
1

WPaxos: Wide Area Network Flexible
Consensus

Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas and Tevfik Kosar
Department of Computer Science and Engineering

University at Buffalo, SUNY
Email: {ailidani,acharapk,demirbas,tkosar}@buffalo.edu

Abstract—WPaxos is a multileader Paxos protocol that provides low-latency and high-throughput consensus across wide-area
network (WAN) deployments. WPaxos uses multileaders, and partitions the object-space among these multileaders. Unlike statically
partitioned multiple Paxos deployments, WPaxos is able to adapt to the changing access locality through object stealing. Multiple
concurrent leaders coinciding in different zones steal ownership of objects from each other using phase-1 of Paxos, and then use
phase-2 to commit update-requests on these objects locally until they are stolen by other leaders. To achieve fast phase-2 commits,
WPaxos adopts the flexible quorums idea in a novel manner, and appoints phase-2 acceptors to be close to their respective leaders.
We implemented WPaxos and evaluated it on WAN deployments across 5 AWS regions. The dynamic partitioning of the object-space
and emphasis on zone-local commits allow WPaxos to significantly outperform both partitioned Paxos deployments and leaderless
Paxos approaches.

Index Terms—Distributed systems, distributed applications, wide-area networks, fault-tolerance

F

1 INTRODUCTION

P AXOS [1] provides a formally-proven solution to the fault-
tolerant distributed consensus problem. Notably, Paxos never

violates the safety specification of distributed consensus (i.e., no
two nodes decide differently), even in the case of fully asyn-
chronous execution, crash/recovery of the nodes, and arbitrary loss
of messages. When the conditions improve such that distributed
consensus becomes solvable [2], [3], Paxos also satisfies the
progress property (i.e., nodes decide on a value as a function of
the inputs). Paxos and its variants have been deployed widely, in-
cluding in Chubby [4] based on Paxos [5], Apache ZooKeeper [6]
based on Zab [7], and etcd [8] based on Raft [9]. These Paxos
implementations depend on a centralized primary process (i.e.,
the leader) to serialize all commands. Due to this dependence on
a single centralized leader, these Paxos implementations support
deployments in local area and cannot deal with write-intensive
scenarios across wide-area networks (WANs) well. In recent years,
however, coordination over wide-area networks (e.g., across zones,
such as datacenters and sites) has gained greater importance,
especially for database applications and NewSQL datastores [10],
[11], [12], distributed filesystems [13], [14], [15], and social
networks [16], [17].

In order to eliminate the single leader bottleneck in Paxos,
leaderless and multileader solutions were proposed. EPaxos [18]
is a leaderless extension of the Paxos protocol where any replica
at any zone can propose and commit commands opportunistically,
provided that the commands are non-interfering. This opportunis-
tic commit protocol requires an agreement from a fast-quorum
of roughly 3/4th of the acceptors1, which means that WAN
latencies are still incurred. Moreover, if the commands proposed
by multiple concurrent opportunistic proposers do interfere, the
protocol requires performing a second phase to record the ac-
quired dependencies, and agreement from a majority of the Paxos

1. For a deployment of size 2F + 1, fast-quorum is F + bF+1
2
c

acceptors is needed. Another way to eliminate the single leader
bottleneck is to use a separate Paxos group deployed at each zone.
Systems like Google Spanner [10], ZooNet [19], and Bizur [20]
achieve this via a static partitioning of the global object-space to
different zones, each responsible for a shard of the object-space.
However, such static partitioning is inflexible and WAN latencies
will be incurred persistently to access/update an object mapped to
a different zone.

Contributions. We present WPaxos, a novel multileader Paxos
protocol that provides low-latency and high-throughput consensus
across WAN deployments. WPaxos leverages the flexible quo-
rums [21] idea to cut WAN communication costs. It deploys
flexible quorums in a novel manner to appoint multiple concur-
rent leaders across the WAN. Unlike the FPaxos protocol [21]
which uses a single-leader and does not scale to WAN distances,
WPaxos uses multileaders and partitions the object-space among
these multileaders. This allows the protocol to process requests
for objects under different leaders concurrently. Each object in
the system is maintained in its own commit log, allowing for
per-object linearizability. By strategically selecting the phase-2
acceptors to be close to the leader, WPaxos achieves fast commit
decisions. On the other hand, WPaxos differs from the existing
static partitioned multiple Paxos deployment solutions because it
implements a dynamic partitioning scheme: leaders coinciding in
different zones steal ownership/leadership of an object from each
other using phase-1 of Paxos, and then use phase-2 to commit
update-requests on the object locally until the object is stolen by
another leader.

With its multileader protocol, WPaxos guarantees lineariz-
ability per object. We model WPaxos in TLA+/PlusCal [22] and
present the algorithm using the PlusCal specification in Section 4.
The consistency properties of WPaxos are verified by model

ar
X

iv
:1

70
3.

08
90

5v
4

 [
cs

.D
C

]
 3

 A
pr

 2
01

9

2

checking this specification2.
Since object stealing is an integrated part of phase-1 of Paxos,

WPaxos remains simple as a pure Paxos flavor and obviates the
need for another service/protocol. There is no need for a configura-
tion service for relocating objects to zones as in Spanner [10] and
vertical Paxos [23]. Since the base WPaxos protocol guarantees
safety to concurrency, asynchrony, and faults, the performance can
be tuned orthogonally and aggressively, as we discuss in Section 5.
To improve performance, we present a locality adaptive object
stealing extension in Section 5.1.

To quantify the performance benefits from WPaxos, we im-
plemented WPaxos in Go3 and performed evaluations on WAN
deployments across 5 AWS regions. Our results in Section 6
show that WPaxos outperforms EPaxos, achieving 15 times faster
average request latency than EPaxos using a∼70% access locality
workload in some regions. Moreover, for a ∼90% access locality
workload, WPaxos improves further and achieves 39 times faster
average request latency than EPaxos in some regions. This is
because, while the EPaxos opportunistic commit protocol requires
about 3/4th of the Paxos acceptors to agree and incurs one WAN
round-trip latency, WPaxos is able to achieve low latency commits
using the zone-local phase-2 acceptors. Moreover, WPaxos is able
to maintain low-latency responses under a heavy workload: Under
10,000 requests/sec, using a ∼70% access locality workload,
WPaxos achieves 9 times faster average request latency and 54
times faster median latency than EPaxos. Finally, we evaluate
WPaxos with a shifting locality workload and show that WPaxos
seamlessly adapts and significantly outperforms static partitioned
multiple Paxos deployments.

While achieving low latency and high throughput, WPaxos
also achieves seamless high-availability by having multileaders:
failure of a leader is handled gracefully as other leaders can
serve the requests previously processed by that leader via the
object stealing mechanism. Since leader re-election (i.e., object
stealing) is handled through the Paxos protocol, safety is always
upheld to the face of node failure/recovery, message loss, and
asynchronous concurrent execution. While WPaxos helps most
for slashing WAN latencies, it is also suitable for intra-datacenter
deployments for its high-availability and throughput benefits.

2 RELATED WORK

Here we give an overview of core Paxos protocol and provide an
architectural classification of algorithms in the Paxos family.

2.1 Paxos Protocol

Paxos separates its operation into three phases as illustrate in
Figure 1. In phase-1 a node proposes itself as a leader over some
ballot b. Other nodes accept the proposal only if ballot b is the
highest they have seen so far. If some node has seen a leader
with a greater ballot, that node will reject ballot b. Receiving a
rejection fails the aspiring leader and causes it to start again with
higher ballot. However, if the majority of the nodes accepts the
leader, it will move to the phase-2 of the protocol. In phase-1,
leader also learns uncommitted commands from earlier ballots to
finish them later.

2. The TLA+ specification of WPaxos is available at http://github.com/
ailidani/paxi/tree/master/tla

3. The GO implementation of WPaxos is available at http://github.com/
ailidani/paxi

selfappoint as
command leader

phase1a
Propose

Phase:

Leader

phase1b
Promise

wait for
majority

phase2a
Accept

phase2b
Accepted

phase3
Commit

wait for
majority

"lead with
ballot b?" "Ok, but" value v? "Ok" commit v

Fig. 1: Overview of Paxos algorithm.

In phase-2, the leader tells its followers to accept a command
into their log. The command depends on the results of the prior
phase, as the leader is obliged to finish highest ballot uncommitted
command it may have learned earlier. Similarly, to phase-1, a
leader requires a majority ack to complete phase-2. However, if
a follower has learned of a higher ballot leader, it will not accept
the command, and reject the leader, causing the leader to go back
to leader election phase and retry. Once a majority of nodes ack
to accept the command, the command becomes anchored and
cannot be lost even in case of failures or leader changes, since
that command is guaranteed to be learned by any future leader.

Finally, Paxos commits the command in phase-3. In this
phase, the leader sends a message to all followers to commit the
command in their respective logs.

Many practical Paxos systems typically continue with the same
leader for many rounds to avoid paying the cost of phase-1 re-
peatedly. This optimization, commonly known as Multi-Paxos [5],
iterates over phase-2 for different slots of the same ballot number.
The safety is preserved as a new leader needs to obtain a majority
of followers with a higher ballot, and this causes the original leader
to get rejected in phase-2 and stops its progress.

2.2 Paxos Variants

Many Paxos variants optimize Paxos for specific needs, sig-
nificantly extending the original protocol. We categorize non-
byzantine consensus into five different classes as illustrated in
Figure 2, and provide an overview of these protocol families.

Single leader protocols, such as Multi-Paxos and Raft [9]
rely on one node to drive the progress forward (Figure 2a). Due
to the overheads imposed by communications with all of the
followers, the leader node often becomes a bottleneck in single
leader protocols. Mencius [24] tries to reduce load imbalance by
rotating the single leader in a round-robin fashion.

Multi-leader protocols in Figure 2b, such as M2Paxos [25],
ZooNet [19] operate on the observation that not all commands
require to have a total order in the system. Multi-leader algorithms
can run many commands in parallel at different leaders, as long as
these commands belong to different conflict domains. This results
in each leader node often serving as an acceptor to leaders of other
conflict domains. Unlike single leader architectures that guarantee
a single total order of commands in the system, multi-leader proto-
cols provide a partial total order, where only commands belonging
to the same conflict domain are ordered with respect to each
other. The node despecialization allows multi-leader consensus to
improve resource utilization in the cluster by spreading the load
more evenly.

WPaxos goes one step further and allows different leaders to
use different quorums, depicted in Figure 2c, as long as inter-
quorum communication can ensure required safety properties.

http://github.com/ailidani/paxi/tree/master/tla
http://github.com/ailidani/paxi/tree/master/tla
http://github.com/ailidani/paxi
http://github.com/ailidani/paxi

3

L

AA

A A

(a) Single-leader

L2
A1,A3,A4

L1
A2,A3,A4

L3
A1,A2,A4

L4
A1,A2,A3

(b) Multi-leader

L3
A3 A3

A3 A3
L4

A4 A4

A4 A4

L1
A1 A1

A1 A1
L2

A2 A2

A2 A2

(c) Multi-leader multi-quorum

M
Am Am

Am Am

L1
A1 A1

A1 A1
L2

A2 A2

A2 A2

(d) Hierarchical

N2N1

N3 N4

(e) Leaderless

Fig. 2: Overview of Paxos-based consensus protocol architectures. L
designates leader nodes, and A is for acceptor nodes

Such multi-leader, multi-quorum setup helps with both WAN la-
tency and throughput due to smaller and geographically localized
quorums. The DPaxos data-management/replication protocol [26]
cites our original WPaxos technical report [27] and adopts a
similar protocol for the edge computing domain to bring highly
granular high access locality data to the consumers at the edge.

Hierarchical multi-leader protocols, such as WanKeeper [28]
and Vertical Paxos [29], establish a chain of command between
the leaders or quorums. A higher-level leader oversees and coor-
dinates the lower-level children leaders/quorums. In a two-layer
WanKeeper, master leader is responsible for assigning conflict
domain ownership to lower-level leaders. Additionally, the master
leader also handles operations that are of high demand by many
lower-level quorums as to avoid changing the leadership back-
and-forth. In Vertical Paxos, the master cluster is responsible for
overseeing the lower-level configurations and does not participate
in handling actual commands from the clients. Compared to flat
multi-quorum setup of the WPaxos, hierarchical composition has
quorum specialization, since master quorum is responsible for
different or additional work compared to its children quorums.

Leaderless solutions in Figure 2e also build on the idea of
parallelizing the execution of non-conflicting commands. Unlike
multi-leader approaches, however, leaderless systems, such as
EPaxos [18] do not impose the partitioning of conflict domains
between nodes, and instead try to opportunistically commit any
command at any node. Any node in EPaxos becomes an oppor-
tunistic leader for a command and tries to commit it by running a
phase-2 of Paxos in a fast quorum system. If some other node in
the fast quorum is also working on a conflicting command, then
an additional round of communication is used to establish order
on the conflicting commands.

(a) (b)

Fig. 3: (a) 4-by-3 grid with a Q1 quorum in rows and a Q2 quorum
in columns when fn = fz = 0 (b) 4-by-3 grid with a Q1 and Q2
quorum when fn = fz = 1.

3 WPAXOS OVERVIEW

We assume a set of nodes communicating through message pass-
ing in an asynchronous environment. The nodes are deployed in a
set of zones, which are the unit of availability isolation. Depending
on the deployment, a zone can range from a cluster or datacenter to
geographically isolated regions. Each node is identified by a tuple
consisting of a zone ID and node ID, i.e. Nodes , 1..Z × 1..N .

Every node maintains a sequence of instances ordered by
an increasing slot number. Every instance is committed with a
ballot number. Each ballot has a unique leader. Similar to Paxos
implementation [5], we construct the ballot number as lexico-
graphically ordered pairs of an integer and its leader identifier,
s.t. Ballots , Nat×Nodes. Consequently, ballot numbers are
unique and totally ordered, and any node can easily retrieve the id
of the leader from a given ballot.

3.1 WPaxos Quorums
WPaxos leverages on the flexible quorums idea [21]. This result
shows that we can weaken Paxos’ “all quorums should intersect”
assertion to instead “only quorums from different phases should
intersect”. That is, majority quorums are not necessary for Paxos,
provided that phase-1 quorums (Q1) intersect with phase-2 quo-
rums (Q2). Flexible-Paxos, i.e., FPaxos, allows trading off Q1

and Q2 sizes to improve performance. Assuming failures and
resulting leader changes are rare, phase-2 (where the leader tells
the acceptors to decide values) is run more often than phase-1
(where a new leader is elected). Thus it is possible to improve
performance of Paxos by reducing the size of Q2 at the expense
of making the infrequently used Q1 larger.

Definition 1. A quorum system over the set of nodes is safe if
the quorums used in phase-1 and phase-2, named Q1 and Q2,
intersect. That is, ∀q1 ∈ Q1, q2 ∈ Q2 : q1 ∩ q2 6= ∅.

WPaxos adopts the flexible quorum idea to WAN deployments.
Our quorum system derives from the grid quorum layout, shown
in Figure 3a, in which rows and columns act as Q1 and Q2

quorums respectively. An attractive property of this grid quorum
arrangement is Q1 + Q2 does not need to exceed N , the total
number of acceptors, in order to guarantee intersection of any Q1

and Q2. Let q1, q2 denote one specific instance in Q1 and Q2.
Since q1 ∈ Q1 are chosen from rows and q2 ∈ Q2 are chosen
from columns, any q1 and q2 are guaranteed to intersect even when
|q1 + q2| < N .

In WPaxos quorums, each column represents a zone and acts
as a unit of availability or geographical partitioning. The collection
of all zones form a grid. In this setup, we further generalize the

4

grid quorum constraints in both Q1 and Q2 to achieve a more
fault-tolerant and flexible alternative. Instead of using rigid grid
columns, we introduce two parameters: fz , the number of zone
failures tolerated, and fn, the number of node failures a zone can
tolerate before losing availability.

In order to tolerate fn crash failures in every zone, WPaxos
picks fn + 1 nodes in a zone over l nodes, regardless of their row
position. In addition, to tolerate fz zone failures within Z zones,
q1 ∈ Q1 is selected from Z−fz zones, and q2 ∈ Q2 from fz +1
zones. Below, we formally define WPaxos quorums in TLA+ [22]
and prove that the Q1 and Q2 quorums always intersect.

Q1 , {q ∈ SUBSET Nodes : 4

Cardinality(q) = (fn + 1)× (Z − fz)∧
¬∃k ∈ SUBSET q : ∀i, j ∈ k : i[1] = j[1] ∧ Cardinality(k) > fn+1}

Q2 , {q ∈ SUBSET Nodes :
Cardinality(q) = (l − fn)× (fz + 1)∧
¬∃k ∈ SUBSET q : ∀i, j ∈ k : i[1] = j[1] ∧ Cardinality(k) > l−fn}

Lemma 1. WPaxos Q1 and Q2 quorums satisfy intersection
requirement (Definition 1).

Proof. (1) WPaxos q1s involve Z − fz zones and q2s involve
fz + 1 zones, since Z − fz + fz + 1 = Z + 1 > Z, there is at
least one zone selected by both quorums. (2) Within the common
zone, q1 selects fn + 1 nodes and q2 selects l− fn nodes out of l
nodes forming a zone. Since l− fn + fn + 1 > l, there is at least
one node in the intersection.

Figure 3a shows a 4-by-3 grid with fn = fz = 0 and
Figure 3b shows a 4-by-3 with fn = fz = 1. In the latter
deployment, each zone has 3 nodes, and each q2 includes 2 out of
3 nodes from 2 zones. The q1 quorum spans 3 out of 4 zones and
includes any 2 nodes from each zone. Using a 2 row q1 rather than
1 row q1 has negligible effect on the performance (as we show in
Section 6) and provides more fault-tolerance.

When using grid-based flexible quorums (as opposed to unified
majority quorums), the total number of faults tolerated, F , be-
comes topology-dependent. In EPaxos quorums are selected from
a set so it is not important which nodes you pick. In WPaxos
quorums are selected from a grid, so the location of the nodes
picked becomes important.

We define Fmin to be the size of F in the worst possible case
of failure placement so as to violate availability with respect to
read/write operations on any item. If all the faults conspire to
target a particular q ∈ Q2, then after Cardinality(Q2) faults, the
q ∈ Q2 is wiped off. By definition any Q2 quorum intersects with
any Q1 quorum. By wiping off a Q2 quorum in its entirety, the
faults made any Q1 quorum unavailable as well. To account for
the case where Cardinality of Q1 quorum could be less than that
of Q2, we make the formula symmetric and define as follows.

Fmin = Min(Cardinality(Q2),Cardinality(Q1))− 1

We define Fmax to be the size of F in the best possible case of
failure placement in the grid. In this case, the faults miss a union
of a Q1 quorum and Q2 quorum, leaving at least one Q1 and Q2
quorum intact so WPaxos can continue operating. Note that the
Q2 quorum may be completely embedded inside the Q1 quorum
(or vice versa if Q1 quorums are smaller than Q2 quorums). So
the formula is derived as subtracting from N, the cardinality of Q1

4. SUBSET S is the set of subsets of S

Fig. 4: Normal case messaging flow

and Q2, and by adding the maximum cardinality of intersection
of Q1 and Q2.

Fmax = N−Cardinality(Q1)−Cardinality(Q2)+(fz+1)∗(fn+1)

For the 4-by-3 grid with fn = fz = 0 in Figure 3a, Fmin = 2
and Fmax = 6. For the deployment in Figure 3b with fn = fz =
1, Fmin = 3, and Fmax = 6. 5

3.2 Multi-leader
In contrast to FPaxos [21] which uses flexible quorums with a
classical single-leader Paxos protocol, WPaxos presents a multi-
leader protocol over flexible quorums. Every node in WPaxos
can act as a leader for a subset of objects in the system. This
allows the protocol to process requests for objects under different
leaders concurrently. Each object in the system is allotted its own
commit log, allowing for per-object linearizability. A node can
lead multiple objects at once, all of which may have different
ballot and slot numbers in their corresponding logs.

The WPaxos protocol consists of two phases. The concurrent
leaders steal ownership/leadership of objects from each other
using phase-1 of Paxos executed over q1 ∈ Q1. Then phase-2
commits the update-requests to the object over q2 ∈ Q2, selected
from the leader’s zone (and nearby zones) for improved locality.
The leader can execute phase-2 multiple times until some other
node steals the object.

The phase-1 of the protocol starts only when the node needs
to steal an object from a remote leader or if a client has a request
for a brand new object that is not in the system. This phase of
the algorithm causes the ballot number to grow for the object
involved. After a node becomes the owner/leader for an object,
it repeats phase-2 multiple times on that object for committing
commands/updates, incrementing the slot number at each iteration,
while the ballot number for the object stays the same.

Figure 4 shows the normal operation of both phases, and also
references each operation to the algorithms in Section 4.

3.3 Object Stealing
When a node needs to steal an object from another leader in order
to carry out a client request, it first consults its internal cache to
determine the last ballot number used for the object and performs
phase-1 on some q1 ∈ Q1 with a larger ballot. Object stealing is

5. For a deployment of size 2F+1, fast-quorum is of size F+(F+1)/2.
Therefore for N=12 and F=5 EPaxos fast quorum is 8, and EPaxos can tolerate
upto 4 failures before the fast quorum size is breached. After 4 failures,
EPaxos operations detoriate because they time out waiting response from the
nonexisting fast quorum, and then proceed to go to the second round to be able
to make progress with majority nodes. Progress is still possible until 5 node
failures. The EPaxos paper suggests a reconfiguration to be invoked upon node
failures to reduce N, and shrink the fast quorum size.

5

successful if the candidate node can out-ballot the existing leader.
This is achieved in just one phase-1 attempt, provided that the
local cache is current and a remote leader is not engaged in another
phase-1 on the same object.

Once the object is stolen, the old leader cannot act on it, since
the object is now associated with a higher ballot number than the
ballot it had at the old leader. This is true even when the old leader
was not in the q1 when the key was stolen, because the intersected
node in q2 will reject any object operations attempted with the
old ballot. The object stealing may occur when some commands
for the objects are still in progress, therefore, a new leader must
recover any accepted, but not yet committed commands for the
object.

WPaxos maintains separate ballot numbers for all objects
isolating the effects of object stealing. Keeping per-leader ballot
numbers, i.e., keeping a single ballot number for all objects main-
tained by the leader, would necessitate out-balloting all objects
of a remote leader when trying to steal one object. This would
then create a leader dueling problem in which two nodes try to
steal different objects from each other by constantly proposing a
higher ballot than the opponent. Using separate ballot numbers
for each object alleviates ballot contention, although it can still
happen when two leaders are trying to take over the same object
currently owned by a third leader. To mitigate that issue, we use
two additional safeguards: (1) resolving ballot conflict by zone
ID and node ID in case the ballot counters are the same, and (2)
implementing a random back-off mechanism in case a new dueling
iteration starts anyway.

Object stealing is part of core WPaxos protocol. In contrast to
the simplicity and agility of object stealing in WPaxos, object
relocation in other systems require integration of another ser-
vice, such as movedir in Spanner [10], or performing multiple
reconfiguration or coordination steps as in Vertical Paxos [23].
Vertical Paxos depends on a reliable master service that overseeing
configuration changes. Object relocation involves configuration
change in the node responsible for processing commands on that
object. When a node in a different region attempts to steal the
object, it must first contact the reconfiguration master to obtain the
current ballot number and next ballot to be used. The new leader
then must complete phase-1 of Paxos on the old configuration
to learn the previous commands. Upon finishing the phase-1, the
new leader can commit any uncommitted slots with its own set of
acceptors. At the same time the new leader notifies the master of
completing phase-1 with its ballot. Only after the master replies
and activates the new configuration, the leader can start serving
user requests. This process can be extended to multiple objects, by
keeping track of separate ballot numbers for each object. Vertical
Paxos requires three separate WAN communications to change
the leadership, while WPaxos can do so with just one WAN
communication.

4 WPAXOS ALGORITHM

In the basic algorithm, every node maintains a set of variables
and a sequence of commands written into the command log.
The command log can be committed out of order, but has to be
executed against the state machine in the same order without any
gap. Every command accesses only one object o. Every node leads
its own set of objects in a set called own.

All nodes in WPaxos initialize their state with above variables.
We assume no prior knowledge of the ownership of the objects; a

process(self ∈ Nodes) Initialization
variables

1: ballots = [o ∈ Objects 7→ 〈0, self〉];
2: slots = [o ∈ Objects 7→ 0];
3: own = {}
4: log =[o ∈ Objects 7→

[s ∈ Slots 7→
[b 7→ 0, v 7→ 〈〉, c 7→ FALSE]]];

user can optionally provide initial object assignments. The highest
known ballot numbers for objects are constructed by concatenating
counter=0 and the node ID (line 1). The slot numbers start from
zero (line 2), and the objects self owned is an empty set (line 3).
Inside the log, an instance contains three components, the ballot
number b for that slot, the proposed command/value v and a flag
c indicates whether the instance is committed (line 4).

4.1 Phase-1: Prepare

Algorithm 1 Phase-1a
1: macro p1a () {
2: with (o ∈ Objects) {
3: await o /∈ own;
4: ballots[o] := 〈ballots[o][1] + 1, self〉;
5: Send([type 7→ “1a”,

n 7→ self,
o 7→ o,
b 7→ ballots[o]]); }}

WPaxos starts with a client sending requests to one of the
nodes. A client typically chooses a node in the local zone to
minimize the initial communication costs. The request message
includes a command and some object o on which the command
needs to be executed. Upon receiving the request, the node checks
if the object exists in the set of own, and start phase-1 for any new
objects by invoking p1a() procedure in Algorithm 1. If the object
is already owned by this node, the node can directly start phase-2
of the protocol. In p1a(), a larger ballot number is selected and
“1a” message is sent to a Q1 quorum.

Algorithm 2 Phase-1b
1: macro p1b () {
2: with (m ∈ msgs) {
3: await m.type = “1a”;
4: await m.b � ballots[m.o];
5: ballots[m.o] := m.b;
6: if (o ∈ own) own := own \ {m.o};
7: Send([type 7→ “1b”,

n 7→ self,
o 7→ m.o,
b 7→ m.b,
s 7→ slots[m.o]]); }}

The p1b() procedure processes the incoming “1a” message
sent during phase-1 initiation. A node can accept the sender as
the leader for object o only if the sender’s ballot m.b is greater or
equal to the ballot number it knows of (line 4). If object o is owned
by current node, it is removed from set own (line 6). Finally,
the “1b” message acknowledging the accepted ballot number is
send (line 7). The highest slot associated with o is also attached
to the reply message, so that any unresolved commands can be
committed by the new leader.

6

4.2 Phase-2: Accept

Phase-2 of the protocol starts after the completion of phase-1 or
when it is determined that no phase-1 is required for a given object.
WPaxos carries out this phase on a Q2 quorum residing in the
closest F + 1 zones, thus all communication is kept local, greatly
reducing the latency.

Algorithm 3 Phase-2a

1: Q1Satisfied(o, b) ,∃q ∈ Q1 : ∀n ∈ q : ∃m ∈ msgs :
∧m.type = “1b”
∧m.o = o
∧m.b = b
∧m.n = n

2: macro p2a () {
3: with (m ∈ msgs) {
4: await m.type = “1b”;
5: await m.b = 〈ballots[m.o][1], self〉;
6: await m.o /∈ own;
7: if (Q1Satisfied(m.o,m.b)) {
8: own := own ∪ {m.o};
9: slots[m.o] := slots[m.o] + 1;

10: log[m.o][slots[m.o]] := [b 7→ m.b,
v 7→ 〈slots[m.o], self〉,
c 7→ FALSE];

11: Send([type 7→ “2a”,
n 7→ self,
o 7→ m.o,
b 7→ m.b,
s 7→ slots[m.o],
v 7→ 〈slots[m.o], self〉]); }}}

Procedure p2a() in Algorithm 3 collects the “1b” messages for
itself (lines 4-6). The node becomes the leader of the object only
if Q1 quorum is satisfied (line 7,8). The new leader then recovers
any uncommitted slots with suggested values and starts the accept
phase for the pending requests that have accumulated in queue.
Phase-2 is launched by increasing the highest slot (line 9), and
creates new entry in log (line 10), sending “2a” message (line
11).

Algorithm 4 Phase-2b
1: macro p2b () {
2: with (m ∈ msgs) {
3: await m.type = “2a”;
4: await m.b � ballots[m.o];
5: ballots[m.o] := m.b;
6: log[m.o][m.s] := [b 7→ m.b, v 7→ m.v, c 7→ FALSE];
7: Send([type 7→ “2b”,

n 7→ self,
o 7→ m.o,
b 7→ m.b,
s 7→ m.s]); }}

Once the leader of the object sends out the “2a” message at
the beginning of phase-2, the replicas respond to this message as
shown in Algorithm 4. The leader node updates its instance at slot
m.s only if the message ballot m.b is greater or equal to accepted
ballot (line 4-6).

4.3 Phase-3: Commit

The leader collects replies from its Q2 acceptors. The request pro-
posal either gets committed with replies satisfying a Q2 quorum,
or aborted if some acceptors reject the proposal citing a higher
ballot number. In case of rejection, the node updates a local ballot
and puts the request in this instance back to main request queue to
retry later.

Algorithm 5 Phase-3

1: Q2Satisfied(o, b, s) ,∃q ∈ Q2 : ∀n ∈ q : ∃m ∈ msgs :
∧m.type = “2b”
∧m.o = o
∧m.b = b
∧m.s = s
∧m.n = n

2: macro p3 () {
3: with (m ∈ msgs) {
4: await m.type = “2b”;
5: await m.b = 〈ballots[m.o][1], self〉;
6: await log[m.o][m.s].c 6= TRUE;
7: if (Q2Satisfied(m.o,m.b,m.s)) {
8: log[m.o][m.s].c := TRUE;
9: Send([type 7→ “3”,

n 7→ self,
o 7→ m.o,
b 7→ m.b,
s 7→ m.s,
v 7→ log[m.o][m.s].v]); }}}

4.4 Properties

Non-triviality. For any node n, the set of committed com-
mands is always a sequence σ of proposed commands, i.e.
∃σ : committed[n] = ⊥ • σ. Non-triviality is straightforward
since nodes only start phase-1 or phase-2 for commands proposed
by clients in Algorithm 1.

Stability. For any node n, the sequence of committed com-
mands at any time is a prefix of the sequence at any later time,
i.e. ∃σ : committed[n] = γ at t =⇒ committed[n] = γ • σ
at t + ∆. Stability asserts any committed command cannot be
overridden later. It is guaranteed and proven by Paxos that any
leader with higher ballot number will learn previous values before
proposing new slots. WPaxos inherits the same process.

Consistency. For any slot of any object, no two leaders can
commit different values. This property asserts that object stealing
and failure recovery procedures do not override any previously ac-
cepted or committed values. We verified this consistency property
by model checking a TLA+ specification of WPaxos algorithm.

WPaxos consistency guarantees are on par with other pro-
tocols, such as EPaxos, that solve the generalized consensus
problem [30]. Generalized consensus relaxes the consensus re-
quirement by allowing non-interfering commands to be processed
concurrently. Generalized consensus no longer enforces a totally
ordered set of commands. Instead only conflicting commands need
to be ordered with respect to each other, making the command log
a partially ordered set. WPaxos maintains separate logs for every
object and provides per-object linearizability.

Liveness. A proposed command γ will eventually be com-
mitted by all non-faulty nodes n, i.e. �∀n ∈ Nodes : γ ∈
committed[n]. The PlusCal code presented in Section 4 specifies
what actions each node is allowed to perform, but not when to
perform, which affects liveness. The liveness property satisfied by
WPaxos algorithm is same to that of ordinary Paxos: as long as
there exists q1 ∈ Q1 and q2 ∈ Q2 are alive, the system will
progress.

5 EXTENSIONS

5.1 Locality Adaptive Object Stealing

The basic protocol migrates the object from a remote region to a
local region upon the first request, but that causes a performance
degradation when an object is frequently accessed across many
zones. With locality adaptive object stealing we can delay or

7

(a) (b)

Fig. 5: (a) Initial leader α observes heavy cross-region traffic from
node β, thus triggers β to start phase-1 on its q1. (b) β becomes new
leader and benefits more on the workload.

Fig. 6: Adding new zone (dashed)

deny the object transfer to a zone issuing the request based on
an object migration policy. The intuition behind this approach is
to move objects to a zone whose clients will benefit the most from
not having to communicate over WAN, while allowing clients
accessing the object from less frequent zones to get their requests
forwarded to the remote leader.

Our majority-zone migration policy aims to improve the local-
ity of reference by transferring the objects to zones that sending
out the highest number of requests for the objects, as shown in
Figure 5. Since the current object leader handles all the requests,
it has the information about which clients access the object more
frequently. If the leader α detects that the object has more requests
coming from a remote zone, it will initiate the object handover by
communicating with the node β, and in its turn β will start the
phase-1 protocol to steal the leadership of that object.

5.2 Replication Set
WPaxos provides flexibility in selecting a replication set. The
phase-2 (p2a) message need not be broadcast to the entire system,
but only to a subset of Q2 quorums, denoted as a replication Q2

or RQ2. The user has the freedom to choose the replication factor
across zones from the minimal required F + 1 zones up to the
total number of Z zones. Such choice can be seen as a trade off
between communication overhead and a more predictable latency,
since the replication zone may not always be the fastest to reply.
Additionally, if a node outside of theRQ2 becomes the new leader
of the object, that may delay the new phase-2 as the leader need
to catch up with the missing logs in previous ballots. One way
to minimize the delay is let the RQ2 reply on phase-2 messages
for replication, while the potential leader nodes learn the states as
non-voting learners.

5.3 Fault Tolerance and Reconfiguration
WPaxos can make progress as long as it can form valid q1 and q2
quorums. The flexibility of WPaxos enables the user to deploy

the system with quorum configuration tailored to their needs.
Some configurations are geared towards performance, while others
may prioritize fault tolerance. By default, WPaxos configures the
quorums to tolerate one zone failure and minority node failures
per zone, and thus provides similar fault tolerance as Spanner with
Paxos groups deployed over three zones.

WPaxos remains partially available when more zones fail than
the tolerance threshold it was configured for. In such a case, no
valid q1 quorum may be formed, which halts the object stealing
routine, however the operations can proceed for objects owned in
the remaining live regions, as long as there are enough zones left
to form a q2 quorum.

The ability to reconfigure, i.e., dynamically change the mem-
bership of the system, is critical to provide reliability for long
periods as it allows crashed nodes to be replaced. WPaxos achieves
high throughput by allowing pipelining (like Paxos and Raft
algorithms) in which new commands may begin phase-2 before
any previous instances/slots have been committed. Pipelining
architecture brings more complexity to reconfiguration, as there
may be another reconfiguration operation in the pipeline which
could change the quorum and invalidate a previous proposal.
Paxos [5] solves this by limiting the length of the pipeline window
to α > 0 and only activating the new config C ′ chosen at slot i
until slot i+α. Depending on the value of α, this approach either
limits throughput or latency of the system. On the other hand, Raft
[9] does not impose any limitation of concurrency and proposes
two solutions. The first solution is to restrict the reconfiguration
operation, i.e. what can be reconfigured. For example, if each
operation only adds one node or removes one node, a sequence
of these operations can be scheduled to achieve arbitrary changes.
The second solution is to change configuration in two phases: a
union of both old and new configuration C+C ′ is proposed in the
log first, and committed by the quorums combined. Only after the
commit, the leader may propose the new configC ′. During the two
phases, any election or command proposal should be committed by
quorum in bothC andC ′. To ensure safety during reconfiguration,
all these solutions essentially prevent two configurations C and C ′

to make decision at the same time that leads to divergent system
states.

WPaxos adopts the more general two-phase reconfiguration
procedure from Raft for arbitrary C ′s, where C = 〈Q1, Q2〉,
C ′ = 〈Q′1, Q′2〉. WPaxos further reduces the two phases into one
in certain special cases since adding and removing one zone or one
row operations are the most common reconfigurations in the WAN
topology. These four operations are equivalent to the Raft’s first
solution because the combined quorum of C + C ′ is equivalent
to quorum in C ′. We show one example of adding new zone of
dashed nodes in the Figure 6.

Previous configuration Q1 involves two zones, whereas the
new config Q′1 involves three zones including the new zone
added. The quorums in Q′1 combines quorums in Q1 is same
as Q′1. Both Q2 and Q′2 remains the same size of two zones.
The general quorum intersection assumption and the restrictions
Q′1 ∪ Q1 = Q′1 and Q′2 ∪ Q2 = Q′2 ensure that old and new
configuration cannot make separate decisions and provides same
safety property.

6 EVALUATION

We developed a general framework, called Paxi to conduct our
evaluation. The framework allows us to compare WPaxos, EPaxos,

8

0 200 400 600 800 1000
Keys

0.000

0.001

0.002

0.003

0.004

Pr
ob

ab
ili

ty

T C O V I

Fig. 7: Locality Workload

M2Paxos and other Paxos protocols in the same controlled envi-
ronment under identical workloads. We implemented Paxi along
with WPaxos and EPaxos in Go and released it as an open-
source project on GitHub at https://github.com/ailidani/paxi. The
framework provides extended abstractions to be shared between all
Paxos variants, including location-aware configuration, network
communication, client library with RESTful API, and a quorum
management module (which accommodates majority quorum, fast
quorum, grid quorum and flexible quorum). Paxi’s networking
layer encapsulates a message passing model and exposes basic
interfaces for a variety of message exchange patterns, and trans-
parently supports TCP, UDP and simulated connection with Go
channels. Additionally, our Paxi framework incorporates mecha-
nisms to facilitate the startup of the system by sharing the initial
parameters through the configuration management tool.

6.1 Setup

We evaluated WPaxos using the key-value store abstraction pro-
vided by our Paxi framework. We used AWS EC2 [31] nodes to
deploy WPaxos across 5 different regions: Tokyo (T), California
(C), Ohio (O), Virginia (V), and Ireland (I). In our experiments,
we used 4 m5.large instances at each AWS region to host 3
WPaxos nodes and 20 concurrent clients. WPaxos in our experi-
ments uses adaptive mode by default, unless otherwise noted.

We conducted all experiments with Paxi microbenchmark.
Paxi provides similar benchmarking capabilities as YCSB [32],
with both benchmarks generating similar workloads. However,
Paxi benchmark adds more tuning knobs to facilitate testing
in wide area with workloads that exhibit different conflict and
locality characteristics.

In order to simulate workloads with tunable access locality
patterns we used a normal distribution to control the probability
of generating a request on each object. As shown in the Figure 7,
we used a pool of 1000 common objects, with the probability
function of each region denoting how likely an object is to be
selected at a particular zone. Each region has a set of objects it
is more likely to access. We define locality as the percentage of
the requests pulled from such set of likely objects. We introduce
locality to our evaluation by drawing the conflicting keys from a
Normal distributionN (µ, σ2), where µ can be varied for different
zones to control the locality, and σ is shared between zones. The
locality can be visualized as the non-overlapping area under the
probability density functions in Figure 7.

Definition 2. Locality L is the complement of the overlapping

0

10

20

30

40

V O C

A
ve

ra
ge

 L
at

en
cy

 (m
s)

1000 10000 100000 1000000

Fig. 8: Average latency for uniformly random workload with increas-
ing number of objects.

0

20

40

60

80

100

wpaxos fz=1 epaxos wpaxos fz=1 epaxos wpaxos fz=1 epaxos

Av
er

ag
e L

at
en

cy
 (m

s)

0% 20% 40% 60% 80% 100%
V O C11 ms 49 ms

Fig. 9: Average latency with increasing conflict ratio for WPaxos
(fz = 0 and fz = 1) and EPaxos

coefficient (OVL)6 among workload distributions: L = 1−ÔV L.

Let Φ(x−µσ) denote the cumulative distribution function
(CDF) of any normal distribution with mean µ and deviation σ,
and x̂ as the x-coordinate of the point intersected by two distribu-
tions, locality is given by L = Φ1(x̂)−Φ2(x̂). At the two ends of
the spectrum, locality equals to 0 if two overlapping distributions
are congruent, and locality equals to 1 if two distributions do not
intersect.

6.2 Object Space
We begin by presenting our evaluation of the overhead with
increasing number of objects in WPaxos system. Every object
in WPaxos is fully replicated. We preload the system with one
thousand to one million keys evenly distributed among three
regions (Virginia, Oregon and California), then generate requests
with random key from every region. To evaluate the performance
impact, we measure the average latency in each one of the three
regions.

The results shown in Figure 8 indicates there are no significant
impacts on request latency. This is expected since a hash map
index has O(1) lookup time to keep track of object and its current
leader. The index data does not consume extra memory because
the leader ID is already maintained in the ballot number from last
Paxos log entry. At the end of our experiment, one million keys
without log snapshots and garbage collection consumes about 1.6
GB memory out of our 8 GB VM. For more keys inserted into the
system, we expect steady performance as long as they fit into the
memory.

6.3 WPaxos Quorum Latencies
In this set of experiments, we compare the latency of Q1 and Q2

accesses in three different fault tolerance configurations: (fz =
fn = 0), (fz = 0; fn = 1), and (fz = fn = 1). The configurations

6. The overlapping coefficient (OVL) is a measurement of similarity be-
tween two probability distributions, refers to the shadowed area under two
probability density functions simultaneously [33].

https://github.com/ailidani/paxi

9

C V O T I
0

50

100

150

200
Av

er
ag

e
La

te
nc

y
(m

s)

C V O T I
0

50

100

150

200
fz = 0, fn = 0
fz = 0, fn = 1
fz = 1, fn = 1

Fig. 10: Average latency for phase-1 (left) and phase-2 (right) in
different quorum systems.

with fn = 0 uses a single node per zone/region for Q1, requiring
all nodes in one zone/region to form Q2, while configurations
with fn=1 require one fewer node in Q2. When fz=0, Q1 uses
all 5 zones and Q2 remains in a single region. With fz = 1, Q1

uses 4 zones which reduce phase-1 latency significantly, but Q2

requires 2 zones/regions thus exhibits WAN latency. In each region
we simultaneously generated a fixed number (1000) of phase-1
and phase-2 requests, and measured the latency for each phase.
Figure 10 shows the average latency in phase-1 (left) and phase-2
(right).

Quorum size of Q1 in fn=1 configurations is half of that for
WPaxos with fn=0, but both experience average latency of about
one round trip to the farthest peer region, since the communication
happens in parallel. Within a zone, however, fn = 1 can tolerate
one straggler node, reducing the latency for the most frequently
used Q2 quorum type.

6.4 Conflicting Commands

Here we evaluate the performance of WPaxos in terms of conflict-
ing commands. In WPaxos, we treat any two commands operating
on the same object in the Paxi key-value store as conflicting. In
our experiments, the workload ranges from 0% conflicts (i.e. all
requests are completely local to its leader) to 100% conflicts (i.e.
every request targets the conflicting object).

While WPaxos can only denote object-based conflicts and non-
conflicts, EPaxos can denote operation-based conflicts and non-
conflicts in the general case. In the context of our experiments on
the Paxi key-value store, for EPaxos, we treat any two update
operations on the same object as conflicting, and treat read
operations on any object as nonconflicting with any other read
operations. This is the same setup used in the evaluation of the
EPaxos paper [18].

As shown in Figure 9, WPaxos without zone-failure-tolerance
(fz = 0) performance better than WPaxos that tolerate one zone
failure (fz = 1) in every case, because Q2 within a region
avoids the RTT between neighboring regions for non-conflicting
commands. Since the Ohio region is located in the relative center
of our topology, it becomes the leader of conflicting objects and
the performance in that region becomes independent of conflicts.
More interestingly, even though both WPaxos fz = 1 and EPaxos
requires involving two RTTs for conflicting commands, WPaxos is
able to reduce the latency by committing requests with two closer
regions. For example, in 100% conflict workload, requests from C

is committed by one RTT between C and O (49ms) plus one RTT
between V and O (11ms) instead of two RTTs of CO like EPaxos.

6.5 Latency Comparison

We compare the latency of WPaxos (with fz = 0, 1, 2), EPaxos,
and M2Paxos protocols using three sets of workloads: random
(Figure 11a), ∼70% locality (Figure 11b), and ∼95% locality
(Figure 11c). Before each round of experiment, we divide 1000
objects and preload them into each region, such that every region
owns 200 objects according to Figure 7. For each experiment, the
clients in each region generate requests concurrently within the
duration of one minute.

Figure 11a compares the average latency of random workload
in 5 regions. Each region experiences different latencies due to
their asymmetrical location in the geographical topology. WPaxos
in fz=1 and fz=2 tolerance configurations show higher latency
than EPaxos because requests are forwarded to leaders in other
regions most of the time and causes extra wide area RTT, whereas
EPaxos initiates PreAccept phase by any local leader. WPaxos
with fz = 0 performs better than all other protocols due to its
local phase 2 quorums.

Figure 11b shows that, under ∼70% locality workload
(N (µz, σ = 100)), regions located close to the geographic center
improve their average latencies. Given the wide standard deviation
of accessing keys, EPaxos experiences slightly higher conflict rate,
and WPaxos and M2Paxos still experience request forwarding to
remote leaders. When the phase 2 quorums cover the same number
of regions, all three protocols show a similar average latency. Since
WPaxos provides more flexibility in configuring the fault tolerance
factor, WPaxos fz = 0, 1 outperforms all other protocols in all
regions.

In Figure 11c, we increase the locality to ∼95% (N (µz, σ =
50)). EPaxos shows similar pattern as previous experiments,
whereas WPaxos achieves much lower latency by avoiding WAN
forwarding largely in all regions.

Figure 12 shows the tail latencies caused by object stealing
in WPaxos immediate and adaptive modes and compares them
with EPaxos with 5 and 15 node deployments. In the figure, all
request latencies from every region are aggregated to produce
the cumulative distribution (CDF). Using WPaxos immediate, the
edge regions suffer from high object stealing latencies because
their Q1 latencies are longer due to their location in the topology.
WPaxos adaptive alleviates and smoothens these effects. Even
under low locality, about half of the requests are committed in
local-area latency in WPaxos.

6.6 Throughput Comparison

We experiment on scalability of WPaxos with respect to the
number of requests it processes by driving a steady workload at
each zone. Instead of the medium instances, we used a cluster of 15
large EC2 nodes to host WPaxos deployments. EPaxos is hosted at
the same nodes, but with only one EPaxos node per zone. We opted
out of using EPaxos with 15 nodes, because our preliminary ex-
periments showed significantly higher latencies with such a large
EPaxos deployment. We limit WPaxos deployments to a single
leader per zone to be better comparable to EPaxos. We gradually
increase the load on the systems by issuing more requests and
measure the latency at each of the throughput levels. Figure 13
shows the latencies as the aggregate throughput increases.

10

0

50

100

150

200

250

T C O V I

La
te

nc
y

(m
s)

WPaxos fz=0 fz=1 fz=2 EPaxos M2Paxos

(a) Uniformly random workload

0

50

100

150

200

250

T C O V I

La
te

nc
y

(m
s)

WPaxos fz=0 fz=1 fz=2 EPaxos M2Paxos

(b) Medium Locality (σ = 100) workload

0

50

100

150

200

250

T C O V I

La
te

nc
y

(m
s)

WPaxos fz=0 fz=1 fz=2 EPaxos M2Paxos

(c) High Locality (σ = 50) workload

Fig. 11: Average latencies in different regions.

Fig. 12: CDF of 70% locality workload WPaxos fz = 0 immedi-
ate/adaptive mode and EPaxos

0 5000 10000 15000 20000
Aggregate Throughput (req/s)

0

100

200

300

400

500

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

WPaxos Adaptive

WPaxos Immediate

EPaxos

0 5000 10000 15000 20000
Aggregate Throughput (req/s)

0

50

100

150

200

250

300

M
ed

ia
n

La
te

nc
y

(m
s)

WPaxos Adaptive
WPaxos Immediate

EPaxos

Fig. 13: Request latency as the throughput increases.

At low load, we observe both immediate and adaptive WPaxos
significantly outperform EPaxos as expected. With relatively small
number of requests coming through the system, WPaxos has low
contention for object stealing, and can perform many operations
locally within a region. As the number of requests increases
and contention rises, performance of both EPaxos and WPaxos
with immediate object stealing deteriorates. EPaxos suffers from
high conflict in WAN degrading its performance further. This is
because cross-datacenter latencies increase commit time, resulting
in higher conflict probability. At high conflict, Paxos goes into
two-phase operation, which negatively impacts both latency and
maximum throughput.

Immediate WPaxos suffers from leaders competing for objects
with neighboring regions, degrading its performance faster than
EPaxos. Median request latency graph in Figure 13 clearly illus-
trates this deterioration. This behavior in WPaxos with immediate
object stealing is caused by dueling leaders: as two nodes in
neighboring zones try to acquire ownership of the same object,
each restarts phase-1 of the protocol before the other leader has a
chance to finish its phase-2.

On the other hand, WPaxos in adaptive object stealing mode
scales better and shows almost no degradation until it starts to
reach the CPU and networking limits of individual instances.
Adaptive WPaxos median latency actually slightly decreases under

Fig. 14: The average latency in each second.

the medium workloads, while EPaxos shows gradual latency
increase. At the workload of 10000 req/s adaptive WPaxos out-
performs EPaxos 9 times in terms of average latency and 54 times
in terms of median latency.

6.7 Shifting Locality Workload
Many applications in the WAN setting may experience workloads
with shifting access patterns such as diurnal patterns [34], [35].
Figure 14 illustrates the effects of shifting locality in the workload
on WPaxos and statically key-partitioned Paxos (KPaxos). KPaxos
starts in the optimal state with most of the requests done on
the local objects. When the access locality is gradually shifted
by changing the mean of the locality distributions at a rate of
2 objects/sec, the access pattern shifts further from optimal for
statically partitioned Paxos, and its latency increases. WPaxos,
on the other hand, does not suffer from the shifts in the locality.
The adaptive algorithm slowly migrates the objects to regions with
more demand, providing stable and predictable performance under
shifting access locality.

6.8 Fault Tolerance
In this section we evaluate WPaxos availability by using Paxi
framework fault injection API to introduce different failures and
measure latency and throughput of normal workload in every
second. Every fault injection will last for 10 seconds and recover.

Figure 15a shows the result of first deployment where fn = 1
and fz = 0. The throughput and latency is measured in region
V. For the first 10 seconds under normal operation, the latency
and throughput is steady at less than 1 millisecond and 1000
operations/second respectively. We crash one node in region V
first, it does not have any effect on performance since |q2| = 2
out of 3 nodes in that region. At 30th second, we crash two local
nodes so that a local q2 cannot be formed. The requests has to
wait for two acks from neighboring region O, which introduce
additional 11 ms RTT to the latency.

11

985
990
995
1000
1005
1010
1015

0
2
4
6
8

10
12

0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (o

p/
s)

La
te

nc
y

(m
s)

Time (second)

Crash one node Crash two local nodes

(a) WPaxos (fz = 0) crash one and two local nodes in a zone

0
200
400
600
800
1000
1200

0
10
20
30
40
50
60
70

0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (o

p/
s)

La
te

nc
y

(m
s)

Time (second)

Crash neighbor zone Partition 4 nodes

(b) WPaxos (fz = 1) crash one zone and partition 4 nodes out of 9

Fig. 15: WPaxos availability

Figure 15b shows the results of a same deployment but fz = 1
where we can tolerate any one zone failure. The latency remains
at 11 ms as q2 requires 2 nodes from both V and O. Until 10th
second, we crash region O entirely, The leader has to wait for
acks from region C and latency become 60 ms. When region O
recovers, we partitioned 4 nodes as the minority from the system
of 9 nodes. The 4 nodes including 3 nodes from C and one node
from O. As expected, such partition does not have any effect on
system performance.

In all above failures, WPaxos always remain available.

7 CONCLUDING REMARKS

WPaxos achieves fast wide-area coordination by dynamically par-
titioning the objects across multiple leaders that are strategically
deployed using flexible quorums. Such partitioning and emphasis
on local operations allow our protocol to significantly outperform
other WAN Paxos solutions. Since the object stealing is an inte-
grated part of phase-1 of Paxos, WPaxos remains simple as a pure
Paxos flavor and obviates the need for another service/protocol
for relocating objects to zones. Since the base WPaxos protocol
guarantees safety to concurrency, asynchrony, and faults, the
performance can be tuned orthogonally and aggressively. In future
work, we will investigate smart object stealing policies that can
proactively move objects to zones with high demand. We will also
investigate implementing transactions more efficiently leveraging
WPaxos optimizations.

ACKNOWLEDGMENTS

This project is in part sponsored by the National Science Founda-
tion (NSF) under award number CNS-1527629.

REFERENCES

[1] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4,
pp. 18–25, 2001.

[2] M. J. Fischer, N. A. Lynch, and M. S. Peterson, “Impossibility of
distributed consensus with one faulty processor,” Journal of the ACM,
vol. 32, no. 2, pp. 373–382, 1985.

[3] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[4] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems.” in OSDI. USENIX Association, 2006, pp. 335–350.

[5] R. Van Renesse and D. Altinbuken, “Paxos made moderately complex,”
ACM Computing Surveys (CSUR), vol. 47, no. 3, p. 42, 2015.

[6] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems,” in USENIX ATC, vol. 10, 2010.

[7] F. Junqueira, B. Reed, and M. Serafini, “Zab: High-performance broad-
cast for primary-backup systems,” in Dependable Systems & Networks
(DSN). IEEE, 2011, pp. 245–256.

[8] “A distributed, reliable key-value store for the most critical data of a
distributed system,” https://coreos.com/etcd/.

[9] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14), 2014, pp. 305–319.

[10] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman et al.,
“Spanner: Google’s globally-distributed database,” Proceedings of OSDI,
2012.

[11] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson et al.,
“Megastore: Providing scalable, highly available storage for interactive
services,” CIDR, pp. 223–234, 2011.

[12] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi, and
P. Mahajan, “Salt: Combining acid and base in a distributed database.” in
OSDI, vol. 14, 2014, pp. 495–509.

[13] D. Quintero, M. Barzaghi, R. Brewster, W. H. Kim, S. Normann,
P. Queiroz et al., Implementing the IBM General Parallel File System
(GPFS) in a Cross Platform Environment. IBM Redbooks, 2011.

[14] A. J. Mashtizadeh, A. Bittau, Y. F. Huang, and D. Mazières, “Replication,
history, and grafting in the ori file system,” in Proceedings of SOSP, ser.
SOSP ’13, New York, NY,, 2013, pp. 151–166.

[15] A. Grimshaw, M. Morgan, and A. Kalyanaraman, “Gffs – the XSEDE
global federated file system,” Parallel Processing Letters, vol. 23, no. 02,
p. 1340005, 2013.

[16] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “TAO: Facebook’s distributed
data store for the social graph,” Usenix Atc’13, pp. 49–60, 2013.

[17] W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen, “Don’t settle
for eventual: Scalable causal consistency for wide-area storage with
cops,” in SOSP, 2011, pp. 401–416.

[18] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus
in egalitarian parliaments,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 2013, pp. 358–
372.

[19] K. Lev-Ari, E. Bortnikov, I. Keidar, and A. Shraer, “Modular composition
of coordination services,” in 2016 USENIX Annual Technical Conference
(USENIX ATC 16), 2016.

[20] E. N. Hoch, Y. Ben-Yehuda, N. Lewis, and A. Vigder, “Bizur:
A Key-value Consensus Algorithm for Scalable File-systems,” 2017.
[Online]. Available: http://arxiv.org/abs/1702.04242

[21] H. Howard, D. Malkhi, and A. Spiegelman, “Flexible Paxos:
Quorum intersection revisited,” 2016. [Online]. Available: http:
//arxiv.org/abs/1608.06696

[22] L. Lamport, “The temporal logic of actions,” ACM Transactions on
Programming Languages and Systems, vol. 16, no. 3, pp. 872–923, May
1994.

[23] L. Lamport, D. Malkhi, and L. Zhou, “Vertical paxos and primary-backup
replication,” in Proceedings of the 28th ACM symposium on Principles
of distributed computing. ACM, 2009, pp. 312–313.

[24] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building
Efficient Replicated State Machines for WANs,” Proceedings of the
Symposium on Operating System Design and Implementation, pp.
369–384, 2008. [Online]. Available: http://www.usenix.org/event/osdi08/
tech/full{ }papers/mao/mao{ }html/

[25] S. Peluso, A. Turcu, R. Palmieri, G. Losa, and B. Ravindran, “Making
fast consensus generally faster,” Proceedings - 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN
2016, pp. 156–167, 2016.

[26] F. Nawab, D. Agrawal, and A. El Abbadi, “Dpaxos: Managing data closer
to users for low-latency and mobile applications,” in Proceedings of the
2018 International Conference on Management of Data. ACM, 2018,
pp. 1221–1236.

[27] A. Ailijiang, A. Charapko, M. Demirbas, and T. Kosar, “Wpaxos: Ruling
the archipelago with fast consensus,” arXiv preprint arXiv:1703.08905,
2017.

https://coreos.com/etcd/
http://arxiv.org/abs/1702.04242
http://arxiv.org/abs/1608.06696
http://arxiv.org/abs/1608.06696
http://www.usenix.org/event/osdi08/tech/full{_}papers/mao/mao{_}html/
http://www.usenix.org/event/osdi08/tech/full{_}papers/mao/mao{_}html/

12

[28] Wankeeper project. [Online]. Available: https://github.com/ailidani/
wankeeper

[29] L. Lamport, D. Malkhi, and L. Zhou, “Vertical paxos and primary-backup
replication,” in Proceedings of the 28th ACM symposium on Principles
of distributed computing. ACM, 2009, pp. 312–313.

[30] L. Lamport, “Generalized consensus and paxos,” Technical Report MSR-
TR-2005-33, Microsoft Research, Tech. Rep., 2005.

[31] Amazon Inc., “Elastic Compute Cloud,” Nov. 2008.
[32] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in Proceedings
of the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 143–154. [Online]. Available:

http://doi.acm.org/10.1145/1807128.1807152
[33] H. F. Inman and E. L. Bradley Jr, “The overlapping coefficient as

a measure of agreement between probability distributions and point
estimation of the overlap of two normal densities,” Communications in
Statistics-Theory and Methods, vol. 18, no. 10, pp. 3851–3874, 1989.

[34] G. Zhang, L. Chiu, and L. Liu, “Adaptive data migration in multi-tiered
storage based cloud environment,” in Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on. IEEE, 2010, pp. 148–155.

[35] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload anal-
ysis and demand prediction of enterprise data center applications,” in
Workload Characterization, 2007. IISWC 2007. IEEE 10th International

Symposium on. IEEE, 2007, pp. 171–180.

https://github.com/ailidani/wankeeper
https://github.com/ailidani/wankeeper
http://doi.acm.org/10.1145/1807128.1807152

	1 Introduction
	2 Related Work
	2.1 Paxos Protocol
	2.2 Paxos Variants

	3 WPaxos Overview
	3.1 WPaxos Quorums
	3.2 Multi-leader
	3.3 Object Stealing

	4 WPaxos Algorithm
	4.1 Phase-1: Prepare
	4.2 Phase-2: Accept
	4.3 Phase-3: Commit
	4.4 Properties

	5 Extensions
	5.1 Locality Adaptive Object Stealing
	5.2 Replication Set
	5.3 Fault Tolerance and Reconfiguration

	6 Evaluation
	6.1 Setup
	6.2 Object Space
	6.3 WPaxos Quorum Latencies
	6.4 Conflicting Commands
	6.5 Latency Comparison
	6.6 Throughput Comparison
	6.7 Shifting Locality Workload
	6.8 Fault Tolerance

	7 Concluding Remarks
	References

