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Abstract

Exponential increases in complexity and scale make variability a growing threat to sustaining HPC

performance at exascale. Performance variability in HPC I/O is common, acute, and formidable.

We take the first step towards comprehensively studying linear and nonlinear approaches to model-

ing HPC I/O system variability. We create a modeling and analysis approach (MOANA) that pre-

dicts HPC I/O variability for thousands of software and hardware configurations on highly parallel

shared-memory systems. Our findings indicate nonlinear approaches to I/O variability prediction

are an order of magnitude more accurate than linear regression techniques. We demonstrate the

use of MOANA to accurately predict the confidence intervals of unmeasured I/O system config-

urations for a given number of repeat runs – enabling users to quantitatively balance experiment

duration with statistical confidence.

⋆This work has been submitted to IEEE Transactions on Parallel and Distributed Systems (TPDS).



Index Terms: Computer Systems, High Performance Computing, Parallel and Distributed

Computing

Keywords: System variability, high performance computing, I/O systems.



Parameters Number of levels Levels

Hardware CPU Clock Frequency (GHz) 15 1.2, 1.4, · · · , 2.9, 3.0

OS
I/O Scheduling Policy 3 CFQ, DEAD, NOOP

VM I/O Scheduling Policy 3 CFQ, DEAD, NOOP

Application

Number of Threads 9 1, 2, 4, 8, · · · , 256

File Size (KB) 3 64, 256, 1024

Record Size (KB) 3 32, 128, 512

I/O op mode 13 fread, fwrite, · · ·

Table 1: Parameters used in our study of I/O variability. Note that both File Size and Record Size

have three levels; but there are only 6 distinct, valid combinations of File Size and Record Size.

1 Introduction

mergent high performance computing (HPC) systems must scale to meet the ever-growing de-

mands of many grand challenges for scientific computing. Performance variability1 increases with

system scale and complexity.

Highly variable observations in large complex systems can make it difficult, and sometimes

even impossible, to fully optimize for performance. Such variability is cited as a significant barrier

to exascale computing [29, 18]. Unfortunately, variability (which includes OS jitter [21]) is both

ubiquitous and elusive as its causes pervade and obscure performance across the systems stack from

hardware [14, 23] to middleware [20, 1] to applications [12] to extreme-scale systems [29, 35].

Additionally, as a number of recent reports attest [29, 18], performance variability at scale can

significantly reduce performance and energy efficiency [9, 4].

Variability is a persistent challenge in experimental systems research. Table 1 lists the 7 pa-

rameters in our HPC I/O variability study. In this example, one would need
(

7
2

)

= 21 pairwise

plots to display the two-way relationship of parameter effects on variability. Assuming it takes 30

seconds for a benchmark run, it would take over 8 hours to test just 1,000 configurations. For 95%

statistical significance, we would run this configuration tens of times or more which would take

weeks. Brute force experiments were used in this work to provide ground truth values for com-

parison to our variability prediction methods. For the 7 variables studied with runtimes averaging

more than 30 seconds per run, the experiments in this paper took nearly 6 months in total with

nearly uninterrupted runs and 6 dedicated systems.

For higher order (e.g., three way or more) relationships and a larger number of parameters (e.g.,

100 to 200) that are common in parallel and distributed systems, the parameter space explodes

quickly to tens of thousands or millions of possible configurations. Experimental system work at

exascale quickly becomes impracticable requiring years of experiments or thousands of nodes to

obtain significant results.

While HPC experimental systems researchers have long acknowledged its existence [19, 15],

variability is regularly discounted or ignored by the community. While there are notable exceptions

(e.g., OS jitter [21], application interference [37, 17], reproducibility [32], scheduling [13]),

many researchers in our community have published quality contributions that fail to report box

plots or p-values or assumed single-mode population distributions without certainty. This does

1We use the term performance variability to describe the general spread or clustering of a measured performance

metric such as execution time or throughput. Variability can be expressed in standard statistical terms such as standard

deviation.
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not typically discredit the contributions and is likely not shoddy science but a consequence of a

focus on system design hypothesis testing under practical time constraints. One consequence of

accepting the status quo however, is year after year the prevailing literature builds on previous work

and the community becomes implicitly complicit in perpetuating these techniques. Furthermore,

as noted above, the significance and impact of variability at exascale is potentially impracticable.

In our work, we seek to identify scalable variability prediction techniques beginning with statistical

first principals.

We believe studying variability is essential to the long term viability of parallel and distributed

experimental systems research. In this work, we have conducted experiments on highly variable

I/O codes over more than a year to gain the statistical confidence necessary to determine if variabil-

ity is a predictable artifact. We’ve solicited the collaborative expertise of statisticians to predict the

combined multi-variant effects of variability on HPC I/O. Rather than isolating the effects of jitter

and resource contention, we propose MOdeling and ANAlysis techniques or MOANA to model the

simultaneous, combined effects of a number of variables on I/O application kernels performance

variability. MOANA enables researchers to determine the number of repeat experiments required

to guarantee a given level of statistical confidence and convergence – without resorting to brute

force approaches. While we demonstrate our approach on HPC I/O performance variability, the

techniques are widely applicable to experimental design in parallel and distributed systems.

Specifically, we make the following contributions in this paper:

• a detailed empirical study of HPC I/O variability in shared-memory systems for 95K permu-

tations of benchmark and system variables;

• design, implementation, and analysis of MOANA, a nonlinear variability prediction method-

ology;

• a demonstration of the use of MOANA to determine the runs required for a given statistical

confidence and convergence for measured and predicted HPC I/O system configurations; and

• a commitment to make the MOANA techniques and our datasets open source and available

to the community. 2

What follows is a detailed study of variability analysis and prediction. In Section 2, we apply

the linear analysis approach to the study of variability to highlight the properties of variability and

the limitations of the linear approach. Section 3 provides an overview of the MOANA approach

and the abstract concept of a variability map: a model combining application and system character-

istics that mathematically captures the differences among experimental configurations. Section 4

demonstrates the use of non-linear training and the application of the variability map concept to

variability prediction of unseen system and application configurations. Next, Section 5 describes

the three prediction techniques we applied to MOANA: LSP (modified linear Shepard algorithm),

MARS (multivariate adaptive regression splines), and Delaunay triangulation approximation. Sec-

tion 6 demonstrates the application of MOANA to optimize experimental design by quantifying the

tradeoffs between repeating experiments and statistical confidence. Sections 7 and 8 respectively

discuss our work in the context of existing literature and limitations and future work.

2URL redacted pending paper review.
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2 Experimental Variability Analysis

2.1 Experimental Setup

We focus on intra-node variability effects, identified as a key barrier to exascale [21, 29, 18], and

perform our experiments on parallel shared-memory nodes common to HPC systems. Table 1 sum-

marizes the parameter space for all experiments performed on a lone guest Linux operating system

(Ubuntu 14.04 LTS//XEN 4.0) on a dedicated 2TB HDD on a 2 socket, 4 core (2 hyperthreads/-

core) Intel Xeon E5-2623 v3 (Haswell) platform with 32 GB DDR4. System parameters include:

CPU frequency, host I/O scheduling policy (CFQ, DEAD, NOOP), and VM I/O scheduling policy

(CFQ, DEAD, NOOP). I/O application parameters include: I/O operation modes (file write, file

read, file initial write, etc.), file size, record size, and up to 256 threads. The IOZone benchmark

enables control of these settings and up to 6 identical systems were used to speed up the experi-

ments and tasks were distributed to account for any minor manufacturing differences across these

machines.

Brute force experiments using all valid permutations of the parameters from Table 1 result in

a total of over 95K unique configurations. For each configuration, we conduct 40 runs. Assuming

data normality this results in a 95% statistical confidence in the resulting data set. The standard

deviation of these 40 runs is used as a proxy for variability without loss of generality. By assum-

ing normality for now, we mirror prevailing approaches in the extant literature and avoid more

time-consuming population studies that might take years but we are conducting presently. These

findings would not impact the MOANA techniques but could help to improve their accuracy.

2.2 Empirical Analysis

Effect of file size Figure 1 shows experiments designed to examine the effects of file size on I/O

variability. Figure 1(a) shows raw I/O throughput increases with file size for file read operations.

This is expected as the major I/O time is for seek operations, and increasing file sizes imply each

seek is followed by a sequential read of larger data. For file write operations (Figure 1(b)) and

file initial write operations (Figure 1(c)), the I/O throughput initially increases but eventually de-

creases. Here, first most writes are absorbed in the cache, but as the cache becomes full, the disk

flush operations come into play and reduce overall throughput. Figure 1(d) shows that I/O variance

for file read operations is highest for medium file sizes and higher CPU frequency. A reason for

this is that initially, the throughput is driven by disk seeks, but as the role of seeks decrease, the

role of I/O-system interactions become more pronounced. As these interactions are the effect of

CPU frequency and scheduling decisions, the observed variance increases. For file write opera-

tions, variance is higher for larger sized files at lower CPU frequency as shown in Figure 1(e).

Figure 1(f) shows that for initial write operations, larger file sizes with higher frequency exhibit

the most variance. This is potentially due to the need for more disk flushes, and the higher CPU

frequencies triggering faster scheduling decisions, resulting in increased non-deterministic inter-

actions between the I/O sub-components, which in turn can increase measure variance.

Effect of record size Figure 2 shows experiments designed to examine the effects of record size on

I/O variability. Figure 2(a) shows raw I/O throughput decreases with increases in record size for file

3
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Figure 1: I/O throughput (@freq: 1.5 GHz, 2.0 GHz, 2.5 GHZ, and 3.0 GHZ) as a function of file size for

three different I/O op modes (a, b, and c). Heat map of I/O throughput variance (y-axis-right) as a function

of CPU frequency (y-axis-left) and file size (x-axis) for three different I/O op modes (d, e, and f). Record

size = 32 KBytes, Threads = 256.

read operations. For file write operations (Figure 2(b)) and file initial write operations (Figure 2(c)),

the I/O throughput remains unchanged. I/O variance results vary extensively. Smaller record size

and higher CPU frequency give the highest variation for file read operations. Medium record size

and lowest CPU frequency give the highest variation for write operations. Medium record size and

higher frequency give the highest variation for initial write operations. See Figures 2(d), 2(e), and

2(f), respectively. Once again, the interaction of different record sizes and the I/O sub-system yield

complex non-deterministic interactions that are not straight-forward to explain via understanding

of system-level implementation details only. Consequently, there is a need for designing better

approaches to capturing, modeling, and mitigating variance in such systems.

Effect of number of threads Figure 3 shows experiments designed to examine the effects of

number of threads on I/O variability. In this case, raw I/O throughput increases with the number

of threads for all three modes (file read, file write, and file initial write)—see Figures 3(a), 3(b),

and 3(c). I/O throughput variance also increases with the number of threads: highest for file read

operations (Figure 3(d)) and file write operations (Figure 3(e)) at the highest frequency. File read

operations have high variance in the lower frequency range as well (Figure 3(d)).

Variability Trends A meta-analysis of Figures 1- 3 is appealing in search of trends in the data.

Consider the following experiment shown in detail for fwrite in Figure 4. We repeat the file size

(Figure 4(a)) and record size (Figure 4(b)) experiments calculating the change in variability when

the number of threads decreases from 256 to 64. The resulting heat maps show that the variability

when changing thread counts (at large and small file sizes) is sensitive to CPU frequency variations.

Figure 4(c) shows that variability when changing file sizes is not particularly sensitive to CPU

frequency variations (i.e., only the highest frequency seems to matter). For a system where file

size and CPU frequency variations are common (e.g., most shared-memory HPC systems), there
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Figure 2: I/O throughput (@freq: 1.5 GHz, 2.0 GHz, 2.5 GHZ, and 3.0 GHZ) as a function of record

size for three different I/O op modes (a, b, and c). Heat map of I/O throughput variance (y-axis-right) as a

function of CPU frequency (y-axis-left) and record size (x-axis) for three different I/O op modes (d, e, and

f). File size = 1024 KBytes, Threads = 256.

is no clear optimal operating configurations. This points to the challenge identified above that

understanding the runtime interactions requires more than just the system-level implementation

details, mainly due to the many dynamic interactions between various sub-systems.

To illustrate further, consider Figure 5 showing the per thread I/O throughput as the number of

threads increases (x-axis). All of the subfigures on the left of Figure 5 (a, c, and e) use 1.2 GHz

for CPU frequency and 64 Kbyte file size. All of the subfigures on the right of Figure 5 (b, d, and

f) use 3.0 GHz and 1024 Kbyte file size. There is a stark contrast between these two columns of

subfigures. There seems no discernible pattern to the resulting change in the variance and no clear

optimal operating configuration.

Limitations In these examples, we are only considering a few hundred permutations of I/O modes,

CPU frequency, thread count, file size, and record size from among over 95K. This limits this type

of analysis to a very small subset of the experimental data set. Analyses of the combined effects

of multiple variables and their nonlinear interactions is severely limited. While some causality can

be inferred from the analyzed data, any conclusions lack the full context of the data set and cannot

be easily generalized. For these reasons, and the manual nature of this approach, we next consider

methods for automating analysis of variability.

3 MOANA Methodology

We used statistical analysis of variance (ANOVA) [27] experiments to identify first-order (one-

parameter changes) and second-order (two-parameter changes) effects of performance variability.

We omit the full results due to space limitations, but in summary, this ANOVA experiment showed
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Figure 3: I/O throughput (@freq: 1.5 GHz, 2.0 GHz, 2.5 GHZ, and 3.0 GHZ) as a function of number of

threads for three different I/O op modes (a, b, and c). Heat map of I/O throughput variance (y-axis-right) as

a function of CPU frequency (y-axis-left) and number of threads (x-axis) for three different I/O op modes

(d, e, and f). File size = 1024 KBytes, Record size = 32 KBytes.

that nearly all of the parameters studied (and their second order configurations, e.g., Filesize x

Thread) affect I/O variability in a statistically significant way. Unfortunately, this linear method

does not expose the relative magnitude of the variability contribution for a given variable. Table 2

shows the use of a related technique, linear regression (LR), results in large inaccuracies (> 300%
average relative error or ARE) when used to predict the non-linear effects of variability.

We propose a non-linear modeling and analysis approach (MOANA) that leverages advanced

approximation methods to predict I/O performance variability. The methods we have selected—

modified linear Shepard (LSP) algorithm, multivariate adaptive regression splines (MARS), and

delaunay triangulation—are capable of approximating nonlinear relationships in high dimensions.

This increases the likelihood that given a system and application configuration, the resulting mod-

els will accurately predict the variability. We provide a detailed mathematical description of the

LSP, MARS, and delaunay triangulation methods in Section 5. For now, we provide an overview

of MOANA for use in our variability analyses discussed in Section 4.

We propose the concept of a variability map to describe and predict variability. Let the con-

figuration x be an m-dimensional vector of parameters. The variability map is a function f(x)
that gives the variability measure (i.e., standard deviation in our context) at x. The variability map

approximation f̃(x) is constructed from experimental data using the LSP and MARS methods and

can be used to predict variability for any given configuration x.

We use the data collected from our brute force approach (Section 2.1) to train our LSP and

MARS models. Recall from Table 1 the total number of measured configurations is:

15(Freq)× 9(Thread)× 6(Filesize x Recsize)× 3(I/O Sche)

× 3(VM I/O Sche)× 13(I/O Op Mode) = 94770.
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Figure 4: Heat map of change ((a) and (b)) in I/O throughput variance (y-axis-right) from 256 threads

(Figure 1(e) and Figure 2(e)) down to 64 threads as a function of CPU frequency (y-axis-left) and file size

(x-axis) and record size (x-axis). Heat map of change (c) in I/O throughput variance (y-axis-right) from

1024 KBytes file size (Figure 3(d)) down to 64 KBytes. Results for fwrite are shown.

The LSP and MARS methods require a numeric value, x, defined in our experiments as:

x = (Frequency, Threads, File Size, Record Size),

which has 15× 9× 6 = 810 distinct configurations assuming fixed values for I/O Scheduler, VM

I/O Scheduler, and I/O Operation Mode. For each distinct I/O Scheduler, VM I/O Scheduler, and

I/O Operation Mode combination, we will build a variability map approximation f̃(x). In total, we

will construct 3× 3× 13 = 117 variability maps.

Thus, we can denote the configuration as x(k, l), and denote the corresponding variability value

as f
(l)
k , where k = 1, · · · , 810 and l = 1, · · · , 117. For a given l, the dataset is {x(k, l), f

(l)
k }, k =

1, · · · , 810, and the corresponding variability map approximation f̃ (l)(x) can be obtained by using

the LSP or MARS algorithms described in Section 5.

Predictor evaluation We define the following relative error as an evaluation criterion. That is

r =
|f̃ − f |

f
,

where f̃ is the predicted variability at a x, and f is the true variability (obtained from direct mea-

surements).

We use statistical cross validation to compute the average relative error (ARE). For a given

dataset {x(k, l), f
(l)
k }, k = 1, · · · , 810, we randomly divide the dataset into two parts where the

proportion of one part is p and the remaining proportion is (1− p). We use all configurations from

the p portion of the data set as samples to train our predictive models. We use our trained predictors

to predict all configurations from the (1−p) portion of the data set. We compute the ARE value for

each data point in the test using the average of the relative error, r, for each data point. We repeat

this random data set division procedure to construct 117 variability maps. The ARE is averaged

again over the 117 trained models, and it will be assumed to be the true variability for the method.

Predictor comparisons By varying p we can observe the tradeoffs between predictor accuracy and

the ratio of the training set to the predicted data points. Table 2 shows the ARE for linear regression

(LR), LSP, MARS, and delaunay triangulation as functions of the training sample proportion p, av-

eraged over 117 variability maps. We are unaware of any existing methods to predict performance
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Figure 5: Each subfigure shows the per thread I/O throughput as the number of threads increases. All of

the subfigures on the left ((a), (c), and (e)) use 1.2 GHz for CPU frequency and 64 Kbyte file size. All of the

subfigures on the right ((b), (d), and (f)) use 3.0 GHz and 1024 Kbyte file size. Other fixed parameters: host

scheduler = CFQ, VM I/O scheduler = NOOP, record size = 32 KBytes.

variability. Hence, we compare the proposed techniques to the general linear regression model.

From the results in the table, it is clear that the proposed nonlinear methods out predict the linear

regression by an order of magnitude. In this random division testing, the LSP method consistently

outperforms MARS. For example, the ARE is around 15% under LSP for a setting that uses 30%

of the data for training and predicts 70% of the data. The ARE is around 30% if one uses 10% data

for training and 90% data for LSP. If we use half of the data set to predict the other half of the data

set (p = .5) the ARE of the LSP method is about 12%. Table 2 shows that supervised learning

is possible in MOANA runtime systems as good accuracies are possible for small training sets for

algorithms such as LSP (20% ARE when only 20% of the data set is used for training).

4 MOANA Variability Analysis

In this section we attempt to predict 585 configurations not considered in the full, 95K-configuration

training set described in Section 2.1. We calculate the average relative error (ARE) as discussed in

8



Training Testing LR LSP MARS Delaunay

Prop. p Prop. (%) (%) (%) (%)

0.9 0.1 323.09 11.13 56.61 9.97

0.8 0.2 323.47 11.27 57.59 10.19

0.7 0.3 324.00 11.47 58.35 10.48

0.6 0.4 324.58 11.72 59.94 10.88

0.5 0.5 324.59 12.22 62.35 11.42

0.4 0.6 325.82 13.25 66.52 12.22

0.3 0.7 327.02 15.44 71.49 13.56

0.2 0.8 329.56 19.33 79.27 16.13

0.1 0.9 339.32 30.44 100.14 23.39

Table 2: ARE for linear regression (LR), LSP, and MARS as functions of p, averaged over 117

variability maps and based on B = 200 repeats for random division.

the previous section for these new sets of experiments for comparison. Without loss of generality,

we limit the experiments to a fixed CPU frequency (2.5 GHz) and a fixed number of threads (128)

and we evaluate both LSP and MARs – though in a later section we evaluate a third predictor (i.e.,

Delaunay). We select 5 valid combinations of file size and record size with all possible permuta-

tions of I/O scheduler, VM I/O scheduler, and I/O operation modes. Table 3 lists all the parameters

in this study.

Throughout this section, we use scatter plots (e.g., Figure 6) to discuss the accuracy of our

MOANA methodology for the 5 × 3 × 3 × 13 = 585 configurations described in Table 3. In

Figures 6 – 8 and all subfigures, the y-axis shows the predicted standard deviation for both LSP

and MARS models. The x-axis shows the empirical (measured) standard deviation with the unseen

configuration. The y = x diagonal line is a reference line that represents predicted values equal to

the empirical (measured) values.

File size Record size I/O scheduler VM I/O scheduler I/O Mode

512 32, 128, 256 CFQ, DEAD, NOOP CFQ, DEAD, NOOP All 13 levels

768 32, 128 CFQ, DEAD, NOOP CFQ, DEAD, NOOP All 13 levels

Table 3: New configurations used for model validation.

Use Case I: A general model In this use case, we attempt to determine whether the MOANA

approach results in a single model that predicts well generally. Figure 6 shows a scatter plot of the

general prediction accuracy of our derived models for the 5 × 3 × 3 × 13 = 585 configurations

described in Table 3. The MARS data points (cross point type in Figure 6) are generally clustered

closer to the diagonal compared to the LSP data points (circle point type in Figure 6). This is con-

firmed with average relative error (ARE) calculations: MARS has a 29.75% ARE while LSP has a

40.07% ARE. This is the opposite finding from the previous section where LSP consistently out-

performs MARS. Upon deeper inspection, we were able to determine that MARS is more sensitive

to file size and record size parameters in the training set. Since much of the accuracy gains come

from tight data points for continuous variables (due to the logarithmic distance between record

sizes), MARS likely gains accuracy due to its sensitivity to these continuous variables. LSP likely

performs better when the variables predicted are randomly selected from within the population as

done in the training set experiments in the previous section. As expected, the ARE for both meth-

ods is generally larger than observed values for LSP and MARS from the previous section (see

9
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Figure 6: Comparison of the two proposed prediction models on new configurations. The y-axis

shows the predicted standard deviation from our two models, while the x-axis shows the empirical

standard deviation from 40 runs. The ARE for each method is also shown on the legend.

Table 2) but consistently much better than linear regression.

We use an example to illustrate the detailed analysis for two data points. Consider the cases

of file size=512 and file size=768. Depending on the record size variable settings, the ARE values

using MARS for file size=512 vary from 15.54% to 48.29% with an average ARE of 29.4% and for

file size=768 from 28.85% to 31.60% with an average ARE of 30.23%. These errors are close to

the average for the general model, but they would likely be improved with more data points. Upon

deeper inspection, it is the record size=256 configuration for the file size=512 that causes the error

to be higher in that case. The inaccuracy comes from the sparsity of points at the higher record

sizes as mentioned previously.

Use Case II: Variability by application (I/O Mode) In this use case, we attempt to determine

whether the MOANA approach can be used to classify the predicted applications for the previously

unseen configurations (i.e., I/O Mode in Table 3) by the magnitude of their variability. Figure 7

plots the prediction results for varying I/O operation modes. In all but 3 cases (Fread, Fwrite, and

Initial Write), the LSP or MARS predictions beat the average ARE values for the general model

from Use Case I (MARS=29.75%, LSP=40.07% in Figure 6). For the relatively accurate cases,

the magnitude of variance is lowest and tightly clustered for Pwrite, Rewrite, Random Write. As

the variance grows it generally becomes less tightly clustered for Reverse Read and Random Read.

Pread, Read and Stride Read show the highest variances and the least clustered results. For 10 of

the 13 applications examined, this constitutes a reasonably accurate rank ordering of variability by

magnitude and the isolation by application provides some notion of causality by variable.

MOANA’s strength, illustrated by this example, is classifying variables by magnitude of vari-

ability across a large set of experiments accounting for the nonlinear effects of high-order variables.

We leave it to our future work to determine exactly why inaccuracies occur in the Fwrite, and Initial

Write (i.e., file write) predictions, but we speculate there are two reasons: (1) page cache opera-
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Figure 7: Prediction scatter plots of different I/O operation modes. Points in the same plot have

the same mode. The x-axis is the empirical standard deviation observed from 40 runs. The y-axis

is the predicted standard deviation obtained from our two models. The ARE for each method is

also shown on the legend.

tions result in flushes of commit operations to update the disk store and the variability introduced

is unaccounted for in our model; and (2) though we did not observe differences in the bare-metal

versus VM variability studies, it is possible that under certain extreme write conditions (e.g., the

buffer cache fills) the interactions of the nested (host and VM) file systems result in unanticipated

performance changes [16]. For Fread, the inaccuracies are not as drastic as Fwrite and Initial Write

but still exceed the average ARE for the general model. We speculate these inaccuracies are due

to a combination of caching and prefetching effects that can be influenced significantly by the

experimental setup (e.g., multi-level cache buffers).

Use Case III: Variability by file and record size In this use case, we attempt to determine whether

the MOANA approach can be used to classify the predicted variability for previously unseen con-

figurations of file and record size by the magnitude of their variability. Figure 8 plots the prediction

results for valid file and record size combinations from Table 3. In all but 1 case, the LSP or MARS
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Figure 8: Prediction scatter plots of different file and record size combinations. Points in the same

plot have other parameters fixed. The x-axis is the empirical standard deviation observed from 40

runs. The y-axis is the predicted standard deviation obtained from our two models. The ARE for

each method is also shown on the legend.

predictions beat the average ARE values for the general model from Use Case I (MARS=29.75%,

LSP=40.07% in Figure 6). For the inaccurate case (file size=512, record size=256), we know from

Use Case I that the inaccuracy comes from the sparsity of points at the higher record sizes; in other

words, the best accuracies occur at the smallest record sizes for both file sizes.

Recall that for this experiment, for each file and record size pair, we vary I/O Scheduler, VM

I/O Scheduler, and I/O Mode (or application). The results in Figure 8 indicate that second order

effects are influential in the magnitude of the predicted variability. For example, for file size=768

and record size=32, LSP ARE is under 20% and 2-3 distinct clusters are observable in the data.

These clusters are affected by the application class (i.e., they are clustered by I/O modes that share

characteristics such as writes). Identification of these higher order effects are another valuable con-

tribution of the MOANA approach to analyzing variability. For 4 of the 5 scenarios studied, with

consideration of the higher order effects, we can (with reasonable accuracy) rank order variability

by magnitude and the isolation by file size, record size, and mode classification provides some

notion of causality for a set of variables.

5 MOANA Prediction Models

For completeness, we provide details for LSP (modified linear Shepard algorithm), MARS (multi-

variate adaptive regression splines), and Delaunay triangulation approximation methods. Recall in

Section 3 we described a variability map as a function f(x) that gives the variability measure (i.e.,

standard deviation in our context) at x. The variability map approximation f̃(x) is constructed

from experimental data and can be used to predict variability for any given configuration x. The

modeling framework is currently implemented in R. MARS is available in the R package ’earth’.

For the LSP algorithm, we tailored the existing FORTRAN code and linked it to R.

5.1 Modified Linear Shepard Algorithm

The linear Shepard algorithm is derived from the modified Shepard algorithm [33]. Given n distinct

data points x(1), . . ., x(n) and values fk = f
(

x(k)
)

, the linear Shepard algorithm constructs an

12



Figure 9: Measured and predicted 90% confidence intervals for I/O performance variability. Con-

vergence values indicate the proximity of the indicated number of samples to full convergence (at

40 samples). Predicted values are for an unobserved configuration and based upon use of a Delau-

nay predictor with a p = 90% training set from the measured results. Errors are calculated relative

to the measured confidence interval at each sample size.

interpolant to f of the form

f̃(x) =

n
∑

k=1

Wk(x)Pk(x)

n
∑

k=1

Wk(x)

,

where the locally supported weights are

Wk(x) =







(

R
(k)
w − dk(x)

)

+

R
(k)
w dk(x)







2

, dk(x) =
∥

∥x− x(k)
∥

∥

2
,

and the local (linear, here) approximations Pk(x) have the form

Pk(x) = fk +
m
∑

j=1

a
(k)
j

(

xj − x
(k)
j

)

.

The function Pk(x) is the local linear weighted least squares fit around x(k) with the ith data

13



point having weight

ωik =







(

R
(k)
p − di

(

x(k)
)

)

+

R
(k)
p di

(

x(k)
)







2

, i 6= k.

Let Np = min{n, ⌈3m/2⌉} and D = max
i,j

∥

∥x(i) − x(j)
∥

∥

2
, and define

R(k) = min
{

r
∣

∣ B
(

x(k), r
)

contains at least Np points
}

,

where B̄ is the closure of the open ball B
(

x(k), r
)

=
{

x
∣

∣

∥

∥x − x(k)
∥

∥ < r
}

. The values of R
(k)
p

and R
(k)
w are then specified as

R(k)
w = min

{

D

2
, R(k)

}

, R(k)
p = 1.1R(k).

Let S = {i1, i2, i3, . . ., iNp−1} be the set of indices corresponding to the Np − 1 points that are

closest to x(k), which determine the local least squares approximation Pk(x). The weights satisfy

ωijk > 0 because R
(k)
p is slightly larger than R(k). Define an (Np − 1)×m matrix A by

Aj· =
√
ωijk

(

x(ij) − x(k)
)t
,

and (Np − 1)-vector b by

bj =
√
ωijk(fij − fk).

The coefficients a(k) ∈ Em of Pk(x), where Em is m-dimensional real Euclidean space, are the

minimum norm solution of the least squares problem

min
a∈Em

‖Aa− b‖2.

5.2 Multivariate Adaptive Regression Splines (MARS)

Let

C =
{

1, (xj − t)+, (t− xj)+
∣

∣ t = xkj,

1 ≤ k ≤ n, 1 ≤ j ≤ m
}

The basis functions B for MARS are chosen from products of functions in the set C:

B = C ∪ C ⊗ C ∪ C ⊗ C ⊗ C ∪ · · · .

At each iteration the model of the data is a C0 m-dimensional spline of the form

∑

hα∈M

βαhα(x),

14



where M ⊂ B, |M| ≤ n, and the coefficients βα are determined by a least squares fit to the data.

hα ∈ M is constrained to always be a spline of order ≤ 2 (piecewise linear) in each variable xj .

The initial model is f̃(x) ≡ 1. Let M ⊂ B be the set of basis functions in the model at iteration q.

The basis at iteration q + 1 is that basis

M∪
{

hℓ(x)(xj − t)+, hℓ(x)(t− xj)+
}

which minimizes the least squares error of the model using that basis over all hℓ(x) ∈ M and

t = x
(k)
j , 1 ≤ j ≤ m, 1 ≤ k ≤ n, subject to the constraint that hℓ(x)(xj − t)+ is a spline of

order 2 in xj , and a spline of degree at most nI in x (where nI is the most variable interactions

permitted). The iteration continues for some given number nB of iterations or until the data are

overfit, at which point the generalized cross-validation criterion

GCV(λ) =

n
∑

k=1

(

f̃λ
(

x(k)
)

− fk

)2

(1−M(λ)/n)2
,

(where λ is the number of basis functions in the model f̃λ, M(λ) is the effective number of pa-

rameters in f̃λ), having been computed for each λ, is used to choose the final approximation f̃λ(x)
that minimizes GCV(λ) with λ ≤ nB . This C0 m-dimensional spline f̃λ(x) is the multivariate

adaptive regression spline (MARS) approximation to the data. The constraints and greedy way M
is constructed mean that f̃λ(x) is not necessarily the best approximation to the data by a spline of

degree nI generated from B, or by a spline with nB basis functions from B.

5.3 Piecewise Linear Interpolation via Delaunay Triangulation

A d-dimensional triangulation T (P ) of a finite set of points P in R
d is any set of d-simplices with

vertices in P that are disjoint except along their boundaries and whose union is the convex hull of

P . Given n distinct data points P = {x(1), . . ., x(n)} and values fk = f
(

x(k)
)

, a piecewise linear

interpolant to f , denoted f̃T , can be defined for any triangulation T (P ) as follows.

At any point x in the convex hull of P , x must be contained in some simplex in T (P ). Let S be

a d-simplex in T (P ) with vertices {s(1), . . ., s(d+1)} such that x ∈ S. Then for k = 1, . . . , d + 1,

there exist weights Wk ≥ 0 such that x =
∑d+1

k=1 s
(k)Wk and

∑d+1
k=1Wk = 1, and

f̃T (x) = f(s(1))W1 + . . . + f(s(d+1))Wd+1.

Note that in most cases, any triangulation of P is not unique. The Delaunay triangulation,

denoted DT (P ), is a (generally unique) triangulation, that has many properties considered optimal

for the purpose interpolation [24]. Therefore, the Delaunay interpolant f̃DT is often used as an

approximation to a multivariate function f .

Discussion. The unknown parameters are derived from the measured data. For example, we can

list the coefficients of the MARS bases. However, this closed-form expression is typically too long

to practically show in a paper and varies with a set of measurements making it less intuitive. For
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LSP, the parameters constitute a relatively large matrix (810 * 4 size) that also depends on the

measured data and does not present well in a manuscript. Hence, our focus is on presenting the

general formulae for these predictors along with the average relative error.

6 MOANA Experimental Design

In Section 4, we used MOANA and two non-linear predictors (LSP and MARS) with promising

results for predicting variability accurately. We used these predictions to analyze the variability of

configurations not included in the training data set with some success. In this section, we demon-

strate another use of variability prediction – to predict the convergence of statistical confidence

intervals for unseen system and application configurations.

To further demonstrate the flexibility of MOANA, we use a Delaunay predictor [10]. We

evaluated the Delaunay technique for predicting 90% confidence intervals as we did the LSP and

MARS techniques in Section 3 and achieved an average relative error of 4% using a p = 90%
training set without loss of generality.

Figure 9 demonstrates how the proposed MOANA convergence estimation works for a sample

configuration. The topmost graph shows the I/O standard deviation in measured throughput for

a 90% confidence interval. From left to right we observe the change in standard deviation as we

increase the number of randomly selected, measured samples from 10 to 40. The vertical lines

provide markers to indicate how close the marked sample size is to the ”best” (or least) standard

deviation at 40 samples. 75% convergence at a sample size of 24 means that with 24 samples we

get 75% of the way towards full convergence to the maximum 40 samples. Taking just 7 more

samples (for a total of 31) brings us 90% of the way towards full convergence to the maximum 40

samples. Each sample at this configuration has a cost in time (e.g., 10 seconds). Identifying the

correlation between samples and convergence enables tradeoff analyses such as: 7 more samples

costs 70 seconds but brings us 15% closer to convergence – this in turn informs experimental

design space tradeoff decisions of coverage versus time.

The MOANA approach enables projection of design space costs for predicted values as well.

Figure 9 demonstrates how the proposed MOANA convergence estimation works for a predicted

configuration. The bottommost graph shows the I/O standard deviation in predicted throughput.

From left to right we observe the change in standard deviation as we increase the number of ran-

domly selected, measured samples used in the prediction from 10 to 40. The vertical lines provide

markers to indicate how close the marked sample size is to the ”best” (or least) predicted standard

deviation at 40 samples. 75% convergence at a sample size of 24 means that with 24 samples we

get almost 75% of the way towards full convergence to the maximum 40 samples – in this case

with an error of less than 3% compared to the measured value obtained during the brute force ex-

periments. The prediction of these values has further implications for design space decisions well

beyond the measured data set – projections of the time costs of additional experimental configura-

tions for design space exploration.
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7 Related Work

The most closely related work to ours is reproducibility in benchmarking since variability plays a

role. Hoefler et al. [13] recently summarized the state of the practice for benchmarking in HPC

and suggested ways to ensure repeatable results. The main contribution of their work is a series of

best practice rules based in existing statistical and mathematical first principles. Introducing deter-

minism to achieve reproducibility has also been explored using environment categorization [26],

statistical modeling [30], or variance-aware algorithm design [2]. Environment categorization con-

siders the interactions and composition of hidden factors in the system (e.g., DataMill [11]). Our

focus is on predicting variability and the application of MOANA to experimental analysis and

design.

OS jitter studies [21] are also related to variability. Jitter in HPC is typically described as

performance loss caused by the competition for resources between background processes and ap-

plications, or application interference [37, 17]. Some OS jitter researchers have simulated these

effects at scale [9], while others have proposed applications [12] or systems [4] that can account

for these types of variability. Additionally, schedulers are often identified as causes of significant

variability in HPC systems [32] and might be classified as a form of jitter. We specifically studied

the effects of schedulers in this work and found the effects of thread count and other variables (e.g.,

processor speed) to contribute more substantially to variability scheduler design. As mentioned,

we leave isolation of the effects of additional variables, background jitter, and cross-application

interference to future work.

There have also been a number of high-profile projects in computer architecture that explore

variability. These projects are mainly focused on the consequences of on-chip power budgets

[6, 14, 3, 36, 25]. These techniques are orthogonally related to MOANA. Since we view variability

as an artifact of system design, we capture variations due to all aspects of design including the

underlying architecture. In the current study, software artifacts tend to dominate variability though

we do see some architectural effects (e.g., voltage and frequency scaling). So, for observable

architectural parameterizations, we can capture the effects and in future work potentially expose

causality.

Our use of predictors of variability is related to performance prediction. Performance pre-

diction of HPC and distributed applications is a well-studied field and recent works have used

analytical [8, 31, 34], profile based [5, 28], and simulation based [7, 22] approaches, or a combina-

tion of these [38], to accurately predict overall performance. In contrast, detailed studies like ours

that result in models or predictors that consider variability are almost nonexistent. In our work, we

explored the use of multiple non-linear predictors for analysis and prediction.

8 Conclusions and Future Work

MOANA uses nonlinear statistical techniques to capture the high order effects of systems and ap-

plication configurations on HPC I/O variability. We showed that by building variability maps, or

correlation vectors between configurations and variance, we can accurately predict variability for

hundreds of unseen configurations. We demonstrated that we can use MOANA to create a single
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model for all parameter settings (>70% accuracy for MARS) that is an order of magnitude more

accurate than best available linear regression techniques. Our analyses showed MOANA can read-

ily identify both first order effects (rank ordering modes by the variability magnitude) and higher

order effects (clustering variability by mode for file size and record size studies) through compar-

ison of variability maps. We also demonstrated the use of MOANA for predicting convergence of

unmeasured configurations for use in experimental design. Effectively, MOANA enables users to

optimize the tradeoffs between system space coverage and time/confidence.

MOANA is one step towards improving our understanding of HPC system variability. Our

current study is limited to 95K configurations and highly-parallel shared-memory systems, which

form the building blocks of high-performance systems and supercomputers. To align with current

state of the art practices, we made simplifying assumptions about population distributions that

we will reconsider in future work. In this instance, for smaller parameterizations, we find the

accuracy of our scalable black-box MOANA approach reasonable. This could also explain why

false conclusions relying on such assumptions in the prevailing literature are incorrupt. However,

as we demonstrated in our linear variability studies, it is increasingly likely that such assumptions

will lead to inaccuracies that will be unacceptable at exascale. The MOANA black-box approach

works effectively for the scale and systems herein and is inherently scalable since upon training

it can be used for accurate interpolation and extrapolation. We are also considering alternatives

to our exponential training strategy potentially in favor of a continuous variable training strategy

that is more linear. This involves direct tradeoffs between parameterization for systems boundaries

versus the expected inputs to most statistical models. We are also investigating the use of clustering

analysis of variability to improve identification of causality and higher order effects. In this work,

we purposely ignored interconnect effects as they have been considered substantially in isolation

by the networking community. However, the MOANA approach could be extended readily to

encompass networking effects and is another subject of future work.
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