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A Comment on Privacy-Preserving Scalar
Product Protocols as proposed in ”SPOC”

Thomas Schneider and Amos Treiber

Abstract—Privacy-preserving scalar product (PPSP) protocols are an important building block for secure computation tasks in various
applications. Lu et al. (TPDS’13) introduced a PPSP protocol that does not rely on cryptographic assumptions and that is used in a wide
range of publications to date. In this comment paper, we show that Lu et al.’s protocol is insecure and should not be used. We describe
specific attacks against it and, using impossibility results of Impagliazzo and Rudich (STOC’89), show that it is inherently insecure and
cannot be fixed without relying on at least some cryptographic assumptions.
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1 INTRODUCTION

THE SCALAR product is a fundamental operation in linear
algebra that is used in a variety of fields, e.g., serving as

the basis of deep neural networks, biometric characterization,
or computer graphics. Suppose two parties P0 and P1 with
respective input vectors~a and~bwant to securely compute the
scalar product~a·~b =

∑n
i=1 aibi such that P0 obtains the result

~a·~b without revealing anything else about~b to P0 or anything
about ~a to P1. This secure two-party computation of the scalar
product is an important building block for preserving privacy
in many applications. In 2013, Lu et al. [1] proposed a privacy-
preserving scalar product (PPSP) protocol in their paper
titled “SPOC: A Secure and Privacy-Preserving Opportunistic
Computing Framework for Mobile-Healthcare Emergency”.
This protocol relies on “multi-party random masking and
polynomial aggregation techniques” [2], where absolutely
no public-key cryptography is used. In fact, their protocol
does not make any cryptographic assumptions at all and the
authors claim that it achieves information-theoretic security.
As shown in [2], the protocol is much faster than public-
key based protocols using homomorphic encryption. Since
then, this protocol has been and is still used in many
privacy-preserving solutions, e.g., [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
including support vector machines [17], facial expression
classification [9], medical pre-diagnosis [18], and speaker
verification [10], [11].

In this comment paper, we present devastating attacks
against the original [1] and subsequent [2] versions of Lu
et al.’s protocol. Our attacks fully break privacy and show
that the protocol should not be used in applications. Before
presenting our concrete attacks in §3, we first show in §2
why Lu et al.’s protocol is inherently insecure and can only
be fixed if at least some public-key cryptography is used.
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2 LU ET AL.’S PROTOCOL CANNOT BE SECURE

A fundamental issue with privacy-preserving tasks is that
the absence of attacks does not guarantee privacy. To assure
the privacy of new protocols, a formal proof of security is
needed. Using established simulation-based security notions,
such proofs show that only what can be computed from a
priori information can be learned by executing the protocol.
In this section, we will show that Lu et al.’s protocol cannot
be secure under the established security notions.

2.1 Formalizing Secure Two-Party Computation
Formally, the secure two-party computation (STPC) of a
function f(a, b) on inputs a from P0 and b from P1 by a pro-
tocol Π is defined by a simulator S = (S1, S2) that simulates
the views of the parties participating in Π [21, chapter 7]:

{S0(a, f(a, b))}a,b
c≈ {viewΠ

0 (a, b)}a,b and

{S1(b, f(a, b))}a,b
c≈ {viewΠ

1 (a, b)}a,b,

where
c≈ denotes computational indistinguishability. Si∈{0,1}

is computationally (ploynomial-time) bounded and needs
to simulate viewΠ

i , which contains all incoming messages
received by Pi during the execution of Π. If such a simulator
exists, then the protocol is considered secure because every-
thing that can be learned from participating in the protocol
({viewΠ

i (a, b)}a,b) can also be learned by information that is
known to the party anyway (Si sees either the input a or b
and the output f(a, b)). Conversely, if no such simulator
exists, then the distribution generated by any S can be
distinguished from the distribution of the views of the
protocol execution, meaning that a party observing the
view reveals more information than just knowing its own
input and the output. This is the established notion and the
de facto standard to model secure computation tasks for
privacy-preserving solutions. Thus, in order to ensure the
security of a protocol, a security proof of indistinguishability
is needed [22]. The model we are concerned with here is in
the context of semi-honest (or passive) security, where P0 and
P1 honestly follow the protocol but try to learn additional
information.
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Fig. 1. Relations of privacy-preserving scalar product (PPSP), oblivious
transfer (OT), secure two-party computation (STPC), symmetric key
exchange (SKE), and one-way functions (OWF). The black box separation
between “public-key” and “symmetric cryptography” shows that SKE
cannot be based on OWF [23]. Therefore, a PPSP protocol has to be
based on public-key cryptographic assumptions.

In the above definition, it suffices to show that one party
can distinguish between different inputs of the other party
based on the observed execution of a protocol to break its
privacy. For instance, in our specific attacks against Lu et al.’s
privacy-preserving protocol (cf. §3.2), we will show that P0

can distinguish between different inputs of P1 regardless of
the output, thereby learning more than the minimal amount
of information implied by the input and the output. Because
this additional information is hard to specify and highly
depends on the use case, protocols where this distinction is
possible are considered insecure.

2.2 A secure PPSP Protocol has to rely on Crypto-
graphic Hardness Assumptions

In the following, we will put Lu et al.’s PPSP protocol
in relation to well-established cryptographic primitives,
showing that PPSP has to rely on public-key cryptography.
A summary of these relations can be found in Figure 1.

More precisely, PPSP is closely related to a primitive
called oblivious transfer (OT). In OT, a party P0 inputs a
choice bit b and P1 inputs two bits (x0, x1). P0 receives
xb as output without learning any information about x1−b
and without revealing any information about b to P1. OT
is a strong primitive that implies many more fundamental
cryptographic building blocks such as STPC [24].

Of course, STPC can be used to realize PPSP and known
and secure PPSP protocols usually rely on STPC based on
homomorphic encryption or OT [25]. Since OT implies STPC,
it follows that OT implies PPSP. Conversely, the existence
of a PPSP protocol would imply OT, as OT is just a special
case of PPSP where ~a = (b, b) and ~b = (x0, x1). Therefore,
PPSP is equivalent to OT and requires the same assumptions
required for OT like, e.g., public-key cryptography, noisy
channels, or hardware tokens.

OT can also be used to implement symmetric key ex-
change (SKE) [26], [27]. Impagliazzo and Rudich [23] proved
that a black-box reduction of SKE to one-way functions (the
central building block of symmetric cryptography) would
imply P 6= NP . This means that SKE and thus OT very likely
require at least some complexity-theoretic assumptions of
public-key cryptography, as otherwise a proof of P 6= NP
would be found. As such, all PPSP protocols that rely
solely on symmetric cryptography or make no cryptographic
hardness assumptions at all (like Lu et al.’s protocol) must
be flawed.

P0

~a = (a1, . . . , an) ∈ Znq

P1

~b = (b1, . . . , bn) ∈ Znq

Step 1: (performed by P0) Given security parameters k1, k2, k3, k4 choose a k1-bit prime p and
a k2-bit prime α. Add an+1 = an+2 = 0. Choose random s ∈ Zp and random k3-bit c1, . . . , cn+2.

Then, for i ∈ {1, . . . , n+ 2} let Ci =

{
s·ci mod p ai = 0

s·(α · ai + ci) mod p ai 6= 0

send α, p, C1, . . . , Cn+2

Step 2: (performed by P1) Add bn+1 = bn+2 = 0 and choose random k4-bit r1, . . . , rn+2.

For i ∈ {1, . . . , n+ 2} let Di =

{
ri·Ci mod p bi = 0

bi · α · Ci mod p bi 6= 0

send D =
∑n+2
i=1 Di mod p

Step 3: (performed by P0) Compute E = s−1·D mod p. Output ~a ·~b = E−(E mod α2)
α2 .

Fig. 2. Lu et al.’s PPSP protocol [1] with the extensions of [2] (underlined).

3 LU ET AL.’S PROTOCOL IS INSECURE

Lu et al.’s PPSP protocol first appeared in [1] as a sub-
protocol in a privacy-preserving healthcare framework and
was later extended in [2] by introducing fixes to preserve pri-
vacy. The protocol is shown in Figure 2, with the extensions
of [2] underlined. Before presenting our specific attacks, we
briefly outline how the protocol works.

3.1 How the Protocol is supposed to work

Correctness stems from the observation that
E =

∑
ai 6=0,bi 6=0 aibiα

2 +
∑
ai=0,bi 6=0 biciα +∑

ai 6=0,bi=0 ri(aiα + ci) +
∑
ai=0,bi=0 rici and

therefore E mod α2 contains all addends that are not
multiples of α2, i.e., all addends except

∑
ai 6=0,bi 6=0 aibiα

2.

Thus, ~a · ~b = E−(E mod α2)
α2 under the constraint that∑

ai 6=0,bi 6=0 aibiα
2 +

∑
ai=0,bi 6=0 biciα+

∑
ai 6=0,bi=0 ri(aiα+

ci) +
∑
ai=0,bi=0 rici < p and

∑
ai=0,bi 6=0 biciα +∑

ai 6=0,bi=0 ri(aiα + ci) +
∑
ai=0,bi=0 rici < α2. To

make the analysis of our attacks easier, we translate the latter
inequality onto the corresponding bit-length parameters,
resulting in the following conditions necessary for correctness:

log2 n+ log2 q + k3 < k2, (1a)
log2 n+ log2 q + k4 < k2, (1b)

log2 n+ k3 + k4 < 2k2. (1c)

A violation of any of the above inequalities would result
in the protocol being incorrect for some or even all inputs.
The parameters used for randomly masking the inputs, k3

and k4, are both set to 128 to allow for a randomness
source of 128-bit. As a result of the above constraints when
assuming an input space of n = q = 232, the parameters are
set to k1 = 512 and k2 = 200 in [2] to ensure correctness.
Similar assumptions can be found in the original protocol [1].

The protocol’s security is entirely based on masking
values with random addends or factors. In the first step, P0

masks all values Ci by multiplying with s. For ai = 0, just
a random ci is masked, while a random ci added to α · ai
is masked otherwise. The intention behind s and all ci is to
hide any information about ai and, indeed, it is impossible
to distinguish between different ai based on the uniform
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distribution from which all ci are drawn. α and p serve
no security purpose but ensure correctness. In step 2, P1

either randomizes Ci by multiplying with the random ri or
it just multiplies bi · α to Ci. The supposed idea here is that,
because bn+1 = bn+2 = 0,

∑
i Ci is randomized by the ad-

dends rn+1 ·Cn+1 and rn+2 ·Cn+2. Thus it seems that different
values of D from different ~b should not be distinguishable.
There exist some proof sketches of the protocols in [1], [2] and
some of the works building on them. The security analyses
do not rely on the established indistinguishability-based
security notions presented in §2.1, but instead make use of
ad-hoc security notions that are based around the principle
that the input cannot be reconstructed. Below, we will present
specific distinguishing attacks that even allow P0 to check
whether P1’s input is a candidate ~b. This obviously violates
privacy and shows that contrary to the established primitives,
the ad-hoc security definitions used for the proofs do not
capture any useful sense of privacy.

3.2 Our Specific Attacks
One can immediately see why the original protocol of [1]
is broken: D =

∑
bi=0 Ci +

∑
bi 6=0 bi · α · Ci. Since D is

completely deterministic and depends only on α,Ci, and ~b,
party P0 can easily distinguish different values of ~b because
it knows α and all Ci. For instance, for ~b = ~0, P1 will
return

∑n
i=1 Ci whereas for ~b′ = (1, 0, . . . , 0), P1 will return

α · C1 +
∑n
i=2 Ci. This attack works for any value of ~a.

3.2.1 Attack on the fixed Protocol for ~a = ~0

The above vulnerability was fixed in [2] by introducing
random addends to D via bn+1 = bn+2 = 0. Operations
based on public-key cryptography still do not appear in the
protocol. Thus, the security of this version is implausible
as well (cf. §2.2). Indeed, we found another attack that can
distinguish different ~b. At first, we consider this attack for
the case of ~a = ~0, because then the output of the ideal
functionality is equal to 0 and yields no knowledge about ~b.
In that case, the ability to distinguish any distinct ~b clearly
demonstrates that information about the inputs is leaked.
Using the following strategy, P0 can distinguish between
~b = ~0 and ~b′ = (1, 0, . . . , 0) after computing E in step 3:

If E/α ≈ c1then output guess ~b′, else output guess ~b.

Our attack relies on the different sizes of the parameters
and works because they create a conflict between security
and correctness: to prevent our attack, the parameters have
to be changed in such a way that they violate the correctness
constraints. More specifically, for ~b′, P0 receives E = α · c1 +∑n+2
i=2 rici. In our attack, P0 will compute E/α = c1 +

∑
i rici
α .

Since |c1| = k3 and |
∑

i rici
α | = log2 n+k3 +k4−k2, E/α ≈ c1

except for the log2 n+k3 +k4−k2 least significant bits. Con-
versely, for ~b, P0 receives E =

∑n+2
i=1 rici and thus will only

obtain some |E/α| = log2 n+ k3 + k4 − k2 bit integer. Hence,
to make our distinction impossible, the parameters need to
satisfy at least k3 ≤ log2 n+k3 +k4−k2 ⇔ k2− log2 n ≤ k4,
which violates Equation 1b necessary for correctness.

The attack can also be extended to distinguish between
any ~b by checking whether E/α ≈

∑
i bici. Similar to the

reasoning above, the attack can only be prevented if at least
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Fig. 3. Correctness of Lu et al.’s protocol [2] (absolute error) for ~b = ~0
and accuracy of our attacks in distinguishing two distinct ~b, ~b′, given for
n = 256, q = 232, k1 = 512, k2 = 200, k3 = 128, and varying k4.
Vectors are created uniformly at random, unless indicated otherwise. As
predicted, the accuracies of our attacks against random ~b, ~b′ drop after
k2 ≤ k4 and 2(k2 + log2 q) − k3 ≤ k4, but at this point the protocol
already produces incorrect results.

k2 ≤ k4, which also violates Equation 1b. Not only does
this break privacy because it allows for distinguishing any ~b,
this also enables an adversary to check whether a suspected
input ~b is the real one.

3.2.2 Attack on the fixed Protocol for any ~a
Even though the previous attack is enough to violate privacy,
we will further show how to adapt it when using any ~a as
input. Knowing its own input ~a and the suspected input~b, P0

just checks whether E/α ≈
∑
ai 6=0 aibiα+

∑
ai=0 bici. Anal-

ogously to the analysis in §3.2.1, this distinction could
only fail if |

∑
ai 6=0 aibiα+

∑
ai=0 bici| ≤ |

∑
ai 6=0,bi=0 rici +∑

ai=0,bi=0
rici
α | which, taking into account Equations 1a

and 1b, requires that 2(k2 + log2 q) − k3 ≤ k4. This would
contradict Equation 1c and therefore violate correctness.

3.2.3 Evaluation
To show the feasibility of our attacks, we implemented them
alongside the protocol. Our implementation shows that for
the parameters used in [2], any user input ~b can easily be
distinguished and even detected by P0. The implementation
is freely available as open source and can be found online
at https://encrypto.de/code/SPOCattack.

We also evaluate the protocol’s correctness as well as the
effectiveness of our attacks depending on varying parameters.
The results are presented in Figure 3 for varying values
of k4 and confirm the contradiction between the protocol’s
correctness and its security. Under the correctness constraints
of Equations 1a, 1b, 1c, all of our attacks are close to 100%
accurate. Conversely, the protocol is entirely correct for these
parameter choices as well. When Equation 1b is broken
with k4 ≥ k2 − log2 q − log2 n, the absolute correctness
error starts to appear and rises rapidly. Shortly after this,
when the accuracy threshold k4 ≥ k2 of our first attack
distinguishing any ~b is passed, its accuracy quickly drops
to the baseline of 50% (the accuracy of randomly guessing
between two ~b). The same occurs after the threshold for our
second distinguishing attack is passed, at which point the
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maximum correctness error of k1 − 2k2 = 112 bit is already
reached. Furthermore, to demonstrate that our attacks even
allow to test for a certain ~b, we also evaluate both attacks by
distinguishing a random ~b from a ~b′ that only differs from ~b
by 1 in one position. Our evaluation shows that, though
the accuracies drop earlier than for random ~b′, these attacks
work for the standard parameters and that therefore a precise
testing and searching for P1’s input is possible. Notably, we
evaluate the correctness for~b = ~0, as Equation 1b comes from
the random addends resulting from all bi = 0. When using
a completely random ~b, the correctness error only starts to
appear at k4 ≥ k2 + 64 = 264 but, since the protocol should
be correct for any input, we display the results for ~b = ~0.

Our implementation establishes that in any application
using the protocol, P0 can check whether P1 has a certain
input (like, e.g., a certain illness in a healthcare application).
Clearly, this is a severe violation of privacy and serves as a
reminder that the security notions used by the protocol’s
security analysis (cf. §3.1) are insufficient and that the
established definitions based on indistinguishability (cf. §2.1)
should be used instead. As outlined in §2.2, similar attacks
will inadvertently still be possible even if additional random-
izations are introduced to prevent these concrete attacks as
long as no cryptographic assumptions are utilized.

4 CONCLUSION

We showed in §2.2 that protocols for the secure two-party
computation of the scalar product imply oblivious transfer.
As a result, such protocols very likely require public-key
cryptography. Lu et al.’s protocol [1], [2] is an example in
academic use today that does not rely on such assumptions
and is thus inherently insecure. Indeed, we found specific
attacks that we have verified with an implementation,
showing that their protocol does not guarantee privacy. With
this comment paper we want to stress that (at least some)
expensive public-key cryptography is necessary for such
protocols and that new protocols should be proven secure in
established formal frameworks to catch such flaws.
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