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Abstract—Emerging Non-Volatile Memory (NVM) technologies promise much higher memory density and energy efficiency than

DRAM, at the expense of higher read/write latency and limited write endurance. Hybrid memory systems composed of DRAM and NVM

have the potential to provide very large capacity of main memory for in-memory key-value (K-V) stores. However, there remains

challenges to directly deploy DRAM-based K-V stores in hybrid memory systems. The performance and energy efficiency of K-V stores

on hybrid memory systems have not been fully explored yet. In this paper, we propose HMCached, an in-memory K-V store built on a

hybrid DRAM/NVM system. HMCached utilizes an application-level data access counting mechanism to identify frequently-accessed

(hotspot) objects (i.e., K-V pairs) in NVM, and migrates them to fast DRAM to reduce the costly NVM accesses. We also propose an

NVM-friendly index structure to store the frequently-updated portion of object metadata in DRAM, and thus further mitigate the NVM

accesses. Moreover, we propose a benefit-aware memory reassignment policy to address the slab calcification problem in slab-based

K-V store systems, and significantly improve the benefit gain from the DRAM. We implement the proposed schemes with Memcached

and evaluate it with Zipfian-like workloads. Experiment results show that HMCached significantly reduces NVM accesses by 70 percent

compared to the vanilla Memcached running on a DRAM/NVM hybrid memory system without any optimizations, and improves

application performance by up to 50 percent. Moreover, compared to a DRAM-only system, HMCached achieves 90 percent of

performance and 46 percent reduction of energy consumption for realistic (read-intensive) workloads while significantly reducing the

DRAM usage by 75 percent.

Index Terms—In-memory key-value store, non-volatile memory, hybrid memory system
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1 INTRODUCTION

IN-MEMORY Key-Value (K-V) stores, such as Memcached
[1], [2], have became an important component of mod-

ern data center infrastructure. They can significantly
reduce response time of user requests by storing perfor-
mance-critical data in main memory, and thus have
fueled many popular data center applications such as
Web service, social networking, and e-commerce. As a
result, in-memory K-V stores are widely deployed in
today’s data centers, such as Facebook [2] and Ama-
zon [3]. Most previous studies assume in-memory K-V
stores are a volatile cache, with a back-end database to
store massive data in persistent storage (e.g., HDD). The
performance of those systems are highly dependent on
the capacity of DRAM. If objects (i.e, K-V pairs) are not
found in the K-V cache, the cost may be several orders of
magnitudes higher than directly accessing them in the
K-V cache.

With larger memory capacity, in-memory K-V stores can
offer higher performance by caching more data in main

memory. However,Dynamic Random Access Memory (DRAM)
technologies are facing scalability problems in terms of den-
sity [4], [5] and power consumption [6]. Emerging Non-
Volatile Memory (NVM) technologies, such as Phase Change
Memory (PCM) [7], Resistive-switching RAM (ReRAM) [8] and
Intel/Micron 3D XPoint [9] feature byte-addressability, persis-
tence, high density, low cost per bit, near-zero standby power
consumption [10]. They are expected to be a competitive
replacement to DRAM. However, NVM also has some draw-
backs. Both its read/write latencies and write energy con-
sumption are higher than DRAM, and its write endurance is
also limited. As a result, it is more practical to use NVM in
conjunction with DRAM in a hybrid memory system. How-
ever, the challenging problem is how to best utilize NVM and
DRAM to fully exploit their advantages and to overcome
their drawbacks in K-V stores.

There have been many studies on improving perfor-
mance and energy efficiency of DRAM/NVM hybrid mem-
ory systems. Because of the performance gap between
DRAM and NVM, these studies mainly focus on using only
a small amount of DRAM to serve a majority of memory
references. This goal is achieved typically through static data
placement [10], [11], [12], [13] and dynamic memory migra-
tion [14], [15], [16], [17]. The former approaches assume that
applications show regular or immutable memory access
patterns, and thus they can use offline profiling technolo-
gies to guide programmers or compilers for static memory
allocations. However, there still exists many applications
that shows irregular and unpredictable memory access
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patterns. Static memory allocation may be sub-optimal for
those cases. As in-memory K-V stores are a typical middle-
ware of many data center applications, the static data place-
ment approaches are not effective for serving dynamic and
bursting user requests.

Dynamic memory migration approaches usually rely on
Operating Systems (OSes) or memory controller (hardware)
to track memory access frequency (i.e., hotness) at runtime,
and migrate hot data between DRAM and NVM periodi-
cally. In practice, current computer architectures do not yet
provide hardware support for fine-grained memory access
monitoring due to the hardware complexity and scalability
issues. On the other hand, since modern OSes usually man-
age memory at the granularity of page (typically 4 KB), it is
hard to monitor data accesses at more fine-grained sizes
(e.g., objects). Moreover, memory references are not neces-
sarily perceived by OSes because the translation lookaside
buffer (TLB) handles a large portion of virtual-to-physical
address translations. A few OS-level page migration poli-
cies [15], [17] track page accesses by invalidating TLBs,
resulting in unacceptable performance overhead at the soft-
ware layer. The cost of page access counting even exceeds
the benefit of page migration in hybrid memory systems. As
most in-memory K-V stores (e.g., Memcached) use slab-
based memory allocation and requires more fine-grained
memory management for K-V objects, OS-level dynamic
page migration policies so far are not full-blown and appli-
cable for K-V store systems.

In this paper, we explore how to implement an applica-
tion-level object migration policy to best utilize DRAM and
NVM resource for in-memory K-V stores, such as Memc-
ached. Several challenging problems should be addressed in
this system. First, how tomonitor the access counts of objects
and identify the hot objects in an effective and efficient way?
Second, because the NVM write latency is several times
higher than that of DRAM, how to redesign the K-V indexes
to reduce write operations on NVM? Third, Memcached
uses the recency-based LRU algorithm for object replace-
ment in main memory. However, it is not applicable for fre-
quency-based object replacement in hybrid memory
systems. Finally, previous work uses object miss rate as an
indication to address the slab calcification problem [18], [19]
in Memcached. However, they are not efficient to utilize the
scarce DRAM resource in hybridmemory systems.

We presentHMCached, an in-memory K-V store to address
the above challenges in DRAM/NVM hybrid memory sys-
tems. HMCached organizes the DRAM and NVM horizon-
tally in a single address space while logically using the
DRAM as an exclusive cache to the NVM. It only caches all
objects’ metadata and a portion of frequently-accessed (hot)
objects in a small amount of DRAM, and thus can significantly
reduce the DRAM usage while offering comparable perfor-
mance to a DRAM-only system. We propose several novel
designs to support hotspot-aware hybrid memory manage-
ment for in-memory K-V stores, including an NVM-friendly
index structure, hotness-aware object migration, access fre-
quency aware object replacement, and benefit-aware DRAM
reassignment. The contributions of this paper are as follows:

(1) We develop an application-level object access count-
ing mechanism to identify hot objects in the NVM,

and migrate them to the DRAM. These operations
are performed by HMCached without any modifica-
tion to hardware, OSes and user applications. As the
object access counters are updated incidentally with
the object metadata, the object access counting cause
negligible runtime overhead.

(2) As each object request introduces an update of object
metadata, we decouples the frequently-accessed por-
tion of metadata from the objects and store it in the
fast DRAM. This NVM-friendly index structure can
further reduce data accesses to the NVM.

(3) We replace the LRU algorithm in the vanilla Mem-
cachd with a Multi-Queue (MQ) algorithm to adapt
to frequency-based object replacement in the DRAM.
We also develop a clock algorithm for object replace-
ment in the NVM, and thus significantly reduce the
metadata size maintained by the LRU algorithm.

(4) We propose a benefit-aware DRAM reassignment
policy to address the slab calcification problem in
hybrid memory systems, and thus improve the per-
formance gain from the scarce DRAM resource.

To the best of our knowledge, we are the first to explore
object-level hotspot management for K-V stores in hybrid
memory systems. We implement the proposed K-V store
based on Memcached, and open the source codes of
HMCached [20]. We evaluate HMCached with Zipfian-like
workloads. Experiment results show that HMCached signif-
icantly reduces NVM accesses by 70 percent compared to
the vanilla Memcached, and improves application perfor-
mance by up to 50 percent. Moreover, compared to a
DRAM-only system, HMCached approximates 90 percent
of its performance by using only 25 percent of its DRAM
capacity, and reduces energy consumption by 46 percent on
average for realistic (read-intensive) workloads.

The remainder of this paper is organized as follows. We
first describe the background and motivation in Section 2.
We describe the detailed design and implementation of
HMCached in Section 3. Section 4 provides a comprehen-
sive evaluation of HMCached. We discuss the related work
in Section 5 and conclude this paper in Section 6.

2 BACKGROUND AND MOTIVATION

2.1 Memcached

Memcached is a high-performance, multi-threaded in-mem-
ory K-V store. It provides a number of simple application
programming interfaces (APIs) for manipulating the K-V
pairs (objects), for example, SET/GET/DELETE. A K-V pair
and its metadata are stored tightly in a memory chunk and
indexed by a hash table. Memcached solves the hash colli-
sion problem by separate chaining, i.e., chaining conflicting
objects in a linked list. For each object request, Memcached
first locates the key in the hash table, and then traverses the
corresponding linked list to find the required object upon a
hash collision.

The memory management policy of Memcached is sim-
ple yet effective. It uses a slab-based memory management pol-
icy to avoid memory fragmentation, which is often a major
problem for buddy memory management systems using
malloc() and free() APIs. For the slab allocation policy, mem-
ory is partitioned into multiple slab classes, and each slab

780 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 4, APRIL 2020



class has several fix-sized memory blocks, also named
chunks. Memcached allocates available memory to each slab
class at the granularity of slab (the default size is 1 MB), and
then partition the slab into several fix-sized chunks. The
chunk size of each slab class is determined by a geometric
progression with a growth factor (e.g., 1.25 or 2). When
Memcached allocates a chunk to a new object, it chooses a
slab class whose chunk size is able to accommodate the
object with a least waste of memory space.

The slab memory allocation often causes a problem
known as slab calcification [18], [19]. Once a slab has been
allocated to a slab class, it cannot be reassigned to another
slab class. In other words, the allocated space for slabs can
not be adjusted to adapt the dynamic change of access pat-
terns. The default memory replacement policy in Memc-
ached usually cannot best utilize the scarce DRAM
resource. When a slab class needs more memory to store
new objects, a slab in another slab class should be reas-
signed to accommodate the new object. However, this mem-
ory reassignment policy needs to evict all objects in the
selected slab, and leads to non-trivial runtime overhead.

Memcached uses least recently used (LRU) algorithm to
evict objects within a slab class when there is no available
memory for assigning a new slab. For each slab class,
Memcached ranks objects in a queue based on the access
“recency” of them. When Memcached needs to allocate a
chunk for an new object, the LRU based replacement algo-
rithm places it in the head of the queue. The object at the tail
of queue is deemed as the oldest objects, and would be
evicted first. Note that, the LRU queue is implemented as a
doubly-linked list. Thus, the system should maintain two
pointers (16 bytes) for each object in the doubly-linked list.
Since Memcached is a multi-threaded program, when the
LRU chunk is evicted by a thread, the LRU queue should be
protected by an exclusive lock to block other modifications.

2.2 Workload Characteristics

Workload characteristics have a significant impact on the
performance of Memcached. There have been many analyti-
cal and experimental studies on workload characteristics of
Memcached clusters, such as Facebook’s production work-
loads [21], [22]. These studies have shown a number of
interesting findings for directing the design of in-memory
K-V stores in hybrid memory systems.

First, the request distribution of objects are highly skewed. A
majority of workloads’ requests are often distributed on a

small portion of objects. The access pattern of requests gen-
erally follow a Zipfian distribution. Fig. 1 shows the cumula-
tive distribution function curve of object requests that
follow a Zipfian distribution with a skewness of 0.99, which
is a common setting of realistic workloads in many studies
[23], [24]. We can observe that almost 90 percent of the
whole requests are distributed on 22 percent of top hot
objects. This observation indicates that we have a potential
to place the frequently-accessed (hot) objects in a small
amount of fast DRAM, and store the large portion of cold
objects in the large-size and cheap NVM. Thus, in-memory
K-V stores are particularly suitable for running on a
DRAM/NVM hybrid memory system, which can approxi-
mate the performance of DRAM-based Memcached while
significantly reducing the cost of main memory.

Second, the size of objects often vary over a wide range. The
size of an object may be as small as a few bytes, or as large
as several megabytes. Buddy memory allocation for these
objects can fragment main memory easily. Moreover, object
migration in hybrid memory systems can aggravate the
memory fragmentation problem. Thus, slab memory alloca-
tion is a better approach to memory management for in-
memory K-V stores.

Third, the access pattern of objects may vary over time. The
memory requirement of different slab classes may be
dynamically changed at runtime. This would cause a slab
calcification problem in slab-based memory management
systems. Although there are some previous studies [18],
[19] on addressing the slab calcification problem in a
DRAM-based Memcached, they are not directly applicable
in a hybrid DRAM/NVM system. There remains challenges
to address this problem if a hot object migration scheme is
applied to the vanilla Memcached.

Fourth, the GET operations account for a majority of total
object requests for most workloads. The ratio of GET to SET can
be as high as 30. Because each GET operation leads to an
additional update of the object metadata in Memcached,
this can cause significantly performance overhead if we
directly deploy Memcached in DRAM/NVM hybrid mem-
ory systems. Thus, a special optimization on the K-V index
structure is required to reduce NVM write operations par-
ticularly for the GET requests.

2.3 Motivation

The observations of workload characteristics suggest that
in-memory K-V stores can benefit significantly from hybrid
memory systems in terms of improved memory capacity
and considerable cost reduction. However, there still
remains several challenges to best utilize hybrid memories.

First, the object access counting mechanism, if not elabo-
rately designed, can cause significant performance over-
head because the access counters should be updated for
each object request. We should design a lightweight object
access counting mechanism to support object migration in
hybrid memory systems. Also the decision making of object
migration should be sophisticated to adapt to diversifying
and dynamic workloads.

Second, the hash index structure in Memcachd is not
effective for the NVM due to the following two reasons. (1)
Upon a hash collision, multiple NVM accesses are required
to retrieve an object due to traversing the linked list. Because

Fig. 1. The cumulative distribution function of object requests (In theX-axis,
objects are sorted in a descending order according to the number of object
accesses).
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the access latency of NVM is relatively higher than that of
DRAM, the costly traversal in the NVM increases the data
access delay. (2) Each object request (including GET/SET
operations) introduces an additional update to the metadata,
such as the access timestamp, etc. In both cases, accessing
objects’ metadata in NVM suffers higher latency than that of
DRAM. Thus, the index structure in Memcached should be
redesigned to adapt to hybridmemory systems.

Third, the LRU-based object replacement policy in
Memcached is not applicable for hybrid memory systems.
The LRU algorithm exploits access “recency” for object
replacement in each slab class. However, the “recency” can
not reflect the hotness of objects in a long period of time.
LRU had been superseded by adaptive replacement cache
(ARC) [25] for page cache replacement. We argue that it is
more favorable to replace objects in the DRAM ranked by
both access “frequency” and access “recency”.

Finally, previous work addresses the slab calcification
problem in Memcached based on the miss rate of each slab
class. However, the high miss rate may be attributed to a
larger number of long-tail cold objects. They are not effec-
tive for access frequency based DRAM management. We
need to design a new DRAM reassignment policy to maxi-
mize the benefit of scarce DRAM resource.

3 DESIGN AND IMPLEMENTATION

In this Section, we first present an overview of HMCached,
and then introduce the detailed design of HMCached,
including the K-V index structure, hotness-aware object
migration, object replacement policies, and benefit-aware
DRAM reassignment strategies.

3.1 Architecture Overview

Fig. 2 depicts the architecture of HMCached. The memory
space is divided into a D-zone and a N-zone, in which
HMCached stores objects in DRAM and NVM, respectively.
We adopt different index structures to record the metadata
of objects in the two memory zones (see Section 3.2).

The D-zone and the N-zone are logically organized as an
exclusive cache architecture. In our design,GET/SET requests
are first served by the D-zone. If the object is not found in the

D-zone, it will be retrieved from theN-zone. For SET requests,
if the object is not found in both the D-zone and the N-zone, it
will be loaded to the N-zone first. However, the DELETE
requests are served by both twomemory zones.

Similar to Memcached, we use slab memory allocation for
memory management. Because an object can be migrated
only within the same slab class, our design allows that each
slab class is composed of both DRAM and NVM concur-
rently. Each slab class can apply for different types of mem-
ories according to its demands till the available memory is
used up. Unlike the conventional two-level cache structure,
we do not fetch each object in the N-zone to the D-zone in a
on-demand manner. Because of the byte-addressability of
NVM, the N-zone can return required objects directly. We
cautiously perform object migrations since object migrations
do not necessarily improve the performance of K-V stores,
and the cost of object migrations may even degrade the sys-
tem performance. To make a tradeoff between the net bene-
fit of object migrations and DRAM utilization, we develop
an application-level data access counting mechanism, and
propose a threshold-based mechanism that combines
dynamic threshold adjustment and access count decaying
to identify the hot objects. The object migration decisions
are made by our hotness-aware object migration mechanism
(see Section 3.3). Note that, after object migration, there is
only one copy of data for each object that is stored in either
the D-zone or the N-zone.

When there is no available memory for the D-zone to
accommodate new objects, it needs to reclaim memory for
the new objects by evicting cold objects to the N-zone. Simi-
larly, the N-zone should reclaim memory for new objects by
evicting some objects out of main memory if there is no free
NVM resource available. We adopt multi-queue based and
clock-based object replacement policies for the D-zone and
the N-zone, respectively, according to different DRAM/
NVM features (see Section 3.4).

As described in Section 2.1, the slab memory allocation
for both DRAM and NVM can cause the slab calcification
problem. Previous studies [18], [19] have already addressed
this problem in homogeneous memory systems. In this
paper, to address this problem in hybrid memory systems,
we propose a DRAM reassignment scheme to best utilize
the DRAM resource (see Section 3.5).

3.2 NVM-Friendly Index Structure

We maintain two different hash tables for indexing objects
in the D-zone and the N-zone separately. Each object con-
sists of three segments of data: metadata, key, and value.
For the D-zone, we store the three segments of an object in a
contiguous memory space, and resolve the hash collision
problem by separate chaining, as shown in Fig. 3a. This index
structure works well for the D-zone. However, it is not
effective for the N-zone due to the much higher write
latency of NVM, as described in Section 2.3. Because a por-
tion of object metadata is frequently read and updated, stor-
ing it together with keys/values in the NVM would cause
significant performance overhead.

In order to improve the access performance of object in the
N-zone, we design aNVM-friendly index structure to reduce
read/write accesses to NVM when serving GET requests in
the N-zone.We decouple the frequently-updated fields from

Fig. 2. Architecture of HMCached.

782 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 4, APRIL 2020



the K-V objects and use a descriptor structure to store them in
DRAM separately. As shown in Fig. 3b, each descriptor con-
sumes 19 bytes DRAM, and uses a pointer (kvdata_ptr) to
point to the corresponding K-V pair and the other portion of
metadata. We also maintain a backward pointer (back-
ward_ptr) to reversely retrieve the portion of metadata in the
DRAM. To align the data of descriptor, we package three
descriptors into an array, with a 48-bit pointer pointing to
the next array. Totally, an array contains 63 bytes data and
can be aligned in 64 bytes (i.e., the cache line size). Thus,
each array can be filled into the CPU cache by one memory
access.

Each descriptor contains a very important field called
“keysign”, which is a hash-based signature of an object’s
“key”. As we should reduce NVM reads when retrieving an
object, a direct approach is to put the ”key” in the descriptor.
However, the size of keys may be different and too large.
Thus, we use a fix-sized (32 bits) signature as a replacement
for the keys. When an object is retrieved, we first calculate
the hash signature based on the required object’s “key” and
compare it with a series of hash signatures in the list of
descriptors. Once the corresponding “keysign” is found in a
descriptor, we access the NVM to furthermatch the ”key”.

The other portion of the descriptor are the frequently-
updated metadata. The selection is based on whether a field
of the metadata is updated when serving the GET requests.
As we replace the LRU-based object replacement algorithm
with a simple clock algorithm [26], [27], the memory space
used for the two pointers (16 bytes) in the LRU list for each
object have been saved. However, we also need to maintain
one bit (clock_bit) for each object in the clock algorithm. As
shown in Fig. 3, the refcount field is used to record the num-
ber of references to an object. The timestamp field is used to
record the least access time of an object. The idle_periods is
used to record the number of consecutive time periods in
which the object is not accessed. The access_counter fields
are used to record the access counts of objects.

In summary, to reduce the cost of NVM accesses, we have
made two important designs for the K-V index structure in
HMCached. First, we use the clock algorithm rather than the
LRU algorithm for object replacement in the N-zone, and
thus significantly reduce the size of metadata that should be
frequently updated by the LRU algorithm, and also reduce
the number of memory accesses due to updating the doubly-
linked list in the LRU algorithm. Second, we decouple the
frequently-updated fields of metadata from K-V objects and
store them in the fast DRAM separately. This mechanism not
only accelerate the accesses of K-Vmetadata, but also signifi-
cantly reduce the NVMwrites due to updating the metadata
on each K-V request.

3.3 Hotness-Aware Object Migration

Object Access Counting. Because the memory capacity of the
D-zone is usually limited and object migrations lead to non-
trivial performance overhead, we should cautiously decide
whether an object should be migrated to the D-zone.
Because a frequently-requested object generally leads to a
large amount of memory accesses, we estimate the hotness
of an object by counting the total number of GET/SET
requests. We record the number of access counts by using a
counter (the access_counter field as shown in Fig. 3). The
access_counter uses 4 bytes in the D-zone, while uses 21 bits
in the N-zone in consideration of data alignment.

We note that a portion of hot objects with a strong tempo-
ral locality are resided in the on-chip cache, which can filter
a larger number of data requests in main memory. How-
ever, as our object access monitoring mechanism is imple-
mented at the application level, the value of access counter
(access_counter) increases for each request to an object, no
matter in the on-chip cache or in the main memory. Thus,
for these hot objects, although they are often hit in the cache,
we still have to migrate them to the fast D-zone for better
performance. As the metadata of objects should be updated
on each request, we update the access counter incidentally.
This introduces trivial performance overhead of Memc-
ached. Although the cache filtering has a impact on the actu-
ally memory accesses, our estimation is still reasonable and
effective. Once the value of the access counter exceeds a
given threshold, migration_threshold, we treat it as a hot
object and migrate it to the D-zone immediately.

Access Counter Decaying. We hope that the access counters
can reflect the hotness of objects, so that the object migration
based on these access counts is effective. However, some
objects may have a very long lifetime, and the accumulated
object requests can finally let the counter value to be larger
than the given hotness threshold. In fact, the migration of
these objects to the D-zone is unnecessary and even
degrades the efficiency of DRAM. To address this problem,
we limit the growth of access counters by decaying their
values periodically. In this way, we actually use the number
of access counts in a given time period (i.e., access fre-
quency) to reflect the hotness of an object.

We decay the value of access counters at different speeds.
Since an object may be unlikely accessed if it has not been
accessed for a long time, we record the number of consecu-
tive periods that an object has not been accessed recently
using the idle_periods field, as shown in Fig. 3. In the end of
each time period, for each object, we update its counter

Fig. 3. Index Structures of HMCached. The red fields are newly added
compared to the vanilla MemCached.
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value by dividing it with 2ðidle periodsþ1Þ. Furthermore, if an
object has not been accessed for three consecutive periods,
we reset its counter value as zero radically. The decaying
operations are performed for all objects in the system con-
currently. We use the total requests served by HMcached as
a logical period for the decaying operations periodically
(thirty million requests in our experiments).

Dynamic Threshold Adjustment. We notice that the setting of
migration_threshold can have a significant impact on the effi-
ciency of DRAM. Moreover, the access pattern of workload
often changes over time, and thus a static threshold cannot
adapt to dynamic workloads. To address this problem, we
dynamically adjust the threshold to adapt the access pattern
of current workload periodically. At the end of each period,
we first calculate the benefit (Benefitmig) brought by migrat-
ing hot objects to the D-zone. Intuitively, if a larger propor-
tion of object requests are served by the D-zone, HMcached
can deliver higher application performance. However, fre-
quent migrating objects can also degrade the system perfor-
mance because object migrations introduce data swapping
between the D-zone and the N-zone. Thus, we count the
number of accesses to objects in the N-zone caused by object
migrations, and take the cost into account when calculating
the benefit of object migration.We use Equation 1 to calculate
Benefitmig as follows.

Benefitmig ¼ Cdreq � Cmig

Cdreq þ Cnreq
; (1)

where Cdreq denotes the access requests served by the D-zone,
Cnreq denotes the access requests served by the N-zone, Cmig

denotes the number of object accesses caused by the object
migration itself.

Algorithm 1. Dynamic Migration_threshold Adjustment

1: if CN�to�D < DRAMfree / 2 then
2: migration_threshold��
3: else
4: if Benefitmig in periodi > Benefitmig in periodi�1 then
5: if migration_threshold increased in the previous period

then
6: migration_thresholdþþ
7: else
8: migration_threshold��
9: end if
10: else
11: if migration_threshold decreased in the previous period

then
12: migration_thresholdþþ
13: else
14: migration_threshold��
15: end if
16: end if
17: end if

We use the Benefitmig in Algorithm 1 to guide the
dynamic adjustment of migration_threshold. Assume
DRAMfree denote the number of free DRAM chunks,
CN�to�D denote the number of objects migrated from the
N-zone to the D-zone in the current period. In the begin-
ning, we first check whether CN�to�D is smaller than half of

the free DRAM chunks (line 1-2). If it is true, we decrease
the threshold to migrate more objects to the D-zone, and
thus improve the utilization of DRAM resource. This pro-
cess often occurs when there is plenty of available DRAM in
HMcached. Otherwise, we use a hill climbing algorithm to
adjust the threshold (line 4-16). The hill climbing algorithm
is simple for greedy searching, and it can search local opti-
mal solution with very low computation overhead [16], [28].
As shown in the line 4 to 16, we compare the value of
Benefitmig in the current period with the value in the previ-
ous period. If the value in current period is larger, meaning
that the adjustment we did in the previous period is effec-
tive, we do the same adjustment as the previous period.
Conversely, if the value of Benefitmig in the current period
is lower than the value in the previous period, we conduct
an opposite adjustment operation. Note that we use differ-
ent thresholds for different slab classes, we use the number
of requests served by each slab class as a logical time period
for adjustment (105 requests in our experiments).

3.4 Object Replacement Policies

Multi-Queue Based Object Replacement for the D-zone. The
object replacement policy of each slab class in the D-zone
have a significant impact on system performance. Without
an effective policy, object replacement may lead to frequent
object swapping between the D-zone and the N-zone, simi-
lar to the cache thrashing problem. Because objects in the
D-zone are frequently-accessed objects, the LRU algorithm is
hard to rank them by using only the “recency” feature. We
adopt Multi-Queue algorithm [14], [29] to replace objects in
the D-zone. Our policy ranks objects by using the “recency”
and “frequency” features simultaneously. It is composed of
N queues (8 in HMcached), and each queue uses an LRU-
based replacement policy. The queues at the higher levels
handle objects with higher access frequency, and the MQ
algorithm decides which queue an object should be
prompted/demoted according to the rank of object hotness.
By using the access_counter field which we have added to the
metadata of each object, we can implement the MQ algo-
rithm for the D-zonewithout additional space overhead.

On each request to an object, we place it in the ith queue if
the access_counter is larger than 2i but lower than 2iþ1. Besides,
we place an object at a lower queuewhenwe decay its access_-
counter. Note that, HMcached is a multi-threaded program,
thus we use an exclusive lock to guarantee the exclusive
access to each queue among different threads. However, the
multiple queues can be accessed by different threads concur-
rently. Compared to the LRU algorithm, we improve the par-
allelism of replacement operations. When we need to evict an
object in the D-zone, we traverse from the queue 0 to the
queueN-1, and for each queue we traverse from the tail to the
head till we find the first object for replacement.

Clock Based Object Replacement for the N-zone. If we use a
LRU-based object replacement policy for the N-zone, the
LRU needs to maintain two pointers (16 bytes) in the K-V
index to construct the doubly-linked list. Because the objects
in the N-zone are accessed infrequently, we adopt a simple
clock algorithm [26], [27] as an alternative of the slab replace-
ment policies for the N-zone. The clock algorithm is an
approximate LRU algorithm, but needs much less memory
space to record the access status of an object. It only needs to
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maintain one bit to record the access recency for each object.
Compared to the LRU algorithm, the clock-based replace-
ment policy can also significantly reduce the number of
NVMwrites by avoiding updates of the doubly-linked list.

3.5 Benefit-Aware DRAM Reassignment

In this Section, we introduce a benefit-aware DRAM reas-
signment scheme to solve the slab calcification problem for
the D-zone. Unlike the previous memory reassignment
schemes that are based on the miss rate of different slab
classes [18], [19], [30], we estimate the optimal DRAM re-
allocation for all slab classes periodically based on the
access frequency of objects. Our target is to maximize the
benefit of storing hot objects in the DRAM.

Assume the performance gap between requesting an
object with the size S0 from the D-zone and the N-zone is
P0. It is equal to the benefit of storing this object in the
D-zone. The normalized benefit for a unit size of object
becomes P0=S0. Assume there are total N slab classes and
the number of slabs in the DRAM is M. As described in
Section 3.3, each slab class may have a small portion of
DRAM resource to store the top hot objects. Thus, the bene-
fit of allocating m (1�m�M) DRAM slabs to the nth slab
class (1�n�N) can be calculated using Equation 2.

Benefit½n�½m� ¼
Xk

i¼1

Ci � Sn � P0=S0 (2)

where k denotes the number of hot objects in which m
DRAM slabs can accommodate, and Ci (1� i�k) denote
the corresponding value of access_counter of object i, andPk

i¼1 Ci denotes the total number of requests to the k hot
objects, and Sn denotes the chunk size allocated by the nth
slab class.

In all, the value of DRAMBenefit can be calculated using
Equation (3).

DRAMBenefit ¼
XN

n¼1

Benefit½n�½Dopt½n��; (3)

whereDopt[n] (1�n�N) denotes the optimal size of DRAM
allocated to the nth slab class.

Now, the optimal DRAM allocation problem is to select a
set of optimal values of Dopt[n] (1�n�N), so that the total
DRAMBenefit can be maximized under the constraint of
Equation (4). The optimal DRAM allocation solution can be
searched by using a simple three-dimensional dynamic pro-
gramming algorithm [18].

XN

n¼1

Dopt½n� ¼ M: (4)

A key problem is how to count
Pk

i¼1 Ci (1� i�k) in an
efficient way. An intuitive approach is to traverse the hash
tables of both the D-zone and the N-zone to collect the
access counts of objects for each slab class, and then sort
them in a descending order. At last, we can select the top k
hot objects and calculate the total access counts of those
objects. However, traversing the whole hash tables is often
too slow and causes high runtime overhead if there are

millions of objects in the HMcached. To address this issue,
we use an ordered data structure, such as red black tree
(RBTree), to construct a mapping set (MS) in the form of
V ! O, where V denotes the value of access_counter, and O
denotes the number of objects. For example, a mapping
“5 !10” indicates that 10 objects have the same access
counts (5) in the current sampling period. We update the
MS upon each object request. Because the MS has much less
items than that of the whole hash tables, we can countPk

i¼1 Ci (1� i�k) more efficiently by traversing theMS.
Note that we should use an exclusive lock to guarantee

the safety of updating the MS among multiple threads.
However, this approach have a potential to degrade the
workload performance because of lock contentions. To solve
this problem, we develop a lock-free array between the ser-
vice threads and the MS. Since the size of an access counter
is only 4 bytes in our system, the new value of the access_-
counter can be appended to its old value upon each update
of the counter. Thus, the service threads can update the
lock-free array using 8-byte atomic operation. This design
allow multiple service threads can concurrently update the
same item in the MS. Finally, a background thread fetches
these updates from the lock-free array and merges them
into the MS. In this way, we reduce the time spent in updat-
ing the MS for service threads.

4 EVALUATION

In this Section, we first introduce the experiment setup, and
then evaluate the efficiency of hot object migration scheme
in terms of throughput, reduction of NVM write operations,
and energy consumption in HMcached. We also evaluate
the effectiveness of NVM-friendly index structure and bene-
fit-aware DRAM reassignment schemes.

4.1 Experimental Methodology

NVM Emulation. Since the commercial NVM device (3D
XPoint) [9] is still not available in our Lab, we use an NVM
emulator called HME [31], [32] to emulate the performance
characteristics of NVM devices. HME is based on an
NUMA architecture and emulate the DRAM on a remote
node as the NVM. It periodically counts the number of
read/write accesses to the remote DRAM, and estimates the
total software-generated delay that should be injected to the
applications to emulate the NVM accesses. The number of
memory accesses can be tracked by the Intel Performance
Monitoring Unit (PMU) tools [33]. Moreover, HME can also
estimate the total amount of data read/written from/to
memory, and then we can further estimate the energy con-
sumption of memory accesses. We deploy HME on a
NUMA-based server, which is equipped with two-socket
Intel Xeon CPU E5-2650 v3 @ 2.30 GHz processors and
128 GB DRAM. We use 64 GB DRAM on a NUMA node to
emulate the NVM. The latency of DRAM is 76 ns in our
server, and we set the NVM read/write latencies as 300 ns
and 1000 ns [34], respectively.

Alternative Systems for Comparison. We compare
HMCached with a set of representative policies as follows:
(1) HM-UNI: a vanilla Memcached running on a DRAM/
NVMhybridmemory systemwithout specificmemoryman-
agement optimizations, and objects are stored in the DRAM
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andNVMuniformly according to the ratio of the DRAM size
to the dataset size. (2) HM-TLC: it organizes the DRAM and
NVM in a two-level cache/memory hierarchy. All requests
are served by the DRAM, and objects in the NVMare fetched
into DRAM on demand. HM-TLC evicts cold objects in the
DRAM to NVM using the LRU algorithm. HM-TLC works
well for workloads with good data locality. (3) HM-HC: A
variant of HMcached in which only the DRAM cache
replacement policy is replaced by the policy of hyperbolic
caching [35]. It considers both access frequency and recency
for cache replacement. (4) DRAM-only: an vanilla Memc-
ached running on the DRAM solely. We use this system as a
reference of the performance upper bound.

Datasets and Workloads. In our experiments, we construct
five datasets with different numbers of unique objects and
distributions of object sizes. We useUni-X-Y to denote a data-
set which contains X million unique objects, and the object
sizes follow an uniform distribution from 1 byte to Y bytes. The
five datasets are represented by Uni-3-2K, Uni-3-4K, Uni-3-
8K, Uni-2-8K and Uni-1-8K. The size of keys are 10 bytes for
all datasets. In each experiment, we generate a series ofmixed
GET/SET requests with a Zipfian distribution of skewness
0.99, using the same configuration as YCSB [36]. We set the
proportion of GET requests as 95 and 50 percent in each
experiment to evaluate the system performance of read-inten-
sive workloads and write-intensive workloads, respectively.
Note that, the first three datasets show the same access inten-
sity but have different distributions of object sizes. In contrast,
the last three workloads show a reversed feature compared
with the first three datasets. For example, although the top
10 percent objects of Uni-3-8K and Uni-1-8K receive the same
number of requests, there are 0.3 and 0.1 million objects for
the top 10 percent objects of Uni-3-8K and Uni-1-8K, respec-
tively. Thus, the workload on the dataset Uni-1-8K shows
higher access intensity.

Experimental Settings. In each experiment, we first load all
objects into the K-V store system, and then use a Request
Generator to send requests to the system. We use four service
threads in each experiment. We set the chunk size of the
first slab class as 96 bytes, and increases the chunk size of
the subsequent slab classes by a factor of 1.25. If not other-
wise specified, we configure the capacity of DRAM as only
1/4 of the total dataset size, and generate 150 million
requests in each experiment.

4.2 Performance Studies

Fig. 4 shows the throughput (requests per second) of work-
loads running on different in-memory K-V stores. For the
read-intensive workloads, HMCached achieves 36, 18, and
5 percent performance improvement on average compared
to HM-UNI, HM-TLC, and HM-HC, respectively. The per-
formance gap between HMCached and the DRAM-only sys-
tem is as low as 12 percent. For the write-intensive
workloads, HMCached achieves 68, 21, and 4 percent per-
formance improvement on average compared to HM-UNI,
HM-TLC, and HM-HC, respectively. When the size of
objects become larger (Uni-3-2K versus Uni-3-8K), the
throughput of workloads also declines. Because NVM
writes are much more costly than NVM reads, and
HMCached can place more write-intensive objects in the
DRAM, HMCached can achieve higher performance

improvement for the write-intensive workloads than the
read-intensive workloads. However, the performance gap
between HMCached and the DRAM-only system becomes
larger (26 versus 12 percent) for the write-intensive work-
loads because of much higher NVM write latency and
the increased portion of NVM writes on the cold objects.
HM-HC achieves similar performance to HMCached
because the two policies all exploit both access frequency
and object residency time for DRAM cache replacement.

Fig. 5 shows the number of NVM accesses in those K-V
store systems. Note that each memory access represent a
read/write request to 64 bytes data according to ourmemory
access monitoring approach. Note that the number of NVM
accesses has included NVM accesses caused by background
threads. For the read-intensive workloads, HMCached
reduces NVM accesses by 70, 38, and 7 percent on average
compared to HM-UNI, HM-TLC, and HM-HC, respectively.
For the write-intensiveworkloads, HMCached reducesNVM
accesses by 72, 38, and 6 percent on average compared to
HM-UNI, HM-TLC, and HM-HC, respectively. We can find
that the number of memory accesses reflects a roughly expo-
nential growth when the largest size of objects increase from
2 KB to 8 KB. For HM-TLC, the reduction of NVM reads is
close to HMCached, because it caches the recently-accessed
objects in the DRAM,which can filter a large portion of mem-
ory accesses to the NVM. However, HM-TLC leads to much
more NVM writes. The reason is that HM-TLC should first
load all objects to the DRAM on-demand, and then returns
the requested data, resulting in plenty of object swapping
between the DRAM and the NVMwhen the DRAM resource
is used up. In contrast, HMCached only migrates frequently-
accessed objects to the DRAM, and thus improves the effi-
ciency of DRAM usage, mitigating the object swapping oper-
ations between theDRAMand theNVM.

4.3 Sensitivity Studies

At first, we study how the system performance is sensitive
to different DRAM/NVM configurations. As the emulated

Fig. 4. The throughput of workloads in different systems.
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NVM is always sufficient for the evaluated workloads, we
only change the size of DRAM in this experiment. Fig. 6
shows the throughput of workloads when the size of
DRAM in HMCached is configured as 1/16, 1/8, 1/4, and
1/2 of the total dataset size, respectively. We also use the
DRAM-only systems as references. For read-intensive work-
loads, when the DRAM size increases exponentially,
HMCached achieves roughly linear performance improve-
ment compared to the system using minimum DRAM. This
implies the benefit of using more DRAM resource declines.
Compared to the read-intensive workloads, HMCached can
achieve higher application performance improvement for
the write-intensive workloads because it can significantly
reduce the costly NVM writes by caching the hot data in the
DRAM. In summary, HMCached can improve the system
throughput by using only a small size of DRAM, and miti-
gates its sensitivity to the size of DRAM by caching only
very hot objects in the DRAM.

We also study the impact of different NVM read/write
latencies on the performance of HMcached. We linearly
increase the NVM read/write latencies to enlarge the per-
formance gap between DRAM and NVM. Fig. 7 shows that
the decrease of workload throughput is roughly linear to
the increase of NVM read/write latencies. For the dataset
Uni-3-2K, the workload only show slight performance slow-
down with higher NVM read/write latencies. However, the
workload throughput declines much faster when the objects
become larger. This implies the NVM access latencies have
a higher impact on the performance of HMcached when the
object size become larger.

4.4 Reduction of Memory Energy Consumption

In this Section, we evaluate energy consumption of different
K-V store systems. We use a statistical approach introduced
by [31], [32] to estimate the energy consumption of hybrid
memories. The DRAMenergy consumption can be estimated
by Ed � ðRd þWdÞ þ Ps � T , where Rd and Wd denote the
total amount of data read/written from/to the DRAM,

respectively, Ed denotes joule per byte consumed by DRAM
reads/writes, Ps denotes the static power consumption of a
unit of DRAM, and T denotes the program execution time.
The energy consumption of NVM can be estimated by
Enr �Rn þEnw �Wn, where Rn and Wn denote the total
amount of data read/written from/to the NVM,Enr andEnw

denote the NVM read and write energy consumption,
respectively.

In our servers, we measure the DRAM power consump-
tion based on Intel Processor Counter Monitor [37]. We find
that the static power consumption is about 4W for 64 GB
DRAM, and the dynamic power consumption is about 1
Joule for reading/writing 4 GB data from/to the DRAM.
We refer the work [16] to configure the NVM energy con-
sumption. The energy consumption of NVM reads is the
same as that of DRAM reads/writes (i.e., Enr ¼ Ed), while
the energy consumption of NVM writes is 10 times of the
DRAM reads/writes (i.e., Enw ¼ 10Ed).

Fig. 8 shows the energy consumption of hybrid memories
in different K-V store systems. HMCached introduces the
minimum energy consumption on average compared
to other systems. For the read-intensive workloads,

Fig. 5. The number of NVM accesses in different systems (R and W
denote NVM reads and writes, respectively). Fig. 6. The throughput of workloads in HMCached with different available

DRAM size.

Fig. 7. The throughput of workloads in HMCached with different NVM
read/write latencies.
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HMCached reduces 31, 37, 18, and 46 percent energy con-
sumption on average compared to HM-UNI, HM-TLC,
HM-HC, and DRAM-only, respectively. As the energy con-
sumption of NVM reads is set the same as that of DRAM
reads, using more DRAM resource would introduce more
static energy consumption, as reflected by the worksets of
Uni-3-2K, Uni-3-4K, and Uni-3-8K. Although the workload
requests are the same in these experiments, we find that the
portion of dynamic energy consumption for different sys-
tems are not equal. The reason is that the numbers of actual
memory read/write accesses are different for systems due
to retrieving and updating the metadata of K-V objects, and
object migrations. HMCached avoids costly NVM writes by
updating the metadata in the DRAM, and thus reduce the
total energy consumption compared to other systems. For
the write-intensive workloads, as the energy consumption
of NVM writes is much higher than that of NVM reads, the
energy consumption of NVM reads/writes account for the
majority of energy consumption for HM-UNI, HM-TLC.
However, HMCached still reduces energy consumption by
44, 29, 15, and 26 percent on average compared to HM-UNI,
HM-TLC, HM-HC, and DRAM-only, respectively. Because
HMCached can significantly reduce NVM accesses by cach-
ing the write-intensive hot data in the DRAM.

4.5 Efficiency of the NVM-Friendly Index Structure

As described in Section 3.2, the reduction of NVM accesses
is attributed to two key designs for the K-V index structure:
using the clock algorithm to reduce the size of metadata
that should be frequently updated by the LRU algorithm,
and storing the frequently-updated portion of the object
metadata in the DRAM to avoid NVM writes. In this
Section, we study how much NVM accesses can be reduced
by this NVM-friendly index structure.

We implement two variants of HMCached for comparison:
HMCached-LRU and HMCached-CLOCK. Both HMCached-
LRU andHMCached-CLOCK adopt the same index structure

with Memcached for the N-zone. HMCached-LRU and
HMCached-CLOCK use the LRU-based and clock-based
object replacement policies for the N-zone, respectively. Since
the proposed K-V index structure mainly aims to reduce
NVM reads/writes when HMCached serves GET requests in
the N-zone, we only evaluate the read-intensive workloads
(i.e., the proportion of GET requests is 95 percent).

Fig. 9 shows the number of NVM reads/writes for the
three schemes. Due to hot object migrations, we find that
only about 12 percent GET requests are served by the N-zone
totally in our experiments. Compared to HMCached-LRU
and HMCached-CLOCK, HMCached reduces the NVM
reads by 10 and 6 percent, respectively, and reduces the
NVM writes by 58 and 36 percent, respectively. Although
our index structure designs can avoid memory accesses to
the object metadata on the NVM, a majority of NVM reads
are caused by the read-intensive workloads (i.e., the read
accesses of keys and values), and thus the reduction of
NVM reads is not as high as that of NVM writes. Com-
pared to the LRU algorithm, the CLOCK algorithm can
reduce plenty of NVM writes because it significantly
reduces the size of metadata maintained by the algorithm.
The LRU algorithm needs to updates many pointers of the
doubly-linked list upon each request to an object. More-
over, because each GET request to an object also leads to
an update (write) of the object metadata, storing the fre-
quently-updated metadata in the DRAM also significantly
reduce NVM writes.

4.6 Effectiveness of DRAM Reassignment

In this Section, we study whether our DRAM reassign-
ment policy can mitigate slab calcification for dynamic
workloads.

We construct dynamic workloads for simulating the case
of slab calcification. The dynamic workloads access two
datasets (A and B) with different distributions of object
sizes. The two datasets all contain 1 million unique objects
and total 4 GB data. We only use 1 GB DRAM for

Fig. 8. The estimated energy consumption of hybrid memories in the dif-
ferent K-V store systems. For each dataset, the five bars from left to right
represent HM-UNI, HM-TLC, HM-HC, HMCached, and DRAM-only.

Fig. 9. The number of NVM reads/writes for different polices.
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HMCached in our experiments. The object sizes of dataset A
follow normal distribution with a median of 4 KB and a
standard deviation of 1 KB, and dataset B follows an uni-
form distribution from 1 byte to 8K bytes. We generate 600
million mixed GET/SET requests following a Zipfian distri-
bution with a skewness of 0.99. We divide these requests
into five phases, in which these requests access the two
datasets alternately.

We also implement two variants of HMCached for
comparison: HMCached-PSA and HMCached-Calcific.
HMCached-PSA adopts periodic slab allocation (PSA) [30] as
the DRAM reassignment policy. PSA exploits the number of
object misses of slab classes as an indication for memory
reassignment. HMCached-Calcific does not use any DRAM
reassignment policy and would suffer the slab calcification
problem. We use this system as a reference to show the
influence of slab calcification.

Fig. 10 shows the throughput (requests per second) of
different phases for the three schemes. The x-axis presents
the number of requests (�10 millions). We change the
accessed datasets in 120 million requests periodically. In the
first phase, the DRAM are allocated to dataset A, and the
three schemes achieve similar performance. When the
workloads begin to access dataset B at the beginning of
phase 2, the throughput declines sharply because the
requested objects miss in the DRAM. The slab classes also
change because the dataset is changed to B. Both
HMCached and HMCached-PSA begin to reclaim DRAM
and re-assign it to dataset B, and thus their throughputs
increase continuously. This implies that the DRAM reas-
signment policies are particularly effective when the access
pattern of dataset is changed. However, HMCached-Calcific
can not re-assign DRAM resource to the new slab classes,
and suffers significant performance degradation due to the
slab calcification problem. When the accessed dataset is
changed to A again, the performance of HMCached-Calcific
is close to HMCached and HMCached-PSA because most
hot objects in dataset A is already cached in the DRAM. For
both read-intensive and write-intensive workloads,
HMCached achieves higher throughput than HMCached-
PSA because it considers the overall benefit gained from
DRAM for DRAM reassignment, while HMCached-PSA
simply uses cache miss rates. These experimental results

demonstrates the effectiveness of our policy for solving the
slab calcification problem.

4.7 Performance and Storage Overhead

We construct a simple experiment to measure the perfor-
mance overhead caused by our strategies. We run the
vanilla Memcached and HMCached on a DRAM-only
server, and get the workload throughputs T1 and T2, respec-
tively. The performance overhead can be calculated as
ðT1 � T2Þ=T1.

Fig. 11 shows the performance overhead of hybrid mem-
ory management schemes in HMCached, all normalized to
the vanilla Memcached. For all workloads, the runtime
overheads are less than 5 percent. The overhead is attrib-
uted to object access counting, the computation of
“keysign”, hot object migration, and MQ-based object
replacement. However, the overhead is offset by the benefit
of HMCached. We note that the periodical access counter
decaying and DRAM reassignment are performed by a
background thread, and thus the CPU time is not on the crit-
ical path of K-V requests.

HMCached also introduces slight storage overhead due
to some additional data structures. The first portion of over-
head is the additional data structure in the metadata of K-V
objects, including access counters and address pointers. To
guarantee data alignment, we use 4-byte and 21-bit access
counters for objects in the D-zone and N-zone, respectively.
The second portion of overhead is caused by the mapping
set (MS) which is used to select the top k hot objects.
Because each item in the MS only requires 8 bytes, the space
overhead of MS can be estimated by counting the number
of unique objects in the HMcached. The MS only consumes
8 MB memory if there are one million unique objects in the
system. The third portion of overhead is caused by the lock-
free array. Each element of lock-free array requires 8 bytes.
In our experiments, we maintain a lock-free array for each
slab class, and each lock-free array contains about 0.1 million
elements, resulting in about 0.8 MB memory for each slab
class. Because there are total 31 slab classes in our experi-
ments, the lock-free arrays only consume total about 25 MB
memory.

5 RELATED WORK

We introduce the related work in the following categories.
Data Placement in Hybrid DRAM/NVM Systems. There are

generally two kinds of data placement polices in DRAM/
NVM hybrid memory systems. The first one can be static
memory allocation polices. Wu et al. observe that the MPI-
based programs have similar access patterns in iterative
execution phases, and thus analyze the access pattern of

Fig. 10. The throughput of workloads in different systems.

Fig. 11. Normalized performance overhead of HMCached.
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objects in the first iteration to direct the data placement
of subsequent iterations [12] in hybrid memory systems.
Wu et al. also improve the data placement of task-parallel
programs [13] by analyzing the similar programs. Static
memory allocation generally requires that programs have
regular memory access patterns. However, as in-memory
K-V store systems are usually used as middleware for many
data center applications, their memory access behaviors are
too complex to predict. Thus, the static memory allocation
polices are not effective for in-memory K-V store systems.

Dynamic memory migration polices are another approach
to data placement in hybrid memory systems. They often
rely on hardware or OSes to track page access counts and
migrate the hot page to the fast DRAM at runtime. Ramos
et al. [14] propose to monitor page accesses in the memory
controller and migrate hot pages from NVM to DRAM. A
few studies [15], [17] exploit OS-level page access counting
mechanisms for page migrations. These approaches need to
intentionally disable the hardware TLB, so that OSes can
track the TLB misses to estimate the number of page
accesses. The above dynamic memory migration polices cause
significant hardware or software overhead, and are not
applicable for hot object detection in K-V stores. HMCached
develops a lightweight application-level object access count-
ing mechanism, and design an NVM-friendly K-V index
structure to mitigate the performance overhead of object
access counting.

Memory Reassignment for In-Memory K-V Stores. There
have been some proposals to solve the slab calcification
problem in the DRAM-based Memcached. Memcached
monitors the number of object evictions for each slab class
in a interval of 10 seconds. It selects a slab class without
object evictions in the recent three intervals, and reassign
one slab to another slab class that shows the most object
evictions. However, in practise, it is hard to find a slab class
without object evictions within 30 seconds for real work-
loads. Carra et al. propose periodic slab allocation [30], which
uses cache miss rate of slab classes as an indication for
memory reassignment. Hu et al. [18] exploit cache miss ratio
curves to determine the optimal memory size required by
each slab class. Ou et al. [19] take the miss penalties of dif-
ferent slab classes into account for memory reassignment.
All those schemes all use LRU-based object replacement
algorithm for each slab class, and memory reassignment are
based on the miss rate/penalty of different slab classes. In
contrast, HMCached propose an access-frequency and ben-
efit-aware DRAM reassignment policy to best utilized the
scarce DRAM resource in hybrid memory system.

Persistent Memory Supported K-V Stores. Recently, there
have been a few studies on data persistence in NVM-based
K-V stores. HiKV [38] is a hybrid K-V index structure for
hybrid memory systems. The hybrid indexes includes a
hash index in the NVM to guarantee persistence of SET/
GET/DELETE operations, and a Bþ-Tree index in the
DRAM to support fast range scan operations. Bullet [39] is
an in-memory K-V store that leverages cross-referencing
logs to mitigate the cost of persistent memory updates.
NVMcached [40] provides consistency-friendly data struc-
tures for persistent memory supported K-V stores.
NVHT [41] is a persistent memory enabled K-V store pro-
gramming library with a log-based consistency mechanism

supported. These studies are orthogonal and complemen-
tary to our work. HMCached focuses on application-level
K-V object migration and NVM-friendly index designs to
effectively exploit the different characteristics of NVM and
DRAM, and leaves databases to handle data persistence
problems.

6 CONCLUSIONS

In this paper, we present HMCached, an in-memory K-V
store built on a hybrid DRAM/NVM system. HMCached
utilizes an application-level data access counting mecha-
nism to identify frequently-accessed objects in NVM, and
migrates them to fast DRAM to reduce the costly NVM
accesses. We propose an NVM-friendly index structure to
store the frequently-updated portion of object metadata in
the DRAM, and thus further mitigate the NVM accesses. In
addition, we propose a benefit-aware memory reassignment
policy to address the slab calcification problem for in-mem-
ory K-V stores, and significantly improve the benefit gain
from the DRAM. We implement HMCached based on
Memcached and evaluate it with Zipfian-like workloads.
Experiment results show that HMCached significantly
reduces NVM accesses by 70 percent and improves applica-
tion performance by up to 50 percent compared to the
vanilla Memcached. Furthermore, compared to a DRAM-
only system, HMCached significantly reduces the DRAM
usage by 75 percent, while approximating 90 percent of its
performance and 54 percent of energy consumption for real-
istic workloads.
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