
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

cuPC: CUDA-based Parallel PC Algorithm for
Causal Structure Learning on GPU

Behrooz Zarebavani, Foad Jafarinejad, Matin Hashemi, and Saber Salehkaleybar
This article is published. Please cite as B. Zarebavani, F. Jafarinejad, M. Hashemi, S. Salehkaleybar, “cuPC: CUDA-based Parallel PC Algorithm
for Causal Structure Learning on GPU,” IEEE Transactions on Parallel and Distributed Systems (TPDS), 2019. doi: 10.1109/TPDS.2019.2939126

Abstract—The main goal in many fields in the empirical sciences is to discover causal relationships among a set of variables from
observational data. PC algorithm is one of the promising solutions to learn underlying causal structure by performing a number of
conditional independence tests. In this paper, we propose a novel GPU-based parallel algorithm, called cuPC, to execute an
order-independent version of PC. The proposed solution has two variants, cuPC-E and cuPC-S, which parallelize PC in two different
ways for multivariate normal distribution. Experimental results show the scalability of the proposed algorithms with respect to the
number of variables, the number of samples, and different graph densities. For instance, in one of the most challenging datasets, the
runtime is reduced from more than 11 hours to about 4 seconds. On average, cuPC-E and cuPC-S achieve 500 X and 1300 X speedup,
respectively, compared to serial implementation on CPU. The source code of cuPC is available online [1].

Index Terms—Bayesian Networks, Causal Discovery, CUDA, GPU, Machine Learning, Parallel Processing, PC Algorithm.
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1 INTRODUCTION

L EARNING causal structures is one of the main problems
in empirical sciences. For instance, we need to under-

stand the impact of a medical treatment on a disease or
recover causal relations between genes in gene regulatory
networks (GRN) [2]. By discovering such causal relations,
one will be able to predict the impact of different actions.
Causal relations can be inferred by controlled randomized
experiments. However, in many cases, it is not possible to
perform the required experiments due to technical or ethical
reasons. In such cases, causal relations need to be learned
merely from observational data [3], [4].

Causal Bayesian network is one of the models which
has been widely considered to explain the data-generating
mechanism. In this model, causal relations among variables
are represented by a directed acyclic graph (DAG) where
there is a direct edge from variable Vi to variable Vj if
Vi is a direct cause of Vj . The task of causal structure
learning is to learn all DAGs that are compatible with the
observed data. Under some assumptions [4], the underlying
true causal structure is in the set of recovered DAGs if
the number of observed data samples goes to infinity. Two
common approaches for learning causal structures are score-
based and constraint-based approaches. In the score-based
approach, in order to find a set of DAGs that best explains
dependency relations among the variables, a score function
is evaluated, which might become an NP-hard problem [5].

In the constraint-based approach, such DAGs are found
by performing a number of conditional independence (CI)
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tests. Sprites and Glymour [4] proposed a promising so-
lution, called PC algorithm. For ground-truth graphs with
bounded degrees, PC algorithm does not require to perform
high-order conditional independence tests, and thus, runs in
polynomial time. PC algorithm has become a common tool
for causal explorations and is available in different graphical
model learning packages such as pcalg [6], bnlearn [7],
and TETRAD [8]. Moreover, it has been widely applied in
different applications such as learning the causal structure
of GRNs from gene expression data [9], [10]. Furthermore, a
number of causal structure learning algorithms, for instance,
FCI and its variants such as RFCI [4], [11], and CCD algo-
rithm [12], use PC algorithm as a subroutine.

PC algorithm starts from a complete undirected graph
and removes the edges in consecutive levels based on
carefully selected conditional independence tests. However,
performing these number of tests might take a few days
on a single machine in some gene expression data such
as DREAM5-Insilico dataset [13]. Furthermore, the order of
performing conditional independence tests may affect the
final result. Parallel implementations of PC algorithm on
multi-core CPUs have been proposed in [14], [15]. In [16],
Colombo and Maathuis proposed a variant of PC algorithm
called PC-stable which is order-independent and produces
less error compared with the original PC algorithm. The key
property of PC-stable is that removing an edge in a level has
no effect on performing conditional independence tests of
other edges in that level. This order-independent property
makes PC-stable suitable for executing on multi-core ma-
chines. In [17], Le et al. proposed a parallel implementation
of PC-stable algorithm on multi-core CPUs, called Parallel-
PC, which reduces the runtime by an order of magnitude.
For instance, it takes a couple of hours to process DREAM5-
Insilico dataset. In case of using GPU hardware, there was
an attempt for parallelization of the PC-stable algorithm
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in [18]. However, only a small part (only level zero and
level one) of the PC-stable algorithm is parallelized in this
method, and thus, it cannot be used as a complete solution
in many datasets which require more than two levels. In
fact, their approach cannot be generalized to level two and
beyond.

In this paper, we propose a GPU-based parallel algo-
rithm, called “cuPC”, for learning causal structures based
on PC-stable. We assume that there is no missing observa-
tions for any variable, and data has multivariate normal
distribution. In order to execute PC-stable, one needs to
perform conditional independence tests to evaluate whether
two variables Vi and Vj are independent given another set
of variables S. The proposed algorithm has two variants,
called “cuPC-E” and “cuPC-S”, which employ the following
ideas.

I) cuPC-E employs two degrees of parallelism at the
same time. First is performing tests for multiple edges in
parallel and second, is parallelizing the tests which are
performed for a given edge. Although abundant parallelism
is available, parallelizing all such tests does not yield the
highest performance because it incurs different overheads
and also results in many unnecessary tests. Instead, cuPC-
E judiciously strikes a balance between the two degrees of
parallelism in order to efficiently utilize the parallel comput-
ing capabilities of GPU and avoid launching unnecessary
tests at the same time. In addition, cuPC-E employs two
configuration parameters which can be adjusted to tune the
performance and achieve high speedup in both sparse and
dense graphs.

II) A conditional set S might be common in tests of many
pairs of variables. cuPC-S takes advantage of this property
and reuses the results of computations in one of such tests
in the others. This sharing can be performed in different
ways. For instance, sharing all redundant computations in
processing the entire graph might first seem more beneficial,
but it has non-justifiable overheads. Hence, cuPC-S employs
a carefully-designed local sharing strategy in order to avoid
different overheads and achieve significant speedup.

III) cuPC-E and cuPC-S parallel algorithms avoid storing
the indices of variables in set S. Instead, a combination
function is employed to compute the indices on-the-fly and
also in parallel. IV) The causal structure is represented by
an adjacency matrix which is compacted before starting
the computations in every level. The compacted format is
judiciously selected to assign and execute parallel threads
more efficiently, and also, improves cache performance. V)
GPU shared memory is used in order to improve perfor-
mance. VI) Where applicable, threads are terminated early
in order to avoid performing unnecessary computations. For
instance, edge removals are monitored in parallel, and when
an edge is removed in another thread or another block, the
rest of the tests on that edge are skipped.

Experiments on multiple datasets show the scalability
of the proposed parallel algorithms with respect to the
number of variables, the number of samples, and different
graph densities. For instance, in one of the most challenging
datasets, cuPC-S can reduce the runtime of PC-stable from
more than 11 hours to about 4 seconds. On average, cuPC-
E and cuPC-S achieve about 500 X and 1300 X speedup,
respectively, compared to serial implementation on CPU.

The rest of this paper is organized as follows. In Sec-
tion 2, we review some preliminaries on causal Bayesian
networks and description of PC-stable. In Section 3, we
present the two variants of cuPC algorithm, cuPC-E and
cuPC-S. Furthermore, we elaborate details of our contri-
butions in Section 4. We conduct experiments to evaluate
the performance and scalability of the proposed solution in
Section 5 and conclude our results in Section 6.

2 PRELIMINARIES

2.1 Bayesian Networks
Consider a set of random variables V = {V1, V2, . . . , Vn}.
Given X,Y, Z ⊆ V , a conditional independence (CI)
assertion of the form X ⊥⊥ Y |Z means X and Y are
independent given Z . A CI test of the form I(X,Y |Z) is
a test procedure based on observed data samples from X ,
Y and Z which determines whether the corresponding CI
assertion X ⊥⊥ Y |Z holds or not. Section 4.3 describes how
to perform CI tests from observed-data samples.

Graphical model G is a graph which encodes a joint
distribution P over the random variables in V . The rea-
son behind the development of a graphical model is that
the explicit representation of the joint distribution becomes
infeasible as the number of variables grows. Furthermore,
under some assumptions on the data generating model, one
can interpret causal relations among the variables from these
graphs [19].

Bayesian Networks (BN) are a class of graphical models
that represent a factorization of P over V by a directed
acyclic graph (DAG) G = (V, E) as

P (V1, V2, . . . , Vn) =

n∏
i=1

P (Vi|par(Vi)), (1)

where E is the set of edges, and par(Vi) denotes parents
of Vi in G. Moreover, the graph G encodes conditional
independence between the random variables in V by some
notion of separation in graphs.

A Causal Bayesian Network (CBN) is a BN where each
directed edge represents a cause-effect relationship from the
parent to its child. For the exact definition of CBN, please
refer to [20], Section 1.3. A CBN satisfies causal Markov
condition, i.e., given par(Vi), variable Vi is independent of
any variable Vj that there is no directed path from Vi to Vj .
Let I(P ) be the set of all CI assertions that holds in P . Under
causal Markov condition and faithful assumptions [4], all CI
assertions in I(P ) are encoded in the true causal graph G
[21].

2.2 CPDAG
In a directed graph G, we say that three variables
Vi, Vk, Vj ∈ V form a v-structure at Vk if variables Vi
and Vj have an outgoing edge to variable Vk while they
are not connected by any edge in G. This is denoted by
Vi → Vk ← Vj . The skeleton of a directed graph G
is an undirected graph that contains edges of G without
considering their orientations.

For a given joint distribution P , there might be different
DAGs that can represent I(P ). The set of all such DAGs
is called Markov equivalence class [22]. It can be shown
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that two DAGs are in the same Markov equivalence class
if they have the same skeleton and the same set of v-
structures [23]. A Markov equivalence class can be repre-
sented uniquely by a mixed graph called completed partial
DAG (CPDAG). In particular, there is a directed edge in
CPDAG from Vi to Vj if this edge exists with the same
direction in all DAGs in the Markov equivalent class. There
is an undirected edge between Vi and Vj in CPDAG if there
exist two DAGs in the Markov equivalence class which have
an edge between Vi and Vj but with different orientations.

2.3 Causal Structure Learning
Causal structure learning, our focus in this paper, is the
problem of finding a CPDAG which best describes depen-
dency relations in a given data that is sampled from the ran-
dom variables in V . In the literature, two main approaches
have been proposed for causal structure learning [24]:
constraint-based approach and score-based approach.

In the constraint-based approach, CI tests are utilized
to recover the CPDAG. Examples include PC [4], Rank
PC [25], PC-stable [16], IC [26], and FCI [4]. In the score-
based approach, a score function indicates how well each
DAG explains dependency relations in the data. Then, a
CPDAG with the highest score is obtained by searching
over Markov equivalence classes. Examples include Chow-
Liu [27] and GES [28] algorithms. There are other methods
such as LiNGAM [29], [30], and BACKSHIFT [31] which do
not belong to any of the above two categories because their
underlying assumptions are more restricted or their settings
are different.

Choosing between the types of algorithms depends on
the characteristics of the data [32]. For instance, Scutari
et al. [33] concluded that constraint-based algorithms are
more accurate than score-based algorithms for small sample
sizes and that they are as accurate as hybrid algorithms. PC
algorithm, as one of the main constraint-based algorithms,
has become a common tool for causal explorations and is
available in different graphical model learning packages [6],
[7], [8]. In addition, a number of causal structure learning
algorithms utilize PC algorithm as a subroutine [4], [11],
[12].

2.4 PC-stable Algorithm
In the constraint-based approach, a naive solution to check
whether there is an edge between two variables Vi and Vj in
the CPDAG is to perform all CI tests of the form I(Vi, Vj |S)
where S ⊆ V\{Vi, Vj}. This solution is computationally
infeasible for large number of variables due to exponentially
growing number of CI tests.

Unlike the naive solution, the PC algorithm is com-
putationally efficient for sparse graphs with up to thou-
sands number of variables and is commonly used in high-
dimensional settings [34]. Here we describe PC-stable al-
gorithm which is a variation of PC with less estimation
errors [16].

PC-stable algorithm consists of two main steps: In the
first step, the skeleton is determined by performing a num-
ber of carefully selected CI tests. In the second step, the set
of v-structures are extracted and as many of the undirected
edges as possible are oriented by applying a set of rules

Algorithm 1 The first step in PC-stable algorithm.
Input: V
Output: G, SepSet

1: G = fully connected graph
2: SepSet = ∅
3: ` = 0
4: repeat
5: Copy G into G′

6: for any edge (Vi, Vj) in G do
7: repeat
8: Choose a new S ⊆ adj(Vi, G′)\{Vj} with |S| = `
9: Perform I(Vi, Vj |S)

10: if Vi ⊥⊥ Vj |S then
11: Remove (Vi, Vj) from G
12: Store S in SepSet
13: end if
14: until (Vi, Vj) is removed or all sets S are considered
15: end for
16: ` = `+ 1
17: until ( max degree −1 ≥ ` )

0 1

2 3

I (0,1) = ✕
I (0,2) = ✕
I (0,3) = ✕
I (1,2) = ✓

I (1,3) = ✕
I (2,3) = ✕

I (0,1 | {2}) = ✕
I (0,1 | {3}) = ✕
I (0,2 | {1}) = ✕
I (0,2 | {3}) = ✕
I (0,3 | {1}) = ✕
I (0,3 | {2}) = ✕
I (1,0 | {3}) = ✕
I (1,3 | {0}) = ✓

I (2,0 | {3}) = ✕
I (2,3 | {0}) = ✓ 

I (3,0 | {2}) = ✕
I (3,0 | {1}) = ✕

Copy G into G'
Level 0

I (0,1 |{2 ,3}) = ✕
I (0,2 |{1 ,3}) = ✕

Level 1

I (0,3 |{1 ,2}) = ✕

Level 2

tim
e

G

0 1

2 3
G

0 1

2 3
G'

0 1

2 3
G

0 1

2 3
G

Copy G into G'

0 1

2 3
G'

Create complete 
graph G

Fig. 1. An example of execution of PC-stable algorithm. For better
readability, we use the term i instead of Vi. For instance, I(0, 1) actually
means I(V0, V1). This is done in Fig. 3 and Fig. 4 as well.

called Meek rules [35]. The second step is fairly fast. The first
step is computationally intensive [15] and forms our focus
in this paper. For instance, in ground truth graphs with
a bound ∆ on the maximum degree, the time complexity
of PC-stable algorithm is in the order of O(n∆). Sections 3
and 4 present our proposed solution for acceleration of this
step on GPU. Details of the first step are described in the
following.

See Algorithm 1. First, G is initiated with a fully con-
nected undirected graph over set V (line 1). Next, the extra
edges are removed from G by performing a number of CI
tests. The tests are performed by levels. In each level `, first
a copy of G is stored in G′ (line 5). Next, for every edge
(Vi, Vj) in graph G, a CI test I(Vi, Vj |S) is performed for
any S ⊆ adj(Vi, G

′)\{Vj} such that |S| = ` (lines 6 − 9),
where adj(Vi, G

′) denotes the neighbors of Vi in G′ (see
Section 4.3 for the details of performing a CI test). If there
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exists a set S where Vi is independent of Vj given S (line
10), edge (Vi, Vj) is removed from G, and S is stored in
SepSet (lines 11−12). Once all the edges are considered, ` is
incremented (line 16) and the above procedure is repeated.
The algorithm continues as long as the maximum degree of
the graph is large enough (line 17). The second step in PC-
stable is to use SepSet to find v-structures and orient the
edges of graph G.

Fig. 1 illustrates execution of the first step on a small
graph. In level ` = 0, six CI tests are performed, one for
every edge in the fully connected graph. Assuming that the
result of the fourth CI test is true, we have V1 ⊥⊥ V2, and
hence, edge (V1, V2) is removed. In level ` = 1, 12 CI tests
are performed and edges (V1, V3) and (V2, V3) are removed.

Note that by selecting the conditional sets S from G′ but
removing edges from G, the algorithm finally reaches the
same graph regardless of the edge selection order. In other
words, during the execution of the algorithm in a level, S
only depends on G′. Since performing CI tests in each level
is independent of the edge selection order, making an error
in one of the CI tests does not have any impact on other CI
tests in that level.

3 CUPC: CUDA-ACCELERATED PC ALGORITHM

This section presents our proposed solution for acceleration
of the computationally-intensive portion of PC-stable (lines
5 − 15 in Algorithm 1) on GPU using CUDA parallel pro-
gramming API. We assume that there is no missing obser-
vations for any variable, and data has multivariate normal
distribution. The overall view of the proposed method is
shown in Algorithm 2. The main loop on ` which iterates
through the levels still exists in the proposed solution, but
the internal computations of every level are accelerated on
GPU. In specific, since the computations of level zero can
be simplified, a separate parallel algorithm is employed for
this level (line 7 in Algorithm 2). For every level ` ≥ 1,
first G is copied into G′ (line 9), and then, the required
computations are performed (line 10). Note that we work
on adjacency matrix of graph G denoted as AG. In order to
increase the efficiency of the proposed parallel algorithms,
A′G is a compacted version of AG. The details are discussed
in the following.

A short background on CUDA is presented in Sec-
tion 3.1. Acceleration of level ` = 0 is discussed in Sec-
tion 3.2. For levels ` ≥ 1, two different parallel algorithms
called cuPC-E and cuPC-S are proposed. cuPC-E and the
compact procedure are discussed in Section 3.3. cuPC-S is
discussed in Section 3.4. Further details on some parts of
the proposed solution are discussed later in Section 4.

3.1 CUDA
CUDA is a parallel programming API for Nvidia GPUs.
GPU is a massively parallel processor with hundreds to
thousands of cores. CUDA follows a hierarchical program-
ming model. At the top level, computationally intensive
functions are specified by the programmer as CUDA ker-
nels. A kernel is specified as a sequential function for a
single thread. The kernel is then launched for parallel ex-
ecution on the GPU by specifying the number of concurrent
threads.

Algorithm 2 Overall view of the proposed solution. Lines 7,
9, and 10 are executed in parallel on GPU.
Input: V
Output: G, SepSet

1: G = fully connected graph
2: SepSet = ∅
3: ` = 0
4: AG = adjacency matrix of graph G
5: repeat
6: if (` == 0) then
7: GPU: execute level zero
8: else
9: GPU: compact AG into A′G

10: GPU: execute level `
11: end if
12: ` = `+ 1
13: until ( max degree −1 ≥ ` )

Threads are grouped into blocks. A kernel consists of
a number of blocks, and every block consists of a number
of threads. Every block has access to a small, on-chip and
low-latency memory, called shared memory. The shared
memory of a block is accessible to all threads within that
block, but not to any thread from other blocks1.

In order to identify blocks within a kernel, and also,
threads within a block, a set of indices are used in the CUDA
API, for instance, blockIdx.y and blockIdx.x as the block
index in dimension y and dimension x within a 2D kernel,
and threadIdx.y and threadIdx.x as the thread index in
dimensions y and x within a 2D block. For brevity, we
denote these four indices as by, bx, ty and tx, respectively.

3.2 Level ` = 0

Size of conditional sets S is equal to ` (Algorithm 1, line
8). As a result, in level zero, S = ∅, and therefore, the
required computations can be simplified. In specific, for
every edge (Vi, Vj) in G, only one CI test is required, which
is I(Vi, Vj |∅) or simply I(Vi, Vj). In addition, copyingG into
G′ is not required.

All the required CI tests I(Vi, Vj) are performed in
parallel as shown in Algorithm 3. Since the input graph
in level zero is a fully connected undirected graph, a total
of n(n − 1)/2 tests are required, i.e., one for every edge.
Every test I(Vi, Vj) is assigned to a separate thread and n2

threads are launched. Threads are grouped in a 2D kernel of
n/32 × n/32 blocks. Every block has 32 × 32 threads. Indices
i and j are calculated in lines 1− 2. Here, 0 ≤ by, bx < n/32

and 0 ≤ ty, tx < 32.
Lines 4 − 7 are executed in only n(n − 1)/2 threads. In

line 4, the CI test I(Vi, Vj) is performed. In lines 5 − 7, the
edge (Vi, Vj) is removed from graph G if Vi ⊥⊥ Vj . The term
AG denotes the adjacency matrix of graph G. Edge (Vi, Vj)
is removed from G by setting AG[i, j] = AG[j, i] = 0.

1. This article is presented based on CUDA programming frame-
work. However, the presented ideas and parallel algorithms can readily
be ported to OpenCL programming framework for other GPU vendors
as well. In specific, block, thread and shared memory in CUDA pro-
gramming framework correspond to work-group, work-item, and local
memory in OpenCL programming framework.
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Algorithm 3 Acceleration of level ` = 0. See Section 3.2.
Input: AG
Output: AG
# of blocks: n/32× n/32

# of threads / block: 32× 32
1: i = by × 32 + ty
2: j = bx× 32 + tx
3: if (i < j) then
4: Perform I(Vi, Vj)
5: if (Vi ⊥⊥ Vj) then
6: AG[i, j] = AG[j, i] = 0
7: end if
8: end if

6

0
1
2

4
3

5

0 1 2 3 4 5
0
1
2

4
3

5

0 1 2 3 4
0 1 1 1 1 1
1 0 1 0 0 0
1 1 0 1 1 1

1 0 1 1 0 1
1 0 1 0 1 0

1 0 1 0 1 0

1 2 3 4 5
0 2
0 1 3 4 5

0 2 3
0 2 4

0 2

Compact

6 0 0 1 0 0 0

6
0
0
1

0
0

0
0

5
4

2

6

5

GA GA ′

nn× nn× ,

AG A’G

Fig. 2. A′G is formed by compacting AG.

3.3 Level ` ≥ 1: Parallel Algorithm cuPC-E

Two different parallel algorithms (kernels) are proposed for
acceleration of every level ` ≥ 1. This section describes the
first algorithm, called cuPC-E. See Algorithm 4.

Compact: cuPC-E takes `, AG and A′G as input. As shown
in line 9 in Algorithm 2, A′G is formed by compacting
adjacency matrix AG into a sparse representation. Fig. 2
illustrates a small example. An element with value j in i-th
row in A′G denotes existence of edge (Vi, Vj) in AG. A′G has
n rows. Row i has n′i elements, i.e., edges. Let n′ = max

0≤i<n
n′i.

Note that A′G can be implemented in different formats
such as linked lists as in adjacency list representations [36].
However, since linked lists are not efficient for parallel
execution, A′G is implemented as a matrix with n rows and
n′+1 columns. The element at the last column of each row i
stores n′i. The Compact procedure is executed in parallel by
employing another parallel algorithm called scan [37], [38].
Details are removed for brevity.

Blocks and Threads: cuPC-E kernel consists of n × n′
/β

blocks. See Fig. 3(a). Every block performs the required CI
tests for β edges, i.e., β consecutive elements from one row
in A′G. In Fig. 3(a), there are 7×2 blocks. Block (2, 1), which
is marked with green color, works on β = 3 edges, namely,
(V2, V4), (V2, V5), and (V2, V6). See Fig. 3(b). The CI tests for
each one of the β edges are split among γ threads. Hence,
every block consists of γ × β threads. In Fig. 3(d), there are
2×3 threads in block (2, 1). Thread (1, 1) in this block, which
is marked with purple color, works on half of the CI tests
for edge (V2, V5). Thread (0, 1) works on the other half.

Shared Memory: The threads in block (by, bx) frequently
access different elements in row by in A′G. Therefore, in
order to speedup the memory accesses, the entire row is
copied into the block’s shared memory, i.e., into vector A′sh.
See Fig. 3(c).

Index Calculations: Let (Vi, Vj) denote the target edges in
block (by, bx). For all threads within block (by, bx), i is equal

Algorithm 4 Acceleration of level ` ≥ 1 with parallel
algorithm cuPC-E. See Section 3.3 and Fig. 3.
Input: AG, A′G, `
Output: AG, SepSet
# of blocks: n× n′

/β
# of threads / block: γ × β

1: i = by
2: n′i = size of row i in A′G
3: Copy the entire row i from matrix A′G into vector A′sh

in shared memory
4: p = bx× β + tx
5: j = A′sh[p]

6: for (t = ty; t <
(
n′
i−1
`

)
; t = t+ γ) do

7: if (AG[i, j] == 1) then
8: P1×` = Comb(n′i − 1, `, t, p)
9: S1×` = A′sh[P ]

10: Perform I(Vi, Vj |S)
11: if (Vi ⊥⊥ Vj |S) then
12: AG[i, j] = AG[j, i] = 0
13: Store S in SepSet
14: end if
15: end if
16: end for

0 1 3 j=4 j=5

6

0

1

2

4

3

5

bx=0 bx=1
1 2 3 4 5

0 2

0 1 3 4 5

0 2 3

0 2 4

0 2

5

4

2

6
by

blocks  27in   ASplit  (a) G ×=
′

×′
β
nn

j=6

)1,2(block for    (c) shA′

3 4 5

(b)

tx=0 tx=1 tx=2

ty=0

i=2
j=4

…

i=2
j=5

t=0: S={0,1}
t=2: S={0,4}
t=4: S={1,3}
t=6: S={1,6}
t=8: S={3,6}

i=2
j=6

…

ty=1

i=2
j=4

…

i=2
j=5

t=1: S={0,3}
t=3: S={0,6}
t=5: S={1,4}
t=7: S={3,4}
t=9: S={4,6}

i=2
j=6

…

blockper   threads32  (d) ×=× βγ

tx=0 tx=1 tx=2
p: 0      1       2

21

3

6

5

0

4 j

i

Fig. 3. Blocks and threads in cuPC-E parallel algorithm. In this example,
n = 7, n′ = 6, β = 3, γ = 2 and ` = 2. Block (2, 1) is marked
with green color, and thread (1, 1) in this block is marked with purple
color. For threads (0, 1) and (1, 1) in block (2, 1), S is selected from set
{0, 1, 3, 4, 6}.

to by. See line 1 in Algorithm 4. For thread (ty, tx) in this
block, j is equal to the tx-th element in the green portion of
the corresponding row, i.e., element bx× β + tx in A′sh. See
lines 4− 5 in Algorithm 4, and also, Fig. 3(c).

Combinations: Consider all CI tests I(Vi, Vj |S) for edge
(Vi, Vj). Set S is formed by selecting ` elements from row i
in A′G or equivalently from A′sh. Since element j in this row
should not be selected, there will remain n′i − 1 elements to
choose from. Therefore, there are a total of

(
n′
i−1
`

)
possible

combinations for set S. CI tests of an edge (Vi, Vj) are split
among γ threads. In the example of Fig. 3(d), i = 2 and
j = 5. Hence, S is selected from {0, 1, 3, 4, 6}. There are
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5
2

)
= 10 possible combinations for S. Each of the γ = 2

threads sequentially perform 10/2 = 5 of these tests. See
lines 6− 10 in Algorithm 4, and also, Fig. 3(d). P is an array
of pointers that point to the selected elements. For instance,
when t = 9 (the last combination), we have P = {3, 5} and
S = {V4, V6}. The Comb function returns t-th combination
in parallel, while skipping the unwanted combinations that
include p, i.e., the pointer to j. Different parallel threads call
this function with different values of t. The internal details
of the Comb function are discussed later in Section 4.2.

Edge Removal: In lines 10 − 14, one CI test I(Vi, Vj |S) is
performed, and if Vi ⊥⊥ Vj |S, the edge (Vi, Vj) is removed
from AG. As mentioned before in Algorithm 1, the condi-
tional sets S are selected from G′ but the edges are removed
from G.

Key Features: Important features of cuPC-E parallel al-
gorithm are discussed in the following. I) cuPC-E offers
two degrees of parallelism, in specific, processing all the
edges in parallel, and for every edge, performing the CI
tests in parallel. Although abundant parallelism is avail-
able, parallelizing all such tests does not yield the highest
performance. cuPC-E does not fully parallelize all CI tests
for an edge. The number of CI tests for edge (Vi, Vj) is
equal to

(
n′
i−1
`

)
, while these CI tests are performed by only

γ parallel threads. In the example of Fig. 3(d), for edge
(V2, V5), 10 tests are performed by 2 parallel threads. When
one of these γ threads removes the target edge, we no
longer need to perform the rest of the CI tests for that
edge. The if statement in line 7 in Algorithm 4 blocks
these unnecessary tests. γ = 1 avoids all the unnecessary
tests but is sequential, and γ =

(
n′
i−1
`

)
is fully parallel

but does not avoid any of the unnecessary tests. Parallel
algorithm cuPC-E, therefore, strikes a balance by judiciously
employing partial parallelism of the CI tests.

II) Edge removals are monitored in parallel in order to
avoid unnecessary tests. In specific, when edge (Vi, Vj) is
removed by another block, i.e., by a block with by = j,
the same if statement in line 7 in Algorithm 4 blocks the
unnecessary tests.

III) All indices required for fetching sets S are calculated
on-the-fly and also in parallel based on a combination
function (Section 4.2), and hence, cuPC-E does not use extra
memory for storing the indices.

IV) Processing the compacted version of the adjacency
matrix removes unnecessary checks for zero elements ofAG,
reduces total number of combinations for set S, and also
leads to better cache performance. The compacted format is
judiciously selected to match the proposed method.

V) Use of shared memory for the rows of A′G increases
the performance. Note that every block has only one copy
of its corresponding row but processes β edges. Storing the
correlation matrix C or the set of combinations in shared
memory is not beneficial.

3.4 Level ` ≥ 1: Parallel Algorithm cuPC-S

Every CI test I(Vi, Vj |S) includes computing pseudo-
inverse of a matrix M2. See Sections 4.3 and 4.4 for the
details. Pseudo-inverse computations are time consuming.
cuPC-S employs the following idea in order to accelerate the
process. The matrix M2, which requires inversion, depends

Algorithm 5 Acceleration of level ` ≥ 1 with parallel
algorithm cuPC-S. See Section 3.4 and Fig. 4.
Input: AG, A′G, `
Output: AG, SepSet
# of blocks: n× δ
# of threads / block: θ × 1

1: i = by
2: n′i = size of row i in A′G
3: Copy the entire row i from matrix A′G into vector A′sh

in shared memory
4: for (t = bx× θ + ty; t <

(
n′
i
`

)
; t = t+ θ × δ) do

5: P1×` = Comb(n′, `, t)
6: S1×` = A′sh[P ]
7: Form matrix M2 based on set S (Section 4.3)
8: M−1

2 = Pseudo-inverse of M2 (Section 4.4)
9: for p = 0 to n′i do

10: j = A′sh[p]
11: if (j /∈ S) then
12: if (AG[i, j] == 1) then
13: Perform I(Vi, Vj |S)
14: if (Vi ⊥⊥ Vj |S) then
15: AG[i, j] = AG[j, i] = 0
16: Store S in SepSet
17: end if
18: end if
19: end if
20: end for
21: end for

only on set S, and not Vi or Vj . See Equation 4. Therefore,
by assigning the CI tests that depend on the same set S to a
single thread, it is possible to avoid multiple calculations of
the same pseudo-inverse by sharing it among the CI tests.
See Algorithm 5.

Blocks and Threads: cuPC-S kernel consists of n×δ blocks.
For a given row i in A′G, there exist

(
n′
i
`

)
possible sets S of

size `. Processing of these sets are split among δ blocks,
each containing θ threads. Each one of these δ × θ threads,
therefore, is responsible for processing

(
n′
i
`

)
/(δ × θ) sets S.

Fig. 4 illustrates a small example. Row 2 contains n′2 = 6
elements. Therefore, there are

(
6
2

)
= 15 possible sets S

for this row, which are split among δ = 2 blocks, each
containing θ = 4 threads. See Fig. 4(b). Block (2, 1) is
marked with green color, and thread 0 within this block is
marked with purple color. This thread works on two sets S,
in specific, S = {V0, V6} and S = {V4, V5}.

Index Calculations: Lines 1− 3 in Algorithm 5 are similar
to cuPC-E. Since every thread that is assigned to row i = by

in cuPC-S is responsible for processing
(
n′
i
`

)
/(δ × θ) sets S,

the for loop in line 4 iterates
(
n′
i
`

)
/(δ×θ) times. In Fig. 4(b),

it iterates twice, for instance, we have t = 1× 4 + 0 = 4 and
t = 4 + 8 = 12 in thread 0 in block (2, 1).

In every iteration, one set S is selected based on the value
of t. This is done using the Comb function. See lines 5−6 in
Algorithm 5. The selected set S is used to perform a number
of CI tests I(Vi, Vj |S). Since matrix M2 depends only on S,
and not Vi or Vj , we compute this matrix and its pseudo-
inverse once and use the results in all these CI tests. See
lines 7− 8.
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Fig. 4. Blocks and threads in cuPC-S parallel algorithm. In this example,
n = 7, n′ = 6, δ = 2, θ = 4 and ` = 2. Block (2, 1) is marked with
green color, and thread 0 in this block is marked with purple color. In
the second loop iteration in this thread, we have t = 12, and hence,
S = {4, 5} (red color). Therefore, j is equal to 0, 1, 3, and finally 6
(orange color).

In the target CI tests I(Vi, Vj |S), i = by and different
values of j are determined in lines 9 − 11 by iterating
through all adjacent nodes of Vi and selecting the ones
which are not in S. As an example, consider thread 0 in
block (2, 1) in Fig. 4. This thread has two loop iterations:
t = 4 and t = 12. In the second iteration (t = 12), we
have S = {V4, V5} which is marked with red color in the
figure. As a result, Vj ’s are the other adjacent nodes of Vi,
namely, V0, V1, V3 and finally V6. They are marked with
orange color. See Fig. 4(c). Hence, in the second iteration
(t = 12) in thread 0 in block (2, 1), the following CI
tests are performed: I(V2, V0|{V4, V5}), I(V2, V1|{V4, V5}),
I(V2, V3|{V4, V5}), and I(V2, V6|{V4, V5}).

Edge Removal: Lines 12 − 18 in Algorithm 5 are similar
to cuPC-E, except that line 13 executes faster because part
of performing a CI test is to compute pseudo-inverse M−1

2

which is already computed in line 8.

Key Features: Similar to cuPC-E parallel algorithm, cuPC-
S I) works on A′G which is the compacted version of the
adjacency matrix, II) employs shared memory, III) skips
unnecessary CI tests via the if statement in line 12 in Algo-
rithm 5, and IV) employs a parallel combination function to
compute the indices of sets S. V) More importantly, sharing
one pseudo-inverse among multiple CI tests brings a large
saving.

VI) In the CUDA framework, every 32 threads within a
block form a warp. Therefore, in order to maximize GPU
utilization, the number of threads within a block, i.e., θ,
should be a multiple of 32. However,

(
n′
i
`

)
might not be

divisible by δ × θ. cuPC-S employs the following idea in
order to resolve this issue. Blocks do not process all their
assigned sets S in parallel. Instead, they iterate multiple
times and in every iteration, process θ sets S, where θ is
a multiple of 32. As a result, only the last iteration may not
contain a multiple of 32 active threads.

VII) There are many CI tests I(Vi, Vj |S) that share the
same set S. For instance, in Fig. 4, S = {V4, V5} can be

shared among CI tests in not only row 2 but also row 0
because both of these rows have elements 4 and 5, i.e.,
because both V0 and V2 are connected to V4 and V5. See
Fig. 4(a). cuPC-S only shares a set S and its corresponding
pseudo-inverse M−1

2 locally. In other words, a set S is
shared only among the CI tests I(Vi, Vj |S) with the same
value i, i.e., among the CI tests of edges which are connected
to the same Vi. This is in contrast to sharing a set S globally,
i.e., among all CI tests from the entire graph. While global
sharing may yield more savings, it requires searching the
entire graph. The amount of extra saving is not large enough
to justify the additional cost of global search. Section 5.5
demonstrates this point through an experiment.

4 FURTHER DETAILS OF CUPC
4.1 Early Termination
So far we have discussed only one of the early termination
strategies employed in cuPC, in specific, the if statements in
line 7 in Algorithm 4, and line 12 in Algorithm 5. There are
other cases where further processing is no longer required,
and threads may terminate early in order to save time.
Such cases are listed in the following. For brevity, their
corresponding if statements are not shown in Algorithm 4
and Algorithm 5. I) If the number of adjacent nodes of Vi
is less than ` + 1, i.e., n′i < ` + 1, then all threads in the
corresponding blocks are terminated because we need at
least one adjacent node Vj plus ` other adjacent nodes for
set S. II) In block (by, bx) in cuPC-E, if bx × β ≥ n′i, all
threads terminate. This is because n′i, i.e., the number of
edges to be processed in row i = by, is too small to require
the processing power of this block. III) Similarly, in block
(by, bx) in cuPC-S, if bx × θ ≥

(
n′
i
`

)
, all threads terminate.

This is because
(
n′
i
`

)
, i.e., the number of sets S in row i = by,

is too small.

4.2 Computing Sets of Combination in Parallel
The Comb function employed in Algorithm 4 and Al-
gorithm 5 is discussed in this section. Let O =
{O0, O1, O2, · · · , O(n

`)−1} be the set of all possible combi-
nations of choosing ` elements from set {1, 2, 3, · · · , n} in
lexicographical order. For instance, when n = 3 and ` = 2,
we have O0 = [1, 2], O1 = [1, 3], and O2 = [2, 3]. Given
n, ` and t, the algorithm in [39] directly computes vector
Ot without requiring to compute the entire set O. Thus, by
utilizing this algorithm in every thread, every Ot is derived
separately.

There are ` elements inOt. LetOt = [Ot[0], . . . , Ot[`−1]]
and Ot[−1] = 0. According to [39], the following statement
holds true:

t =

`−1∑
c=0

Ot[c]−1∑
k=Ot[c−1]+1

(
n− k

`− (c+ 1)

)
(2)

Based on the above equation, Algorithm 6 iteratively
computes Ot. The algorithm has ` iterations. In iteration c,
Ot[c] is computed. The value of Sum must be less than or
equal to, and also, as close as possible to the value of t.

Once all the ` elements in Ot are computed in Algo-
rithm 6, the following minor modifications are performed
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Algorithm 6 Combination function.
Input: n, `, t, p
Output: Ot

1: Sum = 0
2: Ot[−1] = 0
3: for c = 0 to `− 1 do
4: Ot[c] = Ot[c− 1]
5: while Sum ≤ t do
6: Ot[c] = Ot[c] + 1
7: Sum = Sum+

(
n−Ot[c]
`−(c+1)

)
8: end while
9: Sum = Sum−

(
n−Ot[c]
`−(c+1)

)
10: end for

in order to use the results in cuPC-E and cuPC-S parallel
algorithms. In cuPC-S, since all indices start from zero (and
not one), all elements in Ot, i.e., the output of Algorithm 6,
are decremented by 1. In cuPC-E, in addition to the above
modification, we also need to skip all the combinations
which include p, i.e., the index of j. Hence, we set the input
of the Comb function to n′i − 1 instead of n′i, and also,
increment all the values which are larger than or equal to
p by 1.

4.3 CI Tests

In practice, the CI tests need to be performed based on data
samples observed from the random variables. In particular,
for multivariate normal distribution, CI test I(Vi, Vj |S) can
be performed based on partial correlations. Let ρ(Vi, Vj |S)
be the partial correlation between Vi and Vj given S. Then,
we have Vi ⊥⊥ Vj |S if and only if ρ(Vi, Vj |S) is zero.
The exact procedure is described below: Let Cn×n be the
correlation matrix among the n random variables in the set
V , and C[Vi, Vj ] be (i, j)-th entry in matrix C . We define a
1× ` vector C(Vi, S) as

C(Vi, S) :=
[
C[Vi, S[1]], C[Vi, S[2]], . . . C[Vi, S[`]]

]
1×`

,

(3)
where S[k] is the k-th element in the set S. In order to com-
pute ρ(Vi, Vj |S), we first extract M0,M1, and M2 matrices
from the correlation matrix as the following:

M0 =

[
C[Vi, Vi] C[Vi, Vj ]

C[Vj , Vi] C[Vj , Vj ]

]
2×2

, M1 =

[
C(Vi, S)

C(Vj , S)

]
2×`

,

M2 =


C(S[1], S)

C(S[2], S)
...

C(S[`], S)


`×`

. (4)

Next, we obtain matrixH = M0−M1×M−1
2 ×MT

1 . Note
that M2 might be ill-conditioned, and hence, M−1

2 needs to
be computed using a pseudo-inverse algorithm (Section 4.4).
Once H which is a 2× 2 matrix is computed, an estimation
of ρ(Vi, Vj |S) is computed as the following:

ρ̂(Vi, Vj |S) =
H[1, 2]√

H[1, 1]×H[2, 2]
. (5)

Algorithm 7 Pseudo-inverse method.
Input: M2

Output: M−1
2

1: L = Cholesky Factorization (MT
2 ×M2)

2: R = (LT × L)−1

3: M−1
2 = L×R×R× LT ×MT

2

In order to test whether the value of ρ̂(Vi, Vj |S) implies
Vi ⊥⊥ Vj |S, we compute Fisher’s z-transform [34] as

Z(ρ̂(Vi, Vj |S)) =

∣∣∣∣12 × ln

(
1 + ρ̂(Vi, Vj |S)

1− ρ̂(Vi, Vj |S)

)∣∣∣∣ , (6)

and compare it with the following threshold:

τ =
Φ−1(1− α

2
)√

m− |S| − 3
, (7)

where m, α and Φ are the size of data samples for every
random variable, the significance level for testing partial
correlations, and CDF of standard normal distribution, re-
spectively. If Z(ρ̂(Vi, Vj |S)) ≤ τ , we imply that Vi ⊥⊥ Vj |S.
Note that in level zero, the above procedure is reduced to
comparing Z(C[Vi, Vj ]) with the threshold τ .

We can conclude that a CI test I(Vi, Vj |S) can be per-
formed based on observational data, in specific, based on
the threshold τ and the correlation matrix Cn×n among the
n random variables.

4.4 Pseudo-Inverse
As mentioned above, a pseudo-inverse algorithm is needed
in order to compute M−1

2 . We employ Moore-Penrose [40]
method as shown in Algorithm 7. The pseudo-inverse is
computed based on two matrices L and R. Matrix L is
computed as the full rank Cholesky factorization of matrix
MT

2 ×M2. Matrix R is computed as the inverse (the usual
inverse) of LT × L.

5 EXPERIMENTAL EVALUATION

5.1 Source Code
cuPC is implemented in the C language in the CUDA
framework. Our parallel implementation is wrapped in a
function in the R language with the exact same interface
as the original PC-stable function in pcalg [6]. Thus, cuPC
is consistent with standard casual learning R packages and
can be easily integrated in pcalg. The source code of cuPC
is available online [1].

5.2 Experiment Setup
We experimentally evaluate cuPC along with the following
related previous works. Two different serial implementa-
tions of PC-stable [16] algorithm are available as part of
the pcalg [41] package. The original one (called ”Stable”
in pcalg) is implemented in R language, and the recent
one (called ”Stable.fast”) is in C language. A multi-threaded
method, called ”Parallel-PC” [17], is implemented in R lan-
guage and is available here [42]. In addition, Stable.fast (i.e.,
the C implementation in pcalg) supports multi-threaded
execution mode as well.
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We employ a machine with an Intel Xeon CPU with 8
cores running at 2.5 GHz. Serial methods (Stable and Sta-
ble.fast) are executed on a single core, and multi-threaded
methods (Parallel-PC and Stable.fast) are executed on all the
8 cores. The CUDA kernels in cuPC are executed on Nvidia
GTX 1080 GPU which is hosted on the same machine, and
the other procedures in cuPC are executed sequentially on
a single core. We employ Ubuntu OS 16.04, gcc version 5.4,
and CUDA version 9.2.

Six gene expression datasets are employed as our bench-
marks [10], [13], [43]. These are the same benchmarks used
in [17]. Table 1 shows the number of random variables and
the number of samples in every dataset.

The accuracy of the proposed method is exactly the
same as the one of PC-stable which was evaluated exten-
sively in [16] in terms of True Discovery Rate (TDR) and
Structural Hamming Distance (SHD). This is because cuPC
is GPU-accelerated implementation of the same PC-stable
algorithm.

TABLE 1
Benchmark datasets.

Dataset # of variables (n) # of samples (m)
NCI-60 1190 47
MCC 1380 88
BR-51 1592 50

S.cerevisiae 5361 63
S.aureus 2810 160

DREAM5-Insilico 1643 850

5.3 Performance Comparison
Comparing Serial, Multicore, and GPU:
The speedup gained by multicore and GPU implementa-
tions over serial implementations are compared in Table 2.
In specific, the last column in Table 2 compares three average
speedup ratios. The details are discussed below.

The first two rows in Table 2 report runtime of Stable
and Parallel-PC. It is noteworthy to mention that Parallel-
PC has two modes. In every benchmark, both modes are
executed and the smaller runtime is reported. Runtime of
Stable ranges from 11 minutes in NCI-60 to about 3 days
in DREAM5-Insilico. Parallel-PC takes about 11 hours in
DREAM5-Insilico, which is 6.7 X faster than Stable. On
average, Parallel-PC on eight cores is about 5.6 X faster than
Stable.

The third row in Table 2 reports runtime of Stable.fast
on a single core. The runtime ranges from 74 seconds in

NCI-60 to more than 11 hours in DREAM5-Insilico. The
multi-threaded mode in Stable.fast is not yet optimized at
the time of this writing. With full optimizations, the multi-
threaded mode may reach linear speedup gain on multicore
systems. In other words, the speedup gain on eight cores
compared to serial execution may reach up to 8 X.

The fourth and fifth rows in Table 2 report runtime
of cuPC-E and cuPC-S, respectively. Note that the time it
takes to transfer data to and from GPU is counted as well.
Runtime of cuPC-E ranges from 440 milliseconds to about
48 seconds. On average, the speedup ratio of cuPC-E over
the serial execution in C language, i.e., Stable.fast, is 525 X.
Runtime of cuPC-S ranges from 390 milliseconds to 4.76
seconds. On average, the speedup ratio of cuPC-S over serial
execution is 1296 X.

Comparing cuPC with Baseline Methods:

Fig. 5 compares cuPC with the following two baseline
GPU-parallel algorithms. The first algorithm is formed by
basically porting parallel-PC [17] from its original multi-
threaded CPU implementation to GPU. In specific, in every
level `, all rows i of the adjacency matrix are processed in
parallel in separate blocks. In block i, all edges (Vi, Vj) are
processed in parallel. All the CI tests for an edge (Vi, Vj)
are performed sequentially in the corresponding thread.
We also apply the same ideas in cuPC, namely, using the
same compacted form of the adjacency matrix, using the
same shared memory allocations, and using the same early
termination strategies.

The second baseline algorithm is formed as the follow-
ing. In every level `, all elements ij of the adjacency matrix,
i.e., all edges (Vi, Vj), are processed in parallel in separate
blocks. In block ij, all CI tests of edge (Vi, Vj) are processed
in parallel. Again, the same compact, shared memory, and
early termination strategies are also applied.

As illustrated in Fig. 5, cuPC-E is 1.3 X to 3.9 X faster
than baseline algorithm 1, and 1.8 X to 3.2 X faster than
baseline algorithm 2. This shows that cuPC-E judiciously
strikes a balance between the available degrees of paral-
lelism and thus achieves higher performance compared to
both of the baseline methods. cuPC-S is faster than cuPC-
E. For instance in DREAM5-Insilico, which is the most
challenging dataset, cuPC-S is 45.8 X and 20.6 X faster than
the two baseline methods.

TABLE 2
Comparing serial, multicore, and GPU implementations. The first five rows show the runtime values, which are denoted as T1 to T5. The last three

rows show speedup ratios, which are calculated as T1/T2, T3/T4 and T3/T5. The last column compares the geometric mean of speedup ratios.

NCI-60 MCC BR-51 S.cerevisiae S.aureus DREAM5-Insilico
Stable (R, Single Core) T1 646 3,522 3,118 10,568 11,324 265,360 (~3 days)
Parallel-PC (R, 8 Cores) T2 102 570 549 2,847 1,920 39,880 (~11 hours)

Stable.fast (C, Single Core) T3 74 510 491 5,567 3,359 41,668
  cuPC-E T4 0.44 0.85 1.15 7.99 4.21 48.08
  cuPC-S T5 0.39 0.44 0.56 4.76 1.64 4.09

Parallel-PC T1/T2 6.3 6.2 5.7 3.7 5.9 6.7 Mean = 5.6
cuPC-E T3/T4 171 600 425 697 799 867 Mean = 525
cuPC-S T3/T5 193 1,157 868 1,170 2,052 10,178 Mean = 1,296

Speedup 
Ratio

Runtime 
(sec.)
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Fig. 5. Comparing the performance of cuPC-E and cuPC-S with two baseline GPU-parallel algorithms. Every bar represents a ratio between two
runtime values. For instance, the bottom-right bar means cuPC-S is 20.6 X faster than baseline algorithm 2 in DREAM5-Insilico dataset.
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Fig. 6. Distribution of the runtime (in percent) for a) cuPC-E and b) cuPC-S, in different levels. The values are normalized to the total runtime in
every benchmark.

Comparing Different Levels:
Fig. 6 shows distribution of the runtime values in different
levels in cuPC-E and cuPC-S. Note that the reported runtime
of every level includes all the corresponding overheads such
as forming A′G. In the first five benchmarks, level 1 takes
between 49% to 83% of the total runtime. However, in the
last benchmark, level 1 takes less than 10%, but levels 2 to 5
take 90% and 70% of the total runtime in cuPC-E and cuPC-
S, respectively. This figure shows that the computations in
all levels contribute to the total runtime.

5.4 Configuration Parameters

cuPC-E and cuPC-S have configuration parameters which
can be adjusted to improve the performance. The above
results are based on executing cuPC-E with β = 2 and
γ = 32, and cuPC-S with θ = 64 and δ = 2. We denote
these selected configurations as cuPC-E-2-32 and cuPC-S-64-
2. The effect of different configurations on the performance
of cuPC-E and cuPC-S is evaluated in this section.

cuPC-E: 30 different configurations are experimented
for cuPC-E. In specific, γ and β are selected from the set
{1, 2, 4, . . . , 128, 256} such that 32 ≤ γ × β ≤ 256. This
bounds the number of threads in every block from 32 to
256. Note that the number of blocks in cuPC-E is equal to
n × n′

/β and the number of threads in every block is equal
to γ × β.

The heat maps in Fig. 7 show the performance improve-
ment or degradation of cuPC-E with different configurations
compared to the selected configuration. The heat maps show
a variation between 0.3 X to 1.3 X. This is mainly due to the

underlying graph structure in the benchmark datasets. In
particular, in denser graphs, the number of adjacent nodes
is larger, and therefore, the number of CI tests required for
every edge grows. As a result, in every row in the heat maps,
configurations with larger γ show higher performance be-
cause more CI tests are executed in parallel. Note that the
number of threads for the CI tests of an edge in cuPC-E
is equal to γ. For instance, in DREAM5-Insilico, cuPC-
E-4-64 shows 10% higher performance compared to cuPC-
E-4-8 because 64 threads are assigned to the CI tests of an
edge instead of 8. Note that there is a limit to this gain.
In DREAM5-Insilico, the configuration 1-256 shows 10%
lower performance compared to 1-128 because large number
of parallel threads result in too many unnecessary CI tests.

As opposed to dense graphs, in sparse graphs higher
performance is achieved in configurations with smaller γ
in every row in the heat maps. For instance, in NCI-60,
cuPC-E-2-128 shows 40% lower performance compared to
cuPC-E-2-16.

cuPC-S: 16 different configurations are experimented
for cuPC-S. In specific, θ ∈ {32, 64, 128, 256} and δ ∈
{1, 2, 4, 8}. Note that the number of blocks in cuPC-S is
equal to n × δ and the number of threads in every block
is equal to θ. Fig. 8 shows the performance improvement or
degradation of cuPC-S with different configurations com-
pared to the selected configuration.

The heat maps in Fig. 8 show a variation between 0.7 X
to 1.2 X. Hence, compared to cuPC-E, cuPC-S shows less
variation to the configuration parameters. This is mainly
because in cuPC-S, threads are assigned to the conditional
sets S instead of the edges. In other words, the number
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Fig. 7. Comparing different configurations of cuPC-E with the selected configuration (β = 2 and γ = 32). The Y axis is β and the X axis is γ. Green
color means higher speed and red color means lower speed.
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Fig. 8. Comparing different configurations of cuPC-S with the selected configuration (θ = 64 and δ = 2). The Y axis is θ and the X axis is δ. Green
color means higher speed and red color means lower speed.

of adjacent nodes of Vi, i.e., n′i, and hence, n′ varies in
dense or sparse graphs. This causes imbalance workloads in
different blocks in cuPC-E. However, in cuPC-S, since

(
n′
i
`

)
is normally much larger than n′i, blocks are fully loaded and
their workloads are more balanced.

5.5 Global Sharing vs Local Sharing in cuPC-S
As mentioned at the end of Section 3, conditional sets S can
be shared either locally or globally in cuPC-S in order to save
redundant computations and increase the overall speed. We
employ a local sharing strategy in which only the CI tests
from one row in A′G share a set S. Global sharing among all
CI tests from the entire graph is time consuming because it
requires searching the entire graph to find all such CI tests.
The amount of extra savings yielded by global sharing is not
large enough to justify the additional cost of global search.
In this section, we experimentally show the above point.

Fig. 9 shows a histogram. The value of each bin [bi, bi+1)
is equal to the number of conditional sets S that appear in CI
tests from at least bi to at most bi+1−1 rows of A′G in level 2
in DREAM5-Insilico dataset. The figure shows that about
95% of the redundant conditional sets S appear in at most
40 rows of A′G. This is much smaller than the total number
of rows in this dataset, i.e., n = 1643. Hence, the cost of
global search is not justified.

5.6 Scalability
Scalability of the proposed parallel algorithms are evaluated
in this section. In specific, performance of cuPC-E and
cuPC-S are experimented for different number of variables
(n), different number of samples (m), and different graph
densities (d).
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Fig. 9. The percentage of redundant conditional sets S in the entire
graph in level 2 of DREAM5-Insilico dataset. See Section 5.5 for further
details.

To evaluate the impact of scaling the number of vari-
ables, we consider n = 1000, 2000, 3000 and 4000. In
every case, ten graphs are generated by randomly drawing
an edge between any pairs of variables with probability
d = 0.1. In particular, we first generate a random adjacency
matrix AG with independent realizations of Bernoulli ran-
dom variable with parameter d in the lower triangle of the
matrix and zeros in the remaining entries. Next, we replace
the ones in AG by independent realizations of a uniform
random variable in the range [0.1, 1]. A non-zero entry
AG[i, j] shows that there is a direct causal effect from Vj
to Vi. Next, from i = 0 to i = n− 1, i.e., from top to bottom,
the samples are generated as Vi = Ni +

∑i−1
j=0AG[i, j]Vj ,

where the random variables Ni’s have normal distribution
and are mutually independent. The sample size for every
random variable is set to m = 10000.

Next, cuPC-E and cuPC-S are executed and the run-
times are measured in every case. The results are shown
in Fig. 10(a). Runtime increases with n, but cuPC-S al-
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Fig. 10. Runtime of cuPC-E and cuPC-S with a) different number of
variables, b) different sample sizes, and c) different graph densities.
Every box-and-whisker plot shows quartiles 1, 2 (median), and 3, plus
the lowest point still within 1.5 IQR of the lower quartile, and the highest
point still within 1.5 IQR of the upper quartile. The outliers are shown as
small circles.

ways has higher performance compared to cuPC-E. We
also executed the C implementation of PC-stable on the
same datasets. However, even in the smaller graphs (n =
1000), PC-stable could not produce results after 48 hours,
and thus, we aborted the job. Hence, cuPC-E is at least
48 × 3600 / 20.3 sec. ' 8500 X faster than PC-stable in this
case.

Next, the impact of scaling the sample size is experi-
mented. We consider m = 2000, 4000, 6000, 8000, and
10000. Here, n = 1000 and d = 0.1. In every case, ten
random graphs are generated as discussed above and run-
times are measured. The results are shown in Fig. 10(b). The
runtime increases linearly with the sample size. Increasing
the sample size, improves the accuracy of the CI tests. This
decreases the number of edges that are removed in level `,
which in turn, increases the number of CI tests required to
be performed in level `+ 1.

Finally, the impact of scaling the graph density is ex-
perimented. We consider d = 0.1, 0.2, 0.3, 0.4, and 0.5.
Here, n = 1000 and m = 10000. The results are shown in
Fig. 10(c). Increasing d means the graph is more dense, the
number of remaining edges are increased, and hence, the
runtime should increase. Runtime of cuPC-E and cuPC-S
increase almost linearly from density 0.2 to 0.5. However, at
density 0.1, the runtime is much smaller. This is because the

runtime changes by optimizing the configuration parame-
ters in every case, while we employ the same configuration
across all values of d. Therefore, in some cases, e.g., in
d = 0.1, the selected configuration is a better fit and the
algorithm runs faster.

6 CONCLUSION

In empirical sciences, it is often vital to recover the underly-
ing causal relationships among variables in real-world high-
dimensional datasets. In this paper, we proposed a GPU-
based parallel algorithm for PC-stable with two variants,
i.e., cuPC-E and cuPC-S, to learn causal structures from
observational data. Experiments showed the scalability of
our prospered algorithms with respect to the number of
variables, the number of samples, and different graph densi-
ties. Note that the proposed solution also helps to accelerate
some other causal structure learning algorithms such as
CCD, FCI, and RFCI, because they use PC algorithm as a
subroutine.
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