

Edinburgh Research Explorer

An Attribute-based Availability Model for Large Scale IaaS
Clouds with CARMA

Citation for published version:
Lv, H, Hillston, J, Piho, P & Wang, H 2020, 'An Attribute-based Availability Model for Large Scale IaaS
Clouds with CARMA', IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 3, pp. 733 - 748.
https://doi.org/10.1109/TPDS.2019.2943339

Digital Object Identifier (DOI):
10.1109/TPDS.2019.2943339

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Parallel and Distributed Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Apr. 2024

https://doi.org/10.1109/TPDS.2019.2943339
https://doi.org/10.1109/TPDS.2019.2943339
https://www.research.ed.ac.uk/en/publications/6830c842-a674-478d-9ffd-1425c3c96e1f

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 1

An Attribute-based Availability Model for
Large Scale IaaS Clouds with CARMA

Hongwu Lv, Jane Hillston, Paul Piho, and Huiqiang Wang

Abstract—High availability is one of the core properties of Infrastructure as a Service (IaaS) and ensures that users have anytime
access to on-demand cloud services. However, significant variations of workflow and the presence of super-tasks, mean that
heterogeneous workload can severely impact the availability of IaaS clouds. Although previous work has investigated global queues,
VM deployment, and failure of PMs, two aspects are yet to be fully explored: one is the impact of task size and the other is the differing
features across PMs such as the variable execution rate and capacity. To address these challenges we propose an attribute-based
availability model of large scale IaaS developed in the formal modeling language CARMA. The size of tasks in our model can be a fixed
integer value or follow the normal, uniform or log-normal distribution. Additionally, our model also provides an easy approach to
investigating how to arrange the slack and normal resources in order to achieve availability levels. The two goals of our work are
providing an analysis of the availability of IaaS and showing that the use of CARMA allows us to easily model complex phenomena that
were not readily captured by other existing approaches.

Index Terms—availability, cloud computing, formal model, CARMA.

F

1 INTRODUCTION

THROUGH delivering IT services as computing utilities,
cloud computing brings the promise of cost reduction

for business computing [1]. Infrastructure as a Service (IaaS)
is a classical form of cloud system, and supplies low level
computing resources on which end users are able to deploy
and run arbitrary Operating Systems (OS) and applications
without managing the underlying infrastructure. IaaS cloud
providers aim to guarantee a high level of availability to
the consumer, captured by a service level agreement (SLA).
Here, the availability of the IaaS is taken to mean the
proportion of requests for one or more virtual machines
(VMs) that can be satisfied. According to the investigation in
reference [2], currently most IaaS cloud providers offer SLAs
in terms of guaranteed availability. Note that unavailability
will not only occur due to system failure, but also due to
contention or mismatch between the resource configuration
and the arriving requests, as we will see. Thus, even for a
system with high machine availability (e.g. 99.9% system
availability means 42 minutes of downtime per month) the
IaaS availability may not be satisfactory. From the provider‘s
perspective, any availability violation may cause the loss
of revenue and damage business reputations [3]. Hence,
maintaining the availability of IaaS is of significant interest.

For large IaaS clouds that contain millions of hetero-
geneous computing nodes, analysis based on models is
generally focused on identifying key factors without being
tied to specific details or particular applications [4]. At
present, many formal methods have been used to study the
performance and availability of IaaS, for example, Markov
chains [5] [6] , Petri nets [7] [8] [9], fault trees [10] [4] and

• H. Lv and H. Wang were with the Department of Computer Science and
Technology, Harbin Engineering University, Harbin, China, 150001.
E-mail: lvhongwu@hrbeu.edu.cn

• Jane Hillston and Paul Piho are with the University of Edinburgh.

Manuscript received March 28, 2018; revised .

so on. However, there are two challenges not captured by
previous IaaS availability models.

(i) The most important one is the effect of Super-tasks [11]
on availability. Super-tasks are groups of tasks that com-
municate frequently or share a series of resources. Such
tasks must usually be deployed in the same Physical Ma-
chine (PM) to increase efficiency and reduce failure. This
phenomenon has some apparent impacts on the availability
of IaaS. One issue is that existing cloud scheduling strate-
gies are likely to be less effective when a group of tasks
have to be deployed together. Meanwhile, perhaps fatally,
burst tasks with ultra large task size may not find PMs to
accommodate them, which greatly decreases the availability
of cloud systems. Several critical factors have been studied
in this field such as queuing [12], failure of PMs [13], VM
migration [6], VM deployment [5] [14] and so on. But the
primary focus of those papers is the performance of pool
scheduling or management policies rather than availability.
In this paper, we use task size to denote the number of
VM required by a job, and we will investigate the impact
of task size on availability. Recently, [15] [9] considered the
number of vCPUs requested by each customer job. How-
ever, these authors compute the instantaneous probability
of a job departure by solving Markov chains [15] [9] [11].
This approach is untenable if the execution rate, capacity, or
any other features differ between PMs or evolve over time,
especially when the size of tasks may be sequences of fixed
numbers or some complex distribution.

(ii) The second challenge is that existing models are not
flexible enough to describe differing task arrival patterns
and distinctive features across PMs. Since there are various
workloads with different parameters such as start time, end
time, duration of tasks and so on, a large number of work-
load sub-models have to be established to approximate real
workloads. Moreover, PMs in real cloud data centers may
be from different manufacturers, or have been upgraded or

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 2

replaced. They may have distinct features including differ-
ent capacity, different configuration, different Mean Time To
Repair (MTTR) and so on [9]. Thus the behaviors of PMs
are heterogeneous due to their distinct features which may
have an impact on availability analysis.

In this paper, we propose an attribute-based availability
model of IaaS to enhance the ability to describe large scale
cloud systems. In the model, each formal component such
as the PM or a task specifies its private attributes. The
processes formed as a composition of components may
have different activities according to their attributes. The
attribute-based model is also flexible enough to analyze the
impacts of super-tasks. The model is written in CARMA, a
powerful modeling formalism developed by the University
of Edinburgh and the University of Florence. The main
innovations are outlined as follows:

1) To our knowledge, this is the first investigation of the
impact of task size on availability of an IaaS. We analyze
the impact of task size following a normal distribution, a
uniform distribution, a log-normal distribution or given
by a fixed integer value.

2) Addressing the challenge of determining the completion
time of a super-task. In the prior research [9] [15] [5]
[12], the task completion time is obtained by solving a
Markov process, but the PMs are treated as identical
i.e. the same kind of machine, by default. In contrast,
in real clouds, the execution rate, or capacity, or other
features differ between PMs, and the current approach
will be very inefficient or even infeasible. In our work,
responding to a broadcast, a PM can autonomously de-
cide whether it can accept a new job with its remaining
capacity. Moreover, using the location attribute, PMs can
execute concurrently and autonomously to determine job
completion times.

3) Using attribute-based components, the heterogeneity of
both task arrival patterns and PMs in IaaS can be mod-
eled to reflect unique characteristics. Taking into account
all features from capacity to execution mode rather than
just the number of vCPUs [9] or the number of requested
physical cores in VMs [15]. This is powerful enough
to capture periodic tasks with different cycle lengths,
burst tasks with different duration times, and PMs with
an inherited ageing phenomenon. More importantly, the
use of attributes allows complex behaviors of PMs to be
captured in a single parameterized submodel.

4) Using measure functions, another characteristic of the
CARMA specification language, we also provide an easy
approach to investigating how to arrange slack and
normal resources to achieve different availability levels
when there are super-tasks with different task sizes.

To conclude, the two goals of our work are to analyse the
availability of IaaS with respect to task size and to show that
the use of CARMA allows us to model complex phenomena
that were not readily captured by existing approaches.

The remainder of the paper is organized as follows.
We briefly introduce the background in Section 2. Section
3 presents our availability model in detail. In Section 4,
we present some simulation experiments to validate and
analyze our model. Our findings are summarized in Section
5, where we also outline directions for future work.

2 BACKGROUND

2.1 IaaS and Availability

IaaS availability model Availability is one of the core
properties of cloud systems. To analyze and assess the
availability of IaaS clouds, many approaches have been
proposed. According to [4] and [16], formal analysis mod-
els are more focused on identifying key factors without
being tied to specific details, and so are more suitable for
application in large cloud systems compared to simulation
tools (e.g. Cloudsim and NS2). Moreover, the availability
of IaaS is affected by all factors that mean that resource
requests cannot be granted, including network connection
interruption, VM failure, hardware failure and mismatch
between the requested resource and what can currently be
deployed. In this paper, as in many others, e.g. [11] [17],
we only consider the deployment aspects of availability;
i.e. we assume that the infrastructure is failure free and
consider only the provisioning of available resources to meet
incoming job requests.

Furthermore, for large IaaS clouds with vast param-
eter spaces, a monolithic model may suffer from poor
scalability [18] [11]. Thus hierarchical models are often
adopted to construct a series of interacting sub-models. In
2009, Kim et al. [10] established a two-level hierarchical
availability model to incorporate the effect of hardware
failures, software failures and VM live migration. In this
hierarchical model, fault trees are used for the upper level
and homogeneous continuous time Markov chains (CTMC)
are used to represent submodels at the lower level. But
the differences between PMs are not considered. In [19], a
hierarchical model based on Stochastic Reward Networks is
constructed to analyze performance, availability, and power
consumption; in [17] [18] the authors studied the impact
of failures on IaaS availability, when failure is typically
dealt with through migration of VMs; Chilwan et al. [20]
investigated the effect of dynamic load in a cloud cluster
on the service availability using analytical models; Ghosh
et al. [7] researched the impact of I/O on availability. In
those models, the PMs are classified into three types: hot,
warm (hot standby), cold (cold standby), since different
types of machines may need different times to deploy a VM
with noticeable effects on availability. Furthermore, other
models investigate concepts related to the availability of
IaaS, such as capacity planning [21], VM migration [22] [23],
sensitivity analysis [3], performance [24]. In those works,
the effects of VM scheduling and PM management are
considered in ways similar to previous availability models.

Recently, many cloud providers have started to offer OS
container-based services (e.g., Docker [25], OpenVZ [26]) to
customers. Compared to traditional VMs, a key feature of
a container is that it is lightweight, providing a promising
computing paradigm for cloud computing in the future. But
security isolation is still a major concern [27] [4], and it
will be hard to completely replace VM-based clouds before
this issue is completely resolved. In [4], two scenarios are
modeled to assess the availability of clouds, firstly when
container instances are directly executed on the PM OS, and
secondly when containers are grouped and run on VMs.
Several papers [4], [28] and [29], have studied the availabil-
ity of container-based clouds through model analysis, but

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 3

they do not consider the phenomenon of super-tasks, which
is the focus of this paper.

The impacts of super-tasks In reality, users can request
one or more VMs at a time [12]. Since cloud providers must
ensure every users’ availability according to SLO (Service
Level Objectives) no matter how many tasks arrive in the
next seconds, the phenomenon of super-tasks brings a sig-
nificant challenge to the availability of IaaS. As a typical
feature of workload variations, super-tasks within clouds
were first discussed by Khazaei et al. in 2011 [14]. Thereafter,
a large number of critical factors were studied in this field
such as queuing [12], failure of PMs [13], VM migration [6],
VM deployment [5] [14] and so on. Recently Chang et al.
[9] proposed VM size to consider the number of vCPUs
requested by each customer job. Asadi et al. [30] investigated
the impact of resource heterogeneity on the power and
performance in four different scenarios where the servers
can run 2, 4, and 8 VMs according to their capacities. But
the impact of task size has not been studied thoroughly,
especially when the behavior and capacity of PMs are highly
heterogeneous. In this paper, we attempt to examine the
impact of task size following different distributions.

In most prior models, all PMs are treated as the same
kind of machine and organized in pools. Yet there are mil-
lions of off-the-shelf PMs in real cloud data centers. PMs in
the same pool may have distinct features including different
capacity, different execution rate, different MTTR and so
on [9], because they may be from different manufacturers,
or have been upgraded or replaced. Thus the behaviors
of PMs are heterogeneous due to their distinct features.
However, in most of the relevant models the job completion
time is computed by solving a Markov chain in which all
differences in features of PMs are ignored even though they
may have impacts on availability and performance analysis.

Task arrival patterns Similarly to task size, task arrival
patterns also have a significant impact on availability. In
2012, Reiss et al. [31] gave a detailed analysis of workload
heterogeneity and variability through the analysis of Google
trace data. According to Reiss’ results, the variation of
workload is very complicated and hard to describe using
a single distribution. In order to simulate and examine het-
erogeneous workloads, many workload models have been
proposed encompassing a variety of task arrival patterns.
For example, in [32], the workloads are divided into three
kinds of task arrival pattern including constant tasks, pe-
riodic tasks and burst tasks. This model is used to describe
complex workloads and to analyze the impact of task arrival
patterns. Furthermore, some other arrival patterns such as
on & off, predictable bursting and unpredictable bursting
are identified. However, since there are various workloads
with different parameters such as start time, end time, du-
ration of tasks and so on, researchers of these prior models
had to establish a large number of workload sub-models
to approximate a real workload. Therefore, there is a need
to build a new and flexible model to describe the different
features of super-task arrival.

Provisioning of slack resources For an ideal cloud
system there are as many PMs as needed. But in reality,
large scale clouds such as Google Cloud, Amazon AWS
and Ali Cloud always set a threshold for their users, and
out of range resources may be accessed probabilistically but

not absolutely. Thus the provider needs to provide slack re-
sources to have a balance between availability and revenue.
In [33], Carvalho et al. proposed a prediction method to
reclaim slack resources to increase revenue, which derived
from a substantial dataset from Google Cloud. However, it
has not been reported how to support the optimization of
slack resources in the context of super-tasks.

To conclude, the differences between previous work and
this paper are compared in Table 1. It can be seen that this
is the first investigation of the impact of task size following
different distributions on availability of an IaaS.

2.2 CARMA

CARMA is a new stochastic process algebra for the repre-
sentation of systems developed in the Collective Adaptive
Systems (CAS) paradigm [35]. The language offers a rich set
of communication primitives, and exploits attributes, cap-
tured in a store associated with each component, to enable
attribute-based communication. For example, for many CAS
systems the location is likely to be one of the attributes.
Thus it is straightforward to model systems in which, for
example, there is limited scope of communication, or inter-
action is restricted to co-located components, or where there
is spatial heterogeneity in the behavior of agents.

A CARMA system consists of a collective operating in
an environment. The collective is a multiset of components
that models the behavior of a system; it is used to describe
a group of interacting agents that cooperate to achieve a
given set of tasks. The environment models all those aspects
which are intrinsic to the context where the agents are
operating, i.e. the environment mediates agent interactions.
This is one of the key features of CARMA. The environment
is not a centralized controller but rather something more
pervasive and diffusive — the physical context of the real
system — which is abstracted as the environment, exercising
influence and imposing constraints on the different agents
in the system. Specifically the environment is responsible
for setting the rates at which actions are performed, and
probabilities of receiving a given message. For example, in
a model of a cloud system, the environment will determine
the rate at which entities (PM, task, etc) implement their
jobs, which may also depend on the current time. The role
of the environment is also related to the spatially distributed
nature of CAS — we expect that the location where an agent
is will have an effect on what an agent can do.

A CARMA component captures an agent or entity in the
system. It consists of a process, that describes the agent’s
behavior, and of a store, that models its knowledge. A store is
a function which maps attribute names to basic values.

Processes located within a CARMA component interact
with other components via the defined communication
primitives. Specifically, CARMA supports both unicast and
broadcast communication, and permits locally synchronous,
but globally asynchronous communication. Distinct predi-
cates (boolean expressions over attributes) associated with
senders and potential receivers are used to filter possible
interactions. Thus, a component can receive a message only
when its store satisfies the target predicate. Similarly, a
receiver also uses a predicate to identify accepted sources.
An interaction will occur only when the sender satisfies the

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 4

TABLE 1
Comparison with previous analysis models.

Reference
Topics

(VM/PM/Container)
Considering super-tasks /

different task arrival patterns
Considering PM (VM) heterogeneous
while computing job completion time

[10] availability (hardware, software, VM) no –

[19] [18] [20] [34] [17] availability (PM & VM) no no
[6] VM migration (PM & VM) super-task no

[14] [5] PM &VM deployment (PM & VM) super-task no
[12] queuing (PM & VM) super-task no
[11] availability (PM & VM) super-task no
[13] failure of PM (PM & VM) super-task no
[15] heterogeneous VM (VM) only vcpu cores no
[9] heterogeneous workload (PM & VM) only VM size no
[30] performance trade-off (VM) only VM size per PM no

[2] [19] [24] [8] performance (PM & VM) no no
[21] capacity planning (PM & VM) no no

[22] [23] VM migration (VM) no no
[4] availability (container & VM) heterogeneous VM –

[28] [29] availability (container) no no
[3] sensitivity analysis (PM & VM) no –
[32] heterogeneous workload (VM) Constant/burst/periodic task no

our work availability (PM & VM) both yes
‘–’ means this item is not involved.

predicate used by the receiver, and the receiver satisfies
the predicate used by the sender. The execution of com-
municating actions takes time, which is assumed to be an
exponentially distributed random variable whose parameter
is determined by the environment.

More formally, we let SYS be the set of CARMA systems S
defined by the following syntax:

S ::= N in E

where N is a collective and E is an environment. We let
COL be the set of collectives N which are generated by the
following grammar:

N ::= C
∣∣ N ‖ N

A collective N is either a component C or the parallel
composition of collectives N1 ‖ N2. The precise syntax of
components is:

C ::= 0
∣∣ (P, γ)

and we let COMP be the set of components C generated
by this grammar. A component C can be either the inactive
component, denoted by 0, or a term of the form (P, γ), where
P is a process and γ is a store. A store is a function which
maps attribute names to basic values. We let:

• ATTR be the set of attribute names a, a′, a1,. . . , b, b′,
b1,. . . ;

• VAL be the set of basic values v, v′, v1,. . . ;
• Γ be the set of stores γ, γ1, γ′, . . ., i.e. functions from

ATTR to VAL.

The behavior of a component is specified via a process
P . We let PROC be the set of CARMA processes P , Q,. . .

defined by the following grammar:

P,Q ::= act.P | [π]P |P +Q |P | Q |nil |kill |A(A
4
= P)

act ::= α?[πs]〈−→e 〉σ | α[πr]〈−→e 〉σ
| α?[πs](

−→x)σ | α[πr](
−→x)σ

e ::= a | my.a | x | v | now | · · ·

πs, πr, π ::= > | ⊥ | e1 ./ e2 | ¬π | π ∧ π | · · ·

The process specifications are fairly standard, with prefix
(first action), choice and parallel composition all with their
usual meanings. A predicate π is used to indicate that the
process is only active when the predicate is true. The dis-
tinguished process kill removes the enclosing component
from the collective. In the action descriptions, the following
notation is used:
• α is an action type in the set ACTTYPE;
• πs and πr are predicates that define filters on the accept-

able communication partners;
• x is a variable in the set of variables VAR;
• e is an expression in the set of expressions EXP1;
• −→· indicates a sequence of elements;
• σ is an update, i.e. a function from Γ to Dist(Γ) in the

set of updates Σ; where Dist(Γ) is the set of probability
distributions over Γ.

Formally, an environment consists of two elements: a
global store γg , that models the overall state of the system,
and an evolution rule ρ, which is a function that, depending
on the global store and on the current state of the collective

1. The precise syntax of expressions e has been omitted for brevity.
We only assume that expressions are built using the appropriate combi-
nations of values, attributes (sometime prefixed with my), variables and
the special term now. The latter is used to refer to the current time.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 5

(i.e., on the configurations of each component in the collec-
tive), returns a tuple of functions ε = 〈µp, µw, µr, µu〉:
• µp : Γ × Γ × ACT → [0, 1], µp(γs, γr, α) expresses the

probability that a component with store γr can receive
a broadcast message from a component with store γs
when α is executed;

• µw : Γ × Γ × ACT → [0, 1], µw(γs, γr, α) yields the
weight that will be used to compute the probability
that a component with store γr can receive a unicast
message from a component with store γs when α is
executed;

• µr : Γ×ACT → R≥0, µr(γs, α) computes the execution
rate of action α executed at a component with store γs;

• µu : Γ×ACT → Σ×COL, µu(γs, α) determines the up-
dates on the environment (global store and collective)
induced by the execution of action α at a component
with store γs.

To extract observations from a model, a CARMA spec-
ification also contains a set of measures. Each measure is
defined as:

measure m name[var1 = θ1, . . . , varn = θn] = expr;

where θ1, . . . , θn refer to the range of variables. Expres-
sion expr can be used to count or to compute statistics
about attribute values of components operating in the
system. These expressions are used to compute the mini-
mum/maximum/average value of expression expr evalu-
ated in the store of all the components satisfying boolean
expression guard , respectively.

The formal semantics of CARMA gives rise to an
Inhomogeneous-time Continuous Time Markov Chain
(ICTMC) and the details of the translation method can be
found in [35]. The state space of the system is represented as
a finite, discrete set of states and the times of state transitions
are governed by the rates given by the model description.
The state space generated by CARMA models is usually too
large to be analytically tractable and thus the models are
analyzed by simulating individual time trajectories.

The specification and analysis of CARMA models is sup-
ported by an Eclipse plug-in [36] and a model simulator.
The plug-in implements an appropriate high-level language,
named the CARMA Specification Language, that simplifies the
creation of CARMA models by providing rich syntactic con-
structs inspired by main stream programming languages.

2.3 An example to illustrate the advantages of CARMA
In order to facilitate understanding of the advantages of
CARMA in the modeling process, a simple example of PM
ageing is given in this subsection. PM ageing is a common
phenomenon in IaaS and other long-running systems. For
the sake of simplicity, we only assume that the ageing of
the PM is related to the number of times it is executed. The
direct consequence of ageing will be that the PM execution
rate will slow down. The CARMA fragment describing the
ageing phenomenon is shown in Fig. 1.

There is a collection of PMs, and each of them is mapped
to a local store γs, s ∈ {1, 2, · · · , n}. In each store, the num-
ber of times each PM performs a task is different due to its
inherent capacity and the order of the tasks are received. As
soon as the action execute occurs, a value will be updated

Local store

ATTR: capacity

S1 S2
execute*()

goback*<>

Local store

ATTR: capacity

S1 S2
execute*()

goback*<>

Environment

numexecute_ numexecute_

Global store

ATTR:

Evolution rule

: rexecute , execute, numexecute_

: execute *(numexecute_

Interplay between

local and global stores

Hidden action

in global store

Local store 1

ATTR: capacity

S1 S2
execute*()

goback*<>

Local store s

ATTR: capacity

S1 S2
execute*()

goback*<>

Environment

g

numexecute_ 1 numexecute_ s

Global store

ATTR:

Evolution rule

r

u

rexecute (s, numexecute_ s
)

: s × execute* numexecute_ s

Interplay between

local and global stores

Hidden action

in global store

: s × execute*

Fig. 1. A case study to illustrate the advantages of CARMA.

in the local store γs, as well as in the global store γg under
the control of evolution rule function µu, resulting in the
change of numexecute γs . Meanwhile, according to another
evolution rule function µr, the rate of the execute action
depends on the value of numexecute γs . Thus, under the
supervision of µr, the execution rate of execute in the local
component will become lower. This feedback will make the
execution rate more diverse across the PMs and it would be
difficult to express with a single distribution function.

This case would be very complex to describe with other
formal languages such as Petri nets; we would need to
build each PM as a distinct submodel since the capacity and
execution rate differ. However, it is easy to model this case
with CARMA due to its inherited component structure and
locally defined attributes.

3 AN ATTRIBUTE-BASED AVAILABILITY MODEL OF
IAAS CLOUDS

In this paper, we build a new attribute-based availability
model for large scale IaaS systems with CARMA, which
allows us to model in an easy way complex phenomena
that are not readily captured by existing approaches.

Based on previous research, the process of service provi-
sioning for IaaS can be divided into 5 stages as in Fig. 2.

In contrast to the novel results that have been achieved in
global queuing [12], VM deployment [5] and IO contention
at runtime [7], the focus of this paper is on two aspects
which have previously received little attention: super-task
arrival (Section 3.1) and PM provisioning (Section 3.2). In
our model, there are three kinds of tasks as in [32]. Each
arriving task will be placed in the global queue. If the global
queue is full, the job will be rejected and the availability is
reduced at that time. Otherwise, every task in the queue is
going to be selected. For most IaaS, the PMs are organized in
PM pools classified as hot, warm and cold. But for different
clouds, the scheduling policies may be quite different, for
example, random choice, first fit, best fit, worst fit and so
on. In this paper, the default strategy is best fit. Moreover, as
in [32] [37], the slack resources will be reserved by providers
to cope with bursty arrivals. When there are not sufficient re-
served resources, a job can be uploaded to federation clouds
to access opportunistic resources which are not guaranteed.
Subsequently a job is allocated to a certain PM and deployed
in one or more VMs, depending on its size. Finally, the VMs
will be reclaimed when the job finishes.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 6

Task Arrival
Global

Queuing

Scheduling &

 PM provision

Local Queuing &

VM deployed
Actual Service

Constant Arrival

Periodic Arrival

Burst Arrival

Job rejection due

to queue full

VMs

Run-time

Execution

time
the normal resources

Warm Cold

Reserved Opportunitic

Hot

the slack resources

spare PM federation

Fig. 2. The process of task arrival and service provisioning.

Correspondingly, the process of service provisioning is
given in Fig. 3. It is modeled by six kinds of components
COMP =

{
ConstantTasks , BurstTasks , PeriodicTasks ,

Scheduler , Slack , PM
}

. Every component is composed
of several processes which can perform different actions
according to their private attributes. In the figure, if there
is more than one concurrent process in a component, the
process names are given after the component name. Fur-
thermore, the global queue is described by a list, named
task list , in the Scheduler component, and the local queue
in a PM is divided into two lists: capacity PM in Scheduler
and stack in PMs . The former is convenient for centralized
scheduling and the latter enables distributed implemen-
tation. To support distributed implementation, PMs have
distinct identities based on their location which is defined
as
−→
loc = 〈type, pos〉, where type denotes Hot, Warm, Cold

and Reserved, and pos is the position in the pool. The PMs
operate in parallel and their activities are determined by
locations and attributes, which are critical for the analysis of
availability when PMs have different features.

Note that the scheduling module can adopt a hierarchi-
cal approach when there are too many tasks to handle. Due
to space constraints for the article, this will not be discussed.
In the following subsections, we will introduce each sub-
model represented in CARMA and as Markov Chains.

3.1 Modeling super-task arrivals
Prediction of cloud workloads has been considered in a se-
ries of papers [38] [39] [40]. The results show that workload
variation follows certain rules and the task arrival pattern
has some basic types. In this paper, we will follow Bruneo’s
classification and describe all other types by a combination
of the three basic task arrival patterns: constant tasks, pe-
riodic tasks and burst tasks [32]. As stated in Section 1,
it is difficult for existing models to describe a number of
different workloads with different start times, durations and
execution rates. Thus an attribute-based method is adopted
in this subsection.

3.1.1 Constant arrival
Constant arrival is the simplest task type which executes
with almost the same rate throughout the model execution.
In this paper the start time, stopping time and task size
are thought to be attributes of the component representing
the arrival stream, ATTR =

{
tstart, tend, size

}
. Thus we

can create different constant arrival streams through the
use of attributes. If both tstart > 0 and tend < endpoint
are true, the task will be treated as a special case of burst

task. The corresponding Markov chains for constant arrivals
are shown in Fig. 4, where the middle one represents a
non-zero start time and the bottom one captures an early
finish, and Initial and Stop are two temporary states. All the
cooperation (shared) actions in the model are highlighted in
red.

Generally, a constant arrival can be modeled by the
parameterized process:

C = [tstart 6 now 6 tend].c arrival[>]〈size〉.C;

where the term now represents the current time. Then by
assigning different values to those attributes, different con-
stant arrivals are created using only one type of component.

3.1.2 Burst arrival

Burst arrival refers to a task that starts abruptly and finishes
after a short interval, with a high throughput. All burst
arrivals can be depicted by similar attributes, ATTR =

{
tstart, ω, size

}
, where ω denotes the duration of the burst

task. The corresponding Markov chains are given in Fig. 5.
The burst arrival can be modeled by two processes in

CARMA as follows.

Timer = [now < tstart].timer
?[⊥]〈〉.Timer

+ [now > tstart].bell
?[⊥]〈〉.B;

B = [ω < Nduration].b arrival[>]〈size〉σ {ω′} .B
+ [ω > Nduration].no arrival?[⊥]〈〉.nil;

where Nduration indicates the threshold of ω, and ω′ is the
updated value of ω.

3.1.3 Periodic arrival

A classic periodic arrival repeats its size in regular intervals
or periods. This self-similar phenomenon has been observed
in many clouds. The job arrival rate depends on the number
of users, weekly cycle, seasonal factors and so on [41]. In
terms of [32], the job arrival process has been modeled as
a Markov Modulated Poisson Process (MMPP). MMPP is
easy to describe by Markov Chains which are used as the
underlying solution tool both in reference [32] and in our
work, so we follow that approach in this paper. In further
study, we will improve our model and tool to support
simulating a periodic workload with Non-Homogeneous
Poisson Processes which will be more accurate than the
current MMPP assumption.

The left part of Fig. 6 is a simple example of
periodic arrival, ATTR =

{
L, size, P1, . . . , Pi to Pi+1,

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 7

1. Constant Tasks

2. Burst Tasks

3. Periodic Tasks

Constant_tasks_arrival constant_arrival<size>

Burst_tasks_arrival

Timer

< timeline
Yes

<=
duration

No

YesNo

Stop

burst_arrival<size>

ComputeSlots

Periode_1

Periode_K

Periode_M

12

i

i+j

N

periodic_arrival<size>

4. Scheduler (Reciever || Moniotor ||

Normal || UpdateCapacityList)

Reciever
task_list[NL]

Push

Pop
Monitoring

find_Spare_PM

Scheduling

capacity_PM[NK]

overflow
_Flag

Packet Lost

Yes

No

capacity is
enough

Yes

No

UpdateCapacityList

redirect<size>

cast*<size,PM_ID>

5. Slack(Accepting || Running)

ACCepting

ReSerVed(RSV)

capacity>=
size

Yes

No

opportunistic
available

Yes

OPPortunistic

No

Failed

RUNning

6. PMs (Accepting || Executing)

Accepting stack[NS]
Push

Pop

Executing

occupied
>=0

No

Yes

UPDating
updating<occupied,loc>

cast*<size,

s_loc>

capacity_

RSV[NR]

Normal

Overflow

Task_list
is empty

Fig. 3. The process of communication between components.

c_arrival<size>

time

rate

tendtstart0

c_arrival<size>

c_arrival<size>

[t < tstart] [t tstart]

[t tend]
[t > tend]

C

 Initial

Stop

C

C

Fig. 4. The Markov chains of constant arrival.

Nduration

rate

tstart0

c_arrival<size>
[t < tstart]

timer

[t tstart]

bell

Timer B Nil

[Nduration]

no_arrivaltime

Fig. 5. The Markov chains of burst arrival.

rate

0 timeP1 Pi Pn

L L

P_1 P_i P_n

[t in Pi][t in P1] [t in Pn]

p1_to_p2 pi-1_to_pi pn-1_to_pn

pn_to_p1

p1_arrival<size> pn_arrival<size>

Fig. 6. The Markov chains of periodic arrival.

. . . , Pn, Pn to P1

}
, 1 6 i 6 n, where the length of cir-

cle L and the division of periods is determined by the
component’s attributes. The corresponding Markov chain,
MMPP(λp1 , λp1 to p2 ,. . . ,λpn ,λpn to p1), is given in Fig. 6.
Denoting T = (now mod L), the periodic arrival can be
modeled by processes with CARMA as follows.

P_1 = [T ∈ P1].p1 arrival[>]〈size〉.P_1
+ [T ∈ P1 to P2].p1 to p?2[⊥]〈〉.P_2;

· · ·
P_i = [T ∈ Pi].pi arrival[>]〈size〉.P_i

+ [T ∈ Pi to Pi+1].pi to p
?
i+1[⊥]〈〉.P_i+1;

· · ·
P_n = [T ∈ Pn].pn arrival[>]〈size〉.P_n

+ [T ∈ Pn to P1].pn to p?1[⊥]〈〉.P_1;

3.1.4 Task size
The most important attribute of a super-task, its task size,
can be a vector. For example, if a task needs x units CPU,
y units memory and z units bandwidth,

−−→
size = 〈x, y, z〉.

For brevity in this paper, we only consider it as a scalar
quantity, the number of VMs needed, while it is technically
straightforward to extend it to be a vector. Moreno et al.
[38] have found the workload in task clusters to follow
a log-normal distribution that in a small interval can be
approximated by a normal distribution, but the distribution
of task size has not been reported. In this paper, the normal
distribution is chosen as the default setting of task size, and
the results will be compared with that of a fixed integer
value, a log-normal distribution and a uniform distribution
in experiments. Notably, it is easy to change this assumption
for any other distribution because of the use of attributes.

3.2 Modeling service provisioning
In this subsection, we focus on how to find a suitable PM
to satisfy the VM deployment requirements when there are
super-tasks. Consequently, PM provisioning, that plays a
crucial role for service provisioning, will be modeled as
well as slack resource provisioning and PM execution. VM
deployment and queuing are not studied in detail in our
model since they have been studied extensively in previous
works [5] [11] [8].

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 8

< Nwidth

b_arrival(size)

c_arrival

(size)

_arrival(size)

updating

cupied,PM_ID)

[overflow_flag]

[! overflow_flag

overflow_flag

 ! overflow_flag

monior
cast*

<size,PM_ID>

redirect

<size>
_arrival(size)

_arrival(size)

b_arrival(size

c_arrival(size

_arrival(size

_arrival(size

_arrival(size
[!

[!

cast*<si

red

<s

moni

R O M S U

b_arrival(size)

c_arrival(size)

pi_arrival(size)

monior

updating

(occupied,

loc)

cast*<size,PM_ID>

[PM_ID.type L1]

redirect<size>

[PM_ID.type L1]

width

rate

start

c_arrival<size
t start

timer

t start]

bell

Timer Nil

width]

no_arrivaltime

b_arrival(size

c_arrival(size

_arrival(size

_arrival(size

_arrival(size

[!

monior

updating

occupied,

loc

cast*<size,PM_ID>

PM_ID.type L1]

redirect<size>

PM_ID.type 1]

PM_ID]

null

[!]

[]

reach

overflow

[PM_ID]

null

Fig. 7. The Markov chains of pool management schemes.

3.2.1 Modeling PM scheduling
The component Scheduler is used to represent the PM
provisioning schemes consisting of three parallel parts as
shown in Fig. 7. The left Markov chain captures the function
of the global queue. The state R receives the messages
from different tasks, pushes them into a queue task list
and determines whether to set an overflow flag ζ . The
phenomenon of overflow is indicated by state O, and the
transitions between O and R are controlled by ζ .

As shown in the middle part, PMs are scheduled to
provide available PMs. Firstly, M is the state of monitoring
which explores spare PMs in the capacity list hosted in the
data center. Meanwhile the state S captures a scheduling
operation in the component. In the scheduling process, a
hot PM is always the preferred option to reduce cost; then
warm and cold PMs are chosen in turn incurring longer
preparation time when no hot PMs are available. Next,
a message with both the task size and the selected PM’s
identification is sent to all PMs in a broadcast manner.
However, if there is no available PM after retrieving the
list capacity PM , a message of task size is redirected to
the component Slack in order to search for slack resources.
The role of process U is to receive messages from each PM
and update the capacity list. Note that broadcast is a highly
abstract operation that ignores the specific details of the
scheduling process in different cloud computing systems.
It is nevertheless useful in our model.

Letting the attribute set ATTR =
{
task list,

capacity PM , size, ζ
}

and L1 = {Hot ,Warm,Cold}
be the set of normal resources, the Scheduler can be
described by CARMA processes as follows.

R = c arrival [>](size)σ1.O;
+ b arrival [>](size)σ1.O;
+ p1 arrival [>](size)σ1.O; + · · ·
+ pi arrival [>](size)σ1.O; + · · ·
+ pn arrival [>](size)σ1.O;

O = [ζ].overflow?[⊥]〈〉.O + [¬ζ].reach?[⊥]〈〉.R;
M = monitor?[⊥]〈〉σ{size := pop (task list) ;

−−−−−→
PM ID := findPM (capacity PM , size) ; }.S;

S = [
−−−−−→
PM ID ∈ ∅].null?[⊥]〈〉.M

%The queue is empty

+ [
−−−−−→
PM ID.type ∈ L1].cast?[>]〈size,

−−−−−→
PM ID〉σ{

update (capacity PM) ; }.M
+ [

−−−−−→
PM ID.type /∈ L1].redirect[>]〈size〉.M;

U = updating [>](occupied,
−→
loc)σ{

releasePM
(
capacity PM , occupied,

−→
loc
)
; }.U;

Scheduler
4
= R ‖M ‖ S ‖ U ;

UD

updating

<occupied, PM_ID>

width

rate

start

c_arrival<size
t start

timer

t start]

bell

Timer Nil

width]

no_arrival

< Nwidth

time

UPD

execute

loc.type 2]

loc.type 1]

PM_ID==loc

cast* (size, PM_ID

updating <occupied, PM_ID

run <occupied, PM_ID

loc.type==hot]

WTH

loc.type==warm] convert1 execute

CTH

loc.type==Cold] convert2

A UPD
execute

[PM_ID==loc]

cast* (size, PM_ID)

E

[loc.type L1]

[loc.type L2]

execute with different attributes

[occupied 0]

updating <occupied, loc>

run <occupied, loc>

Fig. 8. The Markov chain corresponding to a PM.

where the function findPM () is used to find a PM that
has remaining capacity bigger than the size; update() is a
function that updates the capacity PM when releasePM ()
releases the space occupied by the PM that has completed
the task; σ1 is responsible for pushing a new job and
updating the overflow flag and includes two operations:
push (task list) and ζ (task list).

3.2.2 Modeling attribute-based PMs
In previous work, [15] [9] [11], the expected departure
time of a job is found by solving a Markov chain. In
our model instead, an attribute-based PM autonomously
decides whether it can accept a new job with its remaining
capacity based on information received via the broadcast
mechanism. The location attribute provides a foundation for
heterogeneity of the PMs with different behaviors. Hence,
the completion time of a super-task is truly determined
by the PMs rather than calculating a probability. This is
especially important when numerous different PM types
are involved, because the Markov chains would be too
complicated to solve efficiently.

For PMs, the features such as capability, execution rate,
or even PM ageing can be easily described by their at-
tributes, ATTR =

{
stack , size,

−→
loc, occupied

}
. To model dif-

ferent capacity, it is only necessary to modify the capacity
list capacity PM owned by component Scheduler and the
corresponding stack in the PM. As seen in Fig. 8, the
messages received in state A will be filtered firstly by the
PM’s ID which is typically its location. An accepted task will
be pushed on the stack stack and picked up to be deployed
in the state E. While transitioning from E to UPD (the
state of updating), the PM may implement some different
actions determined by its private attributes. Finally, in order
to update the state of PMs, the number of VMs occupied in
each PM and the PM’s ID are sent by the action update or
run due to its type.

Letting L1 be the set of normal resources as previously
and L2 = {Reserved} be the set of slack resources, a PM
component can then be described by CARMA processes as
follows.

A = cast?[
−−−−−→
PM ID ==

−→
loc](size,

−−−−−→
PM ID)σ {

push (stack) ; my.occupied := occupied+ size;
timeout timer := now; } .A; %for measure

E = [occupied ≥ 0].execute?[⊥]〈〉σ {
t size := pop (stack) ;
my.occupied := (timeout timer − now > T0)?
(occupied − t size) : 0; } .UPD %for measure

UPD = [
−→
loc.type ∈ L1].updating [>]〈

−→
loc, occupied〉.E

+ [
−→
loc.type ∈ L2].run[>]〈

−→
loc, occupied〉.E;

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 9

[reserved_capacity

<size]

ACC RSV OPP RUNF

redirect(size)

cast*<size, PM_ID>

[reserved_capacity size]

on_demand fail

[opportunistic_c

apacity size]

run (occupied, PM_ID)

upload

[opportunistic_

capacity<size]

drop

Fig. 9. The Markov chains of reserved source.

PMs
4
= A ‖ E;

where occupied denotes the number of VMs deployed at the
current time, and T0 is a threshold to avoid a false value of
occupied caused by deadlock when no tasks arrive, such as
after a burst task.

Furthermore, since the execution mode of processes can
be defined in terms of attributes, the PMs are able to
change the implementation branches or execution speed
dynamically in accordance with the results of the feedback
from the environment E . Thus it is straightforward to depict
PMs with more complex features such as PM ageing (as
discussed in Section 2.3).

For the sake of simplicity, we adopt a strategy of incor-
porating a start-up cost when computing the execution rate
of warm and cold PMs, i.e. the time to prepare the start-up
state and the real execution time are treated as a single time
interval Timplement . The execution rate is the reciprocal of
Timplement and satisfies rcold < rwarm < rhot.

3.2.3 Modeling of slack resources

For clouds, some slack resources are usually reserved to
cope with burst arrivals, and these can also be resold to
other providers opportunistically to increase the availability
of the federation. This process is modeled by the Markov
chain in Fig. 9.

The state RUN in the right part manages the reserved
resources in the list capacity RSV . The meaning of the
other processes is : 1) ACC is responsible for receiving
messages from the Scheduler . 2) RSV expresses the process
of exploring a spare PM in the slack resources. 3) OPP
refers to the process of finding an opportunistic PM in the
federation cloud. 4) F is a failure state reached when there
is no available PM.

The sources of failures in large cloud systems are diverse,
including hardware failures, PM failures, OS errors, link
interruptions, etc. These details are difficult to fully consider,
and an abstract model is generally used. For example, in
[6] it is considered that a VM is unavailable and needs
to migrate whenever a failure occurs. In this paper failure
is similarly treated in an abstract way capturing all cases
where computing resources are not accessible.

The attribute set of component Slack is ATTR ={
capacity RSV ,

−−−→
s loc, size

}
, and the processes in Slack can

be described in CARMA as follows.

b_arrival

c_arrival
Constant_

task

Burst_task

Periodic_

task

redirect

cast*

Scheduler

PMs

Slack

cast*

pi_arrival updating

run

Fig. 10. The cooperation graph of CARMA sub-models.

ACC = redirect [>](size)σ {
−−−→
s loc := findPM

(
capacity RSV , size

)
; } .RSV;

RSV = [
−−−→
s loc.pos 6∈ ∅]cast?[>]〈

−−−→
s loc, size〉.σ {

refresh
(
capacity RSV ,

−−−→
s loc, size

)
; } .ACC

+ [
−−−→
s loc.pos ∈ ∅].on demand?[⊥]〈〉.OPP;

OPP = upload?[⊥]〈〉.ACC + fail?[⊥]〈〉.F;
F = drop?[⊥]〈〉.ACC;

RUN = run [>](occupied ,
−−−−−→
PM ID)σ {

release
(
capacity RSV,occupied ,

−−−−−→
PM ID

)
;} .RUN;

Slack
4
= ACC ‖ RUN ;

where the function refresh() refreshes the state of
capacity RSV after deploying a task and release() recycles
the space occupied by the PM that has completed the task.

3.3 The cooperation model
In the above discussions, we have established 5 sub-models,
and the relationship between them can be described in a
cooperation model as in Fig. 10.

The differences between individual tasks and PMs in a
real IaaS cloud mean that the underlying Markov chain may
be very complex. But with a CARMA model of cooperating
components we are able to define the model in a clear and
simple manner using the inherited attributes.

4 SIMULATION AND ANALYSIS

In this section, we will analyze the availability of an IaaS
system using the model built in the last section. The set of
metrics used is briefly discussed in Section 4.1 and in Sec-
tion 4.2 we introduce the parameters used in the following
experiments. The impacts of the task size and PM attributes
are analyzed in Section 4.3. Finally, the assignment policies
for slack and normal resources are investigated in order to
achieve a higher level of availability.

4.1 Metrics
Rather than the probability of at least one available VM,
we define three groups of metrics to assess the impact of
task size on availability. The first is the utilization level
of resources measuring how efficiently resources are used.
The second is the probability of using slack resources. The
last group focuses on the states representing scenarios of
unavailability, in order to evaluate the availability of the
whole cloud.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 10

4.1.1 The utilization level of VMs
For super-tasks, not all VMs are fully utilized since the re-
maining capacity may not be large enough for new arrivals.
Generally, if more VMs can be deployed on each PM, the
probability of not finding an available VM will be less.
Therefore, the average number of VMs deployed in a PM
is a major factor in assessing the level of utilization.

Assuming Ni(t) is the number of VM deployed in the
ith PM at time point t and Ni,max is the capacity of PMi,
the average utilization rate of VMs for PMi can be defined
by Ni(t)/Ni,max. Thus for a PM pool, i.e. hot, warm, cold and
reserved, the average utilization rate for VMs is

ηpool (t) =

∑Npool

i=1 Ni(t)∑Npool

i=1 Ni,max

, (1)

where Npool is the number of PMs in a certain pool, and
pool ∈ L1 ∪ L2.

Similar to Eq(1), the utilization rate for VMs in all
normal PMs, ηnormal (t), refers to the average utilization
level of normal VMs in the whole system. A higher value
of ηnormal (t) means a lower probability of using the slack
resources.

ηnormal (t) =

∑
p

∑Np

i=1Ni(t)∑
p

∑Np

i=1Ni,max
, p ∈ L1, (2)

Based on the above discussions, the maximum average
utilization rate of a VM for a cloud can be computed by

maxη = Max t∈T1
{ηnormal (t)} , (3)

where T1 is the duration of the experiment, which must be
long enough for ηnormal (t) to reach a stable value.

4.1.2 The proportion of slack allocation
When there are no available VMs in the hot/warm/cold
pools, the slack resources are called. Hence the ratio of
calling the slack can also be used to assess the availability
level of an IaaS. The metric PS is defined as the proportion
of tasks redirected to the reserved resources, and PO is the
proportion of tasks redirected to the opportunistic resources.
Due to the phenomenon of overflow, some components are
not scheduled at all, which will not be included in our
formula. Let Ntotal be the total number of tasks, Noverflow

be the number of task rejected, NRSV and NOPP are the
number of tasks redirected to reserved and opportunistic
resources respectively. Then PS and PO are expressed as

PS =
NRSV

Ntotal −Noverflow
, (4)

PO =
NOPP

Ntotal −Noverflow
. (5)

4.1.3 Availability
Availability is a key metric for evaluating a cloud’s ability
to meet customer needs. In our model, the proportion of
tasks accepted and deployed successfully in VMs is used
to express availability. Assuming Nfail is the number of
tasks which fail in the Slack component, then by similar
arguments to eq(4), the rate of failure Rfail is

Rfail =
Nfail

Ntotal −Noverflow
. (6)

Finally, the rate of unavailability is defined as

Runavail =
Noverflow +Nfail

Ntotal
. (7)

4.2 Experimental environment setting
For brevity, a simple case is chosen as the default setting
in the following experiments. Firstly, the number of PMs in
each kind of pool is set to 5 to keep the plots a reasonable
size and show the growth trend of the utilization level of
VMs. In fact, the number of hot, warm and cold PMs can be
easily expanded to 1000 or more in our experiments.

Next, the action rates are estimated using the classical
method proposed by Huang et al. [42]. Given the average
sojourn time of an action α is T , then the rate of α is 1/E(T),
where E(T) is mathematical expectation of T . Since the
unit of time in this paper is a neutral one — ”time units”,
the unit of action rate is ”tasks per time unit”. For the
sake of simplicity, we will omit these units in the following
discussion. The rate of execution rexecution of hot, warm and
cold PM is set to 4, 2 and 1 respectively. The periodic arrival
here has three periods, with lengths 7, 13 and 10, but this
can also be expanded by changing only some parameters.
The default periodic task arrival rates in these 3 periods
are respectively 10, 5 and 1, and rP1 to P2 , rP2 to P3 and
rP3 to P1 are 7, 3 and 7. In addition, the probability of
finding opportunistic resources or failing is 95% and 5%,
and the rate of failure is 5.

Thirdly, in the following experiments, task size following
three kinds of distribution will be considered, including a
uniform distribution, a truncated normal distribution and
a log-normal distribution. The maximum capacity of PM
in this paper is 10 by default. If the task size follows
a uniform distribution U(0,max task size), the value of
max task size can also be set to 10. Moreover, if X is a
random variable following the normal distribution N(0, σ),
the task size is set to be an integer Y = b|X|c + 1, and we
denote the new truncated normal distribution as TN (0 , σ).
For comparison, when the task size follows a truncated
normal distribution and log-normal distribution, most of the
task sizes should be less than max task size . Due to the
properties of the normal distribution, more than 99.999%
stay within [µ−4.26σ, µ+ 4.26σ], thus this meets our needs
when σ = 2. Correspondingly, we can choose the log-
normal distribution lognormal (0, 1) with a variable Z and
the task size is set to be an integer bZc + 1. Then the prob-
ability distributions for the task size following the normal
and log-normal distributions are compared in Fig. 11. The
task size following the log-normal distribution possesses a
heavy tail, which means that there are more tasks with a size
greater than 10. Additionally, the task size can also be set to
a fixed integer value, as explained in Section 3.1.

Other critical parameters have the values as given in
Table 2. All other action rates in the model are set to 100 by
default. Moreover, the default strategy of pool management
is best fit and we do not consider the ageing mechanism
of PMs initially. By default, in simulation experiments, the
simulation time is 30, the number of replications is 100
and the number of samplings is 50. For all the CARMA
models experimental settings and codes can be found at
the website https://codeocean.com/capsule/7497086/tree.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 11

1 2 3 4 5 6 7 8 9 10 >10

Size

0

0.1

0.2

0.3

0.4

0.5

P
ro

b
ab

il
it

y

lognormal(0,1)

TN(0,2)

Fig. 11. The probability distribution of each task size while following the
truncated normal and log-normal distribution.

TABLE 2
The default model parameter values.

Symbol Description
Default
value

Lg Length of global queue 100
rburst Rate of burst task arrival 30

rconstant Rate of constant task arrival 5
rmonitor Rate of monitoring in Scheduler 500
rcast Rate of unicasting in Scheduler 500

rupdating Rate of updating capacity list in Scheduler 500
roverflow Rate of overflow 500
rreach Rate of reach 500
rupload Rate of execution of opportunistic resources 10

rfail
Rate of failure to deploy in

federation clouds
5

tstart Start time of burst arrivals 5
Nduration Number of jobs in a burst arrival 200
tbegin Start time of a constant arrival 0
tend End time of a constant arrival +∞

Moreover, we highlight that, based on the formal model, we
can analyze different scenarios by changing the parameters.

In the following sections, the CARMA tool2 developed by
the University of Edinburgh and the University of Florence
is used to model and analyze the case study.

4.3 Analysis of the impact of attributes values

In this subsection, different task arrival patterns are firstly
validated with respect to various important attributes. Next,
the most critical attribute, the task size is analyzed. Finally,
we discuss the impacts of PM’s attributes on availability.

4.3.1 Analyzing the impacts of tasks arrival patterns
Taking the case in Section 4.2 as an example, we will study
the impact of task arrival patterns on the number of virtual
machines deployed. In the simplest scenario where there is
only a burst task and its size is fixed at 1, the numbers of hot
VMs deployed is shown in Fig. 12 (a). To aid explanation,
we will denote PMs in the hot pool as Hoti , i = 1, 2, . . . , 5.
It is found that the PMs are chosen from Hot1 to Hot5 in

2. http://quanticol.github.io/CARMA/

turn with a best fit strategy when a task arrives, and the
utilization level decreases from Hot1 to Hot5 as expected.
When Nduration is changed to 100, the results are as given
in Fig. 12 (b), and naturally fewer VMs are needed when
fewer tasks arrive. Similarly, the results for constant arrivals
are shown in Fig. 12 (c), and those for periodic arrivals
with different periods in Fig. 12 (d). Finally, mixing the
three kinds of tasks, we can get a more complex workload.
Assuming there is a burst arrival, a periodic arrival and a
constant arrival set as in Table 2, the results when all task
sizes are fixed to 1 or following a normal distribution, are
separately shown in Figs. 12 (e) and (f). For the latter, the
utilization rate stays at a lower level.

The results in Fig. 12 give confidence that the model is
behaving as anticipated, whilst the attributed-based task
arrival submodels decrease the complexity of modeling
different workloads.

4.3.2 Impacts of task size
In addition to the task arrival patterns, the task size is
another important feature of workflow variation. In the
following experiments, we investigate the impact of the
distribution of task size, comparing a uniform distribution,
a truncated normal distribution, a log-normal distribution
and that of fixed integer values. The results are shown in
Fig. 13.

Fig. 13 reveals that the utilization rate of VMs differs
greatly when the task size differs. Moreover when the task
size is more than 6, a large number of VMs will be unused
since the residual space is not enough for a new task.
Similarly, when the task size follows a uniform distribution
(Fig. 13 (j)), a truncated normal distribution (Fig. 13 (k)) or
a log-normal distribution (Fig. 13 (l)), not all of VMs can be
placed in hot PMs because there is not sufficient capacity
to deploy a new arrival. Furthermore, compared to the
results of uniform distribution, there are more VMs placed
in Fig. 13 (k) owing to some smaller size tasks arriving, and
similar results can been observed in Fig. 13 (l).

Based on the above discussion, the maximum average
utilization rate maxη with different task size is compared in
Fig. 14 (a). It shows that if the task size is a factor of 10, the
maximum capacity, maxη is more likely to reach a higher
level. Furthermore, to investigate the influences from the
distribution function and maximum capacity, we change the
parameters of the log-normal distribution σ and capacity,
and the results are separately shown in Fig. 14 (b) and (c).
From Fig. 14 (b), PO seems to increase with the growth of
σ, and it is more obvious for log-normal distribution that al-
most 40% of tasks require the opportunistic resources when
task size follows lognormal(0, 10). As stated in Section 4.1.2,
the main reason is that the size becomes larger when σ
grows. For lognormal(0, 10), more than 40% of size values
fall in (10,+∞), resulting in a lot of capacity being wasted.
It is the same for the case of a truncated normal distribution.
In Fig. 14 (c), the task size follows lognormal(0, 1). While
the maximum capacity of PM increases from 10 to 50, the
value of maxη and the maximum number of VMs running
is compared. It is apparent that maxη stays at a high level in
all scenarios and increases with the growth of the maximum
capacity. It implies that more resources will be fully used
when PMs have a larger capacity and less residual resource

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 12

0 10 20 30

Time

0

2

4

6

8

10

T
h
e

n
u
m

b
er

 o
f

V
M

s

(a)

0 10 20 30

Time

0

2

4

6

8

10

T
h
e

n
u
m

b
er

 o
f

V
M

s

(b)

0 10 20 30

Time

0

0.5

1

1.5

2

T
h
e

n
u
m

b
er

 o
f

V
M

s

(c)

0 20 40 60

Time

0

2

4

6

8

10

T
h

e
n
u

m
b

er
 o

f
V

M
s

(d)

0 20 40 60

Time

0

2

4

6

8

10

T
h

e
n
u

m
b

er
 o

f
V

M
s

(e)

0 20 40 60

Time

0

2

4

6

8

10

T
h

e
n
u

m
b

er
 o

f
V

M
s

(f)

Hot
1

Hot
2

Hot
3

Hot
4

Hot
5

burst periodic

Fig. 12. The average utilization level of VMs for a certain PM confronted with different kinds of tasks, including (a) a burst arrival with ω = 100, (b)
a burst arrival with ω = 200, (c) a constant arrival, (d) a periodic arrival with a non-uniform division of cycle, (e) a mixture task and (f) a mixture task
whose size follows truncated normal distribution TN (0, 2).

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(a)

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(b)

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(c)

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(d)

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(e)

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(f)

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(g)

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(h)

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(i)

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(j)

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(k)

0 20 40

Time

0

0.2

0.4

0.6

0.8

1

η
p

o
o

l

(l)

η
normal

η
hot

η
warm

η
cold

Fig. 13. The impact of different task size while (a) size = 2, (b) size = 3, (c) size = 4, (d) size = 5, (e) size = 6, (f) size = 7, (g) size = 8,
(h) size = 9, (i) size = 10, (j) size following the uniform distribution u(1, 10), (k) the truncated normal distribution TN (0, 2) and (l) the log-normal
distribution lognormal (0, 1).

will be wasted. From the above discussions, a higher utiliza-
tion level of PMs is achievable only if the task size is a factor
of the maximum capacity.

4.3.3 Analyzing the impacts of PM attributes

Attributes play a crucial role in capturing the differences be-
tween PMs, decreasing the complexity of building tailored
models for each kind of PM. In this subsection, three simple
experiments are made investigating the impacts of different

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 13

1 2 3 4 5 6 7 8 9 10 U N L

size

0

0.2

0.4

0.6

0.8

1

1.2

m
a

x
η

(a)

U(1,10)

TN(0,2)

lognormal(0,1)

1 2 3 4 10

σ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
O

(b)

N(1,σ)

lognormal(0, σ)

10 20 30 40 50

Capacity

0

10

20

30

40

50

T
h
e

m
ax

im
u
m

 n
u
m

b
er

 o
f

V
M

s

(c)

0.96

0.965

0.97

0.975

0.98

0.985

m
a

x
η

Fig. 14. The impact of distribution function and maximum capacity (a) when the task size is set to different values, (b) when the task size follows
different distributions, (c) when changing the maximum capacity.

0 5 10 15 20 25 30 35 40

Time

0

2

4

6

8

10

T
h

e
 n

u
m

b
e
r

o
f

V
M

s

Hot
1

Hot
2

Hot
3

Hot
4

Hot
5

Fig. 15. The impacts of different capacity.

capacity, execution rate and PM ageing.
Firstly, assuming there are five hot PMs and the vector

of their capacity is (10, 10, 8, 5, 8), and a light workload with
a burst task arrives at timepoint 5 and a heavy workload
with 5 burst tasks arrives at timepoint 20, the impact of the
PM‘s capability is shown in Fig. 15. For simplicity, all the
task sizes are fixed to 1. From the figure, it can be seen that
the last 3 PMs are chosen first on the time axis for their
smaller capacity because of a best fit strategy. Moreover, the
maximum number of VMs used in each PMs is limited by
their capacity, and finally they reached the upper bound
capacity due to a heavy load.

Secondly, the rate of execution in a PM is also an essential
factor in the utilization level of resources. Due to the use
of attributes, every PM can have a distinct execution rate,
for example, the execution rates of Hot1 , Hot2 , Hot3 are
separately 1.0, 5.0, 10. In Fig. 16, the utilization level of each
VM is given when there is a heavy workload of burst task
with fixed size 1. As expected the PMs with lower execution
rate, such as 1.0, will need more time to complete their
work. Because the rate of execution rexecute is the reciprocal
of average sojourn time λ, when rexecute decreases, the
execution time increases. Moreover, for the first two PMs,
the peaks of the utilization level also appears much lower
than the others. The reason is that when some tasks finish,
the execution results cannot be sent in time to get a new task
owing to the slower execution speed.

Lastly, we consider a more complex situation incor-

0 5 10 15 20 25 30 35 40

Time

0

2

4

6

8

10

T
h

e
 n

u
m

b
e
r

o
f

V
M

s

Hot
1

Hot
2

Hot
3

Fig. 16. The utilization of VMs while PMs have different execution rates.

porating the phenomenon of PM ageing as described in
Section 2.3. For the simplicity of this discussion, we assume
that the relationship between rexecute and the execution time
te follows a simple function rexecute = 4 ∗ exp(−0.001 ∗ te),
and assume that only the second PM is suffering ageing in a
scenario with 10 constant arrivals. The results are shown in
Fig. 17. As the rate of execution declines in the second PM,
the number of tasks handled per unit time becomes smaller
and more time is required to finish the task. Observe that
the simple exponential relation can be easily replaced by a
different function without affecting our modeling and anal-
ysis methods. This and the previous examples demonstrate
how the use of attributes allow complex behaviors of PMs
to be captured in a single parameterized submodel.

4.4 Analysis of the resource configuration scheme
In general, some extra resources will be reserved for use
when there are not enough normal PMs spare to deal with a
burst arrival or heavy loads. These are significant for an IaaS
in order to ensure the SLA with the users can be satisfied. An
optimal arrangement scheme of normal resources and slack
resources is helpful to save expenses for the same level of
availability.

First, let us consider the case that the number of each
kind of normal PMs (Hot/Warm/Cold) is equal, which we
denote as NH/W /C . Then we analyze the impact of the
resource configuration scheme while both the number of
the slack PMs Nslack and NH/W /C increase from 1 to 10.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 14

0 20 40 60 80 100

Time

0

2

4

6

8

10

12

T
h

e
n

u
m

b
er

 o
f

ex
ec

u
ti

o
n

 p
er

 2
 t

im
e

u
n

it
s

Hot
1

Hot
3

Hot
4

Hot
5

Hot
2

Fig. 17. The number of VMs used in each PM as the second hot PM
ages.

When there are 10 constant task arrivals, the results are
given in Fig. 18. The color bar is on a logarithmic scale,
and the dark blue indicates a value of 10−6. In Fig. 18
(a)∼(c), PS , PO and Rfail decrease with the growth ofNslack

and NH/W /C . Correspondingly, the ratio of unavailability
is shown in Fig. 18 (d). From this figure, we can see that to
have expected availability of 99.999%, one scheme needs 9
Hot/Warm/Cold PMs and 10 reserved PMs, and the other
scheme needs 10 Hot/Warm/Cold PMs and 9 reserved
PMs. Therefore, the former is optimal and less costly. For a
complex scenario, there may be more schemes and we need
to compare them via a utility function based on the cost of
each type of PMs.

When the task size is not fixed but normally distributed,
PO and Runavail are compared in Fig. 18 (e) and (f). To
achieve an availability of 99.999%, the number of PMsNslack

and NH/W/C are both 13. In other words, providers have to
provide more PMs to deal with super-tasks. It is easy to
find solutions that meet the given level of availability in the
picture. For instance, if we choose Runavail = 0.001, the
alternative schemes are marked by red stars in Fig. 18(f).
Then the most economical solution can be readily found at
a given availability value.

Similarly, we can also change the ratio of hot, warm and
cold PM to find an optimal arrangement scheme to gain a
higher availability with a fixed number of PMs.

5 CONCLUSION

An attribute-based availability model for large scale IaaS
has been built and described in this paper. Using attributes,
both the workload components and the PMs can be modeled
with different features such as start time, periodic cycle
length, PM capability and even PM execution mode. This
not only simplifies the process of modeling but also makes
the formal model closer to actual clouds. Furthermore, due
to the heterogeneity in the behavior of PMs, the PMs can
determine job completion times individually. Based on that,
the impact of task size was thoroughly investigated in
our model, considering sizes not only following truncated
normal distributions, uniform distributions, log-normal dis-
tributions, but also any fixed integer value. Experiments
showed that more computing resources are needed to en-
sure availability when there are super-tasks, and that the
task size following a uniform distribution is more severe

than the case of a truncated normal one. We can also arrange
PM deployment schemes to increase availability according
the results of availability analysis. Additionally, we showed
that CARMA offers an easier way to model IaaS clouds’
complex phenomena than existing approaches.

In further work, we will study the impact of different
scheduling strategies on availability when IaaS have super-
tasks and the impact of different configuration schemes of
PMs on revenue for providers.

ACKNOWLEDGMENTS

The authors thank the reviewers for their valuable com-
ments. The research of Hongwu Lv and Huiqiang Wang is
supported in part by the National Natural Science Foun-
dation of China (Nos. 61402127), the China Scholarship
Council Fund (201706685020), the National Science and
Technology Major Project of China (No. 2016ZX03001023-
005) and Tianjin Key Laboratory of Advanced Networking
(TANK), Tianjin University. The research of Paul Piho is sup-
ported by EPSRC grant EP/L01503X/1 (CDT in Pervasive
Parallelism).

REFERENCES

[1] B. Varghese and R. Buyya, “Next generation cloud computing:
New trends and research directions,” Future Generation Computer
Systems, vol. 79, pp. 849–861, 2018.

[2] R. Ghosh, F. Longo, and K. S. Trivedi, “Performance analysis of
large cloud,” in Large scale and big data: Processing and management,
S. Sakr and M. Gaber, Eds. Boca Roton: Auerbach Publications,
2014, ch. 18, pp. 557–578.

[3] B. Liu, X. Chang, Z. Han, K. Trivedi, and R. J. Rodrı́guez, “Model-
based sensitivity analysis of iaas cloud availability,” Future Gener-
ation Computer Systems, vol. 83, pp. 1–13, 2018.

[4] S. Sebastio, R. Ghosh, and T. Mukherjee, “An availability analy-
sis approach for deployment configurations of containers,” IEEE
Transactions on Services Computing, 2018.

[5] H. Khazaei, J. Mišić, and V. B. Mišić, “A fine-grained performance
model of cloud computing centers,” IEEE Transactions on parallel
and distributed systems, vol. 24, no. 11, pp. 2138–2147, 2013.

[6] H. Khazaei, J. Misic, and V. B. Misic, “Performance of an IaaS cloud
with live migration of virtual machines,” in Global Communications
Conference (GLOBECOM), 2013 IEEE. IEEE, 2013, pp. 2289–2293.

[7] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi, “Modeling and
performance analysis of large scale IaaS clouds,” Future Generation
Computer Systems, vol. 29, no. 5, pp. 1216–1234, 2013.

[8] F. Longo, R. Ghosh, V. K. Naik, A. J. Rindos, and K. S. Trivedi,
“An approach for resiliency quantification of large scale systems,”
ACM SIGMETRICS Performance Evaluation Review, vol. 44, no. 4,
pp. 37–48, 2017.

[9] X. Chang, R. Xia, J. K. Muppala, K. S. Trivedi, and J. Liu, “Effective
modeling approach for IaaS data center performance analysis
under heterogeneous workload,” IEEE Transactions on Cloud Com-
puting, vol. 6, no. 4, pp. 991–1003, 2018.

[10] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling
and analysis of a virtualized system,” in 2009 15th IEEE Pacific Rim
International Symposium on Dependable Computing. IEEE, 2009, pp.
365–371.

[11] H. Khazaei, J. Mišić, V. B. Mišić, and N. B. Mohammadi, “Availabil-
ity analysis of cloud computing centers,” in Global Communications
Conference (GLOBECOM), 2012 IEEE. IEEE, 2012, pp. 1957–1962.

[12] H. Khazaei, J. Misic, and V. B. Misic, “Performance of cloud centers
with high degree of virtualization under batch task arrivals,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 12, pp.
2429–2438, 2013.

[13] H. Khazaei, J. Mišić, V. B. Mišić, and S. Rashwand, “Analysis of
a pool management scheme for cloud computing centers,” IEEE
Transactions on parallel and distributed systems, vol. 24, no. 5, pp.
849–861, 2013.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 15

0

10

0.2

P
S

0.4

0

N
H/W/C

5

0.6

N
slack

5

0 10

-2

-1.8

-1.6

-1.4

-1.2

-1

(a)

0
010

N
slack

0.2

N
H/W/C

5

P
O

5

0.4

100
-6

-5

-4

-3

-2

-1

(b)

0
010

0.01

N
slack

N
H/W/C

R
fa

il

55

0.02

100
-6

-5

-4

-3

-2

(c)

0

N
H/W/C

50

0

N
slack

5

R
u
n
a
v
a
il

1010

0.1

-6

-5

-4

-3

-2

-1

(d)

0
015

510

N
slack

0.2

N
H/W/C

P
O

105

0.4

150
-5

-4

-3

-2

-1

(e) (f)

Fig. 18. When the task size is 1, the impact of different resource configuration schemes includes (a) the ratio of triggering slack resources, (b) the
ratio of triggering opportunistic resources, (c) the proportion of failure, (d) the probability of unavailability. When the task size follows a truncated
normal distribution TN (0,2), (e) the ratio of triggering opportunistic resources and (f) the probability of unavailability.

[14] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of
cloud centers under burst arrivals and total rejection policy,”
in Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE. IEEE, 2011, pp. 1–6.

[15] B. Wang, X. Chang, and J. Liu, “Modeling heterogeneous virtual
machines on IaaS data centers,” IEEE Communications Letters,
vol. 19, no. 4, pp. 537–540, 2015.

[16] D. Cotroneo, A. K. Iannillo, R. Natella, R. Pietrantuono, and
S. Russo, “The software aging and rejuvenation repository:
Http://openscience. us/repo/software-aging,” in 2015 IEEE In-
ternational Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2015, pp. 108–113.

[17] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi,
“Scalable analytics for IaaS cloud availability,” IEEE Transactions
on Cloud Computing, vol. 2, no. 1, pp. 57–70, 2014.

[18] F. Longo, R. Ghosh, V. K. Naik, and K. S. Trivedi, “A scalable
availability model for infrastructure as a service cloud,” in 2011
IEEE/IFIP 41st International Conference on Dependable Systems &
Networks (DSN). IEEE, 2011, pp. 335–346.

[19] E. Ataie, R. Entezari-Maleki, L. Rashidi, K. S. Trivedi, D. Ardagna,
and A. Movaghar, “Hierarchical stochastic models for perfor-
mance, availability, and power consumption analysis of iaas
clouds,” IEEE Transactions on Cloud Computing, 2017.

[20] A. Chilwan, A. Undheim, and P. E. Heegaard, “Effects of dynamic
cloud cluster load on differentiated service availability,” in 2012
21st International Conference on Computer Communications and Net-
works (ICCCN). IEEE, 2012, pp. 1–6.

[21] R. Ghosh, F. Longo, R. Xia, V. K. Naik, and K. S. Trivedi, “Stochastic
model driven capacity planning for an infrastructure as a service
cloud,” IEEE Transactions on Services Computing, vol. 7, no. 4, pp.
667–680, 2013.

[22] R. Thakkar, R. Trivedi, and M. Bhavsar, “Experimenting with
energy efficient vm migration in iaas cloud: Moving towards green
cloud,” in International Conference on Future Internet Technologies and
Trends. Springer, 2017, pp. 56–65.

[23] M. Torquato, I. Umesh, and P. Maciel, “Models for availability
and power consumption evaluation of a private cloud with vmm
rejuvenation enabled by vm live migration,” The Journal of Super-
computing, vol. 74, no. 9, pp. 4817–4841, 2018.

[24] R. Ghosh, V. K. Naik, and K. S. Trivedi, “Power-performance trade-
offs in iaas cloud: A scalable analytic approach,” in 2011 IEEE/IFIP

41st International Conference on Dependable Systems and Networks
Workshops (DSN-W). IEEE, 2011, pp. 152–157.

[25] “Docker,” https://www.docker.com/, accessed July 26, 2019.
[26] “Openvz,” https://openvz.org/, accessed July 26, 2019.
[27] H. Jin, Z. Li, D. Zou, and B. Yuan, “Dseom: A framework for

dynamic security evaluation and optimization of mtd in container-
based cloud,” IEEE Transactions on Dependable and Secure Comput-
ing, 2019.

[28] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu, “Ef-
ficiency analysis of provisioning microservices,” in 2016 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE, 2016, pp. 261–268.

[29] S. Sebastio, R. Ghosh, A. Gupta, and T. Mukherjee, “Contav: a
tool to assess availability of container-based systems,” in 2018
IEEE 11th Conference on Service-Oriented Computing and Applications
(SOCA). IEEE, 2018, pp. 25–32.

[30] A. N. Asadi, M. A. Azgomi, and R. Entezari-Maleki, “Evaluation
of the impacts of failures and resource heterogeneity on the power
consumption and performance of iaas clouds,” The Journal of
Supercomputing, vol. 75, no. 5, pp. 2837–2861, 2019.

[31] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in Proceedings of the Third ACM Symposium on Cloud
Computing. ACM, 2012, p. 7.

[32] D. Bruneo, “A stochastic model to investigate data center perfor-
mance and QoS in IaaS cloud computing systems,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, no. 3, pp. 560–569,
2014.

[33] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes, “Long-term
SLOs for reclaimed cloud computing resources,” in Proceedings of
the ACM Symposium on Cloud Computing. ACM, 2014, pp. 1–13.

[34] R. Matos, J. Dantas, J. Araujo, K. S. Trivedi, and P. Maciel,
“Redundant eucalyptus private clouds: Availability modeling and
sensitivity analysis,” Journal of Grid Computing, vol. 15, no. 1, pp.
1–22, 2017.

[35] M. Loreti and J. Hillston, “Modelling and analysis of collective
adaptive systems with CARMA and its tools,” in Formal Meth-
ods for the Quantitative Evaluation of Collective Adaptive Systems.
Springer, 2016, pp. 83–119.

[36] QUANTICOL, “Carma,” https://blog.inf.ed.ac.uk/quanticol/
carma/, accessed Jan 18, 2018.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2943339, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, JANUARY XX 16

[37] M. Carvalho, D. A. Menascé, and F. Brasileiro, “Capacity planning
for IaaS cloud providers offering multiple service classes,” Future
Generation Computer Systems, vol. 77, pp. 97–111, 2017.

[38] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis,
modeling and simulation of workload patterns in a large-scale
utility cloud,” IEEE Transactions on Cloud Computing, vol. 2, no. 2,
pp. 208–221, 2014.

[39] A. A. Eldin, A. Rezaie, A. Mehta, S. Razroev, S. S. de Luna, O. Se-
leznjev, J. Tordsson, and E. Elmroth, “How will your workload
look like in 6 years? analyzing wikimedia’s workload,” in Cloud
Engineering (IC2E), 2014 IEEE International Conference on. IEEE,
2014, pp. 349–354.

[40] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload char-
acterization and prediction in the cloud: A multiple time se-
ries approach,” in Network Operations and Management Symposium
(NOMS), 2012 IEEE. IEEE, 2012, pp. 1287–1294.

[41] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server
workload analysis for power minimization using consolidation,”
in Proceedings of the 2009 conference on USENIX Annual technical
conference. USENIX Association, 2009, pp. 28–28.

[42] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software
rejuvenation: Analysis, module and applications,” in The Twenty-
Fifth International Symposium on Fault-Tolerant Computing. Pasadena,
CA, USA. IEEE, 1995, pp. 381–390.

Hongwu Lv received the B.A. degree in Infor-
mation and Computing Science from Harbin En-
gineering University, China, in 2006, the PhD
degree in Computer Applied Technology from
Harbin Engineering University, China, in 2011.
He is currently an assistant professor at College
of Computer Science and Technology, Harbin
Engineering University. His research interests
include the study of formal modeling and perfor-
mance evaluation with particular regards to the
availability of cloud computing and to modeling

edge clouds.

Jane Hillston gained a BA in Mathematics from
the University of York, UK in 1985 and an MS
in Mathematics from Lehigh University, USA in
1987. After a short spell in industry, she studied
for a PhD in Computer Science at the University
of Edinburgh, which was awarded in 1994. She
was appointed Professor of Quantitative Mod-
elling in the School of Informatics at the Univer-
sity of Edinburgh in 2006.

Her research is concerned with formal ap-
proaches to modelling dynamic behaviour, par-

ticularly the use of stochastic process algebras for performance mod-
elling and stochastic verification. She has published over 100 journal
and conference papers and held several UK and European grants.

Paul Piho received a MMath in Mathematics
degree from the University of Durham, UK, in
2015. He is currently working towards a PhD
degree in the School of Informatics at the Univer-
sity of Edinburgh, UK. His research interests are
formal languages and scalable analysis methods
for modelling and control of stochastic collective
dynamics.

Huiqiang Wang received the BA in computer
systems and engineering from the Harbin In-
stitute of Technology, China in 1982, an MS in
in computer applications from Harbin Shipbuild-
ing Engineering Institute, China in 1985, a PhD
degree in Computer Applied Technology from
Harbin Engineering University, China, in 2005.
He is currently an professor at College of Com-
puter Science and Technology, Harbin Engineer-
ing University.

Huiqiang Wang’s research interests is the se-
curity of distributed systems, particular regards to cognitive network,
cloud computing and indoor positioning. He has published over 100
journal and conference papers.

