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Abstract

We study three-dimensional isogeometric analysis (IGA) and the solution
of the resulting system of linear equations via a direct solver. IGA uses
highly continuous Cp−1 basis functions, which provide multiple bene-
fits in terms of stability and convergence properties. However, smooth
basis significantly deteriorate the direct solver performance and its par-
allel scalability. As a partial remedy for this, refined Isogeometric Anal-
ysis (rIGA) method improves the sequential execution of direct solvers.
The refinement strategy enriches traditional highly-continuous Cp−1 IGA
spaces by introducing low-continuity C0-hyperplanes along the bound-
aries of certain pre-defined macro-elements. In this work, propose a solu-
tion strategy for rIGA for parallel distributed memory machines and com-
pare the computational costs of solving rIGA vs IGA discretizations. We
verify our estimates with parallel numerical experiments. Results show
that the weak parallel scalability of the direct solver improves approx-
imately by a factor of p2 when considering rIGA discretizations rather
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than highly-continuous IGA spaces.
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1. Introduction

We focus on parallel three-dimensional isogeometric analysis (IGA) [15]
Isogeometric analysis uses the same basis functions, for example B-splines
or NURBS, for representing the geometry of the modeled objects, as well
as for the numerical simulations performed using a Galerkin method.

For tensor product IGA discretizations, each geometrical component
of the model object is mapped into a regular patch of elements, with basis
functions defined as tensor products of one-dimensional B-splines or by
Non-Uniform Ratonal B-splines (NURBS) [32], which in general result in
non-tensor product basis. Adaptive grids often combine B-splines and T-
spline basis functions [11]. Nevertheless, we only focus on regular patches
of elements.

IGA has multiple applications such as shear deformable shell theory
[12], phase field models for topology optimization [20, 21], phase separa-
tion simulations with possible application to cancer growth simulations,
using either Cahn-Hilliard [26] or Navier-Stokes-Korteweg higher order
models [27], wind turbine aerodynamics [31], incompressible hyper-elasticity
[24], turbulent flow simulations [16], tumor growth [33], transport of
drugs in cardiovascular applications [30] or the blood flow simulations
itself [10, 9, 14]. Nevertheless, IGA presents some limitations. Namely,
(a) non-trivial integration techniques need to be carefully designed in or-
der to gain efficiency (see e.g. [7]) and (b) the cost of solving the resulting
system of linear equations per unknown is significantly more expensive
when using highly-continuous Cp−1 IGA discretizations than when em-
ploying their C0 traditional finite element counterparts [19, 18].

We refine the IGA space by adding C0 separators along certain hy-
perplanes of the original IGA mesh. Thus, we reduce the solution cost
by a factor of order O(p2) for a sequential direct solver (see [19]). That
is, we reduce the cost while increasing the problem size. The cost re-
duction is explained by the critical role that separators play on the direct
solve performance since they “separate” (break) the system into smaller
subsystems.
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In this work, we extend the analysis of rIGA to parallel distributed
memory machines. We show that the same separators that reduce the
computational cost of the direct solver also benefit the domain-decomposition
scheme since communication among different processors across a given
separator diminishes with respect to that used in traditional IGA dis-
cretizations.

Another major advantage of rIGA is its simple implementation which
only requires repeated konts at the selected separators in a tensor prod-
uct grid. We first introduce notation as well as a description of how to
easily implement rIGA spaces in Section 2. Section 3 analyzes the paral-
lel scalability of rIGA and IGA and estimates the improved performance
of using rIGA discretizations rather than IGA ones when computing in
distributed memory parallel machines. Section 4 describes numerical ex-
periments performed to verify the theoretical estimates. We conclude the
paper in Section 5.

2. Parallel refined Isogeometric Analysis (rIGA) discretizations

To simplify the explanation, we only consider a model diffusion equa-
tion problem governed by

−∇ ·K∇u = f (1)

where K =

(
K11 0

0 K22

)
is the matrix of the material diffusion coef-

ficients matrix, u is the concentration and f is the source. The above
partial differential equation (PDE) is solved in a computational domain
Ω = (0, 1)3. We impose homogeneous Dirichlet boundary conditions

u = 0 on ΓD, (2)

where ΓD = ∂Ω.
The weak variational formulation is obtained by taking the L2-scalar

product with functions v ∈ H1

ΓD
(Ω) = {v ∈ H1 (Ω) : v|ΓD = 0}, integrating

by parts, and imposing the Dirichlet boundary conditions:

Find u ∈ V = H1

ΓD
(Ω) such that (3)

b (v,u) = l (v) ,∀v ∈ V , (4)
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where

b (v,u) =
∫
Ω
K∇v · ∇udx, and (5)

l (v) =

∫
Ω
fvdx (6)

The computational cost estimates associated with the direct solver per-
formance obtained for problem (6) remain valid for other H1 problems,
since the non-zero pattern of the matrix is invariant.

In 3D, we utilize the basis functions defined as tensor products of one-
dimensional B-splines defined by using knot vectors for each direction.
We use a uniform grid spacing in each direction. We use open knot
vectors, that is, we repeat a knot-point p+ 1 times at the beginning and
at the end of the knot-vector. If no interior knot is repeated, the B-splines
are Cp−1 continuous across the entire mesh, in the direction defined by
the knot-vector. rIGA introduces C0 separators by repeating knot-points
every iblock-elements. As described in [25], the repetition of the knots
reduces the computational cost of sequential direct solvers significantly.

3. Solution and communication cost estimates

From the direct solver perspective, systems of linear equations arising
from refined Isogeometric Analysis (rIGA) discretizations can be solved
in two steps. In the first one, we perform static condensation of macro-
elements, which are composed of a set of elements with Cp−1 continuity
basis functions on their interiors and C0 separators on their boundaries.
In the second step, we solve the remaining skeleton problem.

Having 2
s finite elements in 1D, we partition them into 2

r macro-
elements, each of them having 2

s−r elements per spatial direction. In
our simulations we use macro-elements 2

s−r = 8, following the general
conclusions of Figure 20 in [25], for quadratic and cubic B-splines over
32

3 and 64
3 elements mesh. For larger grids and higher B-splines orders,

larger macro-elements further reduce the computational cost. For this
number of elements within the macro-elements, the computational cost of
static condensation is of lower order in comparison to the computational
cost of the skeleton problem solution. Moreover, the static condensation
scales linearly with the number of elements, when executed sequentially.
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Figure 1: Equivalence between a macro-element with 2
3 = 8 elements and linear B-

splines (left panel) and a higher order element with for pNEW = 9 (right panel).

The static condensation scales parfectly, since each macro-element can be
processed independently. Thus, we focus only on the skeleton problem.

The non-zero structure of the skeleton problem is identical to that
obtained from a discretization of a finite element method with the macro-
element mesh and a polynomial order pNEW after static condensation,
with pNEW being:

pNEW = p+ 2
s−r (7)

per direction. This is because the number of unknowns on a face of a
macro element is equal to (2(s−r) + p)2 where 2

2(s−r) is the number of
elements on the face, and p is the underlying polynomial order. Thus,
2
s−r + p is the number of unknowns on the face per spatial direction. See

Figure 1 for details.
The above observation implies that scalability properties of rIGA are

those of a higher-order coarse finite element grid.
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We analyzed the parallel scalability of highly-continuous IGA systems
in [35], where we showed that the direct solution of IGA systems has simi-
lar parallel scalability properties to standard C0 FE systems. Although the
performance of the direct solution of IGA systems is significantly worse
than that of FE systems for a fixed number of degrees of freedom. This
occurs because, in the sequential version, IGA systems are more challeng-
ing to solve than FE ones due to the presence of thick separators on IGA
discretizations (see [17]).

In addition to the above theoretical considerations, we know that dif-
ferent direct solver implementations exhibit distinct scalability properties,
as shown in [34]. Therein, the authors consider specific finite differences
and finite element systems and demonstrate via numerical experimen-
tation that for those systems, the parallel scalability of solvers Watson
Sparse Matrix Package (WSMP) [22] and MUMPS exhibit large discrep-
ancies. In some cases, WSMP scales well for up to 30 times more proces-
sors than MUMPS is able. In view of these large scalability discrepancies
based on the selected particular implementation, in here we avoid pre-
dicting theoretically the parallel scalability limit for a given matrix, since
particular implementations behave differently. We rather focus on the im-
pact that introducing C0 separators to build rIGA discretizations has on
the expected scalability of a direct solver. To do that, we analyze:

Time(IGA)

Time(rIGA)
(8)

We assume that our IGA/rIGA computations are executed on dis-
tributed memory parallel machine with infinite memory available on each
computing node, and with the communication channels interconnecting
all the nodes. These assumptions are justified for the problem sizes and
number of processors we use in our experiments on Prometheus Linux
cluster [36], a part of PL-grid infrastructure [13]. We denote the time
of performing a single floating-point operation as tcomp, and the time of
sending a floating-point number as tcomm.

The number of degrees of freedom nIGA along one direction for an
IGA discretization is equal to the number of 1D elements 2

s plus p addi-
tional B-splines on the boundary.

nIGA = 2
s + p. (9)
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Let us also define the number of degrees of freedom along one axis
for rIGA mesh (nrIGA), which is the number of 1D macro-elements 2

r

times the number of 1D elements per axis in a macro-element 2
s−r plus

p additional B-splines on the boundary, plus the number of separators
2
r − 1 times the number of knot repetition (p− 1) per separator [25].

nrIGA = 2
r
2
s−r + p+ (2r − 1)(p− 1) = O(2s + 2

rp). (10)

Thus, the problem size of IGA is smaller than for rIGA, namely nIGA <
nrIGA. However, the computational cost to factorize an rIGA system is
smaller than the one for IGA, when the number of elements per dimen-
sion is kept constant. To see this, we observe that the most expensive
part of the LU factorization of the three-dimensional problem is the solu-
tion of the dense top skeleton problem. The dimension of this problem is
equal to the number of B-splines at the two-dimensional cross-section of
the three-dimensional mesh. For highest-continuity IGA discretizations,
this cross-section has a thickness of p (i.e., the interface has p functions
with support over it). In the case of rIGA computations, the thickness
is equal to 1 (i.e., as in standard FEA only one basis has support on the
interface).

The cost of factorization of the dense top problem for IGA system is
given by

CostIGA(TopSkeleton) = O((n2

IGAp)
3) = O((2s + p)6p3) = O(26sp3) (11)

while the cost of factorization of the top dense problem for rIGA system
is

CostrIGA(TopSkeleton) = O((n2

rIGA1)3 = O((2s+ 2
rp)6) = O(26s+ L.O.T .)

(12)
Thus, we can conclude, CostIGA(TopSkeleton) > CostrIGA(TopSkeleton).
The top dense skeleton problem results from a sequence of factorizations
of the intermediate skeleton problems.

The parallel processing of the skeleton problem follows the parallel
multi-frontal elimination pattern for FE and IGA grids, described in [35].
The macro-elements are merged into sets of larger macro-elements, and
fully assembled unknowns from the common interfaces shared between
the patches are eliminated. We repeat this process until we join all macro-
elements, and end up with the top skeleton problem.
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Figure 2: Single macro-element for r = 2, namely 2
3r = 2

6 = 64 = 4 ∗ 4 ∗ 4 elements. The
left panel denotes the rIGA case, where we reduced the continuity at each patch interface
(i.e., repeated knots at the interface), C0 hyperplanes between the macro-elements. The
right panel denotes the IGA case.

Figures 3, 4 and 5 show the merging of four IGA or rIGA macro-
elements and the subsequent elimination of the fully assembled unknowns.

That is, on the skeleton problem, we perform i = 1, ..., r steps. At the
i-th step, we merge 2

2i macro-elements. The fully assembled unknowns
form a 3D cross, with 3 hyperplanes. Each hyperplane is a tensor product
of

niIGA = 2
i
2
s−r + p. (13)

unknowns in two directions. That is, we have 2
i macro-elements in each

direction. This formula is a restriction of Eq. (9), where we considered
the hyperplane equivalent to the cross-section of the entire IGA domain.
Namely, we replace the total number of elements 2

s by the number of
elements resulting from merging 2

i macro-elements, equal to 2
i
2
s−r.

A similar procedure is performed for IGA with C0 separators case
(rIGA), where we have hyperplanes with

nirIGA = 2
i
2
s−r + p+ (2i − 1)(p− 1). (14)

unknowns in two directions. This formula is also a restriction of Eq. (10),
where we considered the hyperplane equivalent to the cross-section of
the entire rIGA domain. Namely, we replace the total number of macro-
elements 2

r by the number of merged 2
i macro-elements. The number of
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Figure 3: Panel (a) describes a cross-section of a single IGA macro-element with 64 ele-
ments and quadratic B-splines, with the 8 interior unknowns eliminated. The elements
related to eliminated unknowns are denoted with dark gray color. Panel (b) depicts a
cross-section of eight merged macro-elements. The macro-elements do not have interior
unknowns, since they were eliminated during the local static condensation. Instead,
they have a new fully assembled unknowns, depicted with the dark gray color. They
form a 3D cross.
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Figure 4: Panel (a) describes a cross-section of a single rIGA macro-element with 64

elements and quadratic B-splines, with the 64 interior unknowns eliminated. They ele-
ments related to the eliminated unknowns are denoted by the dark gray color, while
the C0 hyperplanes with not fully assembled unknowns are denoted by light gray
color. Panel (b) depicts a cross-section of the eight merged macro-elements. The macro-
elements do not have interior unknowns, since they were eliminated during static con-
densation. Instead, they have a new fully assembled unknowns, related to the shared C0

separators. The hyperplanes with fully assembled unknowns are denoted by the grey
color. They form a thin 3D cross. The hyperplanes with not fully assembled unknowns
are transparent.
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Figure 5: The process of elimination of the r fully assembled unknowns from the 3D
cross, from the total of s unknowns over the local system.

degrees of freedom at the i-th step in the skeleton problem for IGA and
rIGA is equal to

NiIGA = (niIGA)
2p, (15)

NirIGA = (nirIGA)
2
1. (16)

The local matrices to factor at the skeleton problem are dense. Thus, the
computational cost of the i-th step of the skeleton problem for IGA and
rIGA is

Costi(IGA) = (NiIGA)
3, (17)

Costi(rIGA) = (NirIGA)
3. (18)

and there are synchronization barriers between step i and i + 1, when
the Schur complements are exchanged. The above costs are obtained
under the assumption that we have enough processors to process all local
problems at the given i-th step, fully in parallel. If this is not the case, then
we need to map the computational problems from a given step into a set
of available processors, and each processor needs to solve several of these
problems. At the i-th step, we have 2

s−r+i local problems to eliminate.
Thus, one possible distribution of the computational problems into 2

c

processors is such that each processor solves 2
c−s+r−i local problems.

The total cost of IGA and rIGA processing of the skeleton problem is

Cost(IGA) =
∑
i=1,...,r

Costi(IGA) (19)
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Cost(rIGA) =
∑
i=1,...,r

Costi(rIGA) (20)

when we have enough processors to process all the computational prob-
lems fully in parallel, or

Cost(IGA) =
∑
i=1,...,r

2
c−s+r−iCosti(IGA) (21)

Cost(rIGA) =
∑
i=1,...,r

2
c−s+r−iCosti(rIGA) (22)

assuming we have less processors than computational problems.
If we do not have enough cores to process the local problems fully

in parallel, we add the appropriate factors related to the distribution of
the computations into computing nodes in front of the costs for IGA and
rIGA. However, these factors are identical for both IGA and rIGA, since
we distribute both computations in an identical manner.

The resulting ratios of the computational cost for different B-spline
orders p, different mesh dimensions 2

3s and macro-element dimensions
2
s−r = 8 are summarized in Table 1.

Ne 32
3

64
3

128
3

256
3

p=2 4.83 4.37 4.15 4.05

p=3 10.52 8.67 7.84 7.45

Table 1: Ratio of the computational costs of Cost(IGA)/Cost(rIGA) for quadratic and
cubic B-splines. The macro-elements are of size 8

3 elements, i.e., r = s− 3.

Let us consider now the communication costs.
While the computations of IGA and rIGA at the local systems pro-

cessed by the skeleton problem solver are of the order of O(NiIGA
3

) or
O(NirIGA

3

), respectively, the communication is of the O(NiIGA
2

) or O(NirIGA
2

)
order. Thus, when the communication dominates the computations we
have:

Communicationi(IGA) = (NiIGA)
2 (23)
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Communicationi(rIGA) = (NirIGA)
2 (24)

with the total communicaton costs

Communication(IGA) =
∑
i=1,...,r

Communicatoni(IGA) (25)

Communication(rIGA) =
∑
i=1,...,r

Communicatoni(rIGA) (26)

Therefore, the total ratio is given by

Communication(IGA/rIGA) =
Communicaton(IGA)

Communicaton(rIGA)
(27)

The resulting ratios of the computational costs for different B-spline
orders p, different mesh dimensions 2

3s and macro-element dimensions
2
s−r = 8 are summarized in Table 2.

Ne 32
3

64
3

128
3

256
3

p=2 2.87 2.68 2.59 2.54

p=3 4.86 4.25 3.96 3.82

Table 2: Ratio of the communication costs of Communica-
tion(IGA)/Communication(rIGA) for quadratic and cubic B-splines. The macro-
elements are of size 8

3 elements, i.e., r = s− 3.

4. Numerical experiments

We consider highly-continuous IGA discretizations solved with a par-
allel direct solver. We select the MUMPS solver for our numerical experi-
ments [1, 2, 3].

Following [28], we present weak and strong scaling numerical results,
and we numerically estimate the ratio between the costs of solving and
IGA vs rIGA discretizations.

The numerical experiments have been performed over 128 nodes of
the Prometheus cluster from ACK Cyfronet [36], a part of PL-grid infras-
tructure [13], equipped with 2,50 GHz processor and 128 GB RAM.
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4.1. Weak scaling
We utilize MUMPS solver version 5.0.2, linked with MKL 11.3.2, Intel

MPI 5.1.3, Metis 5.1.0, compiled with Intel 16.0.2, using -03 optimization
flag.

We introduce the C0 separators every eight elements along x, y and z
axis. We assign four macro-elements with 8× 8× 8 = 512 elements per
processor. Figures 6 and 7 show the weak scaling of the parallel MUMPS
solver for IGA and rIGA computations. In the case of the weak scalability,
horizontal line denotes perfect scalability, while the trend going up means
that scalability is worse. Tables 3 and 4 show the rations we compute
between IGA and rIGA, to obtain a p2 factor.

cores IGA rIGA IGA/rIGA
32 15.11 4.54 3.32
64 18.11 5.98 3.02
128 31.61 7.75 4.07

Table 3: Experimental IGA/rIGA ratios for weak scaling experiments for quadratic
B-splines.

cores IGA rIGA IGA/rIGA
32 70 8 8.57
64 261 27 9.66
128 683 74 9.22

Table 4: Experimental IGA/rIGA ratios for weak scaling experiments for cubic B-
splines.

4.2. Strong scaling
Figures 8-9 present the strong scalability results for IGA-FEM and

rIGA-FEM.
We validate our theoretical estimates with the numerical evidence be-

low. The theoretical results predict the ratio between the IGA/rIGA of
order of p2, when the computations dominates the communication, as
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Figure 6: Weak scalling of parallel MUMPS solver for IGA-FEM and rIGA-FEM with
quadratic B-splines.

well as the ratio of the order of p when the communication costs start to
dominate.

Numerical results summarized in Tables 5 and 6 confirm these predic-
tions. For number of processors less than or equal to 64, the ratio between
IGA and rIGA is of order p2. For a large number of processors such as
128, the communication dominates, and the savings ratio decreases.

cores 1 2 4 8 16 32 64 128

IGA time [s] 1062 820 386 227 141 82 47 31

rIGA time [s] 250 153 91 59 31 19 11 8

ratio IGA/rIGA 4.28 5.35 4.24 3.84 4.54 4.31 4.27 3.87

Table 5: Experimental ratios for p = 2, Ne = 64
3.

5. Conclusions

We analyze the parallel scalability of direct solvers when dealing with
refined isogeometric analysis (rIGA) discretizations in comparison with
maximum continuity isogeometric analysis (IGA) ones. We show that
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Figure 7: Weak scalling of parallel MUMPS solver for IGA-FEM and rIGA-FEM with
cubic B-splines.

cores 1 2 4 8 16 32 64 128

IGA time [s] 5644 3725 2616 1325 885 439 261 156

rIGA time [s] 656 358 206 151 84 42 27 20

ratio IGA/rIGA 8.6 10.4 12.69 8.77 10.53 10.45 9.66 7.8

Table 6: Experimental ratios for p = 3, Ne = 64
3. For 64 cores we have the number

of subdomains equal to the number of macro-elements, and thus the ratio is closer to
predicted p3 = 9.

the introduction of C0 separators to construct the rIGA systems signifi-
cantly reduces the execution time of the parallel direct solver. We derive
the theoretical ratios between the parallel direct solver cost of rIGA and
IGA systems and verify them experimentally. We analyze the formulas
by substituting the B-spline order p the number of elements 2

3s and the
dimensions of the macro-elements 2

3(s−r) to conclude that they indicate
a reduction factor approximately p2 when the number of available cores
is limited with respect to the problem size and FLOPS dominate compu-
tations. As the number of cores augments for a fixed problem size and
communication costs become dominant, the rIGA gain factor reduces to
approximately p. The reduction of the computational time should not de-
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Figure 8: Scalability of parallel MUMPS solver for IGA-FEM and rIGA-FEM with
quadratic B-splines for p = 2 and Ne = 96

3.

pend significantly on the implementation of the direct solver algorithm.
Thus, we expect a similar reduction of the computational cost when work-
ing with other direct solvers, like e.g. parallel SuperLU solver [37, 23],
parallel PaStiX solver [29], or other available solvers e.g. through PETSc
interface [4, 5, 6].
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The value of continuity: Refined isogeometric analysis and fast direct
solvers, Computer Methods in Applied Mechanics and Engineering,
316 (2016) 586-605.
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[35] M. Woźniak, K. Kuźnik, M. Paszynski, D. Pardo, V.M. Calo: Com-
putational cost of isogeometric multi-frontal solvers on distributed memory
parallel machines, Computer Methods in Applied Mechanics and En-
gineering, 284 (2015) 971-987.

[36] http://www.cyfronet.krakow.pl/computers/15226,artykul,prometheus.html
(accessed on June 2017)

[37] Xiaoye S. Li, An Overview of SuperLU: Algorithms, Implementation, and
User Interface, TOMS Transactions on Mathematical Software, 31(3)
(2005) 302-325.

22


