repre-
sentation in Fig. 2, the total memory size required is sizeof
(BitmapY)+ sizeof(SeqY) + sizeof(BitmapZ)+

sizeof(SeqZ), which is 2�sizeof(IDs) + 2�sizeof

(Bitmap). This is just for querying in the order of subject,
predicate, object respectively.

Algorithm 1. Parallel Search for TripleID

Input: dataArray, key
Output: positionArray

1 Allocate device memory for dataArray, key, positionArray.
2 while not EOF do
3 Read a TripleID chunk in dataArray.
4 Copy dataArray, positionArray (initialized to false) and

copy key to the GPU memory
5 Call GPUSearchwith dataArray, key, and positionArray
6 Copy positionArray back to the host. Map positionArray to

corresponding triples found.
7 end
8 Free all the memory.

GPUSearch can also bemodified to accommodate indexed
triples. Though using the indexing scheme can make the
search fast, it requires preprocessing time for index informa-
tion and requires more memory space and data transfer for
keeping indices in GPUmemory. For example, consider stor-
ing as the HDT representation, which is indexed by subjects.
HDT contains a collection of trees as depicted in Fig. 2. The
first level contains all subjects where subject IDs are implicit,
i.e., in an increasing sequence of 1, 2, 3 . . .N , where N is a
total number of distinct subjects. In the second and third lev-
els, SeqY and SeqZ are lists of PredID and ObjID. BitmapY
and BitmapZ are markings of starting positions for predi-
cates and objects respectively. Thus, all of the four arrays
must be transferred to the GPU memory, and the concurrent
search must be done through BitmapY;BitmapZ; SeqY , and
SeqZ [38]. Also, only the thread numbers that are related to
indices performs the search. Compared to this work, we gen-
erally consider storing TripleIDs without any index and use
lots of threads to directly search through them. The prepro-
cessing requires only for the data conversion, but the index-
ing process is not required.

Based on Algorithm 1, it is easy to handle multi-GPUs
and a cluster of GPUs whenever more host memory is avail-
able in Line 3 of Algorithm 1, we can read each chunk for
each GPU and in Line 6, the search kernel is called for each
GPU. The results are aggregated from all GPUs and may be
exchanged between GPU memory. CUDA-aware [39] can
be setup to combine MPI_Send and cudaMemcpy together
in one command and chunks are distributed to each node.

Fig. 1. TripleID-QE: Overall process.

Fig. 2. HDTrepresentation.

CHANTRAPORNCHAI AND CHOKSUCHAT: TRIPLEID-Q: RDF QUERY PROCESSING FRAMEWORK USING GPU 2125

4 HANDLING MULTIPLE QUERY OPERATIONS

Previous section demonstrates a mechanism to handle a sin-
gle query for triples where the query for subject, predicate,
object and any two combinations are possible. In this sec-
tion, we explain the handling of union and join operations
of subqueries (also called triple patterns).

4.1 Union Operation

One query contains many subqueries, for instance, the
query from [40]:

Listing 3. Query with union 1

The above query consists of three subqueries of the same
triple pattern S P ?. In this example, each triple can be a
result of only one triple pattern.

However, for the query as following, there are two varia-
bles in each subquery, where a triple may be the answer of
two subqueries. For example, the triples that are answers of
the first subquery may also be the answer of the second sub-
query, ?var2 foaf:depiction ?var3. That is ?var2

may be <http://dbpedia.org/resource/

Cabezamesada>, foaf:depictionmay be ?var0 and ?

var1may be ?var3.

Listing 4. Query with union 2

Previous implementation in Section 3 assumes that a triple
can be the answer of only one subquery. For a query contain-
ing more than one subqueries, it is required to indicate that
the triple is the answer of which subquery of a further join
operation. Thus, the data structures aremodified as follows:

(1) positionArray element is expanded to contain an
array of subqueries, i.e., positionArray[i].query con-
tains the list of subqueries where triple i is served as

an answer. For instance, positionArray[i].query= {1,3},
implies that triple i is an answer for subqueries 1,3.
query can also be implemented as a fixed-size array
since typically, a query contains a small constant
number of subqueries which is a small amount (1-
10). This amount can actually be analyzed in the pre-
processing phase during the query parsing.

(2) key array is enlarged to the size of multiples of threes
to hold TripleIDs for many subqueries.

Variable key becomes keysArray and the loop performs for
every element in keysArray. positionArray becomes position-
Array[i].query, which is to mark triple i matched for sub-
query in query in Fig. 3.

4.2 Join Operation

Results from several subqueries can be joined regarding the
relation between each subquery. Example in Listing 5 [40]
contains 5 subqueries, each of which is the pattern accord-
ing to Table 2.

Listing 5. Query with 5 subqueries

The relational join implementation is based on the design
pattern of CUDA library by Modern GPU or Mgpu [34]. Spe-
cially, we use the functionRelationalJoin<MgpuJoinKindxxx>,
where xxx can be either Inner, Outer, Left, Right types of join.
Before calling such function, the data needed to be sorted and
merged. Mergesort and Merge in Mgpu library are also used.
The steps to incorporate the join operation to the proposed
framework are summarized as follows.

(1) Analyze the relation between subqueries. There are
at most 9 possible types of relations between any
two subqueries. Without loss of generality, assume
the subqueries are ordered based on the original
query. For two subqueries qi and qj, where i < j, qi

Fig. 3. Modification of keysArray, positionArray.

TABLE 2
Subquery Pattern of Listing 5

Sub-query Triple
pattern

q0: ?X rdf:type ub:Professor {? P O }

q1: ?X ub:worksFor

<http://www.Depart0.University0.edu> {? P O }

q2: ?X ub:name ?Y1 {? P ? }

q3: ?X ub:emailAddress ?Y2 {? P ? }

q4: ?X ub:telephone ?Y3 {? P ? }

2126 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

http://www.Depart0.University0.edu

may be related to qj in one of the following relation-
ship types {OO, PP, SS, OP, OS, PS, PO, SP, SO}. Rela-
tionship OO implies that qi is related to qj using O (as
the object is the same for both qi and qj).

Table 3 presents the definitions and examples of
these relationships. As an example, consider Row
OP. The objects of subquery qi is related to predicate
of subquery qj.

In Table 2, subquery q0, is related to q1 by variable
?X; thus, its relationship is type SS. The relationships
of these subqueries are REL ¼ {{q0; q1,SS}, {q1; q2, SS},
{q2; q3, SS}, {q3; q4, SS}}. That is q0 is related to q1 as SS,
q1 is related to q2 as SS, and etc.

(2) Perform the execution of each subquery as in Algo-
rithm 1. To apply the merge-join library using Mgpu,
the triple results are re-organized as vectors shown
in Fig. 4.

Vector Rqi stores triple results from subquery qi.
Each vector i has length ni. Such vector contains two
parts (key, value). The key and value parts depend
on the type of relations. For example, if two subqu-
eries are related as SS, i.e., {?S, P1, O2}, and {?S, P2,
O2}, the key of both vectors are subjects ?S and the
values are the remainder parts.

(3) Aggregate the proper key for joining and submit
the result vectors to RelationalJoin, i.e., for each rela-
tion rk 2 REL, for two relations that are related by
two subqueries qi; qj. Assume its type of relation as
Trk ¼ SS. Consider for two result vectors Rq0 and
Rq1 . As in Fig. 5, (1) copy subject S0;l, l ¼ 0; ::; n0 � 1
from result vector Rq0 of subquery q0, and copy sub-
ject S1;l, l ¼ 0; ::; n1 � 1 from result vector Rq1 of sub-
query q1, where n0 is the total results of subquery
q0, and n1 is the total results of subquery q1. Then,
we add the subject results to the key vectors. We
copy the remainder part (predicates and objects)

and put them in the value In (2), Merge-join in Mgpu
is called with key vectors. The results obtained are
indexed pairs that display the positions of both keys
that are joined. The positions of both keys are used to
extract the corresponding value vector elements
from the vectors in (3). Similarly for the cases of OO,
PP, OP, OS, PS, PO, SP, SO, the proper terms of
the triples for each result from any subquery qi, Rqi

and results from subquery qj, Rqj are copied as keys
for merging. The positions for pairs of keys that
match are returned as a vector of an element index
pair as depicted in Fig. 5. Then, the result vectors
after joining are used for the next join in the next rela-
tion in REL.

4.3 Other Operations

To handle other operations such as FILTER, the query
results are first obtained, then the IDs of terms must be con-
verted back to string values. A regular expression may be
used to filter ID names of the matched TripleIDs.

An extra structure is needed to only keep variables in each
subquery. The variables for each subquery are used to find
relationships REL are discussed in Section 4.2. From a
SELECT statement, the selected variables must be returned.
To handle DISTINCT, a hash table is used to store the results
of a variable. Various GPU hash table versions are suggested
in the literature [41], [42]. In the future, finding a good ID
assignment of subjects, predicates, and objects in such a way
to preserve the ordering and to filter out part of triples that
are not relevant to the subquery is an interesting problem.
The total remaining triples will reduce the size of the GPU
memory used in performing operations such join, union, etc.

Fig. 6 presents an overall process when mixing these
operations, i.e. SELECT, DISTINCT, JOIN. After the query
is split into subqueries q0; :::; qk, each subquery is searched
against the TripleIDs by GPU threads. The resulting triples
are marked as the answer of a subquery and the marked tri-
ples are extracted to store in the vectors corresponding to
the subquery. The filter is used during this step. The join
operation starts from the left result Rq0 to the right one Rqk .
Note that before joining, each result vector must be sorted.
After joining all results, the final results are merged to keep
only distinct values. When considering query optimization,
join ordering can be changed.

TABLE 3
Relationship between Two Triple Patterns

Relationship
types

Example related triple patterns
of subqueries qi and qj

OO {S1, P1, ?O}, {S2, P2, ?O }
PP {S1, ?P , O1}, {S2, ?P , O2 }
SS {?S, P1, O1}, {?S, P2, O2 }
OP {S1, P1, ?O}, {S2, ?O, O2 }
OS {S1, P1, ?O}, {?O, P2, O2 }
PS {S1, ?P , O1}, {?P , P2, O2 }
PO {S1, ?P , O1}, {S2, P2, ?P }
SP {?S, P1, O1}, {S2, ?S, O2 }
SO {?S, P1, O1}, {S2, P2, ?S }

Fig. 4. Vectors of triple results.

Fig. 5. Processing join operation for SS.

CHANTRAPORNCHAI AND CHOKSUCHAT: TRIPLEID-Q: RDF QUERY PROCESSING FRAMEWORK USING GPU 2127

5 EXPERIMENTS

The experiments demonstrate the efficiency of the frame-
work in the following aspects. First, the conversion time to
TripleID format is compared to the conversion to other for-
mats and the size of TripleID file is compared to the original
file type such as RDF and N-Triple file, and other formats
such asHDT andRDF store. Next, the search time to the these
files is measured in various aspects: the number of subqu-
eries, the number of input triples, and different operations.

The tested machine had the following specification:
IntelðRÞ CoreðTMÞ i7� 5820K CPU@ 3.30 GHz, 6 cores, and
16 GB RAM with NVIDIA Tesla K40. The card contained 15
Multiprocessors, 192 CUDA cores per MP (totally 2,880
CUDA cores) withmaximum clock rate 745MHz (0.75 GHz).
Memory buswidthwas 384-bit. Total amount of globalmem-
ory was 12GB. The targeted thread block size and grid size
equal to 1024 and 480 respectively, which yield the best per-
formance on our machine. Other tests that explore the other
block size and grid size are demonstrated in [35].

5.1 Data Sets

Two data sets are considered: Billion Triples Challenge Data
Sets and SP2Bench Data Sets. The first data set was obtained
from Billion Triples Challenge [43]. The downloaded con-
tents encoded in N-Quads format [44] were split into
chunks of 10 million (107) statements, called chunk 01, 02,..,
07, each of which has a size of 350 MB. These splits were
combined to obtain the files with various sizes as shown in
4. A whole crawled data available as “BTC-small” has size
equal to 2.172 GB. These files were converted into an N-Tri-
ple format [17] format The conversion program (command-
line tool), rdf-convert-0.4 (http://sourceforge.net/
projects/rdfconvert/), was used.

For SP2Bench [20], the data sets were generated with dif-
ferent number of triples up to 100 million triples. SP2Bench
produces the data sets in an N3 format [45]. These files con-
tain various numbers of subjects, predicates and objects as
shown in Table 5.

5.2 Tools’ Description

Our following experiments show the various tested tools.
The gathered tools focus on RDF querying with free, open
source development: Redland, Menthok, Stardog, Virtuoso,
and HDT. They have various implementations. HDT has
both C and Java implementation and interfacing. In the
experiments, C implementation is used for Redland, Men-
tok and HDT. Implementation for HDT has an indexed sup-
ported for SPO. Virtuoso is the largest one with an open
source support for large RDF data while Stardog commu-
nity edition can support around 20 million triples while
larger RDF data is supported with the enterprise version
and free for trial for 30 days.

5.3 Preprocessing Time

We measure the preprocessing of using different formats.
The conversion to TripleID time is investigated and com-
pared to the conversion time to HDT from the original NT
format. Then we measure the loading time, the case of using
these RDF stores, which reads and parses RDF files (and
construct an internal graph model in some cases).

Table 6 presents the loading time for each tool for the
data set in Table 4. Redland library consumes more time to
load the RDF file and construct the graph model. Note that
the query time of Redland is about 1/2 or 1/3 of the model
loading time. It is found that Mentok’s loading time was
much more that of Redland while the query processing
could obtain benefits from multiple MPI nodes. From this
observation, when the number of triples becomes very
large, the straight-forward program which reads RDF tri-
ples and creates a simple representation will save this pre-
processing overhead.

Fig. 6. Integration of several operations.

TABLE 4
Data Set Characteristics (BTC)

data set # subj #pred #obj #triples

01 314,285 3,458 583,555 1,868,651
0103 778,772 5,849 1,383,943 5,160,648
0203 504,082 4,477 990,414 3,291,997
0207 366,654 3,563 688,019 2,017,469
012347 1,113,824 7,542 1,674,407 7,083,790
BTC-small 1,383,542 8,205 2,260,819 9,627,877

TABLE 5
Data Set Characteristics (SP2Bench)

data set (triples) # subj #pred #obj #triples

5M 896,359 76 2,400,922 5,000,120
10M 1,712,642 77 4,662,411 10,000,091
20M 3,404,855 153 9,379,299 20,000,429
50M 8,639,994 306 24,058,862 50,000,100
100M 17,652,609 613 48,965,319 100,000,144

TABLE 6
Loading Time in Seconds Using Redland, Mentok,

and TripleID Representations on BTC

data set Redland Mentok TripleID

01 14.89 111.87 0.52
0103 46.84 261.58 1.33
0203 31.66 166.84 0.92
0207 16.464 106.23 0.66
012347 68.64 369.90 1.95
btc-2009-small 83.77 N/A 2.4

2128 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

Table 7 compares the loading time of SP2Bench in Table 5.
SP2Bench generates larger number of triples. We compare
the loading time of RDF data using the large triple store, Star-
dog [13]. To support large number of triples, the setting of
Stardog was – JVM memory is 8G and Off heap memory is
64G. Stardog prefers the triples to be in the Turtle format or
called in short, TTL [46]. Thus, RDF data were converted into
TTL format. The reported time under “Stardog” column is
the time used to load TTL files into Stardog data store.1

Under “HDT” column, the time for loading HDT data is
shown. The time to load the HDT data set is very small com-
pared to others since theHDT file is already small.

Tables 8 and 9 display the conversion time to the TripleID
format compared to the conversion time to the HDT format
for BTC and SP2Bench respectively. HDTwith C implemen-
tation (rdf2hdt) is used for comparison. Conversion time to
the HDT format is about 5 times longer than that of TripleID
files forBTC and about 2-3 times longer for SP 2.

5.4 Compaction

Figs. 7 and 8 compare the file sizes after the conversion to
TripleID for BTC and SP2Bench respectively.

As in the previous section, after transforming to TripleID
format, the four files are generated. The file size in Column
“TripleID” is the summation of TripleID file size plus the
subject, predicate, object ID files’ size. The sizes are com-
pared against the original RDF, NT and HDT files. TripleID
size compared to NT size is around 3-4 times smaller. How-
ever, TripleID size is 2 times larger than that of HDT format
since we do not eliminate redundancy (due to shared subject
and object elements) andwe do not perform the compression
while as noted in the above subsection, the TripleID conver-
sion time is about 3 times faster than the HDT conversion

time. We also tried convert some large data set such as
‘012347’ and ‘btc-2009’ to Stardog format and we found that
the size of Stardog format is around 1/2 of that of NT format.
For the large case, SP2Bench, we compare against N3 and
Stardog. N3 is smaller than NT size and our TripleID size is
smaller than that of Stardog database.

5.5 Single Subquery Speedup

Table 10 displays processing time of each simple query con-
taining one subquery.

SELECT distinct ?subject ?object

WHERE { ?subject owl:sameAs ?object} }.

TABLE 7
Loading Time in Seconds for SP2Bench

Using Stardog, HDT, TripleID

data set Stardog HDT TripleID

5M 40.98 0 1.86
10M 873.98 0 4.1
20M 3,820.71 0.01 8.66
50M 424.54 0.03 19.65
100M 1171.36 0.05 42.56

TABLE 8
Comparison for Conversion Time (HDTand TripleID) in Seconds

for BTC

data set HDT
(s)

TripleID
(s)

Speedup HDT/
TripleID

01 19 3.25 5.85
0103 51 8.57 5.95
0203 34 6.15 5.53
0207 22 3.06 7.19
012347 71 10.37 6.84
btc-2009 94 28.86 3.26

Fig. 7. Comparison of data size for BTC.

Fig. 8. Comparison of data size for SP2Bench.

TABLE 9
Comparison for Conversion Time

(HDTand TripleID) in Seconds for SP 2

data set HDT
(s)

TripleID
(s)

Speedup HDT/
TripleID

5M 56 14.37 3.90
10M 62 31.04 2.00
20M 231 62.08 3.72
50M 360 148.44 2.43
100M 1256 298.1 4.21

1. The Stardog’s reported time for loading in total and in Triples per
second. This 20M case has a slowest is around 4.4K triples/sec while
for other cases, 5M is 113.5K triples/sec, 10M is 11.4K triples/sec, 50M
is 103.5K triples/sec, and 100M is 83.1K triples/sec.

CHANTRAPORNCHAI AND CHOKSUCHAT: TRIPLEID-Q: RDF QUERY PROCESSING FRAMEWORK USING GPU 2129

Column “Redland” shows the query time using Redland.
The Redland library for this test was modified so that it can
handle larger models. Using the traditional Redland library
to search reaches the memory heap limit for allocation of a
graph model storage whose size was larger than that of 01
case (1.8M triples), due to the growth of the internal model,
represented by the hash table. Redland library reallocates
the model whose size is double to the current one when the
hash table density is more than 50 percent. The machine
could not allocate large continuous heap memory area to
store the model, which made the program stops running.
We, then, modified Redland source code to split into
smaller submodels and to link the submodels as a list itera-
tor. The splitting was done after parsing of the input RDF
file by Rasqal parser.

Column “Mentok” shows query time using Mentok
which is the reimplementation of Hexastore [33] and the
addition of MPI [47]. This one demonstrates the use of dis-
tributed RDF models. Testing this library, we deployed
Mentok on a cluster of 4 nodes with MPI, where each node
was Intel(R) Xeon(R) CPU X3470 @ 2.93 GHz. Column
“HDT” displays the query time using HDT library (C imple-
mentation) [12]. These reported numbers are query time
excluding loading time. Column “TripleID” is our search
time. The speedup for each case (TripleID over Redland,
TripleID over Mentok and TripleID over HDT) is displayed
under column “Speedup”.

The speedup of querying using TripleID over Redland is
significant which is about 48-390 times faster. Compared to
the speedup of querying over Mentok for TripleID is about
4-10 times faster. We could not perform the test for BTC-
small for Mentok since it used up the memory allowed in
our cluster environment. HDT gives a close performance to
our TripleID when the number of triples are not very large
but for a large data set the speedup is obvious (BTC-small).
The speedup over HDT also depends on the query types.
More speedup is gained when the number of triples are
around 5 millions or more. For 5-million triple data set
(0103), the speedup is about 2 times and for 7-million triple
data set (012347), the speedup is about 3-4 times. Consider
using RDFlib [10]. On the same machine, processing
5 million-triple data (with N3 size of 826, 904, 622 bytes)
took 778.22 seconds while we observed that the loading
time was 776.96 seconds and the query time was 1.25 sec-
onds. Thus, we could not perform the larger test using
RDFlib since the process would use too much memory
resource than allowed.

Table 11 shows the total query time for our TripleID form
in Column “total time” for SP2Bench. This benchmark con-
tains more number of triples. we compare against Stardog
4.2.1, and HDT, with the query pattern “?PO”, .where P is
rdf:type and O is foaf:Person. The total time obtained
from querying 100 million triples is 2.28 seconds where the
triple conversion time was 298.1 seconds.

5.6 Multiple-Subquery Speedup

The performance of queries containing subqueries where
each subquery contains union, join, or filter is measured.
Particularly, the selected data sets from previous subsec-
tions are considered, with the cases of 5 million triples
and 7 million triples, namely 0103 and 012347 from
Table 4.

Three types of queries are considered with different
focuses: Q1-Q5 only focus on union operations, Q6-Q8 focus
on filter and union operations, and Q9-Q16 emphasize on
join and filter operations. The join operation may be in the
type of SS, OS, or two consecutive SSs or three consecutive
SSs etc. Details of the queries are in the supplements in
Appendix. Table 12 presents execution time in seconds of
our approach compared to that of Redland, Virtuoso, Star-
dog, and HDT respectively. In Column “#Res”, the number
of final RDF results obtained for each query in RDF is
shown, except in Q16, where the number shown is the num-
ber of NT triples. Under column “Redland”, the load time
and query time are presented. Columns “Virtuoso”2 [14],
“Stardog” and HDT display the query time using these data
stores respectively. Under column “TripleID”, we display
the time for loading TripleID, the time for transferring the
data to GPU memory, the time for joining operations, and
the time for querying, under “load”, “data”, “join” and
“query” respectively.

Column “Speedup” shows the query time speedup over
Redland, Virtuoso, Stardog, HDT respectively. In most cases,
using TripleID achieves speedup depending on query types.
For the union operations, as in Q2-Q4, the number of results
is large compared to the results of Q1. Also, in Q8 which con-
tains three subqueries with filter, and union operations, the
computation time was increased compared to Q7 containing
two subquerieswith union and filter operations. The speedup
is obvious when compared with Redland’s query time which
ranges 16-108 times. In the case ofQ16 (N/A), the query could

TABLE 10
Time Comparison in Seconds between Redland,
Mentok, HDTand TripleID for a Simple Query

Speedup

data set Redland Mentok HDT TripleID Redland

TripleID

Mentok

TripleID

HDT

TripleID

01 6.29 0.59 0.16 0.13 48.38 4.57 1.23

0103 28.22 1.82 0.43 0.20 141.10 7.26 2.15

0203 21.31 1.16 0.37 0.23 92.65 5.06 1.61

0207 11.55 0.70 0.19 0.12 96.25 5.86 1.58

012347 36.98 1.90 0.69 0.18 205.44 10.55 3.83

BTC-small 35.39 N/A 0.79 0.09 393.27 N/A 8.78

TABLE 11
Query Time in Seconds Using TripleID,

HDT, Stardog on SP2Bench

data set Stardog HDT TripleID Speedup

Stardog
TripleID

HDT
TripleID

5M 0.25 1.21 0.25 1.0 4.8
10M 69.77 1.96 0.65 107.3 3.0
20M 78.04 4.64 0.77 101.4 6.0
50M 424.54 9.98 1.66 255.7 6.0
100M 593.94 22.38 2.28 260.5 9.8

2. Virtuoso 7.2.2 [14] which is a column store as well as isql from
OpenLink Interactive SQL (Virtuoso), version 0.9849b were used. The
default setting for Virtuoso was assumed.

2130 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

not be executed using Redland because the query processing
consumed all the memory resources and the execution was
aborted. The rows with “-” indicate that TripleID yields
no speedup. For Virtuoso, the speedup varies from 3-
1,131 times. For Q5 or Q6, the query pattern is “S??”
where Virtuoso can perform very fast. Stardog performs
queries much faster than Virtuoso for the queries that
returns large number of results. Stardog also performs
well when the the query pattern is “S??”. It gives fast join
results for queries Q9–Q12. The union operation takes lon-
ger time. HDT running time3 is quite consistent and fast.
The running time for HDT queries is very fast when the
pattern is “S??” in Q5 and Q6. The speedup of TripleID
over HDT is varied depends on queries. More speedup is
obtained for Q2, Q3, Q4 for the large union results.

Table 13 presents timing results for the larger BTCdata set
(012347) containing 7 million triples. The speedup trend is

shown in the similar manner as in Table 12. More speedup is
gained when compared to Redland, Virtuoso, Stardog and
HDT, especially in Q1, Q2, Q3, Q4, Q14, Q16. The results
imply that the total execution time depends on the query
operations and the number of results of the certain query.

In some case, the number of final results does not reflect
the total time since it also depends on the number of inter-
mediate results before joining. The time in Column “join”,
indicated by 0*, which is closed to zero in Q9-Q12, implying
that the number of intermediate results are small. When the
join time such as in Q14 is detectable, the number of inter-
mediate results is significant. In Q14, the first, second, and
third subqueries return 22,626 results. In Q15, the first sub-
query returns 22,626 results and the second subquery
returns 6,300 results. For the join with large intermediate
results, the speedup will be more.

5.7 Entailment Queries

We apply our framework to process queries according to
entailment rules. Table 14 presents rules used as a query

TABLE 12
Comparison between Redland and TripleID Performance for BTC-0103 Dataset

Query #Res Redland Virtuoso Stardog HDT TripleID Speedup

load query load data join query Redland Virtuoso Stardog HDT

Q1 20,081 43.29 7.54 7.82 2.38 0.54 1.36 0.29 - 0.36 20.94 21.72 6.61 1.50
Q2 784,648 43.38 40.1 670.69 509.90 2.56 1.25 0.29 - 0.83 48.31 808.06 614.33 3.08
Q3 870,890 43.09 57.04 785.38 570.19 3.37 1.15 0.29 - 0.86 66.33 897.67 663.01 3.91
Q4 891,102 43.11 72.39 785.95 596.51 3.51 1.24 0.29 - 0.83 82.36 897.67 718.68 4.22
Q5 24 43.21 5.54 0.04 0.14 - 1.15 0.27 - 0.32 17.31 - - -
Q6 18 43.05 5.55 0.01 0.27 - 1.15 0.29 - 0.32 17.34 - - -
Q7 22 43.23 11.45 3.00 0.15 0.40 1.15 0.3 - 0.36 31.81 8.34 - 1.11
Q8 20,370 43.23 19.49 4.87 1.49 0.80 1.11 0.28 - 0.4 48.73 12.17 3.73 2.00
Q9 1 43.01 47.67 2.14 0.14 0.90 0.9 0.27 0.03 0.45 105.93 4.76 - 2.00
Q10 0 43.32 48.97 0.01 0.18 1.27 1.15 0.28 0.02 0.45 108.83 - - 2.82
Q11 98 43 5.61 14.70 0.17 0.36 1.11 0.28 0* 0.34 16.50 43.24 - 1.05
Q12 1,529 43.08 6.17 16.49 0.36 0.46 1.11 0.27 0* 0.36 17.14 45.81 - 1.27
Q13 30,427 43.16 8.23 22.97 2.62 0.53 1.14 0.27 0.02 0.38 21.66 60.45 6.89 1.39
Q14 144,845 43.09 15.36 58.53 20.62 0.98 1.11 0.28 0.3 0.68 22.59 86.08 30.32 1.44
Q15 5,595 43.97 6.82 1.28 0.65 0.43 1.29 0.27 0.03 0.42 16.24 3.05 1.54 1.02
Q16 86,824 N/A N/A 1,528.03 614.34 9.86 1.11 0.3 0.95 1.35 - 1,131.88 455.07 7.30

TABLE 13
Comparison between Redland, Virtuoso, Stardog, HDT, TripleID Performance for btc-012347 Dataset (Time in Seconds)

Query #Res Redland Virtuoso Stardog HDT TripleID Speedup

load query load data join query Redland Virtuoso Stardog HDT

Q1 20,977 62.78 10.45 15.76 1.62 0.65 1.86 0.29 - 0.41 25.49 38.43 3.95 1.58
Q2 1,119,681 62.40 57.34 1173.10 821.28 3.80 1.7 0.29 - 0.97 59.11 1209.38 846.68 3.92
Q3 1,220,456 62.52 80.9 1391.87 880.19 4.67 1.69 0.31 - 1.02 79.31 1364.57 862.93 4.44
Q4 1,242,627 62.72 102.09 1399.37 908.90 5.22 1.71 0.30 - 1.06 96.31 1320.16 857.45 4.92
Q5 24 62.19 7.78 0.85 0.18 0 1.68 0.27 - 0.33 23.58 2.58 - -
Q6 18 62.35 7.75 0.61 0.07 0 1.69 0.29 - 0.33 23.48 1.85 - -
Q7 23 62.28 15.96 1.86 0.13 0.58 1.68 0.3 - 0.38 42.00 4.89 - 1.52
Q8 26,307 62.42 27.92 61.20 1.67 1.15 1.68 0.3 - 0.45 62.04 136.00 3.71 2.55
Q9 10 62.15 50.57 0.53 0.09 1.31 1.68 0.29 0* 0.46 109.93 - - 2.85
Q10 0 62.61 51.72 3.39 0.14 1.84 1.71 0.31 0* 0.49 105.56 10.93 - 3.75
Q11 98 61.59 7.73 0.55 0.11 0.53 1.71 0.29 0* 0.35 22.09 1.58 - 1.5
Q12 1,542 61.72 8.46 11.24 0.58 0.66 1.73 0.28 0* 0.39 21.69 28.82 1.49 1.69
Q13 31,863 62.33 11.58 24.71 2.99 0.73 1.72 0.3 0.03 0.41 28.24 60.27 7.29 1.78
Q14 148,213 61.55 19.18 73.01 20.62 1.20 1.7 0.3 0.11 0.52 36.88 140.41 39.65 2.31
Q15 5,715 63.38 9.31 1.12 0.59 0.61 1.71 0.29 0.01 0.39 23.87 2.88 1.51 1.56
Q16 90,504 N/A N/A 2140.42 645.56 10.67 1.72 0.31 0.32 0.76 - 2,816.35 849.42 14.03

3. The queries for HDT were implemented using C. Data structure
used to store each subquery’s results was vectors.

CHANTRAPORNCHAI AND CHOKSUCHAT: TRIPLEID-Q: RDF QUERY PROCESSING FRAMEWORK USING GPU 2131

benchmark [26] out of 13 D� rules [48] since the other rules
involve only one subquery. These rules are transformed to
the queries which contain two subqueries. Hence,
GPUSearchmust be called twice.

Fig. 9 demonstrates an example of computing query for
Rule (11) in Table 14. The rule implies that if x is rdfs:sub-
ClassOf y and y is rdfs:subClassOf z, then x rdfs:

subClassOf z. Suppose that dataArray contains triples
{(76, 84, 56), (31, 84, 77), (56, 84, 78), (56, 84, 77), (44, 83, 2)}. In
Rule (11), the “If RDF graph contain”: x rdfs:subClassOf

y is considered. rdfs:subClassOf is mapped into Pred ID,
e.g., 84. Hence, keysArray ¼ f0; 84; 0g, and the returned
positionArray ¼{1,1,1,1,0} as shown in Fig. 9a. The found tri-
ples are gathered into a hash table, called hashTable1,
{(56,76), (77, (31,56)), (78,56)}. Using this hash table, the num-
ber of found elements is reduced for the next search. For the
next call ofGPUSearch, keysArray ¼{ 56,84,0, 77,84,0, 78,84,0
} in Fig. 9b. After that positionArray returned is {0,0,1,1,0}
and the matched subjects and the objects of the found triples
are put in another hash table, hashTable2 ¼ {(56, (78 ,77))}.
hashTable2 is joined with hashTable1 ¼ {(56, 76), (77, (31,
56)), (78, 56) }, giving {(76, 78), (76,77)} in Fig. 9c.

The execution time of the queries using TripleID, HDT,
Stardog, Virtuoso, MySQL, HDT, and TripleID-C is reported
in Table 15 in column “TripleID”, “HDT”, “Stardog”,
“Virtuoso”, “MySQL” and “TID/C” respectively. “TID/C” is
TripleID implementation using only the GPU host. In column

“#Res1”, the number of the results of the first subquery, for
example, in Rule (2), first query is the “If RDF Graph
contains” part, as p rdfs:domainD. The second query is to
search for all p’s that are previously found in all triples. For
Rule (5), the first query is p rdfs:subPropertyOf D. Col-
umn “#Dist1” is the number of distinct results from column
“#Res1”. For column “#Res2”, the number of results is from
the second search. Similarly, “#Dist2” is the number of
distinct items from column “#Res2”. At last, column “All”
shows the total combined results from “#Res” and “#Res2”.

TABLE 14
RDFS Entailment Rules from [48]

R If RDF graph contains Then ())

(2) s p o&& s rdf:typeD

p rdfs:domainD

(3) s p o&& o rdf:type R

p rdfs:range R

(7) s p o&& s q o

p rdfs:subPropertyOf q

(5) p rdfs:subPropertyOf q && p rdfs:subPropertyOf r

q rdfs:subPropertyOf r

(9) s rdf:type x && s rdf:type y

x rdfs:subClassOf y

(11) x rdfs:subClassOf y && x rdfs:subClassOf z

y rdfs:subClassOf z

Fig. 9. Rule 11’s example.

TABLE 15
Execution Time in Seconds of Queries According to Entailment Rules

Data Rule #Res1 #Dist1 #Res2 #Dist2 All TripleID HDT Stardog Virtuoso MySQL TID/C

012347 R2 8,395 2,437 226,433 169 169,776 18.09 34.15 764.95 3,073.12 4,402.72 53.45
R3 9,589 2,505 226,099 186 62,005 2.46 30.85 740.23 752.29 4,904.71 35.41
R5 6,545 450 0 0 0 0.28 0.53 0.19 0.23 4,177.85 6.7
R7 6,545 1,120 32,433 95 22,855 0.55 38.39 128.88 1,776.76 6.18 20.87
R9 10 4 1 1 1 0.19 7.03 200.72 0.25 3.36 0.03
R11 26,785 4,716 87 47 90 1.24 0.65 2.42 11.99 53.06 69.92

btc-small R2 10,185 3,596 301,680 205 219,698 23.08 49.87 509.12 4,485.87 7,416.90 88.08
R3 11,438 3,592 305,591 210 89,372 3.53 45.61 455.42 913.18 8,125.93 77.38
R5 7,980 584 0 0 0 0.39 0.68 0.76 0.22 7,098.16 11.58
R7 7,980 1,496 57,884 100 40,622 1.00 53.39 442.34 1,907.66 8.65 28.32
R9 10 4 1 1 1 0.21 9.04 657.43 0.05 4.55 0.26
R11 36,561 6,739 91 49 98 3.06 0.85 3.72 6.22 97.22 124.58

2132 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

In Table 15, after eliminating redundant results from the
first GPU search (Column “#Res1”), keysArray size is much
smaller. Only distinct results are sent as inputs to the second
GPU search. It is obvious that Virtuoso and Stardog can
handle large databases very well. Comparing the speedup
of our GPU version and CPU version, it is obvious that the
speedup is up to 42 times. Our approach works well when
there are a lot of intermediate results and final results, eg.
R2, R3, R7 because of the simultaneous search from GPU
threads. If there are very few results for a certain query,
then the total execution time is dominated by memory
transfer time as seen in R5, R9, and R11 cases, where Virtu-
oso or Stardog is faster.

5.8 Effects of Data Transfer Time

To observe the scaling aspect, when the number of results to
transfer back increases. Let us consider the data set item
‘0103’ from BTC data set and take Q2 as an example. We
double the data ‘0103’, 2 times, 4 times, 8 times, and 16
times, called 0103-2, 0103-4, 0103-8 and 0103-16, respec-
tively. Fig. 10a shows the “Query time” and “Data time” of
Q2 of TripleID. The “Data time” shows the data transfer of
the results back. For the case 0103-16, the query time is dou-
ble from the case for the case 0103, while the data transfer
time in this case is about 20% on average of the query time.
However, the loading time of the data to GPU memory is
double as expected in Fig. 10b.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a framework, TripleID-Q based
on TripleID format for query processing. First, the conver-
sion from standard RDF triple format to TripleID format is
performed. The subject, predicate, and object ID files are
generated and the TripleID file which contains rows of
IDs of subjects, predicates, and objects is generated. The

storage required for all the files is much smaller than the
storage used by NT, N3, or RDF file. The TripleID file is
loaded to the GPU global memory and concurrent search
by GPU threads is done to look for particular subject,
predicate, and/or object IDs. The found triple results are
returned. We demonstrate the application of the search in
query processing.

The experiments demonstrate various queries where the
intermediate results are filtered, union and/or joined. While
the complexity and the number of results have significant
effects in computation time for traditional library, our
approach can process the complex query, with large inter-
mediate results in seconds due to the use of large number of
simultaneous threads during searching and joining stages.
Our approach can give speedup the queries varying from
17-108 times over the traditional RDF query tool. Compared
with the above RDF stores, our algorithm can speedup the
queries up to hundred times for many union and join opera-
tions. When compared with another compact representa-
tion, HDT, the speedup of our algorithm is up to 7 times.
Consider the compactness of the representation. The total
ID file size is about 2-4 times smaller than the original files.
It is only 2 times larger than HDT file size and it is about
half size of Stardog RDF store. On the other hand, TripleID
representation is simple so that the conversion time to this
format is faster than HDT’s conversion time about 3 times.
The results show the trade-off between the compactness,
conversion time and query time.

The application of our algorithm to entailment queries
also imply the efficiency. We gain consistent speedup for
these queries over using HDT presentation, Stardog, Virtu-
oso, MySQL.

Our framework relies on the hash data structure where
three internal hashes for storing subjects, predicates, and
objects are constructed during TripleID conversion The
available heap memory limits the total maximum subjects,
predicates, and objects we can store. This makes the conver-
sion process get killed when it consumes too much memory
in the user space. This limitation is eliminated in the next
version (demonstrated in the future version [49]) where the
vector is used in placed of the hash table. Also, if the total
triples sizes are too large for the available GPU memory, it
can also be scaled out to use multiple GPUs to hold several
portions of TripleID data similarly as in [50]. Streaming pro-
cess is another solution to overcome this limit. The next
implementation will consider streaming operations and
external sorting for conversion and querying.

ACKNOWLEDGMENTS

This work was supported in part by the following institutes
and research programs: The Thailand Research Fund (TRF)
through the Royal Golden Jubilee Ph.D. ProgramunderGrant
PHD/0005/2554, DAAD (German Academic Exchange Ser-
vice) Scholarship project id: 57084841, NVIDIA Hardware
grant, and the Faculty of Engineering at Kasetsart University
Research funding contract no. 57/12/MATE.

REFERENCES

[1] L. D. Community, “Linked Data.” [Online]. Available: http://
linkeddata.org/, created: May 2007.

Fig. 10. Larger data for query Q2.

CHANTRAPORNCHAI AND CHOKSUCHAT: TRIPLEID-Q: RDF QUERY PROCESSING FRAMEWORK USING GPU 2133

http://linkeddata.org/
http://linkeddata.org/

[2] J. Lehmann, et al., “DBpedia - a large-scale, multilingual knowl-
edge base extracted from wikipedia,” Semantic Web J., vol. 6, no. 2,
pp. 167–195, 2015.

[3] M. Salvadores, P. R. Alexander, M. A. Musen, and N. F. Noy,
“BioPortal as a dataset of linked biomedical ontologies and termi-
nologies in RDF,” Semantic Web, vol. 4, pp. 277–284, 2013.

[4] Mentor, 2013. [Online]. Available: https://github.com/kasei/
hexastore

[5] W3C, “Resource Description Framework,” 2017. [Online]. Avail-
able: https://www.w3.org/RDF/, retrieved: Jan. 2017.

[6] R.-G. Urma, “Processing data with Java SE 8 Streams, Part 1,”
(2014, Mar.). [Online]. Available: http://www.oracle.com/
technetwork/articles/java/ma14-java-se-8-streams-2177646.html,
Accessed 2017.

[7] F. Corcoglioniti, M. Rospocher, M. Amadori, and M. Mostarda,
“RDFPRO: An extensible tool for building stream-oriented RDF
processing pipelines,” in Proc. Semantic Web - ISWC, 2014, pp. 49–
54. [Online]. Available: http://ceur-ws.org/Vol-1268/paper9.pdf

[8] NVIDIA, “NVIDIA GPU programming guide,” 2015. [Online].
Available: https://developer.nvidia.com/nvidia-gpu-
programming-guide, retrieved: Jul. 2015.

[9] D. Beckett, “The design and implementation of the Redland librdf
RDF API Library,” Comput. Netw. 39.5 , pp. 577–588, 2002.

[10] RDFLib, “rdflib 4.2.2-dev,” 2016. [Online]. Available: http://
rdflib.readthedocs.io/en/stable/, retrieved: Aug. 2016.

[11] S. Tramp, N. Arndt, and N. Heino, “rdfsh,” 2015. [Online].
Available: https://github.com/seebi/rdf.sh, retrieved: Aug.
2016.

[12] J. D. Fernndez, M. A. Martnez-Prieto, C. Gutirrez, A. Polleres, and
M. Arias, “Binary RDF representation for publication and
exchange (HDT),” Web Semantics: Sci. Serv. Agents World Wide
Web, vol. 19, no. 0, pp. 22–41, 2013. [Online]. Available: http://
www.websemanticsjournal.org/index.php/ps/article/view/328

[13] S. Union, “Stardog4.” [Online]. Available: http://stardog.com/,
created: Sep. 2005.

[14] W3C, “VirtuosoUniversalServer” 2009. [Online]. Available: http://
www.w3.org/wiki/VirtuosoUniversalServer, 2009, retrieved: Dec.
2015.

[15] Systap, “blazegraph,” 2017. [Online]. Available: https://www.
blazegraph.com/, retrieved: Jan. 2017.

[16] NVIDIA, “Thrust,” 2017. [Online]. Available: https://developer.
nvidia.com/thrust

[17] NVIDIA, “RDF 1.1 N-Triples,” 2017. [Online]. Available: http://
www.w3.org/TR/n-triples/, retrieved: May 2016.

[18] W3C, “Resource Description Framework,” 2004. [Online]. Avail-
able: http://www.w3.org/RDF/, retrieved: Jul. 2015.

[19] K. G. Clark, L. Feigenbaum, and E. Torres, “SPARQL Protocol for
RDF.W3C Recommendation,” 2008. [Online]. Available: http://
www.w3.org/TR/rdf-sparql-protocol/

[20] M. Schmidt, T. Hornung, M. Meier, C. Pinkel, and G. Lausen,
“ SP2Bench: A SPARQL performance benchmark,” in Proc. Seman-
tic Web Inf. Manage., 2010, pp. 371–393.

[21] DCMI, “Dublin Core Metadata Element Set, Version 1.1,” 2016.
[Online]. Available: http://dublincore.org/documents/dces/

[22] W3C, “RDF vocabulary description language 1.0: RDF schema,”
2004. [Online]. Available: http://www.w3.org/TR/2004/REC-
rdf-schema-20040210/#ch_type, retrieved: May 2016.

[23] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and
P. Sander, “Relational joins on graphics processors,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2008, pp. 511–524. [Online].
Available: http://doi.acm.org/10.1145/1376616.1376670

[24] S. Breß, N. Siegmund, M. Heimel, M. Saeckerd, T. Lauere, L. Bella-
treche, and G. Saake, “Load-aware inter-co-processor parallelism
in database query processing,” Data Knowl. Eng., vol. 93, pp. 60–
79, 2014.

[25] J. Groppe and S. Groppe, “Parallelizing join computations of
SPARQL queries for large semantic web databases,” in Proc. ACM
Symp. Appl. Comput, 2011, pp. 1681–1686. [Online]. Available:
http://doi.acm.org/10.1145/1982185.1982536

[26] N. Heino and J. Z. Pan, “RDFS reasoning on massively parallel
hardware,” in The Semantic Web–ISWC, vol. 7649. Berlin, Germany:
Springer, 2012, pp. 133–148.

[27] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen, “Scalable dis-
tributed reasoning using MapReduce,” in The Semantic Web -
ISWC, vol. 5823, A. Bernstein, D. Karger, T. Heath, L. Feigenbaum,
D. Maynard, E. Motta, and K. Thirunarayan, Eds. Berlin, Germany:
Springer, 2009, pp. 634–649.

[28] C. Liu, J. Urbani, and G. Qi, “Efficient RDF stream reasoning with
Graphics Processing units (GPUs),” in Proc. Companion Publication
23rd Int. Conf. World Wide Web Companion, 2014, pp. 343–344.

[29] M. Bassem, “Optimizing RDF stores by coupling general-purpose
graphics processing units and central processing units,” in Proc.
2013th Int. Conf. Doctoral Consortium - Vol. 1045, 2013, pp. 40–47.
[Online]. Available: http://dl.acm.org/citation.cfm?
id=2874389.2874395

[30] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler, “Matrix “Bit”
loaded: A scalable lightweight join query processor for RDF data,”
in Proc. 19th Int. Conf. World Wide Web, 2010, pp. 41–50.

[31] K. Madduri and K. Wu, “Massive-scale RDF processing using
compressed bitmap indexes,” in Scientific and Statistical Database
Management, vol. 6809, J. Bayard Cushing, J. French, and S.
Bowers, Eds. Berlin, Germany: Springer, 2011, vol. 6809, pp. 470–
479. [Online]. Available: http://dx.doi.org/10.1007-978–3-642-
22351-8_30

[32] Y. Kim, Y. Lee, and J. Lee, “An efficient approach to triple search
and join of HDT processing using GPU,” in Proc. 7th Int. Conf.
Adv. Databases Knowl. Data Appl., 2015, pp. 70–74.

[33] J. D. Cathrin Weiss, Panagiotis Karras, M. A. Martnez-Prieto, and
A. Bernstein, “Hexastore: Sextuple indexing for semantic web
data management,” in Proc. PVLDB, 2008, pp. 1008–1019. [Online].
Available: http://www.vldb.org/pvldb/1/1453965.pdf

[34] S. Baxter, “Modern GPU,” 2013. [Online]. Available: https://
nvlabs.github.io/moderngpu/index.html, retrieved: Dec. 2015.

[35] C. Choksuchat and C. Chantrapornchai, “Various GPU memory
utilisation exploration for large RDF search,” Int. J. Comput. Sci.
Eng., (In Press).

[36] C. S. Kouzinopoulos and K. G. Margaritis, “String matching on a
multicore GPU using CUDA,” in Proc. 13th Panhellenic Conf. Infor-
mat., Sep. 2009, pp. 14–18.

[37] J.-L. Gailly and M. Adler, “A massively spiffy yet delicately unob-
trusive compression library,” 2013. [Online]. Available: http://
www.zlib.net/, retrieved: Nov. 2015.

[38] P. Viriyakamonphan and C. Chantrapornchai, “Query processing
for HDT using GPUs,” in Proc. 13th Int. Joint Conf. Comput. Sci.
Softw. Eng. (JCSSE), Khon Kaen, 2016, pp. 1–6.

[39] N. Luehr, “Fast multi-GPU collectives with NCCL,” 2016.
[Online]. Available: https://devblogs.nvidia.com/parallelforall/
fast-multi-gpu-collectives-nccl/, retrieved: Jul. 2016.

[40] S. K. Chirravuri, “RDF3X-MPI: A partitioned RDF engine for data-
parallel SPARQL querying,” Master’s thesis, Comput. Sci. Eng.,
The Pennsylvania State Univ., State College, PA, USA, Aug. 2014.

[41] D. A. Alcantara, “Efficient hash tables on the GPU,” Ph.D. disser-
tation, Office Graduate Studies, Univ. California Davis, Davis,
CA, USA, 2011.

[42] S. Sengupta, M. Harris, Y. Zhang, and J. Owens, “Scan primitives
for GPU computing,” in Proc. Graph. Hardware, 2007. [Online].
Available: http://code.google.com/p/cudpp

[43] A. Harth, “Billion triples challenge data set,” 2009. [Online].
Available: http://km.aifb.kit.edu/projects/btc-2009/, retrieved:
Nov. 2015.

[44] W3C, “RDF 1.1 N-Quads,” 2014. [Online]. Available: https://
www.w3.org/TR/n-quads/

[45] W3C, “Notation3 (N3): A readable RDF syntax,” 2008. [Online].
Available: https://www.w3.org/TeamSubmission/n3/

[46] W3C, “Terse RDF Triple Language,” 2014. [Online]. Available:
https://www.w3.org/TR/turtle/

[47] “Mentok: An RDF storage and query framework,” 2010. [Online].
Available: https://github.com/kasei/hexastore/

[48] H. J. ter Horst, “Completeness, decidability and complexity of
entailment for RDFSchema and a semantic extension involving
the OWL vocabulary,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 3, pp. 79–115, 2005.

[49] C. Chantana and P. Makpaisit, “TripleID-C:low cost compressed
representation for RDF query processing in GPUs,” in Proc. Int.
Conf. High Perform. Comput. Asia-Pacific Region, 2018, pp. 261–270.

[50] C. Choksuchat and C. Chantrapornchai, “Practical parallel string
matching framework for RDF entailments with GPUs,” Inf. Syst.
Frontiers, pp. 1–20, 2016, doi: https://doi.org/10.1007/s10796-
016-9692-4

2134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

https://github.com/kasei/hexastore
https://github.com/kasei/hexastore
https://www.w3.org/RDF/
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
http://ceur-ws.org/Vol-1268/paper9.pdf
https://developer.nvidia.com/nvidia-gpu-programming-guide
https://developer.nvidia.com/nvidia-gpu-programming-guide
http://rdflib.readthedocs.io/en/stable/
http://rdflib.readthedocs.io/en/stable/
https://github.com/seebi/rdf.sh
http://www.websemanticsjournal.org/index.php/ps/article/view/328
http://www.websemanticsjournal.org/index.php/ps/article/view/328
http://stardog.com/
http://www.w3.org/wiki/VirtuosoUniversalServer, 2009
http://www.w3.org/wiki/VirtuosoUniversalServer, 2009
https://www.blazegraph.com/
https://www.blazegraph.com/
https://developer.nvidia.com/thrust
https://developer.nvidia.com/thrust
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/n-triples/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-protocol/
http://dublincore.org/documents/dces/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/#ch_type
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/#ch_type
http://doi.acm.org/10.1145/1376616.1376670
http://doi.acm.org/10.1145/1982185.1982536
http://dl.acm.org/citation.cfm?id=2874389.2874395
http://dl.acm.org/citation.cfm?id=2874389.2874395
http://dx.doi.org/10.1007-978--3-642-22351-8_30
http://dx.doi.org/10.1007-978--3-642-22351-8_30
http://www.vldb.org/pvldb/1/1453965.pdf
https://nvlabs.github.io/moderngpu/index.html
https://nvlabs.github.io/moderngpu/index.html
http://www.zlib.net/
http://www.zlib.net/
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
http://code.google.com/p/cudpp
http://km.aifb.kit.edu/projects/btc-2009/
https://www.w3.org/TR/n-quads/
https://www.w3.org/TR/n-quads/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TR/turtle/
https://github.com/kasei/hexastore/
http://dx.doi.org/https://doi.org/10.1007/s10796-016-9692-4
http://dx.doi.org/https://doi.org/10.1007/s10796-016-9692-4

Chantana Chantrapornchai received the bach-
elor’s degree in computer science from Thamma-
sat University of Thailand, in 1991, the master’s
degree from Northeastern University at Boston,
College of Computer Science, in 1993 and the
PhD degree from the University of Notre Dame,
Department of Computer Science and Engineer-
ing, in 1999. Currently, she is an associated
professor with the Department of Computer Engi-
neering, Faculty of Engineering, Kasetsart Univer-
sity, Thailand. Her research interests include

parallel computing, big data processing, semantic web, computer archi-
tecture, and fuzzy logic. She is currently with HPCNC laboratory and a
principle investigator of GPUEducation program at Kasetsart University.

Chidchanok Choksuchat received the PhD
degree in computer and information science from
Silpakorn University. She is currently a lecturer in
information and communication technology pro-
gramme with the Faculty of Science, Prince of
Songkla University, Thailand. Her research inter-
ests include the CUDA, Java concurrency, ontol-
ogy engineering, SPARQL endpoint, linked open
data, data science toolkit, R programming and
Internet of Things.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHANTRAPORNCHAI AND CHOKSUCHAT: TRIPLEID-Q: RDF QUERY PROCESSING FRAMEWORK USING GPU 2135

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

