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Efficient concurrent search trees
using portable fine-grained locality

Phuong Hoai Ha, Otto J. Anshus, Ibrahim Umar

Abstract—Concurrent search trees are crucial data abstractions widely used in many important systems such as databases, file systems
and data storage. Like other fundamental abstractions for energy-efficient computing, concurrent search trees should support both high
concurrency and fine-grained data locality in a platform-independent manner. However, existing portable fine-grained locality-aware search
trees such as ones based on the van Emde Boas layout (vEB-based trees) poorly support concurrent update operations while existing highly-
concurrent search trees such as non-blocking search trees do not consider fine-grained data locality. In this paper, we first present a novel
methodology to achieve both portable fine-grained data locality and high concurrency for search trees. Based on the methodology, we devise
a novel locality-aware concurrent search tree called GreenBST. To the best of our knowledge, GreenBST is the first practical search tree that
achieves both portable fine-grained data locality and high concurrency. We analyze and compare GreenBST energy efficiency (in opera-
tions/Joule) and performance (in operations/second) with seven prominent concurrent search trees on a high performance computing (HPC)
platform (Intel Xeon), an embedded platform (ARM), and an accelerator platform (Intel Xeon Phi) using parallel micro- benchmarks (Syn-
chrobench). Our experimental results show that GreenBST achieves the best energy efficiency and performance on all the different platforms.
GreenBST achieves up to 50% more energy efficiency and 60% higher throughput than the best competitor in the parallel benchmarks. These
results confirm the viability of our new methodology to achieve both portable fine-grained data locality and high concurrency for search trees.

Index Terms—Concurrent data abstractions, trees, energy efficiency, performance optimization, data locality, portability.
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1 INTRODUCTION

As energy efficiency is emerging as one of the most important
metrics in designing computing systems [26], [41], [46], [47], data
should be organized and accessed in an energy efficient manner.
Unlike conventional locality-aware data structures and algorithms
that only concern whether the data is on-chip (e.g., in cache) or
not (e.g., in DRAM), new energy-efficient data structures and
algorithms must consider data locality in finer-granularity: where
on chip the data is 1. It is estimated that for chips using the 10nm
technology, the energy gap between accessing data in nearby
on-chip memory (e.g., data in SRAM) and accessing data across
the chip (e.g., on-chip data at the distance of 10mm), will be as
much as 75x (2pJ versus 150pJ), whereas the energy gap between
accessing on-chip data and accessing off-chip data (e.g., data in
DRAM) will be only 2x (150pJ versus 300pJ) [18]. Therefore, in
order to construct energy efficient software systems, data structures
and algorithms should support not only high parallelism but also
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1. In the rest of this paper, the term fine-grained locality is used to refer to
data locality on-chip (e.g., data movement between registers, L1-/ L2-caches
and last level cache (LLC)) while the term coarse-grained locality is used to
refer to data locality off-chip (e.g., data movement between DRAM and LLC)

fine-grained data locality [18].
Concurrent search trees are crucial data structures that are

widely used as a back-end in many important systems such as
databases (e.g., SQLite [29]), filesystems (e.g., Btrfs [38]), and
schedulers (e.g., Linux’s Completely Fair Scheduler (CFS)),
among others. However, existing highly concurrent search trees
do not consider fine-grained locality. Non-blocking concurrent
search trees (e.g., [14], [22], [23], [36]) and Software Transactional
Memory (STM)-based search trees (e.g., [2], [12], [17], [21] among
others) have been regarded as the state-of-the-art concurrent search
trees. The prominent highly concurrent search trees widely used
in several benchmark distributions are the concurrent red-black
trees developed by Oracle Labs [21] and the concurrent AVL trees
developed by Stanford [12]. These highly concurrent search trees,
however, do not take into account fine-grained data locality.

Existing fine-grained locality-aware search trees poorly
support concurrency and are usually platform-dependent, limiting
their portability across different platforms. For example, Intel
Fast [30] and Palm [39] are optimized for a specific platform.
Concurrent B-trees (e.g., B-link tree [32]) only perform well if
their parameter B is chosen correctly. More recent research on
system- and database- oriented concurrent search trees [15], [33],
[34], [35], [37], [45] has produced some excellent examples of
cache-conscious concurrent search trees. Unfortunately, none of
the research addresses the issue of portability, because they were
mostly developed and evaluated for a specific platform.

Portable fine-grained locality can be theoretically achieved
using cache-oblivious (CO) methodology [25]. In the CO method-
ology, an algorithm is categorized as cache-oblivious for a two-level
memory hierarchy if it has no variables that need to be tuned with
respect to hardware parameters, such as cache size and cache-line
length, in order to optimize its cache complexity, assuming that
the optimal off-line cache replacement strategy is used. If a cache-
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oblivious algorithm is optimal for an arbitrary two-level memory,
the algorithm is also optimal for any adjacent pair of available levels
of the memory hierarchy [10], [20]. Therefore, cache-oblivious
algorithms are expected to be locality-optimized irrespective of
variations in memory hierarchies, enabling portable fine-grained
locality.

Portable fine-grained data locality for sequential search trees
can be theoretically achieved using the van Emde Boas (vEB)
layout [24], which is analyzed using ideal cache (CO) models
[25]. The vEB layout has inspired several cache-oblivious
sequential search trees such as cache-oblivious B-trees [7], [8] and
cache-oblivious binary trees [11]. The vEB-based trees recursively
arrange related data in contiguous memory locations, minimizing
data transfer between any two adjacent levels of the memory
hierarchy (see Section 3.1 for details).

However, existing vEB-based trees poorly support concurrent
update operations and have high overhead and large memory
footprints. Inserting or deleting a node may result in relocating
a large part of the tree in order to maintain the vEB layout. Bender
et al. [9] discussed the problem and provided important theoretical
designs of concurrent vEB-based B-trees. Nevertheless, we have
found that these designs are not very efficient in practice due to
the actual overhead of maintaining necessary pointers as well as
their large memory footprint (see Section 8.3).

Our practical insight is that it is unnecessary to keep the entire
vEB-based tree in a single contiguous block of memory. In fact,
allocating a contiguous block of (virtual) memory for a vEB-based
tree does not guarantee a contiguous block of physical memory.
Modern OSes and systems utilize different sizes of continuous phys-
ical memory blocks, for example, in the form of pages and cache-
lines. A contiguous block in virtual memory can be translated into
several pages with gaps in physical memory (e.g., RAM); a page
can be cached by several cache lines with gaps at any level of cache.
This is one of the motivations for our new bounded ideal cache
model (see Section 2.2). The upper bound on the contiguous block
size can be obtained easily from any system (e.g., page-size), which
is platform-independent. In fact, the memory transfer complexity of
our search operation in the new bounded ideal cache model is inde-
pendent of the upper bound values (see Lemma 3.1 in Section 3.2).

1.1 Our contributions

In this paper, we investigate whether it is practical to achieve
both fine-grained data locality and portability in concurrent search
trees and if so, whether portable fine-grained data locality actually
improves energy efficiency and performance compared with
conventional coarse-grained data locality used in B-trees. To the
best of our knowledge, there is no previous experimental study of
how portable fine-grained data locality actually influences energy
efficiency and performance in concurrent search trees. Such a
study is necessary nowadays when multilevel memory hierarchies
are becoming more prominent in commodity systems. Modern
CPUs tend to have at least three levels of caches.

Our contributions are fourfold:
1) We have devised a new bounded ideal cache model (or
BCO) (see Section 2) and a novel concurrency-aware vEB
layout (or CvEB) that makes the vEB layout suitable for
highly-concurrent data structures with update operations (see
Section 3).

2) Based on the new concurrency-aware vEB layout, we have
devised a new portable fine-grained locality-aware concurrent

search tree called GreenBST (see Sections 4 and 5). To the
best of our knowledge, GreenBST is the first practical search
tree that achieves both portable fine-grained data locality and
high concurrency. GreenBST is open source and available
at: https://github.com/uit-agc/GreenBST.

3) We have analyzed and compared GreenBST performance (in
operations/second) and energy efficiency (in operations/Joule)
with seven prominent concurrent search trees (see Table 1) on
a high performance computing (HPC) platform (Intel Xeon),
an embedded platform (ARM), and an accelerator platform
(Intel Xeon Phi) (see Table 2 in Section 7) using parallel
micro-benchmarks (Synchrobench [27]). Our experimental
results show that GreenBST achieved up to 50% more energy
efficiency and 60% higher throughput than the best competitor
on the commodity HPC, embedded and accelerator platforms.
Unlike platform-dependent search trees that are optimized for
a specific platform (e.g., Fast [30] and Palm [39]), GreenBST
is platform-independent and performance-portable3.

4) We have provided insights into how portable fine-grained
data locality actually influences energy efficiency and
performance in concurrent search trees (see Section 8).
Among our findings are: i) portable fine-grained data locality
is able to reduce data movement, resulting in lower energy
consumption and higher performance across HPC, embedded
and accelerator platforms; ii) reducing the (hidden) overhead
(e.g., pointers) in the tree structure allows a larger portion
of real data in each memory transfer, resulting in better
energy efficiency; and iii) for multicore platforms, efficient
concurrency control is necessary for energy-efficient data
structures, in addition to locality-awareness.

2 BOUNDED IDEAL CACHE MODEL

In order to devise locality-aware concurrent search trees, we need
theoretical execution models that promote both data locality and
concurrency. In this section, we present a new execution model
called bounded ideal cache model (BCO) that promotes both data
locality and concurrency. Unlike previous models such as the
I/O model [3] and the ideal cache model (CO) [25] that promote
only data locality, the new BCO model enables new designs of
concurrent data structures that achieve both data locality and high
concurrency (see concurrency-aware vEB layout (Section 3), and
GreenBST (Section 4).

Before presenting the new BCO model, we first provide some
background on relevant models, namely the ideal cache model
(CO) [25]. These models enable the analysis of data transfer
between two levels of the memory hierarchy. Lower data transfer
complexity implies better data locality and, therefore, higher
energy efficiency since energy consumption caused by data transfer
dominates the total energy consumption [18].

2.1 Ideal cache model

The ideal cache model was introduced by Frigo et al. in [25],
which is similar to the I/O model [3] except that the block size B
and memory size M are unknown. Using the same analysis as the

3. A performance-portable tree is one that achieves high performance across
a variety of platforms.

3. B-link tree is a highly-concurrent B-tree variant and it’s still used as a
backend in popular database systems such as PostgreSQL (https://github.com/
postgres/postgres/blob/master/src/backend/access/nbtree/README)

https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README
https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README
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# Algorithm Ref Description Synchronization Affiliation Data structure
1 SVEB [11] Conventional vEB layout search tree global mutex U. Aarhus binary-tree
2 CITRUS [5] RCU-based search tree lock-based Technion binary tree
3 LFBST [36] Non-blocking binary search tree lock free UT Dallas binary tree
4 BSTTK [19] Portably scalable concurrent search tree lock-based EPFL binary tree
5 LYBTREE [32] Concurrent B-tree (B-link tree2) lock-based CMU b-tree
6 ABTREE [13] Lock-free (a,b)-tree lock-free Technion (a,b)-tree
7 BWTREE [44] Lock-free Bw-tree lock-free CMU b-tree

new GreenBST - Locality aware concurrent search tree lock-based this paper b-tree

Table 1: List of evaluated concurrent tree algorithms. These algorithms are sorted by synchronization type.

I/O model, an algorithm is categorized as cache-oblivious if it has
no variables that need to be tuned with respect to cache size and
cache-line length, in order to optimize the data transfer complexity.

An optimal cache-oblivious algorithm for a two-level memory
is also optimal for any adjacent pair of a multi-level memory.
Therefore, without prior knowledge about a memory hierarchy,
a cache-oblivious algorithm can automatically adapt to the
memory hierarchy with multiple levels. It has been reported that
cache-oblivious algorithms perform better and are more robust
than the cache-aware algorithms [10].

Note that in the ideal cache model, B-tree is no longer optimal
because of the unknown B. Instead, the vEB-based trees [7], [8],
[9], [11] are optimal in the model. We refer the readers to [10],
[25] for a more comprehensive overview of the I/O model and the
ideal cache model.

2.2 Bounded ideal cache model
We define bounded ideal cache model (BCO) to be the ideal
cache model (CO) with an extension that an upper bound U on
the unknown memory block size B is known in advance. This
extension is inspired by the fact that although the exact block size
at each level of the memory hierarchy is architecture-dependent
(e.g., register size, cache line size), obtaining a single upper bound
for all the block sizes (e.g., register size, cache line size, and
page size) is architecture-independent. For example, the page size
obtained from the operating system is such an upper bound.

Unlike the CO model, the new BCO model facilitates designing
concurrent data structures and algorithms that support not only fine-
grained data locality but also high concurrency. The BCO model in-
herits fine-grained data locality from the CO model while achieving
higher concurrency by the new ability of organizing data in smaller
memory chunks of known size U . Without knowing an upper
bound U , we must organize data for unknown block size B that can
be extremely large. We will elaborate on the advantage of the BCO
model in designing concurrency-aware vEB layout in Section 3.2.

Moreover, the new BCO model maintains the key feature of
the original CO model [25]. First, temporal locality (i.e., reuse
of the same data located in cache) is exploited perfectly as there
are no constraints on cache size M in the BCO model. Since the
Least Recently Used (LRU) cache replacement policy with cache
size (1+ε)M, where ε >0, is almost as good as the optimal offline
cache replacement policy with cache size M [40], an optimal
cache replacement policy can be assumed in the BCO model.
Second, analysis for a simple two-level memory are applicable for
an unknown multilevel memory (e.g., registers, L1/L2/L3 caches
and memory). Namely, an algorithm that is optimal in terms of
data transfer for a two-level memory is asymptotically optimal for
an unknown multi-level memory. This feature enables designing
algorithms that can utilize fine-grained data locality (e.g., at cache
levels) in the multi-level memory hierarchy of modern architectures.
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Figure 1: Static van Emde Boas (vEB) layout: a tree of height
h is recursively split at height h/2. The top subtree T of height
h/2 and m=2h/2 bottom subtrees W1;W2;...;Wm of height h/2 are
located in contiguous memory locations where T is located before
W1;W2;...;Wm.

3 CONCURRENCY-AWARE VEB LAYOUT

In this section, we present a new concurrency-aware van Emde
Boas layout (CvEB), an improvement to the conventional van
Emde Boas layout (vEB). The new CvEB layout is based on the
new BCO model presented in Section 2.

We first define the notations that will be used to elaborate on
the improvement:

• bi (unknown): block size (in terms of the number of nodes) at
level i of the memory hierarchy (like B in the I/O model [3]),
which is unknown as in the ideal cache model [25]. When the
specific level i of the memory hierarchy is irrelevant, we use no-
tation B instead of bi in order to be consistent with the I/O model.

• U (known): the upper bound (in terms of the number of nodes)
on the block size bi of all levels i of the memory hierarchy.

• GNode: the largest recursive subtree of a vEB-based search tree
that contains at most U nodes (see dashed triangles of height
2L in Figure 2b). GNode is a fixed-size tree-container with the
vEB layout.

• "level of detail" k, k∈N, is a number representing a partition
of a vEB-based tree into recursive subtrees of height at most 2k.

• Let L be the level of detail of GNode. Let H be the height
of GNode, we have H = 2L. For simplicity, we assume
H= log2(U+1).

• N,T : size and height of the whole tree in terms of basic nodes
(not in terms of GNodes).

3.1 Conventional van Emde Boas (vEB) layout
The conventional van Emde Boas (vEB) layout has been introduced
in [24] and widely used in cache-oblivious data structures [7], [8],
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Figure 2: (a) The new concurrency-aware vEB layout. (b) A
search path using the concurrency-aware vEB layout.

[9], [11]. Figure 1 illustrates the vEB layout. Suppose we have a
complete binary tree of height h. For simplicity, we assume h is a
power of 2, i.e., h=2k,k∈N. The tree is recursively laid out in the
memory as follows. The tree is conceptually split between nodes of
height h/2 and h/2+1, resulting in a top subtree T and m1=2h/2

bottom subtrees W1,W2,···,Wm1 of height h/2. The (m1+1) top and
bottom subtrees are then located in contiguous memory locations
where T is located before W1,W2,···,Wm1 . Each of the subtrees of
height h/2 is then laid out similarly to (m2+1) subtrees of height
h/4, where m2 = 2h/4. The process continues until each subtree
contains only one node, i.e., the finest level of detail, 0.

One of the key features of the vEB layout is that the cost
of searching a key located at a leaf in this layout is O(logB N)
memory transfers, where N is the tree size and B is the unknown
memory block size in the ideal cache model [25]. Namely, the
search operation in vEB-based trees is cache-oblivious. The search
cost is optimal and matches the search cost of B-trees that requires
the memory block size B to be known in advance. Moreover, at
any level of detail, each subtree is stored in a contiguous block
of memory (e.g., subtree W1 in Figure 1).

Although the conventional vEB layout is useful for achieving
data locality, it poorly supports concurrent update operations.
Inserting (or deleting) a node at position i in the contiguous block
storing the tree may restructure a large part of the tree. For example,
inserting new nodes in the full subtree W1 (a leaf subtree) in Figure
1 will affect the other subtrees W2,W3,···,Wm because of rebalancing
nodes between W1 and W2,W3,··· ,Wm in order to have space for
new nodes. Even worse, we will need to allocate a new contiguous
block of memory for the whole tree if the previously allocated
block of memory for the tree runs out of space [11]. Note that
we cannot use dynamic node allocation via pointers as in highly
concurrent search trees since at any level of detail, each subtree
in the vEB layout must be stored in a contiguous block of memory.

3.2 Concurrency-aware vEB layout
In order to make the vEB layout suitable for highly concurrent
data structures with update operations, we introduce a novel
concurrency-aware dynamic vEB layout (or CvEB layout for
short). Our key idea is that if we know an upper bound U on the
unknown memory block size B as in the BCO model (see Section
2), we can support dynamic node allocation via pointers while
maintaining the optimal search cost of O(logBN) memory transfers
(see Lemma 3.1). The assumption on known upper bound U is
inspired by the fact that in practice it is not necessary to keep
the entire vEB tree in a single contiguous block of memory (see
Section 1). Instead, if the tree is larger than some fixed (known)
upper bound U , then we break the tree into smaller vEB trees, each
of which is stored in a contiguous block of memory (of size S≤U).

Figure 2a illustrates the new concurrency-aware vEB (CvEB)
layout. Let L be the coarsest level of detail such that every recursive
subtree contains at most U nodes. Namely, let H and S be the height
and size of such a subtree then H=2L and S=2H−1≤U . The tree
is recursively partitioned into level of detail L where each subtree
represented by a triangle in Figure 2a, is stored in a contiguous
memory block of size U . Unlike the conventional vEB, the subtrees
at level of detail L are linked to each other using pointers, namely
each subtree at level of detail k>L is not stored in a contiguous
block of memory. Intuitively, since U is an upper bound on the
unknown memory block size B, storing a subtree at level of detail
k>L in a contiguous memory block of size greater than U , does not
reduce the number of memory transfers, provided there is perfect
alignment. For example, in Figure 2a, traversing from a subtree W
at level of detail L, which is stored in a contiguous memory block of
size U , to its child subtree X at the same level of detail will result in
at least two memory transfers: one for W and one for X . Therefore,
it is unnecessary to store both W and X in a contiguous memory
block of size 2U . As a result, the memory transfer cost of search op-
erations in the new CvEB layout is the same as in the conventional
vEB layout (see Lemma 3.1) while the CvEB layout supports high
concurrency with update operations. For example, when subtree
W in Figure 2a is full, the CvEB layout enables allocating a new
subtree X and linking X to W as in k-ary search trees. By incorpo-
rating pointers, the CvEB layout enables highly concurrent (update)
operations on subtrees (e.g., by using universal methodologies for
implementing highly concurrent data structures [28]).

Lemma 3.1. For any upper bound U of the unknown memory block
size B, a search in a complete binary tree with the new concurrency-
aware vEB layout achieves the optimal memory transfer O(logBN),
where N and B are the tree size and the unknown memory block
size in the ideal cache model [25], respectively.

Proof. (Sketch) Figure 2b illustrates the proof. Let k be the
coarsest level of detail such that every recursive subtree contains
at most B nodes, where B is unknown. Since B≤U , k≤L, where
L is the coarsest level of detail at which every recursive subtree (or
GNode) contains at most U nodes. That means there are at most
2L−k subtrees of height 2k along the search path in a GNode and
no subtree of height 2k is split due to the boundary of GNodes.
Namely, in Figure 2b, each triangle of height 2k fits within a
dashed triangle of height 2L.

Because at any level of detail i≤L in the CvEB layout, a recur-
sive subtree of height 2i is stored in a contiguous block of memory,
each subtree of height 2k within a GNode is stored in at most 2
memory blocks of size B (depending on the starting location of the
subtree in memory). Since every subtree of height 2k fits in a GN-
ode (i.e., no subtree is stored across two GNodes), every subtree of
height 2k in the tree is stored in at most 2 memory blocks of size B.

Let T be the tree height. A search will traverse dT/2ke
subtrees of height 2k and thereby at most 2dT/2ke memory blocks
are transferred.

Since a subtree of height 2k+1 contains more than B nodes,
2k+1≥ log2(B+1), or 2k≥ 1

2 log2(B+1).
We have 2T−1≤N≤2T since the tree is a complete binary tree.

This implies log2N≤T ≤ log2N+1.
Therefore, the number of memory blocks transferred in a search

is 2dT/2ke ≤ 4d log2N+1
log2(B+1)e= 4dlogB+1 N + logB+1 2e = O(logB N),

where N≥2.
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Figure 3: Illustration of the GreenBST layout.

4 GREENBST OVERVIEW

To prove that the new conceptual CvEB layout (see Section 3)
is useful for concurrent search trees to achieve both portable
fine-grained data locality and high concurrency in practice, we
devise a novel locality-aware concurrent search tree based on the
new CvEB layout, which is called GreenBST.

A GreenBST TG consists of |TG| GNodes of fixed size U (see
Figure 3). Each of the GNodes contains a pointer-less binary
search tree (BST) Ti,i=1,...,|TG|. Nodes of tree Ti are basic nodes
which should be distinguished from GNodes. GreenBST provides
the following operations: UPDATE(v,TG), which adds or removes
value v from GreenBST TG, and SEARCH(v,TG), which determines
whether value v exists in TG. We use term update operation for
either insert or delete operation. We assume that duplicate values
are not allowed inside the tree and a special value, for example
0, is reserved as the EMPTY value.

4.1 Data structures

The topmost level of GreenBST is represented by struct UNIVERSE-
TYPE (line 1 in Figure 4) that contains pointer root to the basic root-
node of the root GNode. GNodes are represented by struct GNODE-
TYPE (line 3 in Figure 4). A GNode G includes a pointer root point-
ing to G’s root, a nodes group of size U that hold values/ keys, and
a link array of size U that links G’s basic leaf-nodes to the roots of
G’s child GNodes4. GNode metadata contains: i) pointer nextRight
pointing to the GNode’s right sibling; ii) field highKey containing
the lowest value/key of the right sibling GNode; iii) counter rev used
for optimistic concurrency [31]; and iv) a lock locked protecting
the GNode for update operations. Fields locked,rev,highKey and
nextRight are used for GreenBST concurrency control.

Each NODETYPE structure (line 11 in Figure 4) contains
i) field value holding a value for guiding the search, or a data
value (or key) if it it is a leaf-node; and ii) field mark indicating
a logically deleted node (if the field is set to true).

Struct MAPTYPE (line 14 in Figure 4), is used to remove
pointers from the NODE structure (see Section 5.1 for details).

4.2 Balanced and concurrent tree

GreenBST high-level structure is inspired by the B+tree structure
and GreenBST concurrency is inspired by the B-link tree concur-
rency which provides lock-less search operations [32]. However,
unlike the B-link tree, GreenBST is an in-memory tree and uses
the new CvEB layout for its GNodes. Moreover, GreenBST uses

4. To avoid confusion, from this point onward, we refer the "fat" nodes of
GreenBST as GNode and the GNode’s basic nodes as basic nodes or nodes.

1: Struct UNIVERSETPYE UT :
2: root, pointer to the root of the topmost GNode (T1.root)

3: Struct GNODETYPE GT :
4: root, a pointer to the root NODE of the GNode
5: nodes[U ], a group of pre-allocated NODE n: {n1,n2,...,nU}
6: link[U ], an array that links the basic leaf nodes to the roots of child GNodes

(see Figure 3).
7: nextRight, a pointer to the GNode’s right sibling (see Figure 3)
8: highKey, the lowest key value of the right sibling GNode, default is ∞

9: rev, a counter used for optimistic concurrency
10: locked, a lock protecting the GNode for update

11: Struct NODETYPE NT :
12: value∈N, the node value, default is EMPTY
13: mark ∈ {TRUE, FALSE}, TRUE indicates a logically deleted node, default is

FALSE. . fields value
and mark are stored in a single word such that they can be updated atomically.

14: Struct MAPTYPE MT :
15: le f t∈N, left child’s address offset
16: right∈N, right child’s address offset

Figure 4: GrenBST data structures.

optimistic concurrency to handle lock-less concurrent search
operations even in the occurrences of concurrent update operations.

To keep GreenBST balanced while supporting concurrent
updates, the whole tree is built in a bottom-up manner, which is
handled by the UPDATE function (see Figure 6). Meanwhile, the
search operation traverses GreenBST in a top-down, left-to-right
manner using a combination of the GNODESEARCH function to
find the relevant leaf GNode (see Figure 5) and a binary search
to find the relevant node within the found GNode.

Function UPDATE inserts a given key at a leaf of GreenBST
TG, provided key does not exist in the tree (see Figure 6, line 11).
It first finds the appropriate leaf GNode to store the key (line 2)
and locks the GNode (or its siblings if the GNode has been split)
using the MOVE_RIGHT function (line 4). The MOVE_RIGHT

function serializes concurrent updates by combining right-scanning
(line 55) and lock coupling (see lines 56–59). If key is inserted to
a node at the last level H of the found GNode (i.e., at the boundary
of the GNode), the UPDATE function will either rebalance the
GNode’s embedded tree to reduce its height (line 16) or split the
GNode into two GNodes (line 21).

Function REBALANCE(key,Ti) is responsible for rebalancing
a GNode Ti after an insertion (see Figure 6, line 41). GreenBST
rebalance is incremental, significantly reducing the rebalance
overhead. GreenBST incremental rebalance is described in detail
in Section 5.3.

GreenBST split operation on a GNode Tv distributes the
member keys of Tv between Tv and a new GNode Ty as evenly as
possible (see Figure 6, line 21). The split operation also updates
Tv.nextRight to point to Ty (line 28) and fills Tv.highKey with Ty’s
minimum key (line 27). Lastly, Ty’s minimum key is inserted into
the parent GNode of both Tv and Ty (line 33). If Tv is currently
the root GNode, a new root GNode is created and it becomes the
new parent of Tv and Ty. Note that for a GNode Ty with minimum
key Kmin, a new key less than Kmin will be forwarded to one of
Ty’s left sibling GNodes. The leftmost sibling GNode will host
the minimum key that has ever been inserted to GreenBST.

The delete operation in GreenBST is handled by the UPDATE

function which marks the leaf node containing key as deleted (see
Figure 6, line 5). Deleted nodes are reclaimed by the rebalance
and split operations. The offline memory reclamation techniques
used in the B-link tree [32] can be deployed to merge nearly
empty GNodes in the case where a large part of the workload is
delete operations. GreenBST is, however, designed for workloads
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1: function SEARCH(key, GreenBST, maxDepth)
2: GNode← GNODESEARCH(key,GreenBST,maxDepth) . Find the leaf GNode
3: rev←GNode.rev . Get revision
4: if (GNode.highKey≤key) then . Move right if necessary
5: GNode←GNode.nextRight . Move to the right sibling GNode
6: Goto 3
7: result← BINARYSEARCH(key,GNode) . Search key within this GNode
8: if (GNode.rev != rev or not even) then . If a concurrent update has occurred
9: Goto 3 . Re-check this GNode

10: return result . Otherwise, return the search result

11: function GNODESEARCH(key, GreenBST, maxDepth)
12: GNode←GreenBST.root
13: while GNode is not leaf do
14: rev←GNode.rev . Get revision
15: if (GNode.highKey<=key) then . Move right if necessary
16: nextGNode←GNode.nextRight
17: else . key is located in this GNode’s sub-tree
18: bits←0
19: depth←0
20: p←GNode.root
21: base← p
22: link←GNode.link
23: repeat . Continue until reaching a leaf node of this GNode
24: depth←depth+1 . Increment depth
25: bits←bits<<1 . Shift one bit to the left in each level
26: if (key< p.key) then
27: p← LEFT(p,base) . Go left, see Figure 7
28: else
29: p← RIGHT(p,base) . Go right, see Figure 7
30: bits←bits+1 . Right child color is 1
31: until IsLeaf(p)
32: bits←bits<<(maxDepth−depth) . Get link to child GNode
33: nextGNode← link[bits] . Go to the child GNode
34: if (GNode.rev != rev or not even) then . If a concurrent update has occurred
35: Goto 14 . Re-check this GNode
36: GNode←nextGNode . Otherwise, move to the next GNode
37: return GNode

Figure 5: Function SEARCH in GreenBST. The GNODESEARCH

function will return the leaf GNode for finding the searched
key. From there, a simple binary search using LEFT and RIGHT

functions (see Figure 7) is used to find the key location in the
GNode or its right siblings. The SEARCH function utilizes counter
rev, pointer nextRight and value highKey to ensure correct results
even when executing concurrently with update operations.

dominated by search and insert operations.
The search operation in GreenBST is a combination of function

GNODESEARCH to find the associated GNode (line 2 in Figure
5) and a binary tree search using cached map within the found
GNode (line 7, see Section 5.1 for details). The GNODESEARCH

function traverses the tree from the root GNode down to a leaf
GNode, at which the search is handed over to the binary search
to find the searched key within that leaf GNode.

4.3 Customized concurrency control
GreenBST uses locks and variables nextRight and highKey to coor-
dinate concurrent search and update operations, while counter rev is
used for the search optimistic concurrency [31]. When a GNode G
needs to be updated, G’s rev counter is increased by one before the
update operation starts (lines 6 and 13 in Figure 6). The counter is
increased by one again after the update operation finishes (see lines
8 and 37). Note that all update operations happen when the lock is
still held (see line 4) and therefore, only one update operation may
increase G’s rev counter and update G at a time. The rev counter
prevents the search operation from returning a wrong key because
of a concurrent update operation (lines 8 and 34 in Figure 5).

GreenBST search uses optimistic concurrency [31] to ensure
that the operation always returns the correct answer even if it
arrives at a GNode that is undergoing update operation (e.g, insert
and delete). First, before starting to traverse a GNode G, a search
operation records G’s rev counter (line 14 in Figure 5). Before
following a link to a child GNode or returning a link, the search

1: function UPDATE(type,key,GreenBST,maxDepth)
2: GNodekey← GNODESEARCH(key,GreenBST,maxDepth)
3: Push to stack the last visited GNodes at each level along the search path from

GreenBST.root to GNodekey.
. Arrive at a leaf GNode, now do the actual update operation

4: GNode← MOVE_RIGHT(key,GNodekey) . Lock and move right, if necessary
5: if (type=delete) then . Delete
6: increment(GNode.rev)
7: MARKASDELETED(key,GNode)
8: increment(GNode.rev)
9: unlock(GNode)

10: else
11: if (type= insert) then . Insert
12: while (GNode is not NULL) do
13: increment(GNode.rev)
14: BINARYINSERT(key,GNode) .

Insert key to an appropriate basic node L and update GNode.link[] if necessary
15: if (key is put at the last level H of GNode) then
16: if (GNode.isleaf and rebalance is possible) then .

Rebalance, see Section 5.3 for details
17: REBALANCE(GNode)
18: increment(GNode.rev)
19: unlock(GNode)
20: return
21: else . Split
22: newGNode← initialize new GNode
23: evenly distribute GNode’s keys over GNode and newGNode

where GNode keeps the lower half of the sorted keys.
24: y← the lowest key of newGNode
25: newGNode.highKey←GNode.highKey
26: newGNode.nextRight←GNode.nextRight
27: GNode.highKey←y
28: GNode.nextRight←newGNode

. No further modification on the GNode, increment its revision so that search operations
can proceed

29: increment(GNode.rev)
30: oldGNode←GNode
31: key←y
32: linknew←newGNode . linknew is a pointer to newGNode
33: GNode←pop(stack) .

Insert key and linknew to the parent GNode at line 12
34: GNode← MOVE_RIGHT(key,GNode) . Lock parent GNode
35: unlock(oldGNode)
36: else
37: increment(GNode.rev)
38: unlock(GNode)
39: return
40: return

41: function REBALANCE(key,GNode)
42: w← Location of key
43: while (depth(w)≥1) do . Depth of w from GNode.root
44: sum← key count in subtree rooted in w
45: height← height of subtree rooted in w
46: density(w)←sum/(2height−1)
47: if (density(w)≤Γdepth(w)) then
48: balance the subtree rooted in w . See Section 5.3 for details
49: return
50: else
51: w←ancestor(w)
52: return

53: function MOVE_RIGHT(key,GNode)
54: lock(GNode)
55: while (GNode.highKey≤key) do . Move right if necessary
56: rightGNode←GNode.nextRight
57: lock(rightGNode)
58: unlock(GNode)
59: GNode←rightGNode
60: return GNode

Figure 6: Function UPDATE in GreenBST. The insert operation
can call the REBALANCE function if needed. The MOVE_RIGHT

function serializes concurrent updates by combining right-scanning
(see line 55) and lock coupling (see lines 56–59).

operation re-checks again the counter (see line 34). If the current
counter value is an odd number or if it is not equal to the recorded
value, the search operation needs to retry as this indicates that the
GNode is being or has been updated (see line 35).

The correctness proof of GreenBST is presented in Section 6.

5 GREENBST DESIGN IN DETAIL

To improve efficiency and reduce overhead, GreenBST is devised
using several techniques, in addition to the CvEB layout (Section
3) and customized concurrency control (Section 4.3), such
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1: MapType map[U ]

2: function RIGHT(p, base)
3: nodesize← SIZEOF(single node)
4: idx←(p−base)/nodesize
5: if (map[idx].right != 0) then
6: return base+map[idx].right
7: else
8: return 0

9: function LEFT(p, base)
10: nodesize← SIZEOF(single node)
11: idx←(p−base)/nodesize
12: if (map[idx].le f t != 0) then
13: return base+map[idx].le f t
14: else
15: return 0

Figure 7: Mapping functions.

as GNode’s cached map (Section 5.1), efficient inter-GNode
connection (Section 5.2) and incremental rebalancing (Section 5.3).

5.1 Cached map instead of pointers
Although removing pointers connecting basic nodes in GNode
reduces data transfer between memory levels, it raises several
challenges. Two of the key challenges are how to properly connect
child- and parent-nodes within a GNode and how to establish child-
parent paths between GNodes (i.e., inter-GNode links). We address
the former in this subsection and the latter in subsection 5.2.

We replace GNode basic (left and right) pointers with functions
LEFT and RIGHT that utilize a cached map (see line 14 in Figure
4 and Figure 7). The LEFT and RIGHT functions, given an arbitrary
node p and the memory address of its GNode base, return the
addresses of p’s left and right child nodes, respectively, and 0 if p
has no children (i.e., p is a leaf node of the GNode). The LEFT and
RIGHT functions throughout GreenBST share a common cached
map instance (Figure 7, line 1). As all GNodes use the same fixed-
size vEB layout, only one map instance with size U is needed for
all traversing operations. This approach makes GreenBST memory
footprint small and keeps the frequently-used map instance in cache.

For example, assume that a GNode has 127 basic nodes.
Without using the new cached map, the set of basic (left and right)
pointers occupy 2032 bytes (127×16 bytes) of memory in a 64-bit
operating system, four times the amount of memory used by the
actual data (i.e., 127×4 bytes = 508 bytes, assuming node’s value
is a 4-byte integer). Even if the node value is multiple words in
length, pointers are still going to occupy a large part of GNode
memory (e.g., even for 64-byte node value, pointers still occupy
20% of GNode memory). Therefore, using pointers is inefficient,
because every block transfer between levels of memory carries a
significant portion of pointers (or overhead) instead of actual data.
The new cached map completely removes the pointer overhead.

Our new mapping approach addresses the drawbacks of
previous approaches (e.g., pointers and arithmetic-based implicit
addresses) and is unique to the concurrency-aware vEB layout as
it exploits the fixed-size feature of GNodes. Previous approaches
such as pointers and arithmetic-based implicit addresses in
cache-oblivious (CO) trees [11] are found to have weaknesses.
Pointer-based approaches induce high overhead in term of data
transferred between memory levels: the inclusion of pointers
reduces the amount of real data (e.g., keys) in each block
transferred. The implicit addresses, which demand arithmetic
calculation for every node traversal, induce high computation
overhead, especially when the tree is big. Our new mapping
approach eliminates both pointer overhead (i.e., no pointers) and

computation overhead (i.e., addresses are pre-computed and stored
in the cached map). The LEFT(p,base) (resp. RIGHT(p,base))
function only finds p’s index and gets the address of p’s left child
(resp. right child) from the cached map (e.g., idx at line 11 and
map[idx].le f t at line 13 in Figure 7).

Note that the mapping approach does not induce memory frag-
mentation because the approach applies only for an individual GN-
ode. Namely, the cached map is the access structure of an individual
GNode, which is used to find the left/ right child of an basic node
in the GNode, without need of left/ right pointers. As an GNode
is a fixed tree-container of size U and with the well-defined vEB
layout, the cached map is fixed. The update operations change only
the values of GNode basic nodes (e.g., from EMPTY to an input
value in the case of insertion), but do not change GNode structure.

5.2 Inter-GNode connection

To enable traversing from a GNode to its child GNodes, we
develop a new inter-GNode connection mechanism. Figure 5
explains how the inter-GNode connection works in a pointer-less
search operation. We logically assign binary values to basic edges
within GNode so that each path from GNode root to a basic leaf
node is represented by a unique bit-sequence. As basic nodes have
only left and right conceptual edges, we assign 0 and 1 to the left
and right edges, respectively (lines 25 and 30). The bit-sequence is
then used as an index in the link array containing pointers to child
GNodes (line 33). The maximum size of the bit representation
is GNode height or log2(U) bits.

Particularly, each basic leaf node L of a non-leaf GNode has
two child GNodes pointed by link[Lle f t ] and link[Lright ] where
Lle f t and Lright are computed when the GNodeSearch function
traverses GreenBST (lines 25, 30 and 32). For example, if L’s
depth is 1 (i.e., GNode has only one basic node) and GNode height
maxDepth is 3, Lle f t =0 and Lright =(1<< (3−1))=4 (line 32).
Namely, link[0] and link[4] point to L’s left child GNode and L’s
right child GNode, respectively.

5.3 Incremental rebalancing

GreenBST is inspired by the incremental rebalance proposed in
[11] which significantly reduces the rebalance overhead. However,
unlike the approach in [11] that occasionally has to rebalance the
whole tree, we only apply the incremental rebalance on the basic
tree embedded in each GNode (line 41 in Figure 6). Note that for
workloads dominated by search and insert operations, the high-level
tree of GNodes is already balanced because of the bottom-up
construction (see Section 4.2). For workloads dominated by delete
operations, the high-level tree of GNodes may be unbalanced due
to empty GNodes when the merge operation is not implemented.

To briefly explain the idea, we denote density(w) as the ratio
of number of keys inside a subtree T rooted at node w to the
maximum number of keys that subtree T can hold (line 46 in see
Figure 6). For example, a subtree with root w at level H−3, where
H is GNode height, can hold at most 23−1 keys. If the subtree
only contains 3 keys, then density(w) =3 /7 =0.42. Let Γi be the
density threshold at level i, we have 0 < Γ1 < Γ2 < ... < ΓH = 1,
where H is GNode height. After a new key is inserted at a basic
leaf v, we find the nearest ancestor node w of v so that density(w)
≤Γdepth(w) where depth(w) is the level where w resides, counted
from the GNode root (e.g., depth(GNode.root)= 1) (see line 47).
If w is found, we rebalance the subtree rooted at w.
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Density thresholds Γi,i<H, are tuning parameters and are set
manually. In our GreenBST implementation, Γi,i<H, are set to
0.5.

6 CORRECTNESS PROOF

Definition 6.1. A GreenBST is well-formed if the following
structural properties hold to all (concurrent) functions:

• The binary search tree (BST) embedded in each GNode
is well-formed. Namely, BST has no key duplicates, the
left (resp. right) sub-tree of a basic node BN contains keys
less than (resp. greater than or equal to) BN.value.

• Links between GNodes are well-formed. Namely, if a
GNode Gi has a nextRight pointer to a sibling GNode Gs,
Gi contains keys less than Gi.highKey and Gs contains
keys greater than or equal to Gi.highKey. If a basic leaf
node BN in Gi has a left (resp. right) pointer to a child
GNode Gc, Gc contains keys less than (resp. greater than
or equal to) BN.value.

• There are no key duplicates among GNodes.

Lemma 6.1. Let G be a GNode in a well-formed GreenBST
GT . If the UPDATE function appears atomic to the SEARCH and
GNODESEARCH functions, an UPDATE function on G makes GT
continue being well-formed.

Proof. (Sketch) As the UPDATE function appears atomic to the
SEARCH and GNODESEARCH functions (the hypothesis), we only
need to prove that an UPDATE function on G makes GT continue
being well-formed regardless of whether the function is interfered
by another UPDATE function.

Case 1: no interference on G from another UPDATE function:
If the UPDATE function GU deletes key (line 5 in Figure 6), it
sequentially searches G’s BST for the basic node containing key as
in conventional sequential BST and then marks the node, if found,
as deleted (line 7), making G’s BST continue being well-formed.
Note that deleted nodes are kept in G’s BST to maintain the BST
structure until the maintenance operations (e.g., REBALANCE and
SPLIT) rebuild the whole subtree.

If GU inserts key without triggering maintenance operations
(e.g., REBALANCE or SPLIT), it performs the conventional
sequential BST insert operation on G’s BST, making G’s BST
continue being well-formed (line 14).

If GU invokes the REBALANCE function on G (line 16), it
searches G’s BST for an appropriate basic node w and sequentially
rebuilds the subtree rooted at w as a balanced BST using the same
keys (lines 41 - 51), maintaining the well-formed properties of G’s
BST. Moreover, since the BST of inner GNodes G is leaf-oriented,
the REBALANCE function does not change the links between G and
its child GNodes, making the links continue being well-formed.

If GU triggers the split operation on G, splitting G into two
GNode G1 (or GNode) and G2 (or newGNode) (lines 21-35), we
will prove that links between G1, G2 and G’s parent GNode Gp
are well-formed. Note that since G1’s BST (resp. G2’s BST) is
newly created from the lower half (resp. higher half) of G’s sorted
keys, G1’s BST and G2’s BST are well-formed and there are no
key duplicates between G1 and G2.

Indeed, as G2.hightKey == G.highKey and
G2.nextRight == G.nextRight (lines 25 - 26), the G2.nextRight
link between G2 and G’s right sibling is kept well-formed as
before splitting. Similarly, as G1.highKey contains G2’s lowest key

y and G1.nextRight points to G2 (lines 27- 28), the G1.nextRight
link between G1 and G2 is well-formed. Note that since no other
function has a reference to G2 until G2 is inserted to parent Gp
(line 33), the modifications on G1 and G2 during the split (lines
23 - 28) are atomic to other UPDATE functions.

Regarding the links between parent Gp and G2, as G2’s lowest
key y and pointer linknew to G2 are assigned to Gp’s basic leaf
node L and L’s right pointer Gp.link[Lright ], respectively (lines
31 - 34 and 14), the link between Gp and G2 is well-formed (i.e.,
G2’s keys are greater than or equal to L.value). Regarding the link
between Gp and G1, because G1 reuses the memory allocated to G
and the link between Gp and G is well-formed before the split, the
link between Gp and G1 becomes L’s left pointer Gp.link[Lle f t ]
and therefore is well-formed (i.e., G1’s keys are less than L.value,
or G2’s lowest key y). Since GU successfully locks Gp (line 34)
before invoking the UPDATE function on Gp (lines 12 - 38), the
same well-formed proof on G applies for Gp.

Note that since G’s memory and the link K from Gp to G are
re-used for G1, a function that has read K before G is split, will able
to access G1 via K and G2 via G1.nextRight, finding all G’s keys.

Case 2: interference on G from other UPDATE functions: We
will prove that an UPDATE function GU on G appears atomic to
other concurrent UPDATE functions and therefore this case becomes
Case 1. Indeed, as GU that is modifying G, has successfully locked
G (line 4 in Figure 6), other concurrent UPDATE functions on G
must wait for GU to finish its modification and unlock G (line 9,
19, 35 or 38). The linearization point of the UPDATE function in
this case is the time point when LOCK(G) in the MOVE_RIGHT

function (line 4 in Figure 6) returns (line 54 or 57).

As GreenBST is initiated as an empty GNode and thus well-
formed, Lemma 6.1 implies that GreenBST is always well-formed
if we can prove that the UPDATE function appears atomic to the
GNODESEARCH and SEARCH functions (cf. Lemmas 6.3 and 6.6).

Lemma 6.2. Let t0 be the time at which a refer-
ence to the leaf GNode L that is returned by the
GNODESEARCH(key,GreenBST,maxDepth) function (invoked by
the SEARCH or UPDATE function), is made (line 12, 16 or 33 in
Figure 5). Any change to L at time t> t0 will be observed (by the
SEARCH and UPDATE functions) in either L or one of L’s right
siblings that are reachable via the nextRight pointers.

Proof. (Sketch) Changes to L (e.g., inserting or deleting key) at
time t> t0 that cannot be found in L, occur when L has been split
into two leaf GNodes, L and L′, and the changes are located in L′

(lines 21 - 28 in Figure 6). Note that L′ is reachable from L via the
L.nextRight pointer (line 28). The splitting can occur repeatedly,
creating a linked list of sibling GNodes originated from L.

To prove that following the nextRight pointers will eventually
find any change made to L at time t> t0, we need to prove that the
split operation on a GNode G appears atomic to other concurrent
UPDATE and SEARCH functions on G. Indeed, as the UPDATE

function GU that performs the split operation on G, has successfully
locked G (line 4) and only releases the lock after finishing the split
operation (line 35), the split operation appears atomic to other
concurrent UPDATE functions. The linearization point of the UP-
DATE function in this case is the time point when LOCK(G) in the
MOVE_RIGHT function (line 4 in Figure 6) returns (line 54 or 57).

Moreover, as function GU makes counter G.rev odd number
before the split (line 13) and makes G.rev even number again only
after finishing the split (line 29), concurrent SEARCH functions GS
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will wait for the update/ split to finish before actually accessing
GNode G (lines 3 and 8 in Figure 5). Since the UPDATE function
must successfully acquire G’s lock (line 4 in Figure 6) before
increasing G.rev (line 13), only one UPDATE function can increase
G.rev and therefore odd G.rev indicates an on-going update. Note
that if the split function interferes with GS and makes G.rev even
number again between lines 3 and 8 in Figure 5, GS will discover
that G.rev has been changed (i.e., G.rev 6=rev) and will then wait
for the split operation to finish (line 8 in Figure 5). In this case,
the linearization point of the split operation is the time point
when INCREMENT(G.rev) at line 13 in Figure 6 returns. The
linearization point of the SEARCH function is the time point when
the SEARCH function observes that G.rev is unchanged and even
at line 8 in Figure 5.

Definition 6.2. The subtree rooted at a GNode G in a well-formed
GreenBST includes both the subtrees of G’s child GNodes linked
by G.link[] and the subtree of G’s sibling GNode linked by
G.nextRight (see Figure 3 for illustration)

Lemma 6.3. For each GNode V G visited during
GNODESEARCH(key,GreenBST,maxDepth) where GreenBST is
well-formed, the next GNode G made at time t (line 12, 16 or
33 in Figure 5) from the last optimistic transaction for V G (i.e.,
last execution of lines 14 - 34 with GNode==V G) satisfies the
following claim: if key in the tree, then it is in the subtree rooted
at G at time t.

Proof. (Sketch) We will prove the lemma inductively on G. Let
G1,G2,···,Gn be the path from the root GNode G1 to a leaf GNode
Gn visited by a GNODESEARCH function GS.

The lemma holds when G is the root GNode, i.e. G=G1 (line
12).

Assume that lemma holds for G=Gk, we will prove that the
lemma holds for G=Gk+1.

Indeed, as the lemma holds for G=Gk, GS will visit Gk in the
next iteration to find key (line 13 - 36). We will prove that when
visiting Gk, GS locates a correct child/ sibling GNode Gk+1 whose
subtree contains key (if key exists).

Case 1: no interference on Gk from UPDATE functions (i.e.,
no interference between line 14 and line 34 when GNode=Gk).

If key<Gk.highKey, GS traverses Gk’s internal binary search
tree (BST) using key, reaching the appropriate basic leaf node LN
(lines 23 - 30) and its associated (left or right) pointer link[bits]
to a child GNode Gk+1 at the next GNode level (line 33). As in
the conventional binary search tree, key, if existing, is located in
the subtree rooted at Gk+1 (see Figure 3 for illustration).

If key≥Gk.highKey, key, if in the tree, was moved to one of
subtrees rooted at Gk’s sibling GNodes between the time GS got
a reference to Gk (line 12 or 36) and the time GS started to access
Gk (line 14). In this case, the next GNode Gk+1 is Gk’s first sibling
GNode (line 16) whose subtree contains key (if key is in the tree)
(see Definition 6.2).

Case 2: interference on Gk from an UPDATE function GU .
In this case, we will prove that function GU appears atomic to
function GS and therefore this case becomes Case 1.

Indeed, similar to the proof of Lemma 6.2, as GU makes
counter Gk.rev odd number during its update (Figure 6: lines 6 - 8
for deletion, lines 13 - 37 for insertion without maintenance, lines
13 - 18 for insertion with rebalance, and lines 13 - 29 for insertion
with split), GS will discover GU’s interference during its search via
checking counter Gk.rev (lines 14 - 34 in Figure 5) and will wait for

GU to finish before actually accessing Gk (line 35). The lineariza-
tion point of the GNODESEARCH function GS is the time point
when the function observes that Gk.rev is unchanged and even at
line 34 in Figure 5. The linearization point of the UPDATE function
GU is the time point when INCREMENT(Gk.rev) returns (Figure 6:
line 6 in the case of deletion and line 13 in the case of insertion).

Lemma 6.4. Let t0 be the time at which a reference to a leaf GNode
LG returned by the GNODESEARCH(key,GreenBST,maxDepth)
function is made. If key in the tree, it is in LG at time t0

Proof. (Sketch) According to lemma 6.3, if key is in the tree, it
is in the subtree rooted at LG at time t0. As LG is a leaf GNode
(line 13), key, if existing, is in LG at time t0.

Lemma 6.5. Let L be the GNode that is returned by the
GNODESEARCH(key,GreenBST,maxDepth) function. The key, if
existing, is located in the first GNode f G with f G.highKey>key
in the linked list of L’s siblings originated from L (including L).

Proof. (Sketch) Let t0 be the time at which a reference to the GN-
ode L returned by the GNODESEARCH(key,GreenBST,maxDepth)
function is made. According to Lemma 6.4, key, if existing, is lo-
cated in L at time t0 and therefore key<L.highKey at time t0 accord-
ing to the definition of highKey (line 8 in Figure 4). If L is then split
into two leaf GNodes L and L′ and key is moved to L′, L.highKey≤
key<L′.highKey according to the split operation (lines 21 - 27 in
Figure 6). Note that the split operation is atomic to other concurrent
functions (see the proof of Lemma 6.2). Arguing similarly for
further split operations on L and L′, which eventually create a linked
list of L’s siblings L→L1→···→Lk (see Lemma 6.2), we have key
located in sibling Li where Li−1.highKey≤key<Li.highKey.

Lemma 6.6. The SEARCH function is correct.

Proof. (Sketch) We will prove that the result returned by the
SEARCH(key,GreenBST,maxDepath) function in Figure 5 is the
same as one returned by the conventional sequential binary search,
even when the UPDATE function is interfering.

Let t0 be the time at which a reference to the GNode lG returned
by the GNODESEARCH function (line 2 in Figure 5) is made.
According to Lemma 6.4, key, if existing, is located in lG at time t0.

Let cG be the current leaf GNode that S is visiting. Initially,
cG is lG.

Case 1: no interference on cG from the UPDATE function
since time t0. In this case, S returns the the same result as does
conventional sequential binary search (line 7). In this case, the
linearization point of the SEARCH function is the linearization point
of the GNODESEARCH function invoked at line 2 (cf. Lemma 6.3).

Case 2: interference without splitting on cG from an UPDATE

function U since time t0. In this case, similar to the atomicity
proof of Lemma 6.3, S will discover the interference and wait
for the update to finish before actually accessing cG, thanks to
counter cG.rev (lines 3 and 8). As S’s eventual access to cG is not
interfered with any update, S returns the the same result as does
conventional sequential binary search (line 7). In this case, the
linearization point of the SEARCH function is the time point when
the function observes that cG.rev is unchanged and even at line
8 in Figure 5. The linearization point of the UPDATE function U
is the time point when INCREMENT(cG.rev) returns (Figure 6: line
6 in the case of deletion and line 13 in the case of insertion).

Case 3: interference with splitting on cG from an UPDATE

function U since time t0. In this case, according to Lemmas 6.2
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and 6.5, S will find the correct right sibling sG of cG where key, if
existing, is located, by following nextRight pointers and checking
if key< sG.highKey (lines 4 - 6). Note that S will always find a
sG satisfying key<sG.highKey since cG’s last (rightmost) sibling
lG has lG.highKey = ∞ (line 8 in Figure 4). This case becomes
Case 2 for the sibling GNode sG.

Lemma 6.7. The UPDATE function is correct.

Proof. (Sketch) We will prove that the UP-
DATE(key, GreenBST, maxDepth) function in Figure 6 has
the same effect as does the update operation of the conventional
sequential binary search trees, even when other UPDATE functions
are interfering.

Let t0 be the time at which a reference to the leaf GNode lG
returned by the GNODESEARCH function (line 2 in Figure 6), is
made. According to Lemma 6.4, key, if existing, is located in lG
at time t0.

Let cG be the current leaf GNode that U is visiting. Initially,
cG is lG.

Case 1: no interference on cG from another UPDATE function
since time t0. In this case, U performs either the conventional insert
operation on cG’s internal binary search tree in the case of insertion
(line 14 in Figure 6) or marks as deleted the basic node containing
key in the case of deletion (line 7), which has a similar effect as does
the insert or delete operation of the conventional binary search tree.
In addition, if the maintenance conditions (e.g., rebalance or split)
are satisfied, the maintenance is performed sequentially without
any effect on the correctness (cf. Lemma 6.1). In this case, the lin-
earization point of the UPDATE function is the linearization point of
of the GNODESEARCH function invoked at line 2 (cf. Lemma 6.3).

Case 2: interference without splitting on cG from other UP-
DATE functions since time t0. As U has successfully locked cG (line
4) before performing any insertion or deletion, other concurrent up-
date functions on cG must wait for U to finish its modification and
unlock cG (line 9, 19, 35 or 38). As U’s update on cG is not inter-
fered by other update functions because of locking, U’s update has
a similar effect as does the insert or delete operation of the conven-
tional sequential binary search tree. In this case, the linearization
point of the UPDATE function is the time point when LOCK(G) in
the MOVE_RIGHT function invoked at line 4 returns (line 54 or 57).

Case 3: interference with splitting on cG from other UPDATE

functions since time t0. In this case, according to Lemmas 6.2
and 6.5, U will find the correct right sibling sG of cG where key
should be located, by following nextRight pointers and checking if
key<sG.highKey in the MOVE_RIGHT function invoked at line 4
(lines 55 - 59). This case becomes Case 2 for the sibling GNode sG.

Lemma 6.8. GreenBST is deadlock-free.

Proof. (Sketch) As the SEARCH function is lock-less, we only
need to prove that concurrent instances of the UPDATE function
lock GNodes in a well-defined order.

Indeed, for GNodes located at different tree levels, the UPDATE

function locks them from a GNode with lower level (i.e., child
GNode) to a GNode with higher level (i.e., parent GNode) in the
case of splitting (lines 33 - 35 in Figure 6). For GNodes located
at the same tree level, the UPDATE function locks them from left
to right in the MOVE_RIGHT function by following the nextRight
pointers (lines 54 - 57).

Name HPC ARM MIC
System Intel Haswell-EP Samsung Exynos5

Octa
Intel Knights
Corner

Processors Intel Xeon
E5-2699 v3

1x Samsung Exynos
5410

1x Xeon Phi 31S1P

# cores 18 (36 with
hyperthreading)

− 4x Cortex A15
− 4x Cortex A7

57 (without
hyperthreading)

Core clock 2.30 GHz − 1.6 GHz (A15)
− 1.2 GHz (A7)

1.1 GHz

L1 cache
(per core)

32/32 KB I/D 32/32 KB I/D 32/32 KB I/D

L2 cache
(per
processor)

256 KB × 18
(approx. 4.6
MB)

2 MB (shared A15)
512 KB (shared A7)

512 KB × 57
(approx. 29.1 MB)

L3 cache 45 MB (shared) - -
Interconnect 2x 9.6 GT/s

Quick Path Inter-
connect (QPI)

CoreLink Cache
Coherent Intercon-
nect (CCI) 400

5 GT/s Ring Bus
Interconnect

Memory 512 GB DDR4 2 GB LPDDR3 6 GB GDDR5
OS Ubuntu Linux

18.04 LTS
Ubuntu 14.04
(3.4.103 kernel)

Xeon Phi uOS
(2.6.38.8+mpss3.4.2)

Compiler GNU GCC 7.2.0
(using -O3)

GNU GCC 4.8.2
(using -O3)

Intel C Compiler
(ver. 15.0.2) (-O3)

Table 2: Testing platforms specifications.

7 EXPERIMENTAL EVALUATION

We ran several different benchmarks to evaluate GreenBST
performance (operations per second) and energy efficiency
(operations per joule). We combined the benchmark results with
the last level cache (LLC) and memory profiles to draw a conclusion
of whether CvEB-based trees such as GreenBST provide portable
energy efficiency and performance across different platforms.

We evaluated GreenBST against the prominent non-blocking
and lock-based search trees in the literature (see Table 1), using
parallel micro-benchmark suite Synchrobench [27]. Their LLC
and memory profiles (see Figures 8d and 8f) were collected to
evaluate the impact of the locality-aware approaches on energy
efficiency and performance (see Section 7.1).

The experimental benchmarks were conducted on an Intel
high performance computing (HPC) platform, an ARM embedded
platform, and an accelerator platform based on the Intel Xeon
Phi architecture (MIC platform) (see Table 2). Scalable memory
allocator jemalloc 5.1.0 was used for all the benchmarks on the
HPC, ARM and MIC platforms. These benchmarks were repeated
at least 5 times to guarantee consistent results.

GreenBST is open source and available at:
https://github.com/uit-agc/GreenBST.

7.1 Benchmark setup
We compared GreenBST with seven concurrent search trees (see
Table 1) using parallel micro-benchmark suite Synchrobench
[27]. GNode’s U is set to 4095 and LYBTREE’s order (or the
maximum number of keys within a node [32]) was set to 64
(or log2(order) = 6), the best configuration (cf. Figure 8e). All
running threads were pinned to the available logical cores using
pthread_setaffinity_np. If the number of threads was
less than the number of logical cores in the first CPU, all threads
were pinned to the first CPU. Otherwise, threads were distributed
evenly among available CPUs. The first thread to finish its work
set a global flag, which caused each thread to terminate after its
next operation. The experiments were performed in C/C++.

In order to evaluate the efficiency of GreenBST design, we
implemented SVEB, a lock-based version of the conventional
cache-oblivious search tree using global mutex. Namely,
concurrent accesses to the conventional sequential vEB-based tree
[11] were controlled by a global mutex.
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All tree operations (i.e., search, insert, delete) used random
values v∈ (0,init×2],v∈N where init was the initial size of trees.
The init values were chosen to make the trees partially fit into the
last level cache (LLC). The init value for HPC and MIC platforms
was 224 (i.e., 64MB of keys, approximately 2 times as much as
the last level cache (LLC) of the HPC and MIC platforms) and for
ARM platform was 220 (i.e., 4MB of keys, 2 times as much as the
ARM platform’s LLC). Multiple threads performed insertions and
deletions until the data structure reached init keys. Due to the space
constraints, we present only two cases: i) 90% search and 10%
update and ii) 50% search and 50% update. The benchmarks were
run with different numbers of cores between the minimum and max-
imum available cores on the HPC and ARM and MIC platforms.

Energy efficiency metrics (operations/joule) were the number
of operations divided by the energy consumption. The ARM
platform was equipped with a built-in on-board power measurement
system that was able to measure the energy consumption for the
A15 cores, A7 cores, and memory continuously in real-time. For the
Intel HPC platform, the Intel PCM [1] using built-in CPU counters
was used to measure the CPU and DRAM energy consumption.
Energy consumption on MIC platform was measured by polling the
/sys/class/micras/power interface every 50 milliseconds.
The total energy consumed by CPUs and memory system (in
Joules) was measured. The measurements started after the tree
initialization.

Performance metrics (operations/second) were the number of
operations (rep=5,000,000) divided by the maximum time for the
threads to finish the whole operations.

7.2 Energy efficiency evaluation
On the Intel HPC platform, GreenBST was more energy efficient
than the other trees in all cases except the case of 1 thread (see
Figure 8a, top bar-charts). In the case of 1 thread, SVEB was
slightly more energy efficient than GreenBST because of SVEB
simple concurrency control - global mutex. The global mutex,
however, prevented SVEB from scaling with the number of cores
while GreenBST scaled well with the number of cores. GreenBST
was 40% more energy efficient than ABTREE, the best competitor,
in the experiment running the 50%-search benchmark with 36 cores
(see the right bar-chart). GreenBST energy-efficiency advantage
over the other trees comes from the new concurrency-aware
vEB layout that reduces data movement between memory levels
(e.g., between LLC and DRAM as shown in Figure 8d) while
supporting high concurrency. For example, as LYBTREE node is
a contiguous array of sorted keys to maximize spatial locality for
search operations, insert operations may need to shift many keys in
order to have room for a new key, causing high data movement (cf.
Figure 8e, right chart). The amount of data transferred between
CPU last level cache (i.e., L3-cache) and memory in GreenBST is
much less than that in the other trees except SVEB (cf. Figure 8d).

On the ARM embedded platform where the A15 processor
with 4 cores was used, GreenBST energy efficiency scaled well
and was significantly better than those of the other trees (see
Figure 8b, top bar charts). Note that SVEB energy efficiency
decreased significantly and became worse in the case of 4 cores.
Contrarily, GreenBST scaled well with the number of cores and
was 35% more energy efficient than ABTREE, the best competitor,
in the experiment running the 50%-search benchmark with 4 cores
(see the right bar-chart).

Note that LFBST update operations did not work on the ARM
platform since it required 64-bit pointers while the ARM platform

was 32-bit. As a result, LFBST was excluded from the experiments
on the ARM platform.

On the Intel MIC accelerator platform, GreenBST was
significantly more energy efficient than the other trees (see Figure
8c, top bar-chart). GreenBST was 50% more energy efficient
than LYBTREE, the best competitor, in the case of 90%-search
benchmark with 57 cores.

The results on data movement between processor last-level
cache (LLC) and memory on the HPC and MIC platforms provide
insights into why GreenBST was more energy efficient than all
the other trees in most cases (see Figures 8d). The LLC-DRAM
data movements on the HPC platform and the MIC platform
were collected using Intel PCM and PAPI library, respectively.
GreenBST data transferred between LLC and memory was
significantly less than those of the other trees across the platforms,
thanks to GreenBST concurrent locality-aware layout CvEB (see
Section 3.2. For example, on the HPC platform, GreenBST data
transferred between LLC and memory was only half of ABTREE,
the best competitor, in the 50%-search benchmark using 36 cores
(see Figures 8d). Moreover, GreenBST’s memory footprint is
smaller than those of LYBTREE, CITRUS, LFBST and BSTTK,
four of the six non-vEB trees (see Figure 8f).

7.3 Performance evaluation

On the Intel HPC platform, GreenBST outperformed all the
other trees in all the cases from 9 cores to 36 cores with both the
90%-search and 50%-search benchmarks (see Figure 8a, bottom
line-charts). GreenBST throughput was 40% higher than that of
LYBTREE, the best competitor, in the case of the 50%-search
benchmark using 36 cores (see the right line-chart).

On the ARM embedded platform, GreenBST significantly
outperformed all the other trees in all the experiments (see Figure
8b, bottom line-charts). GreenBST throughput was 60% higher
than that of ABTREE, the best competitor, in the experiment
running 50%-search benchmark with 4 cores (see the right chart).

On the Intel MIC accelerator platform, GreenBST
outperformed all the other trees in all the experiments (see Figure
8c, bottom line-chart). GreenBST throughput was 40% higher than
that of LFBST, the best competitor, in the 50%-search benchmark
using 57 cores (see Figure 8c, bottom right line-chart).

8 DISCUSSIONS

8.1 Locality-awareness and overhead minimization

The usage of concurrency-aware vEB layouts (or CvEB) is able
to reduce GreenBST energy consumption and at the same time
increase GreenBST performance across the HPC, embedded
and accelerator platforms. Section 7.1 has highlighted how
CvEB-based search trees such as GreenBST manage to outperform
their counterparts in terms of energy efficiency and performance
for synthetic benchmarks on the different platforms.

One of the interesting findings is that minimizing hidden
overhead (e.g., pointers in search trees) in locality-aware data
structures can significantly reduce the energy consumption and
increase the runtime performance. Our new optimization techniques
such as removing space-overhead of pointers (see Section 5.1)
significantly reduce GreenBST space overhead, thereby reducing
the data transfer between memory levels (cf. Figures 8d). Moreover,
the smaller embedded trees reduce the maintenance overhead for
leaf GNodes because less data needs to be arranged in rebalance
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(a) HPC platform. GreenBST is up to 40% more energy efficient than
ABTREE, the best competitor, and has up to 40% higher throughput
than LYBTREE, the best competitor, in the 50% search benchmark
using 36 hyper-threaded cores.
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(b) ARM platform. GreenBST is up to 35% more energy efficient than
ABTREE, the best competitor, and has up to 60% higher throughput
than ABTREE in the 50% search benchmark using 4 cores.
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(c) MIC platform. GreenBST is up to 50% more energy efficient than
LYBTREE, the best competitor, in the 90% search benchmark using
57 cores and has up to 40% higher throughput than LFBST, the best
competitor, in the 50% search benchmark using 57 cores.
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(d) Data movement in the 50% search benchmark between CPU last
level cache (LLC) and main memory (DRAM) on the HPC platform
and the MIC platform.
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(e) Energy efficiency and data movement between LLC and DRAM on
the HPC platform for LYBTREE and GreenBST with varying node size.

aaaaaaaaa
Scenario

Tree name
SVEB LYBTree citrus LFBST BSTTK abtree bwtree GreenBST

Insert 50%×r keys, then 0.38 0.83 1.51 1.30 3.98 0.42 0.32 0.57
Delete 90% of the keys 0.38 0.83 1.65 1.30 4.00 0.42 0.33 0.57

(f) The tree memory footprint (in GB) on the HPC platform. Tested using random keys in the range (1,r), with r=225.

Figure 8: (a,b,c) Energy efficiency and throughput comparison of the trees on the HPC, ARM and MIC platforms. (d) LLC-DRAM
data movement on the HPC platform, collected from the CPU counters using Intel PCM, and on the MIC platform, collected using
PAPI library. (e) Energy efficiency and data movement on the HPC platform for varying node size. (f) The tree memory footprint,
collected using Linux’s PMAP command.
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or split operations. The other optimization techniques such as
incremental rebalancing (see Section 5.3) significantly reduce
GreenBST maintenance overhead (e.g., rebalancing overhead) (see
Section 3 in [42] for performance comparison between GreenBST
and its variation without the optimization called DeltaTree).

8.2 Concurrency control
Some of the benchmark results show that besides data movements,
efficient concurrency control is also necessary in order to devise
energy-efficient data structures on multicore platforms. For
example, in sequential executions (i.e., 1 core), the conventional
vEB tree (SVEB) had the smallest amount of data transferred
between memory and the last level cache (cf. Figure 8d) and
thereby achieved the best energy efficiency (cf. Figure 8a).
However, when using 2 or more cores, its energy efficiency failed
to scale (cf. Figures 8a, 8b and 8c). SVEB is not designed for
concurrent operations and therefore an inefficient concurrency
control (i.e., a global mutex) had to be incorporated in order to
include SVEB in this study. Note that we were unable to use
a more fine-grained concurrency control without significantly
changing SVEB data structure because SVEB uses a recursive
layout fitted in a contiguous memory block (see Section 3.1).
Therefore, although SVEB had the smallest amount of data transfer
in sequential executions, in parallel executions the concurrent cores
had to spend a lot of time waiting and competing for a lock. This is
inefficient as waiting cores still consume power (e.g., static power).

8.3 Comparison with previous concurrent cache-
oblivious trees
Based on experimental insights, GreenBST, a concurrent CvEB-
based tree, is more efficient than previous theoretical concurrent
cache-oblivious (CO) trees such as the concurrent packed-memory
CO tree and concurrent exponential CO tree [9]. The concurrent
packed-memory CO tree has a good amortized memory transfer
cost of Θ(logB N + (log2 N/B)) for tree updates, assuming that
operations occur sequentially. However, the proposed data
structure requires each node to have the parent-child pointers.
Besides the complication in re-arranging those pointers, we have
found that removing pointers from nodes to minimize memory
footprint is significantly beneficial for cache-oblivious trees in
practice (see Section 8.1).

In the concurrent exponential CO tree [9], expected
memory transfer cost for search and update operations is
O(logB N + (logα lgN)), assuming that all processors are
synchronous. Cormen et al. [16, pp. 212], however, wrote that
although exponential search tree algorithms [4] are an important
theoretical breakthrough, they are fairly complicated in practice.
Indeed, nodes in the concurrent exponential CO tree grow
exponentially in size, which not only complicates the maintenance
of inter-node pointers but also exponentially increases the tree
memory footprint in practice. In contrast, the memory footprint of
GreenBST with fixed-size GNodes gradually expands on-demand
when the tree grows. Thanks to the fixed-size GNodes, GreenBST
exploits further spatial locality by utilizing a cached map to
eliminate the basic pointers overhead (see Section 5.1 for details).

9 CONCLUSIONS

The results presented in this paper provide a starting point to
investigate further energy-efficient data structures and algorithms

that exploit fine-grained data locality provided by ideal cache
models. The results not only show that GreenBST is an energy-
efficient concurrent search tree, but also provide important insights
into how to develop energy efficient data structures in general. On
single core systems, locality-aware data structures that can lower
data movement, have been shown to be able to increase energy-
efficiency. However, on multicore systems, locality-awareness
alone is not enough, and good concurrency control and cache
strategy are needed. Otherwise, the energy overhead of either
waiting cores or interconnect-based cache coherency mechanisms
can exceed the energy saving obtained by less data movement.

The CvEB-based search trees such as GreenBST are composed
of tree-containers (i.e., GNodes), thereby being highly decompos-
able. Therefore, it is possible to extend the CvEB search trees to
work with heterogeneous cores and memory systems, for example
by utilizing Cosh OS abstractions [6]. Also, devising in-memory
key-value stores on top of GreenBST is among our future works.
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