Document downloaded from:

http://hdl.handle.net/10251/157203

This paper must be cited as:

Prades, J.; Silla Jiménez, F. (2019). GPU-Job Migration: The rCUDA Case. IEEE
Transactions on Parallel and Distributed Systems. 30(12):2718-2729.
https://doi.org/10.1109/TPDS.2019.2924433

The final publication is available at

https://doi.org/10.1109/TPDS.2019.2924433

Copyright |nstitute of Electrical and Electronics Engineers

Additional Information

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

GPU-Job Migration: the rCUDA Case

Javier Prades and Federico Silla

Abstract—Virtualization techniques have been shown to report benefits to data centers and other computing facilities. In this regard,
not only virtual machines allow to reduce the size of the computing infrastructure while increasing overall resource utilization, but also
virtualizing individual components of computers may provide significant benefits. This is the case, for instance, for the remote GPU
virtualization technique, implemented in several frameworks during the recent years.

The large degree of flexibility provided by the remote GPU virtualization technique can be further increased by applying the migration
mechanism to it, so that the GPU part of applications can be live-migrated to another GPU elsewhere in the cluster during execution

time in a transparent way.

In this paper we present the implementation of the migration mechanism within the rCUDA remote GPU virtualization middleware.
Furthermore, we present a thorough performance analysis of the implementation of the migration mechanism within rCUDA. To that
end, we leverage both synthetic and real production applications as well as three different generations of NVIDIA GPUs. Additionally,
two different versions of the InfiniBand interconnect are used in this study. Several use cases are provided in order to show the
extraordinary benefits that the GPU-job migration mechanism can report to data centers.

Index Terms—CUDA, GPU, virtualization, migration, rCUDA.

1 INTRODUCTION

IRTUALIZATION has become a very important mecha-
Vnism to increase the efficiency of data centers. Virtual-
ization allows acquisition costs to be better tailored to the
real computing needs while reducing energy footprint by
consolidating servers. The concept of virtualization can be
applied at different levels, as exposed below.

Firstly, the virtualization mechanism can be applied at
the computer level, leading to the well known and widely
used virtual machine frameworks, which allow several vir-
tual machines to be concurrently executed in a real com-
puter, sharing its resources and hence increasing overall
utilization. As a consequence of the widespread use of
virtual machines, processor manufacturers incorporate an
increasing virtualization support into their products [1].

In the context of virtual machine solutions, virtualization
can also be applied at the device level in order to provide
support to virtual machines. For instance, some network
adapters include virtualization features [2] [3] which allow
the adapter to be replicated, at the logical level, so that dif-
ferent replicas of the network card are assigned to different
virtual machines. In a similar way, graphics processing units
(GPUs) have recently included some virtualization support.
For instance, the GRID GPU by NVIDIA [4] can be shared
among virtual machines.

In addition to provide support to virtual machines,
virtualization of individual devices may also be intended
to provide an increased degree of flexibility at the cluster
level. For example, networked disks enable sharing a file
system across a cluster. In a similar way, the recent remote
GPU virtualization technique, implemented in frameworks
like rCUDA [5], GVirtu$ [6], DS-CUDA [7], or FlexDirect by

e |.Prades and FESilla are in Departament d’Informatica de Sistemes i
Computadors, Universitat Politecnica de Valencia, Camino de Vera s/n
46020 Valencia, Spain
E-mail: japraga@gap.upv.es and fsilla@disca.upv.es

Bitfusion [8], allows GPUs to be logically detached from the
node where they are installed thus creating a pool of GPUs
that can be remotely accessed from any node in the cluster.
This provides great flexibility when using GPUs.

The large degree of flexibility provided by the remote
GPU virtualization technique can be further increased by
allowing the GPUs assigned to a given application to move
around in the cluster while the application is in execution.
This movement means that the application is initially pro-
vided one or more GPUs in one or more nodes of the
cluster but, during application execution, the GPU part of
the application is transparently migrated to other GPU (or
GPUs) elsewhere in the cluster. This migration of the GPU
part of an application can provide many different benefits
to data centers and other computing facilities.

Probably, the most immediate benefit of migrating the
GPU part of an application is to support GPU server consol-
idation. In this regard, notice that resource utilization in data
centers evolves over time, depending on the exact workload
applied at every moment. Therefore, at some point in time,
the utilization of the GPUs in the cluster may be uneven.
That is, some nodes may present high GPU utilization
whereas GPUs located in other nodes may be much less
utilized. In this scenario it would be useful to consolidate
GPU jobs into a smaller number of servers, so that nodes
becoming free can be switched off.

Other benefit of GPU-job migration is related to the
efficient management of different user priorities in a data
center, as it will be shown later in Section 5. Carrying out
GPU load balancing across the cluster is also possible.

In this paper we present the implementation of the
GPU migration mechanism within the rCUDA remote GPU
virtualization middleware. Up to our knowledge, this is the
first proposal for a remote GPU virtualization middleware
to include migration capabilities in the context of CUDA.
Our proposal provides more flexibility to data centers than
previous proposals, as revisited in Section 3. Additionally,

we present a thorough performance evaluation of this im-
plementation when applied to different real applications.
Three generations of NVIDIA GPUs and two versions of the
InfiniBand network fabric are used in this performance anal-
ysis. This analysis is the main contribution of this paper with
respect to [9], which showed a non-mature yet implementa-
tion of the migration mechanism within rCUDA as well as a
naive performance analysis. Notice that the proposal in this
paper is not only useful for cloud infrastructures but it can
also be applied to applications running in bare metal.

The paper is organized as follows. Section 2 presents
a brief revision of the rCUDA middleware. Next, Sec-
tion 3 provides a review about how the GPU migration
mechanism has been implemented within different GPU
virtualization frameworks whereas Section 4 presents how
migration is implemented in the context of the rCUDA mid-
dleware. Section 5 presents a thorough performance anal-
ysis of using the migration mechanism within the rCUDA
middleware. Finally, Section 6 concludes this work.

2 ABOUT REMOTE GPU VIRTUALIZATION

Several software-based GPU sharing solutions have been
developed in the context of CUDA during the recent years.
All of them aim to offer the same API as the NVIDIA CUDA
Runtime API does. Figure 1 depicts the architecture usually
deployed by these GPU virtualization frameworks, which
follow a distributed client-server approach. The client part
is installed in the cluster node executing the accelerated
application whereas the server side runs in the node owning
the actual GPU. The architecture depicted in Figure 1 is
used in the following way: the client middleware receives
a CUDA request from the application and forwards it to
the server middleware. In the server side, the middleware
receives the request and interprets and forwards it to the
GPU, which completes the execution of the request and
returns the execution results to the server middleware.
Finally, the server sends back the results to the client side,
which forwards them to the accelerated application.
Among the several remote GPU virtualization solutions,
we focus on rCUDA (remote CUDA), which supports ver-
sion 9.2 of CUDA, being binary compatible with it, what
means that CUDA programs do not need to be modified in
order to use rCUDA. Furthermore, it implements the entire
CUDA API (except for graphics functions and NVIDIA’s
Unified Virtual Memory (UVM), which is partially sup-
ported). rtCUDA provides specific support for different
interconnects. Currently, two modules are available: one
intended for TCP/IP compatible networks, and another one
specifically designed for the InfiniBand and RoCE inter-
connects, which make use of RDMA. Furthermore, security
and isolation among applications sharing a given rCUDA
server is achieved by creating a new GPU context for each
of the client applications arriving at the server. In this way,
different applications cannot see each other and, in case one
of the clients die, the GPU contexts for the other clients
can safely continue execution. Compared to other publicly
available remote GPU virtualization frameworks developed
in academia, the rCUDA middleware provides the best
performance [10]. In this regard, the rCUDA middleware
achieves near to native performance [11] [12] [13]. Also,

Client side | Server side

|
Application

CUDA API

server

eng'ne CUDA libraries

client engine

1
1
1
1
I
1
I
Software :

Hardware

Fig. 1. General organization of remote GPU virtualization frameworks.

contrary to commercial solutions such as FlexDirect, —tCUDA
provides support for a wide scope of applications.

3 RELATED WORK ON GPU MIGRATION

Migrating GPUs has been addressed in the past in very
few works, although none of them was proposed in the
context of CUDA. One of these works is presented in [14].
This proposal, intended for OpenCL instead of CUDA, is
implemented within the VOCL remote GPU virtualization
framework. In this proposal, every time a memory allo-
cation OpenCL function is called, it is intercepted and all
the necessary information about the reserved memory areas
(starting address, length, etc) is recorded, so that it can
be later used for migration purposes. Furthermore, this
framework requires that kernels running in the GPU are
completed before migration begins. Moreover, a couple of
functions are provided in order to trigger migration from
the executing application, thus requiring the source code of
applications to be modified. On the contrary, in our pro-
posal, migration is not triggered by the application (source
code is not modified) but by an external signal. This signal,
in the form of a TCP/IP connection to the rCUDA server, is
originated at the job scheduler, for instance.

Recent implementations of GPU live migration can be
found in NVIDIA’s GRID [4] and Intel’s GPUs [15], which
allow the whole virtual machine (including both its CPU
part as well as its GPU part) to be migrated between
nodes in a cluster. However, contrary to our proposal, these
technologies do not decouple GPUs from CPUs but they
are tied together and must be migrated at the same time,
thus not allowing the benefits provided by our proposal,
such as GPU server consolidation, GPU load balancing,
efficient management of user priorities, etc. Furthermore,
these solutions require the usage of virtual machines to
work whereas our proposal can migrate GPUs regardless
of using virtual machines or bare metal.

The techniques to implement GPU migration and GPU
checkpointing are similar. Thus, it is worth to also consider
works on GPU checkpointing. In this regard, for instance,
in [16] a prototype of a checkpointing framework, named
CheCUDA, is presented. It only supports a fraction of the
functions within the old CUDA 7.0. In order to know which
are the GPU memory areas to be included in the checkpoint,
CheCUDA provides a set of wrappers to some of the basic
cuMemAlloc functions in the Driver and Runtime APIs.

rCUDA Client rCUDA Server

Migration Module Migration Module

Memory Allocations Table
cudaMalloc devPtr, size
cudaMalloc3D pitchedDevPtr...
cudaHostAlloc pHost, size, flags
cudaMalloc devPtr, size

Client Applications Table

192.168.1.93 0
192.168.1.25 1
192.168.1.42 0,1
192.168.1.225 2

Migration
Engine
Migration
Engine

Interconnection Network

Fig. 2. Migration modules inside rCUDA client and server.

However, this solution does not support multi-threaded ap-
plications neither applications using several GPUs. Another
proposal is described in [17], where a non-mature hybrid
checkpointing technology intended to support checkpoint-
ing a running GPU kernel at any time during its execution
is presented. The proposal is transparent to the programmer
(no source code modification is required), although it is
based on the debug interface of CUDA, therefore forcing
kernels to run in synchronization mode and causing a large
execution overhead. One more proposal, described in [18],
supports UVM.

Finally, a proposal for checkpointing, named gHA, is
described in [19] for Intel GPUs. gHA does not need any
modification of the application source code. Also, no mod-
ification to the guest driver is required. Furthermore, gHA
saves the Intel GPU registers during a kernel execution so
that it does not have to wait for the running kernel to be
completed.

4 IMPLEMENTING GPU MIGRATION IN RCUDA

In this section we present the main details of the imple-
mentation of the migration mechanism within the rCUDA
middleware as well as its operation.

Figure 2 shows the migration module included both in
the rCUDA client and in the rCUDA server. These modules
comprise a migration engine where the logic that carries out
the actual migration process is integrated.

The migration engines at the client and server sides
are responsible for storing the necessary information to
support migration. In the server side, the migration engine
manages the information related to active client applica-
tions, which is stored in the Client Applications Table. The
migration engine in the rCUDA server is also responsible
for handling migration requests and coordinating them
with the migration module in the corresponding client. In
the client side, the migration engine tracks all memory
allocation/deallocation functions. The Memory Allocations
Table stores the GPU memory allocation information so
that, whenever a migration between GPUs is requested, this
information is used to recreate the memory allocations in
the new GPU.

The operation of the migration module within rCUDA
is shown in Figure 3. It can be seen in this figure how
an accelerated application is migrated using the rCUDA
middleware. At step 1 in Figure 3(a), the application starts
execution and the connection between the rtCUDA client and
the rCUDA server is established. Once this initial connection
is set up, the application continues its usual execution.

Local Node Remote Node 1
Application rCUDA Server GPU Memory
Region| |Region| |Region
rCUDA Client @ 1 > 3
o
Migration @ Migration GPU Execution
Module Module 1]
)
WX 19

N\
@%temal Signal

(a) The application starts execution and, at some point in
time, the migration signal, triggered by the resource sched-
uler, arrives at the rCUDA server.

Local Node Remote Node 1
Application rCUDA Server GPU Memory
Region| |Region| [Region
rCUDA Client 1 > 3
o
Migration Migration GPU Execution, ®
Module Module [[TM<ernel =~]
@P2p Copy Remote Node 2
rCUDA Server GPU Memory
@ Region| |Region| |Region
el 1 2 3
Migration GPU Execution
Module

(b) The memory is copied from source GPU to destination
GPU in another node of the cluster.

Local Node Remote Node 1
Application rCUDA Server GPU Memory
rCUDA Client @
- - o
Migration Migration GPU Execution
Module Module
©
Remote Node 2
rCUDA Server GPU Memory
Region| |Region| |Region
|l 1 2 3
Migration
Module

(c) Resources at the initial rCUDA server are released and
execution continues in the new GPU.

Fig. 3. Complete operation of the migration module implemented within
the rCUDA middleware.

In this particular example, as it can be seen in step 2,
the application performs three memory allocations (light
gray boxes in the "GPU execution” queue) followed by 2
copies from host to device (dark gray boxes) in order to
fill memory regions 1 and 2 previously allocated in the
GPU memory. Finally, the application launches a kernel,
which will operate with the data located in regions 1 and
2. This kernel will store the results in region 3. Notice
that the information about these three memory allocations
was stored in the Memory Allocations Table of the client
migration module when the associated CUDA calls were
intercepted at the client node. Some time later, during the
execution of the aforementioned kernel, an external signal
(coming from a resource scheduler, for instance) arrives

at the server migration module, as shown in step 3. This
external signal is a TCP connection and has associated the
necessary information to carry out the migration: client
identifier as well as source and destination GPUs. Finally,
in step 4, the migration request will be communicated to the
migration module in the corresponding client.

Figure 3(b) shows the core of the migration process. Once
the migration request arrives at the rCUDA server and it is
communicated to the client, a synchronization is performed
in the source GPU, waiting for kernels to complete. In our
example we can see in step 5 how the migration modules
have to wait for the completion of the kernel being executed.
Next, in step 6, a new connection between the rCUDA client
and the new rCUDA server will be established. Once this
connection is created, data must be copied between both
GPUs (source and destination). To that end, for each of the
regions stored in the Memory Allocations Table, a memory
allocation will be performed in the destination GPU mem-
ory (light gray boxes) and afterwards the data for each of the
regions is transferred directly from the memory of source
GPU to the memory of the destination GPU by using the
P2P copy module implemented in rCUDA [11] (dark gray
boxes), as shown in step 7. This data copy is performed
directly between the source and destination GPUs in case
InfiniBand or RoCE are used (leveraging RDMA) whereas
an intermediate copy involving the client node is required
in case TCP/IP communications is used.

Figure 3(c) shows the final steps of the migration process.
Memory regions in the original GPU are released in step 8.
Then, the connection used for the P2P copies is destroyed
(step 9) as well as the connection between the rCUDA
client and the initial rCUDA server (step 10). Finally, the
application continues execution in the new GPU (step 11).

There is an important final remark about migrating GPU
jobs when different generations of GPUs are involved in the
migration process. Notice that when using CUDA, there is
no binary compatibility guarantee between GPU applica-
tions compiled for different generations of GPUs. That is, an
application compiled for Kepler may not run on a Maxwell
GPU and vice versa. Therefore, migrating a GPU application
between different GPU generations may not be successful
due to this lack of compatibility guarantee. Fortunately, the
nvcce CUDA compiler provides options to generate binaries
that can be run on different GPU generations. The nvcc
compiler follows a compilation model based on two stages.
In the first stage, an intermediate representation, called
PTX, is generated. Later, in the second stage, it is used to
generate the binary code for a specific GPU generation. This
binary code can either be generated at compile time or at
execution time by using JIT (Just-in-Time) compilation. Each
of the options presents pros and cons. If it is generated at
runtime, then it will perfectly match the requirements of
the GPU that is going to be used. However, some overhead
will be introduced by the compilation during the execution
of the application. On the other hand, if the binary code
is generated at compile time, nvcc allows the generation
of multiple translations of the same source code targeted
for multiple GPU generations. At run time, these multiple
translations, which are organized in Fatbinaries, will allow
the CUDA driver to select the appropriate binary code based
on the actual GPU. In summary, if a GPU binary code can

4

be executed with CUDA in a set composed of several GPU
generations (either because it is using JIT or Fatbinaries),
then it will be possible to migrate that code with rCUDA
among that very same set of GPU generations. The use cases
presented in next section are an example of this, given that
applications are migrated between Kepler and Pascal GPUs.

5 PERFORMANCE EVALUATION OF GPU MIGRA-
TION WITH RCUDA

This section presents a performance study of our imple-
mentation of the GPU-job migration mechanism within the
rCUDA middleware. We consider three different scenarios
for this performance evaluation. In the first scenario, ad-
dressed in Section 5.1, a synthetic application will be used.
In the second scenario, thoroughly introduced in Section 5.2,
we consider real applications for the migration experiments.
Finally, in Section 5.3 we leverage a series of use cases in
order to exemplify the usefulness of migrating GPU jobs
among cluster nodes.

The testbed used in all these analyses consists of a cluster
of 1027GR-TRF Supermicro nodes which include one FDR
and one EDR InfiniBand network adapters, which provide
56 Gbps and 100 Gbps, respectively. Moreover, they include
three different generations of GPUs: an NVIDIA K20 GPU,
an NVIDIA K40 GPU and an NVIDIA P100 device. Using
these three different GPU models will allow us to better
exercise the migration mechanism in this section.

5.1 Synthetic Application

Migrating a job among two GPUs located in different cluster
nodes requires two different types of actions, both of them
contributing to the migration overhead. First, every memory
region allocated by the application in the source GPU has to
be copied to the destination GPU. Second, it is required to
properly manage these copies.

Regarding the first type of actions, the movement of the
data in each region from the source GPU to the destination
device consumes most of the migration time. This time
depends not only on the exact network fabric used but it
also depends on the exact size of the memory region to be
moved, given that the maximum bandwidth attained by a
network fabric is only achieved for data transfers beyond
a minimum threshold. For instance, in the case of copying
data with rCUDA among GPUs located in different cluster
nodes, the maximum performance is achieved when data
transfers are larger than 10 MB [11].

On the other hand, the time required for managing the
data copies cannot be neglected. In this regard, the connec-
tion between rCUDA servers must be first established in
order to later use P2P copies. Afterwards, for every memory
region to be copied from source to destination GPUs, a call
to a CUDA memory allocation function has to be carried
out in the destination GPU prior to copying the data of that
region from the source GPU. Additionally, once the data of
that region has been copied, a CUDA memory deallocation
function has to be executed in the source GPU. Calls to
CUDA memory allocation/deallocation functions require
some time to be executed and, therefore, the more memory
regions the application allocated in the source GPU, the

longer it will take to manage the migration process, as it
will be shown later.

In order to understand the impact on performance of
each of the parameters involved in the migration of GPU
jobs, in this section we leverage a synthetic application so
that different parameters can be controlled in an isolated
way. The synthetic application implemented for this study
takes as input parameters the total amount of GPU memory
regions and the size of each region. Then, by using these
input parameters, the application allocates 1 equally sized
memory regions in the GPU. Although this application is
extremely simple, using it in this first scenario will allow us
to understand the behavior of the migration process.

Regarding the network fabrics used in the experiments
with the synthetic application, we have considered 6 dif-
ferent network throughputs in order to shed light to the
performance results. First, we have leveraged FDR and EDR
InfiniBand network fabrics, which make use of PCle 3.0
x8 and PCle 3.0 x16, respectively. Additionally, we have
modified the PCle settings in the testbed systems so that
these network adapters were also used with PCle 2.0 and
PCIe 1.0 configurations. These additional configurations
are intended to reduce network performance. The exact
throughput of each of these configurations is shown in
Figure 4 for transfer sizes ranging from 2 bytes up to 8 MB.
It can be seen in this figure that we are considering effective
transfer bandwidths ranging from 13.2 Gbps (FDR PCle 1.0)
up to 92 Gbps (EDR PCle 3.0). Also, performance of EDR
PCle 1.0 and FDR PCle 2.0 are almost identical.

Results obtained with the synthetic application are
shown in Figure 5. For all the experiments depicted in this
figure, a P100 GPU has been used. We have selected this
GPU because it supports PCle 3.0 x16, which provides a
bandwidth equal to or larger than all the network configu-
rations considered. In this way, the limiting factor in these
experiments will be the exact network fabric configuration.
Figure 5 also displays the performance of the migration
process when the 1 Gbps Ethernet network is used. Notice
that results for this network are presented only for compar-
ison purposes, given that its low performance makes this
network not to be an option for virtualizing GPUs among
cluster nodes in production data centers.

It can be seen in Figure 5(a) that the amount of time
required by the migration process directly depends on the
amount of data to be migrated. In this figure, the synthetic
application has been configured to allocate only one mem-
ory region. Therefore, only one call to the cudaMalloc

14000

—®&——EDRPCle 3.0
—aA——EDRPCle 2.0
—8—EDRPCle 1.0
~---M----FDR PCle 3.0
~--A-----FDRPCle 2.0
----@----FDR PCle 1.0

12000

10000

@
8
S

—h—a—
O R Bl O .,

Bandwith (MB/s)
=3
8
S}

B e T e e e e e e e R =)

24 8116 32/64128256512 1 2 ' 4 8 16/32 64128256512 1 2 ' 4|38
Bytes KB MB

Fig. 4. Bandwidth attained for several network configurations using
different transfer sizes.

B Copy OOther

o 5 ¢
$ 3 @

&
i~
3 I I I

HHHH!‘IHHHHHH|HHHHHH|HHHHHH|HHH"I|H'HIII !IIIII|IIII\|

n:zoaoommn:oooomn:n:cooc;mzn:ccoooq,n:moooomzmoooommmoooowmmoooo
SO G e 00N EQ O N e 00N EG O N 00NN &80 N e
(i}

_—,
7

25

2

@

Migration Time (seconds)

0

°
&
Ethernet [N

Etl
EDR F'Cle 2
EDR PCle 1.
FDR PCle 2.
FDRPCle 1.

32 64 128 256 512 1024 2048 4096
Region Size (MB)

(a) A single memory region is allocated in the GPU. Different region
sizes are considered (from 32 MB up to 4 GB).

3 ; v
&

Migration Time (seconds)
N

(b) Multiple memory regions are allocated in the GPU, accounting for a
total of 4 GB GPU memory in all cases.

Fig. 5. Time required to migrate a job among two P100 GPUs located
in different nodes. A synthetic application is leveraged. Several config-
urations of the FDR and EDR InfiniBand network adapters are used.
Performance for the 1 Gbps Ethernet network is also displayed.

TABLE 1
Amount of seconds required for management tasks in Figure 5(b).

| [T [2] 4 [8 [16] 32] 64 | 128]

Eth 0.04 | 0.04 | 0.04 | 0.05 | 0.06 | 0.11 | 0.18 | 0.36
FDR | 0.10 | 0.11 | 0.11 | 0.11 | 0.12 | 0.16 | 0.19 | 0.24
EDR | 0.11 | 0.11 | 0.12 | 0.12 | 0.13 | 0.17 | 0.20 | 0.28

function is carried out in the destination GPU. It can be
seen in Figure 5(a) that total migration time has been split
into copy time and “Other” time. Copy time refers to the
time required to move the data from the original memory
region in the source GPU to the newly allocated memory
region in the destination GPU. “Other” time refers to the
time required to manage the migration process (creation
and destruction of the connection for P2P copies and calls
to the cudaMalloc and cudaFree functions and other
management tasks associated with the migration process in
the particular implementation within rCUDA).

Figure 5(a) shows that the bandwidth attained by the
underlying network directly impacts the performance of
the migration process, as expected. It is worth noticing

TABLE 2
Characterization of the real applications used to analyze the migration mechanism.

Application Execution rCUDA # Kernels Kernel Time (ms) GPU Memory (Mbytes) | GPU Utilization (%)
Time (s) overhead (%) Avg | Max [Min Avg [Max [Min | Avg | Max [Min
GPUBLAST 134 2.14 3 14400 | 15600 | 12200 1207.4 | 1302 72 325 [100 0
CUDASW++ 15 -2.21 1 11500 | 11500 11500 762.5 931 72 70 100 0
TeaLeaf 156 9.81 1048557 0.03 0.11 0.0027 182.47 183 72 19 33 0
CUDA-MEME 213 74 2107 3751 | 46.29 22.38 157.63 162 72 38.4 69 0
CloverLeaf 271 3.35 405489 0.68 6.22 | 0.0027 | 1496.74 | 1502 72 97 99 0

that a speed up of about 128x is attained in the case of
EDR InfiniBand with respect to 1 Gbps Ethernet although
difference in maximum bandwidth among both network
fabrics is only 92x (1 Gbps bandwidth in the case of Ethernet
versus 92 Gbps of effective bandwidth in the case of EDR
InfiniBand). In a similar way, in the case of FDR InfiniBand,
a speed up of about 91x is achieved although the theoretical
speed up should be about 48x (FDR InfiniBand provides
48 Gbps of effective bandwidth). The reason for achieving
a speed up much larger than the theoretical one is that
when using InfiniBand networks we can directly copy data
from the source GPU to the destination GPU by making use
of the RDMA features included in these adapters whereas
data transfers using the 1 Gbps Ethernet network require an
intermediate copy because the RDMA feature is not present
in the Ethernet adapters.

On the other hand, it is interesting to notice that the
time for “Other” is noticeably larger for InfiniBand than for
1 Gbps Ethernet. The reason for these larger times is that the
time “Other” when using InfiniBand includes the time for
creating and destroying the TCP connections to the remote
servers required to control data movement using RDMA.
These TCP connections are not needed for 1 Gbps Ethernet
as the RDMA feature is not available.

Figure 5(b) shows the impact on performance when
varying the amount of memory regions that hold the data
of a fixed size 4 GB memory area to be migrated. It can be
seen that, for each of the network configurations considered,
copy time remains almost constant regardless of the amount
of memory regions. The reason is that even for the smallest
region size, which is 32 MB when there are 128 regions, at-
tained data transfer bandwidth is the maximum one because
the size of data to be transferred is larger than 10 MB. On
the contrary, time required for the migration management
purposes (bar section “Other”) increases as the amount of
memory regions to migrate increases.

Table 1 shows the exact values for ”"Other” for the
three main network fabrics. It can be seen in the table
that management time increases as the amount of memory
regions increases. Management times for FDR and EDR
InfiniBand networks are similar. It is also noteworthy the
fact that management times for 1 Gbps Ethernet are lower
than for InfiniBand (due to the creation and destruction
of the TCP connections as described before). However, as
the number of migrated memory regions increases, the
time required for migration management purposes increases
more significantly when using 1 Gbps Ethernet. This is due
to the worst latency of this network. The larger the number
of regions to be migrated, the higher the number of memory

allocation/deallocation calls. These calls do not include too
much data (they simply notify the remote GPU) so they are
very sensitive to the latency features of the network.

5.2 Real Applications

In this section we perform a study of the migration mecha-
nism when it is applied to five different real applications.
The applications are GPUBLAST [20], CUDASW++ [21],
CloverLeaf [22], TeaLeaf [23] and CUDA-MEME [24]. Ta-
ble 2 characterizes these applications. Data in this table
has been gathered during the execution of the applications
when using a remote K20 GPU with rCUDA along with
FDR InfiniBand. Table 2 shows that the GPUBLAST appli-
cation requires up to 1302 MB of GPU memory during its
execution, which lasts for almost 134 seconds. Additionally,
this application consists of 3 long running kernels that
make a full usage of the GPU resources while in execution
(see Figure 8). Average GPU utilization for the GPUBLAST
application is about 33%. Similar data is presented for the
other applications considered in this section. Furthermore,
Table 2 shows the overhead introduced by rCUDA with
respect to the execution using a local K20 with CUDA.
Figure 6 presents additional information about the mem-
ory usage of these applications. In addition to show the
GPU memory allocated by each of the applications, Figure 6
also displays the amount of memory regions allocated by
each of them. In this regard, it can be seen that the GPUB-
LAST application allocates 8 different memory regions. This
very same amount of regions is allocated by the CUDA-
MEME application. On the contrary, CloverLeaf and TeaLeaf
allocate a much larger number of memory regions. They
allocate, respectively, 47 and 35 regions. Finally, the CUD-
ASW++ application only allocates 3 memory regions.
Regarding the total amount of memory used by each of
the applications, it can be seen, if comparing numbers in
Figure 6 with numbers in Table 2, that values for memory

1600 50
1400 mSize 45
1200 ORegions

35
1000 30 ¢
800 25 2
600 20 &
15 #

400 10

uf] ;

37 10
0 [o

GPUBLAST CUDASW CloverLeaf TeaLeaf CUDA-MEME

Total Size (MB)

Fig. 6. Memory configuration, in terms of total memory allocated and
number of memory regions, for each of the applications considered.

22.25 3.83 27.52

12
B Copy

[| [|
{IHH!DDlHHIDD!!D

Eth FDREDR Eth FDREDR Eth FDREDR Eth FDREDR Eth FDREDR
GPUBLAST CUDASW CloverLeaf Teal eaf CUDA-MEME

N

Migration Time (seconds)

Fig. 7. Service downtime for each of the applications considered. Migra-
tion was triggered at 25% execution time for each of the applications.

usage seem not to match. The reason for the mismatch is that
numbers in Figure 6 were gathered according to the infor-
mation collected when intercepting the CUDA memory allo-
cation calls with rCUDA. However, numbers in Table 2 were
gathered by using the nvidia-smi application, which pro-
vides overall memory usage in the GPU, among many other
parameters. In this regard, numbers in Figure 6 represent
the exact amount of memory allocated by the application
in the GPU. On the contrary, numbers in Table 2 represent
total memory used in the GPU, which includes, for instance,
the memory required to store the application context. Notice
that this memory for the application context is allocated by
the NVIDIA driver and not by the application. Therefore,
when migrating the application, the memory used for the
GPU context will not have to be moved to the destination
GPU but a new context will be created in that GPU. After
creating the new context in the destination GPU, all memory
regions will be copied. In summary, memory sizes shown in
Figure 6 can be seen as the amount of memory that has to be
migrated among GPUs. That is, these memory regions, and
memory sizes, are the only ones migrated in the experiments
in this section, shown in Figure 7, for instance.

In order to measure migration time, an important con-
cern is related to the exact moment when migration is
triggered. Remember that after receiving the external signal
triggering migration, kernels in execution in the GPU must
be completed before beginning the migration process. In this
manner, migrating an accelerated application among GPUs
can be seen as a two step process where step 1 is just waiting
for kernel completion and step 2 is moving data among
GPUs. The first step has to do with kernels in execution
at the time when the external signal triggering migration
arrives whereas the second step has to do with the memory
allocated in the GPU by the application.

It is important to notice that the time required for step 2
(moving data among GPUs) only depends on data size,
amount of memory regions and underlying network fabric,
as analyzed in previous section. However, the time required
for step 1 (waiting for kernel completion) depends on the
exact state of the execution of the application when the
external signal arrives. As a consequence, we can differenti-
ate among “total migration time” and “service downtime”.
The latter refers to how much time the GPU is out-of-
service once migration begins after kernel completion. The
former refers to the time required to restart the execution
of the application in the target GPU since the arrival of the
migration signal. Obviously, service downtime will always

7

be less than or equal to total migration time given that total
migration time includes service downtime plus the time
waiting for kernel completion in the source GPU.

Regarding service downtime, notice that this amount of
time is the overhead that the migrated application suffers
due to the migration itself and it is independent of the
execution time of kernels in the GPU. On the other hand,
total migration time is the amount of time observed by the
job scheduler when it triggers the signal to migrate the GPU
part of an application.

In order to perform a thorough analysis of service down-
time for the applications under consideration, we triggered
migration at three different points for each of the applica-
tions. These points were 25%, 50% and 75% of their exe-
cution time. Furthermore, as execution time of applications
using remote GPUs depends on the exact network fabric
used, these three points in time will thus depend on which
network was leveraged for executing the application. There-
fore, in order to analyze migration time for each application,
we performed 9 experiments: migrating the application at
25%, 50% and 75% execution time when FDR InfiniBand
and K20 GPU were used, migrating the application at 25%,
50% and 75% execution time when EDR InfiniBand and K40
GPU were used and, finally, migrating the application at the
aforementioned execution time percentages when 1 Gbps
Ethernet and K20 GPU were used. Notice that the exact
points in time for each of the execution percentages vary
depending on network fabric and GPU used.

Figure 7 shows the service downtime for each of the ap-
plications considered in our study. The three main network
fabrics previously used in Section 5.1 are also employed in
this figure. Remember that times in Figure 7 are the over-
head experienced by the migrated applications. In order to

Memory GPU Utilization = = = Ayg. GPU Utilization
1536 E— 100%
o (0]
21280 0% £
o
51024)
S 5]
E 60% 5
S 768 [
=
8 40% S
O 512 fm m m mp m o w wm Ee o e m EoE W oW oWomoE omomowm E
>]
2 256 20% 3
(])
= 9 % 3
S A NP R DD RESADA F PSP P
Execution Time (seconds)
(a) GPUBLAST.

200 100%
o [0}
g 80% g

c
S @
S o
2 60% 5
(=% o
a c
8 40% S
o ®
> N
S 20% =
£ =}
(] o}
= % &

R A I R SICRC P
Execution Time (seconds)

(b) CUDA-MEME.

Fig. 8. Evolution of memory occupancy and GPU utilization during exe-
cution time of two of the applications considered in this study. Average
GPU utilization for each of the applications is also shown.

D
o
[

@ Migration at 25% Exec. Time
O Migration at 50% Exec. Time
O Migration at 75% Exec. Time

a
o

[I
o o

Time (seconds)
N
o

[N
o o

GPUBLAST | CUDASW CloverLeaf Tealeaf

&&Ehu S

Eth FDREDR Eth FDREDR Eth FDREDR Eth FDREDR Eth FDREDR
CUDA-MEME

Time (seconds)
o o o o

o N M ®» ™ P N

[nnlon

Eth '[FDREDR Eth FDREDR| Eth FDR EDR
CloverLeaf Tealeaf CUDA-MEME

Fig. 9. Total migration time for the five applications considered in this study. Time is measured since the arrival of the external signal triggering

migration until the application resumes execution in the destination GPU.

gather the numbers in Figure 7, migration was triggered at
25% execution time. Results when migration was triggered
at 50% and 75% execution times were almost the same.
This fact points out that these applications have allocated
very similar memory regions in the three points mentioned
above, as it is shown in Figure 8 for two of the applications.

Regarding the results displayed in Figure 7, it can be
clearly seen the impact on service downtime of the amount
of data to migrate (shown in Figure 6). In this regard,
the GPUBLAST, CUDASW++ and CloverLeaf applications
present very different service downtimes depending on the
exact network fabric used: the low performance of 1 Gbps
Ethernet causes that service downtime is much larger than
when InfiniBand is used. It can also be clearly seen that
EDR InfiniBand reports smaller service downtime than FDR
InfiniBand due to its much larger bandwidth. Nevertheless,
it is important to remark that service downtime is very small
(less than 0.5 seconds) when InfiniBand is used regardless
of the exact version of this interconnect. On the other hand,
when the amount of data to be migrated is very small, as it
is the case for the CUDA-MEME application, service down-
time is similar for both 1 Gbps Ethernet and InfiniBand.

Regarding the results for the CUDA-MEME application
shown in Figure 7, there is an interesting issue regarding
copy time. If transfer time is carefully analyzed (0.0921
seconds for FDR InfiniBand and 0.0563 seconds for EDR In-
finiBand), it can be derived that transfer time is much larger
than it should be, according to the bandwidth available in
these networks. The reason for this higher transfer time
is that this application allocates memory by using CUDA
array memory instead of the regular memory. Transferring
data allocated as a CUDA array with rtCUDA is not as
optimized as transferring regular data due to the geometry
of the allocation. Therefore, a lower bandwidth is attained
for these copies.

Figure 7 also shows the time required for managing the
migration (bar section “Other”). For the CUDASW++ appli-
cation, which only allocates 3 memory regions, management
time is larger than for other applications with a much larger
amount of regions, such as CloverLeaf or TeaLeaf. In order
to explain this result, we analyzed the source code of the
CUDASW++ application and found that this application
makes use of host page-locked memory regions allocated
with cudaMallocHost or cudaHostAlloc functions (in

addition to the GPU memory regions). This type of regions
need a special management given that not only GPU mem-
ory has to be migrated but also some host memory. The time
required for managing these regions is accounted within the
time required for managing the migration.

Finally, Figure 9 shows the delay between the arrival of
the signal triggering migration until the application resumes
execution in the destination GPU. This is total migration
time. In this way, times displayed in Figure 9 include the
waiting time until kernels in execution when the migration
signal arrives are completed as well as the time to transfer
the data from the source to the destination GPU. The fig-
ure displays the total migration times when migrating the
applications at 25%, 50% and 75% of their execution times.

Two main conclusions can be derived from Figure 9.
The first one is that total migration time greatly depends
on the exact state of the application when the migration
signal arrives. This can be clearly seen for the GPUBLAST
application. The second conclusion that can be derived
from Figure 9 is that when an application executes a large
amount of small kernels (as it was shown in Table 2 for the
CloverLeaf, TeaLeaf and CUDA-MEME applications) then
the waiting time for kernel completion is noticeably reduced
and thus total migration time is decreased, as it is shown in
the right side of the figure.

5.3 Use Cases for GPU-Job Migration with rCUDA

In the previous sections the performance of GPU migration
was analyzed by using both synthetic and real applications.
In this section we provide several use cases that show
the usefulness of the GPU-job migration mechanism. Real
applications will be used in this section.

In order to provide the reader with the right context
for these use cases, it is important to understand that we
envision GPU-job migration as a powerful tool that can be
used by job schedulers to improve different metrics in the
cluster. One of these metrics could be minimizing overall
energy consumption, for instance. Another metric could be
reducing application execution time. Furthermore, the job
scheduler could deal with different user priorities. In this
way, higher priority users should be provided better service
whereas lower priority users may experience some delays
depending on workload evolution. At the bottom stage of
the priority stack, users with the lowest priority could just

Memory

500

Memory Occupation (MB)

GPU Utilization

= = = Avg. GPU Utilization

100%
80%
60%
40%

20%

GPU Utilization Percentage

0%

PR EPE PP L LEOCIPLEOPIILOLPLELLLEELECLEESLE PP PP PP
Execution Time (seconds)

(@) GPU memory occupancy and GPU utilization in a server running the CUDA-MEME application. At time 55 seconds the
GPU job is migrated to another server, shown in Figure 10(b), and thus the GPU is emptied.

3y
o
S

Memory Occupation (MB)

100%

80%

60%

40%

20%

(=}
B3
GPU Utilization Percentage

SES LD P LREELEECLEESLOLOLLPELOELELECLLELES PP P PP
Execution Time (seconds)

(b) Server running the CUDA-MEME application. At time 55 seconds the migrated application from Figure 10(a) enters the
GPU in this server. From that moment, the GPU in this server executes both applications concurrently.

180

160 GPUO+GPU 1

GPU 1

SO EPP R PR PRSP EPPLERLL LI PP LR PELELSLELCLLLSE PSP PSP
Execution Time (seconds)

(c) Power consumption of the two GPUs involved in the consolidation process. “GPU 0” is the source GPU whereas "GPU
17 is the destination GPU of the migration. Additionally, “GPU 1” is the GPU where both GPU-jobs are consolidated.

Fig. 10. GPU migration used to consolidate servers. Two instances of the CUDA-MEME application are being executed in two servers and, at some
point in time, the job scheduler decides to migrate one of the jobs to the other server. The emptied server can be later switched off if required.

benefit from spare GPU cycles. That is, their jobs would
execute as far as no other jobs belonging to higher priority
users are present in the system. As soon as higher priority
jobs enter the system, the lowest priority jobs should be
preempted if required.

5.3.1 GPU Server Consolidation

The first of the examples about the usefulness of the GPU-
job migration mechanism is devoted to server consolidation.
The consolidation technique is specially appealing when
several GPU servers in the cluster present low to medium
GPU utilization. In this scenario, GPU utilization in those
servers could be increased by aggregating jobs from GPUs
in different servers into a single GPU. By increasing GPU
utilization, a better usage of energy is made. Additionally,
if the servers that are emptied are later switched off, then
energy efficiency is noticeably increased. It is important to
remind that only the GPU part of applications is migrated.
In order to implement this idea, the logic to decide
whether to consolidate servers and which should be the
GPU-jobs to migrate could be placed into the job scheduler.
Additionally, the job scheduler should be enriched in order
to gather information about the utilization of the GPUs in
the cluster. In this way, once the job scheduler finds out that
some of the GPUs in the cluster present a utilization under a
given threshold, it could decide to consolidate the GPU-jobs

from several servers into a single node, thus making a more
efficient use of resources and saving energy.

Figure 10 presents an example of this idea. Two servers
(Figures 10(a) and 10(b)) are executing, each of them, an
instance of the CUDA-MEME application. The two nodes
in Figure 10 are connected by the FDR InfiniBand network
and include, each of them, an NVIDIA K20 GPU. As can
be seen in Figures 10(a) and 10(b), average GPU utilization
in both servers is about 40%. At time 55 seconds, the job
scheduler realizes that GPU utilization in both servers is
lower than the threshold (the threshold should be decided
by the system administrator and could even be a composi-
tion of several parameters such as amount of jobs sharing
the GPU, historical data about GPU utilization, etc). At that
point in time, the job scheduler performs several checks
prior to carry out the migration, such as making sure that
the candidate destination GPU has enough free memory
for holding both applications. Also, the job scheduler could
check that aggregated GPU utilization for both applications
does not exceed 100%. Once the job scheduler has carried
out all the required checks, it migrates the application from
the server in Figure 10(a) to the server in Figure 10(b). From
that point in time, the server in Figure 10(b) begins executing
both applications concurrently.

The effect of consolidating both GPU-jobs in the server
can be seen in Figure 10(b). First, GPU utilization increases

Memory

GPU Utilization

10

= = = Avg. GPU Utilization
100%

Memory Occupatiol
=
a o
(=3 (=]
o o

3000
@ 2500
=
S 2000
1500

o

KIS

PEDRERRA PP PP B DRSS

80%

60%

40%

20%

GPU Utilization Percentage

o
S

QD > 0 > N NP N) A NP O 4 O o >
P L EL L PR PEE RS TS PP PP P

Execution Tlme (seconds)
(a) “GPU 0” is concurrently executing three applications: CloverLeaf, GPUBLAST and CUDA-MEME. At time 50 seconds the

GPUBLAST application is migrated to GPU 1 (Figure 11(b)). At time 100 seconds the CUDA-MEME application is migrated
to GPU 2 (Figure 11(c)). The CloverLeaf application completes execution in this GPU.

100%

Memory Occupation (MB)

1400
& 1200
g 80%
< 1000 £
S o O
S 800 60% 5
% a
3 600 40% §
. 400 8
20% =
£ 200 0% =
5 - - ——---- o i gy 3
= 0 0% 5
CAR PR PV REECA PP REIIL L LR L LRI LER R PR P EI PSP DD PSP PP o
Execunon Time (seconds)
(b) "GPU 1” receives the GPUBLAST application after migration at time 50 seconds.
100%
©
80% 2
g
8
60% £
40% S
g
20% =
=)
po
% 3

PELNHLEEER S LRCE L LR L PP PRSP

A N D o O O >
B S P P P o

Execution Time (seconds)

(c) "GPU 2” receives the CUDA-MEME application after migration at time 100 seconds.

160
140

GPU 0 GPU 2

Power (Watts)

CARX PR RN RPN PR PR E DRSS
Execution Time (seconds)

£ Q A ok oN L S A ™ o
B LN PP PP PP PSS S E P PP

(d) Evolution of the power consumption of the three GPUs involved in the load balancing example.

Fig. 11. Example of applying the GPU-job migration mechanism within rCUDA in order to balance the load among GPUs in the cluster.

from 40% up to 60%. Theoretically, it should have increased
up to 80%. However, the dynamics of applications is not so
straightforward. Second, the execution of both applications
is slightly lengthened. In this regard, Table 2 showed that
a single instance of CUDA-MEME lasts for about 210 sec-
onds. However, due to server consolidation, the concurrent
execution of both applications lasts for about 240 seconds.

An alternative point of view about this consolidation
process is presented in Figure 10(c). This figure depicts
the power consumed by each of the two GPUs during the
execution of the applications. It can be seen in the figure
that until second 55 both GPUs are active and consume
between 60 and 80 watts. Gray bars display the aggregated
power consumption of both GPUs, which can reach up to
140 watts. At second 55 migration occurs. At that point in
time, the power consumption of GPU 1 (the server that
receives the migrated job) slightly increases whereas the
power consumption of the GPU sourcing the migration is

noticeably reduced because it remains idle. The net result
is a clear reduction in the power required to execute both
applications, as can be seen by the gray bars in the figure.
Furthermore, notice that Figure 10(c) only depicts power
consumed by the GPUs. If we take into account the rest
of the system, one can easily understand the large benefits
that could be achieved if the node sourcing the migration is
completely switched off.

5.3.2 GPU Load Balancing

As part of the natural evolution of the workload in a data
center, it could happen that, at a given point in time, a GPU
is noticeably overloaded whereas other GPUs in the cluster
remain idle. This situation could be desirable if the policy in
the data center is to consolidate servers as much as possible,
as it was reviewed in the previous section. However, other
policies are feasible. For instance, the system administrator
could decide to balance load among servers as much as

possible in order to provide customers with execution times
as low as possible. Contrary to consolidation, load balancing
may not save energy. But customers might be more satisfied.

With rCUDA it is possible to balance the load of the
GPUs in the cluster thanks to its migration mechanism.
Actually, when several applications share a given GPU in
the cluster, the migration implementation carried out within
the rCUDA middleware allows to migrate each of the GPU
jobs of these applications to different destination GPUs. That
is, it is not required that GPUs are migrated as a whole but
individual GPU jobs can be managed independently from
each other. This individual migration of GPU jobs allows
that load is balanced across the GPUs in the cluster.

In this section we present an example of load balancing
with rCUDA. Figure 11(a) shows a K20 GPU that is concur-
rently shared by three applications: CloverLeaf, GPUBLAST
and CUDA-MEME. Sharing the GPU among these three
applications means that all of them are executed slower than
if they were executed in different GPUs. Let us assume that
the policy in the cluster is to provide execution times as low
as possible. Thus, the job scheduler would decide to look
for idle GPUs across the cluster in order to balance load. We
can see in Figures 11(a) and 11(b) that at time 50 seconds
the job scheduler has found an idle GPU and thus it has
migrated the GPUBLAST application to that GPU. Now in
the original GPU there are only two applications: CloverLeaf
and CUDA-MEME. Some time later, at second 100, a GPU in
the cluster becomes idle and thus the job scheduler decides
to migrate the GPU part of the CUDA-MEME application to
that GPU. This can be seen in Figures 11(a) and 11(c). The
overall result is that the load of the three GPUs has been
balanced and the execution of the three applications has
been perfectly adapted to the resources available at every
moment. In this way, application execution time has been
reduced as much as the circumstances allowed. Notice that
in Figures 11(b) and 11(c) there is a memory occupancy of
70 MB by default. This memory occupancy is due to the
CUDA context of the rtCUDA daemon.

Figure 11(d) presents a similar point of view of the
previous process although from a power consumption per-
spective. The evolution of the power consumption of the
three GPUs is presented. "GPU 0” refers to the initial GPU
shared among the three applications. "GPU 1” refers to
the GPU where the GPUBLAST application is migrated to.
Finally, "GPU 2” refers to the GPU that receives the CUDA-
MEME application. It can be seen in this figure that "GPU 1”
and "GPU 2” remain idle until they receive the GPUBLAST
and CUDA-MEME applications, respectively.

5.3.3 Improved Management of User Priorities

In the context of a cluster where a job scheduler deals
with users having different priorities, a way to provide
better service to higher priority users is to assign them the
best GPUs in the cluster. However, due to the evolution of
the cluster workload, it may be possible that by the time
that a job from a high priority user must be placed into
execution, all the powerful GPUs are already assigned to
other high priority users. As a consequence, the job that is
to be executed must finally use a regular GPU.

Once the job from that high priority user has entered
execution in a regular GPU, it may eventually happen that

11

TABLE 3
Execution time of the CloverLeaf application in different GPUs.

Application | Execution Time (s) Execution Time (s)
K20] P100 K20 to P100 | P100 to K20
[CloverLeaf [271] 80 [150 [227 |

some of the best GPUs become idle because they complete
the execution of their jobs. At that moment, it could be
possible to migrate the job that was in execution in a
regular GPU so that it continues execution in one of the
powerful GPUs in the cluster. This migration would satisfy
the priority criteria of the cluster whereas execution time of
that job would be reduced because of the better GPU.

The opposite scenario could also be possible. That is,
an application is being executed in a powerful GPU but,
during its execution, a higher priority user submits a job to
the scheduler queues. As a consequence, the job scheduler
looks for a suitable GPU to execute the higher priority job.
However, it discovers that all the powerful GPUs are already
in use. In this context, the job from the lower priority user
can be moved out from the powerful GPU to a regular
device in order to complete its execution. After moving the
job out from the powerful GPU, the high priority job would
enter the powerful GPU and start execution. The net result
would be that the priority policy in the cluster is fulfilled at
the cost of slowing down the lower priority job.

Table 3 presents the execution time of the CloverLeaf
application in the previous scenarios. First, Table 3 shows
that this application requires 271 seconds to be executed in
a K20 GPU whereas it needs 80 seconds to be completed
in a P100 GPU. On the other hand, when this application
is migrated from a K20 GPU to a P100 one after 33% of
its execution time, we obtain a total execution time of 150
seconds. In the opposite scenario (from P100 to K20) we
obtain 227 seconds.

6 CONCLUSIONS

This paper has presented a thorough performance analysis
of the migration support implemented within the rCUDA
remote GPU virtualization middleware. Although provid-
ing this kind of support within GPU virtualization frame-
works is not novel, the implementation carried out for the
rCUDA middleware presents a better overall architecture,
which is carefully devised to be integrated with job sched-
ulers at different levels, as it has been widely shown in the
performance evaluation section. In this regard, contrary to
the rest of implementations of the GPU migration mecha-
nism in other GPU virtualization frameworks, in the rtCUDA
implementation it is the job scheduler the one that triggers
the migration process as well as the one that selects the
destination GPU, according to the scheduling and energy
efficiency policies decided by the system administrator.
Additionally, the GPU migration implementation presented
in this paper is the only one existing for GPU virtualization
solutions supporting modern CUDA versions.

Performance results show that migration is feasible and
its overhead is very low when the InfiniBand network is

used in the cluster. Similar extraordinary performance re-
sults are expected for other network fabrics that also provide
RDMA capabilities, such as the RoCE interconnect. Further-
more, the use cases shown in this paper clearly demonstrate
that GPU-job migration is a powerful tool that can be used
by the job scheduler in order to optimize the execution of
accelerated applications in a cluster. In this regard, it is
noteworthy that GPU-job migration provides job schedulers
with an increased freedom degree when they carry out the
scheduling process of accelerated applications. The reason
is that, thanks to the GPU-job migration mechanism, job
schedulers do not have to know, during the scheduling
process, the exact amount of GPU memory used by the
application being scheduled. In this way, job schedulers
can assign GPUs to applications regardless of their GPU-
memory footprint and, if they later experience GPU memory
allocation problems due to lack of memory, the GPU jobs
can be migrated to another GPU presenting more available
memory. Furthermore, it could even be possible to store the
GPU job in main memory in case no GPU is found with
enough memory. This would stall the accelerated applica-
tion until the required memory is available.

ACKNOWLEDGMENTS

This work was funded by the Generalitat Valenciana under
Grant PROMETEO/2017/77. Authors are grateful for the
generous support provided by Mellanox Technologies Inc.

REFERENCES

[1] A. A.Semnanian, J. Pham, B. Englert, and X. Wu, “Virtualization
technology and its impact on computer hardware architecture,” in
2011 Eighth International Conference on Information Technology: New
Generations, 2011.

[2] Mellanox, “Connectx-3 vpi single and dual qsfp+ port adapter
card user manual,” http:/ /www.mellanox.com/, 2013, accessed
27 September 2018.

[3] “Intel ethernet server adapter i350,” http://www.intel.com/
content/www /us/en/ethernet-controllers/ethernet-i350-server-
adapter-brief. html, accessed 27 September 2018.

[4] “Nvidia grid accelerated virtual desktops and apps,”
http:/ /images.nvidia.com/content/grid /pdf/188270-NVIDIA-
GRID-Datasheet-NV-US-FNL-Web.pdf, accessed 27 Sept 2018.

[5] C. Reario, E Silla, G. Shainer, and S. Schultz, “Local and remote
gpus perform similar with edr 100g infiniband,” in Proceedings of
the Industrial Track of the 16th International Middleware Conference,
2015.

[6] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A gpgpu
transparent virtualization component for high performance com-
puting clouds,” in Euro-Par 2010 - Parallel Processing, 2010.

[71 M. Oikawa, A. Kawai, K. Nomura, K. Yasuoka, K. Yoshikawa,
and T. Narumi, “Ds-cuda: A middleware to use many gpus in
the cloud environment,” in 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, 2012.

[8] Ditfusion, “The elastic ai infrastructure for multi-cloud,” https://
bitfusion.io/, 2019, accessed 27 March 2019.

[9] . Prades and F. Silla, “Turning gpus into floating devices over the
cluster: the beauty of gpu migration,” in 2017 46th International
Conference on Parallel Processing Workshops (ICPPW), 2017.

[10] C. Reario and F. Silla, “A performance comparison of cuda remote
gpu virtualization frameworks,” in 2015 IEEE International Confer-
ence on Cluster Computing, 2015.

, “On the support of inter-node p2p gpu memory copies in
rcuda,” Journal of Parallel and Distributed Computing, 2019.

[12] E Silla, S. Iserte, C. Reafio, and J. Prades, “On the benefits of
the remote GPU virtualization mechanism: the rCUDA case,”
Concurrency and Computation: Practice and Experience, 2017.

[11]

12

[13] J. Prades, B. Varghese, C. Reario, and F. Silla, “Multi-tenant virtual
gpus for optimising performance of a financial risk application,”
Journal of Parallel and Distributed Computing, 2017.

[14] S. Xiao, P. Balaji, J. Dinan, Q. Zhu, R. Thakur, S. Coghlan, H. Lin,
G. Wen, J. Hong, and W. Feng, “Transparent accelerator migration
in a virtualized gpu environment,” in 2012 12th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012),
2012.

[15] J. Ma, X. Zheng, Y. Dong, W. Li, Z. Qi, B. He, and H. Guan,
“gmig: Efficient gpu live migration optimized by software dirty
page for full virtualization,” in Proceedings of the 14th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, 2018.

[16] T. Suzuki, A. Nukada, and S. Matsuoka, “Transparent checkpoint
and restart technology for cuda applications,” in GPU Technology
Conference (GTC), 20156.

[17] L. Shi, H. Chen, and T. Li, “Hybrid cpu/gpu checkpoint for
gpu-based heterogeneous systems,” in Parallel Computational Fluid
Dynamics, K. Li, Z. Xiao, Y. Wang, J. Du, and K. Li, Eds., 2014.

[18] R. Garg, A. Mohan, M. Sullivan, and G. Cooperman, “Crum:
Checkpoint-restart support for cuda’s unified memory,” in 2018
IEEE International Conference on Cluster Computing (CLUSTER),
2018.

[19] Z. Zhang, X. Xu, M. Xue, J. Wang, Z. Qi, and Y. Dong, “gha: An
efficient and iterative checkpointing mechanism for virtualized
gpus,” in APSys, 2016.

[20] P.D. Vouzis and N. V. Sahinidis, “GPU-BLAST: using graphics pro-
cessors to accelerate protein sequence alignment,” Bioinformatics,
2010.

[21] Y. Liu, A. Wirawan, and B. Schmidt, “Cudasw++ 3.0: accelerating
smith-waterman protein database search by coupling cpu and gpu
simd instructions,” BMC Bioinformatics, 2013.

[22] M. Martineau and S. McIntosh-Smith, “The arch project: physics
mini-apps for algorithmic exploration and evaluating program-
ming environments on hpc architectures,” in 2017 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), 2017.

[23] M. Martineau, S. McIntosh-Smith, M. Boulton, and W. Gaudin,
“An evaluation of emerging many-core parallel programming
models,” in Proceedings of the 7th International Workshop on Program-
ming Models and Applications for Multicores and Manycores, 2016.

[24] Y. Liu, B. Schmidt, W. Liu, and D. L. Maskell, “Cudameme:
Accelerating motif discovery in biological sequences using cuda-
enabled graphics processing units,” Pattern Recognition Letters,

