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Abstract

As a Distributed Hash Table (DHT), Skip Graph routing overlays
are exploited in several peer-to-peer (P2P) services, including P2P cloud
storage. The fully decentralized replication algorithms that are applicable
to the Skip Graph-based P2P cloud storage fail on improving the perfor-
mance of the system with respect to both the availability of replicas as well
as their response time. Additionally, they presume the system as homoge-
neous with respect to the nodes’ latency distribution, availability behavior,
bandwidth, or storage. In this paper, we propose Pyramid, which is the
first fully decentralized utility- and locality-aware replication approach
for Skip Graph-based P2P cloud storage systems. Pyramid considers the
nodes as heterogeneous with respect to their latency distribution, avail-
ability behavior, bandwidth, and storage. Pyramid is utility-aware as it
maximizes the average available bandwidth of replicas per time slot (e.g.,
per hour). Additionally, Pyramid is locality-aware as it minimizes the
average latency between nodes and their closest replica. Our simulation
results show that compared to the state-of-the-art solutions that either
perform good in utility-awareness, or in locality-awareness, our proposed
Pyramid improves both the utility- and locality-awareness of replicas with
a gain of about 1.2 and 1.1 times at the same time, respectively.

1 Introduction

A peer-to-peer (P2P) cloud storage system consists of a set of peers, i.e., com-
puting nodes that are interconnected over the Internet (e.g., computers, mobile
devices, resource-constrained devices). There exist two roles in such cloud stor-
age systems; data owner and data requester. A data owner holds a set of data
objects and aims to share them with a group of authorized peers that are named
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data requesters. A data owner may also be a data requester for the other data
owners.

Distributed Hash Table (DHT)-based P2P cloud storage [IH3] is a type of
P2P cloud storage systems that operates over a structured overlay, where each
peer is represented by a node in the overlay. Each node knows a logarith-
mic number of other nodes (i.e., neighbors) in the system, and keeps them as
(ID,address) pairs in its lookup table. Using its lookup table, each node is able
to efficiently search and find other nodes in a fully decentralized manner. Skip
Graph [4] is a DHT routing overlay that supports scalability, fast searching, and
load balancing regarding message routing. Such features enable Skip Graph as
a suitably structured overlay for DHT-based P2P cloud storage applications
[EHT4]. Furthermore, Skip Graph can be considered as an alternative to other
DHT overlays (e.g., Chord [15]) in their DHT-based P2P services ranging from
distributed storage systems [16] to online social networks [I7] and search engines
[1§].

Nodes in P2P cloud storage systems are prone to churn, which is known
as the dynamic arrival and departure behavior of the nodes [I9]. Once a node
arrives at the system, it is considered as available (online) until it departs the
system (i.e., goes offline) or fails. A departed or failed node may join the system
at a later time or may leave the system forever. Churn in the system results in
data unavailability in P2P cloud storage [20], as upon departure or failure of a
data owner, its data objects would no longer be available to the data requesters.
In order to reduce the query load over the data owner, avoid the single point of
failure, provide fault tolerance, and improve the data availability under churn,
the data owner makes copies of its data objects on some other nodes of the
system, which are called the data owner’s replicas. The process of determining
and managing the replicas is known as replication [21I]. Adapting a replication
policy on the P2P cloud storage systems defines a collaborative environment
where nodes participate with their idle storage spaces, and are in charge of
storing each others’ data objects in exchange of having their data objects stored
on some other nodes of the system.

The performance of P2P cloud storage is evaluated with respect to the acces-
sibility of replicas [22] and their availability under churn [23]. The accessibility
of replicas is correlated with their latency distribution in the underlying net-
work, and is evaluated by the average access delay, which corresponds to the
average latency between each data requester and its closest replica. The closest
replica of each data requester is the one with the minimum Round-Trip-Time
(RTT), and is called the corresponding replica of that data requester. The repli-
cation approaches that aim at minimizing the average access delay of replicas
are known as locality-aware [12]. The availability of replicas is correlated with
their churn behavior, and is evaluated as their average availability per time slot,
e.g., the average number of available replicas at each hour. The replication ap-
proaches that aim at maximizing the average availability of replicas are known
as availability-aware [10]. Following these performance-oriented goals, the best
P2P cloud storage is the one that provides both the locality- and availability-
awareness of replicas at the same time.



The locality- and availability-awareness of replicas have not been addressed
together in a fully decentralized manner for DHT-based P2P cloud storage sys-
tems [20124]. By the full decentralization, we mean a strategy where the data
owner is able to place its replicas without the need of any special node (e.g., su-
pernodes) to handle the computation, storage, or communication that is needed
for the replica placement. Our definition of full decentralization, hence, stands
against the solutions such as [25H28], where a centralized entity is in charge of
collecting the state of all nodes, executing the replication algorithm on behalf
of the data owner, and deciding on the replica placement.

Considering the locality-awareness for Skip Graph-based P2P cloud storage
systems, GLARAS [13] is the best fully decentralized one. However, it does not
support availability-awareness of replicas. Likewise, the traditional fully decen-
tralized availability-aware replications that are applicable to Skip Graphs do
not consider the average access delay of replicas. Such availability-aware repli-
cations are classified into reactive and proactive ones. The reactive replications
improve the data availability by reactively resolving the departure or failure
of replicas [22,[29H34]. While the proactive ones aim at providing an average
number of available replicas for a long period of time, e.g., providing three avail-
able replicas on average for one month [23}85H45]. It is worth mentioning that
some of the existing availability-aware replications aim at minimizing the aver-
age number of intermediate nodes between replicas and data requesters [22,[44].
However, as we experimentally demonstrated in [I1], queries of the same path
length show drastically different response time depending on the overlay con-
nectivity. Hence, the number of intermediate nodes between the data requesters
and replicas does not necessarily reflect the locality-awareness of replicas.

Evaluating the data availability of a P2P storage system by the availability-
awareness of its replicas is only applicable to the homogeneous systems [231[35]
46H48)], where nodes participate with similar bandwidths. In such systems, a
larger number of online replicas reflects a higher available bandwidth, and hence
a better level of data availability for the data requesters. In the real world P2P
systems, where nodes participate with heterogeneous bandwidths, a larger num-
ber of online replicas does not necessarily imply a better level of data availability.
For example, two nodes with the available bandwidth of 100K bps are not good
replication candidates for serving 100 data requesters simultaneously. As each
data requester only benefits from an average concurrent bandwidth of 2Kbps.
In the same example, a single node with an available bandwidth of 1M bps pro-
vides an average bandwidth of 10K bps for each data requester, which results
in a better level of data availability. We conclude that addressing the data
availability in the systems with heterogeneous bandwidth requires a stronger
performance metric, which should consider both the availability of replicas as
well as their bandwidth heterogeneity. To address this issue, we introduce the
utility-awareness of replicas as a stronger performance metric (than their
availability-awareness) for the bandwidth heterogeneous P2P cloud storage sys-
tems under churn. To define utility-awareness, we consider dividing a fixed-size
periodic time interval (FPTI) into a set of identical time slots (ts), e.g., FPTI
as a day and t¢s as an hour. We then evaluate the utility-awareness of replicas as



the average available bandwidth of replicas during each ts where the average is
taken over the corresponding data requesters of each online replica during each
ts. Accordingly, we consider a replication mechanism as utility-aware if it
aims at maximizing the utility-awareness of replicas. Similar to the availability-
awareness, the utility-awareness is also correlated with the individual features
of the nodes, i.e., availability behavior and bandwidth.

In this paper, to improve the data availability and data accessibility of the
heterogeneous DHT-based P2P cloud storage systems, we propose Pyramaid,
which is the first fully decentralized utility- and locality-aware replica-
tion algorithm for Skip Graph-based P2P cloud storage systems. Pyra-
mid considers the nodes as heterogeneous with respect to their latency distri-
bution in the underlying network, availability behavior, bandwidth, and storage
capacity. By employing Pyramid, a data owner can replicate its data objects in
a fully decentralized manner with the maximized utility- and locality-awareness
of its replicas is achieved. Since Skip Graphs can be used as alternatives to
other DHTSs in their P2P services, by employing Pyramid, any DHT-based ap-
plication can benefit from a utility- and locality-aware replication service, e.g.,
DHT-based cloud storage systems [TH3}[I5,[16], search engines [I8], and social
networks [I7].

The original contributions of this paper are as follows:

e We propose Pymmi: the first fully decentralized, proactive, utility-,
and locality-aware replication algorithm for heterogeneous Skip Graph-
based P2P cloud storage systems.  Pyramid provides an optimization
model that aims on maximizing both the utility- and locality-awareness
of replicas.

e We extended the Skip Graph simulator, SkipSim [49], for simulating and
evaluating the utility- and locality-awareness of replication algorithms. We
implemented the best existing fully decentralized availability- and locality-
aware replication algorithms on SkipSim, adapted them to our system
model, and compared their performance against our proposed Pyramid.

e Based on our simulation results and compared to the best existing decen-
tralized replications that either perform good in utility-awareness, or in
locality-awareness, Pyramid improves the utility- and locality-awareness
of the replicas with a gain of about 1.2 and 1.1 at the same time, respec-
tively.

2 Preliminaries

Skip Graph: Skip Graph [4] is a DHT overlay where each node has two
identifiers: a numerical ID and a name ID. Numerical IDs are non-negative

L Pyramid is the extension of  our earlier work, Awake (DOI:
hitps://doi.org/10.1109/SmartCloud.2016.45), which solely supports the availability
awareness of replicas.



integers, and name IDs are binary strings. The basic operations in a Skip Graph
overlay are the search for numerical ID [4] and search for name ID [12], which
enable a (search initiator) node to look for the owner of a specific numerical ID
or name ID, respectively. Having n nodes in a Skip Graph, a search initiator
is able to perform both searches in a fully decentralized manner, and with the
communication complexity of O(logn). As the result of a search for a numerical
ID, (IP) address of the node with the largest numerical ID that is less than or
equal to the search target is returned to the search initiator. As the result of
a search for name ID, (IP) address(es) of the node(s) with the longest common
prefix with the search target are returned to the search initiator. We elaborate
more on the search for name ID in Section[d In this paper, we define the system
capacity as the maximum number of the registered nodes to the Skip Graph,
denoted by n.

Locality-Aware Skip Graph: In a landmark-based Skip Graph [I1] the
overlay is virtually divided into a number of regions. Each region is recognized
by a single landmark. Landmarks are not Skip Graph nodes, rather they are
external components (e.g., servers) that are solely employed as reference points.
Nodes use landmarks as some external reference points to ping, measure their
RTT with respect to them, and share it with other nodes. Hence, using a
landmark-based Skip Graph does not imply any sort of centralization at all,
and the system is still administrated by the fully decentralized Skip Graph
overlay of nodes. Studies like [50] also propose decentralized approaches to use
the nodes themselves as the landmarks instead of relying on external ones. Each
node of the Skip Graph belongs to the region of its closest landmark, which is
the one with the minimum associated RTT. We denote the set of landmarks by
L and assume that |L| = O(logn). We also assume that the set L is constant
over time, and is known by every node of the system. In a landmark-based
locality-aware Skip Graph overlay [13], the name IDs of the nodes are assigned
in a way that the length of the common prefix in the name IDs of nodes is
an inverse function of their RTT, i.e., a longer common prefix in name IDs of
two nodes reflects their lower RTT in the underlying network. For example,
in a locality-aware Skip Graph, a node with name ID of 0011 is expected to
experience a lower latency to the node with name ID of 0001 than the node
with name ID of 0111. Since the name ID of 0011 has a 2-bit common prefix
length of 00 with 0001, while it has only a 1-bit common prefix length of 0 with
0111.

System-Wide Distribution of replicas (SWD): SWD is an indepen-
dent module of the GLARAS replication algorithm [I3], which approximates the
optimal distribution of the replication degree among the regions of the system
considering the locality-awareness of the replication. The replication degree de-
notes the number of replicas a data owner aims to place. A data owner executes
SWD in a fully decentralized manner. Given the replication degree and the set
of landmarks, SWD distributes the replication degree among the regions of the
system based on some approximation on the data requesters’ distribution in the
Skip Graph overlay. As a result of SWD, each region of the system receives a
sub-replication degree denoting the number of replicas should be placed in that



region of the system.

Churn Models: In P2P systems nodes are transient between online and
offline states. The online and offline dynamics of the nodes is described by a
churn model [T95TH53]. A churn model is specified by two distributions; session
length, and inter-arrival time. The session length distribution characterizes
the duration of the nodes’ online states in the system. The inter-arrival time
distribution characterizes the time interval between two consecutive arrivals of
nodes to the system. Availability of a node is correlated with its session length,
i.e., a longer average session length for a node corresponds its higher availability
in the system. The availability of the system itself is correlated with the inter-
arrival time distribution, i.e., a shorter average inter-arrival time corresponds
a larger number of arrivals in the unit of time, which makes the system more
available in the terms of the number of online nodes in the system.

3 System Model and Overview

System Model: Upon arrival to the system, a peer represents itself as a Skip
Graph node by assigning its numerical ID as the hash value of its (IP) address,
and its name ID by invoking a locality-aware name ID assignment scheme (e.g.,
LANS [13]), and joins the Skip Graph overlay using the join protocol in a fully
decentralized manner [4]. Nodes use the Skip Graph overlay to discover each
others’ (IP) addresses by performing searches for each others’ name IDs [12] or
numerical IDs [4]. We assume that the nodes are heterogeneous with respect
to their storage capacity, bandwidth, availability behavior, and latency distri-
bution in the underlying network. Each online node frequently computes its
utility state, which is a function of its available storage capacity, bandwidth,
and availability behavior, and shares it with the other nodes using an aggrega-
tion mechanism. The aggregation scheme acts as a shared fully decentralized
bulletin board, which keeps the aggregated utility state of the system.

In our system model, we assume that nodes depart the system arbitrarily
by invoking the departure protocol of the Skip Graph in a fully decentralized
manner [4]. The departure protocol keeps the connectivity of the overlay un-
der churn. However, unnoticed departures can be handled via a decentralized
churn stabilization algorithm (e.g., Interlaced [54]). Also, we assume the stor-
age capacity of nodes is discrete in the unit of storage, and a data owner aims
at utilization of one storage unit of a node for replication of its data object.
Following this assumption, for example, if a node owns a free storage capacity
of 3 units, it can be the replica of at most 3 data owners. Besides, we assume
that all nodes are the data requesters of every data owner. Note that managing
the access control of replicas is an orthogonal issue that, for example, can be
handled by the data owner encrypting the data objects and sharing the key with
the (authorized) data requesters.

Utility Vector: We model the utility state of a node at each time slot as
a function of its available storage, bandwidth, and availability probability. We
represent the utility state of the node ¢ by the vector UV}, named its utility



vector. Size of the utility vector corresponds to the number of time slots of
length t¢s during one cycle of FPTI i.e., |UV;| = 1 I;TI . For example, considering
FPTI as a day and ts as an hour, utility vector of a node is of size 24. UV,
represents the utility of the node i during the #** time slot of the FPTI (e.g., t'"
hour of the day), and is computed as shown by Equation Il In this equation,
pi¢ is the availability probability of node i during the #** time slot of FPTI,

bw; is its normalized bandwidth, and rpLoad; is its replication load.

rpzt Xall»)wZ (1)
pLoad; + 1

Node i computes p;; by dividing the overall time it has been online during
the t*" time slot over the number of times that FPTI has cycled up to the
computation time. For example, considering F'PTI as a day and ts as an hour
where 7 days have elapsed (i.e., FPTThas cycled 7 times), p; ; denotes the overall
fraction of time that node i was online at the ¢ hour of the day, over the past
7 days. If the node i was online for 3 hours during the ¢ hour in the past 7
days, pi,s = % = 0.42.

We define the replication load of node i (i.e., rpLoad;) as the number of
data owners that it has already been designated as their replica. The purpose
of defining the replication load is two-fold. First, the replication load determines
the amount of storage that a node devotes to serve as the replica. Second, one
can compare the strength of the bandwidth that two replicas provide per data
requester on the average by comparing their corresponding replication loads. For
example, for two replica nodes with an identical bandwidth, a data requester is
likely to get a better bandwidth from the one with lower replication load, as the
loosely loaded replica likely has to respond to less number of data requesters’
queries compared to the heavily loaded one.

By the normalized bandwidth, we mean the bandwidth of a node is mapped
to a value in [0, 1] by dividing that over the maximum bandwidth in the system.
The maximum bandwidth is considered as a system-wide constant parameter of
the protocol. The +1 in the denominator of Equation [Ilis to prevent division
by zero when node i has not been selected as a replica yet (i.e., rpLoad; = 0).
UV, ., hence, is taking a value in [0,1]. The higher the UV, is, the higher is
the utility node ¢ provides in the replication process.

Replication with Pyramid: Having the aggregated utility state of the
system, each data owner is able to invoke the Pyramid algorithm when it needs
replication for its data. As the result, Pyramid determines the (IP) address
of replicas in a fully decentralized manner considering the utility- and locality-
awareness of the replication. The data owner then shares its list of replicas on
the decentralized aggregation scheme, which makes them publicly available for
its data requesters. Inputs to Pyramid are the utility states of the nodes in the
system, the replication degree of the data owner, and the information about the
landmarks. Pyramid first distributes the replication degree among the regions
of the system, where each region receives a sub-replication degree. For each
region, Pyramid then models the utility- and locality-awareness of replication
with Integer Linear Programming (ILP), solves it and finds the placement of

UVig =



replicas, accordingly. The challenge in designing Pyramid is that obtaining,
storing, and operating on the utility vectors of all the nodes result in an asymp-
totic linear dependency of the communication, storage, and time complexities
on the system capacity. Considering the data owner that executes Pyramid as
a resource-constrained peer, these linear dependencies would cause performance
degradation.

To improve the communication complexity, Pyramid is built upon the ex-
istence of an aggregation mechanism with O(logn) communication complexity.
The aggregation scheme acts as a decentralized bulletin board, and enables each
node to write its utility vector on it as well as to retrieve all the utility vectors of
other nodes from it with O(logn) communication complexity. In this paper, we
employ LightChain [55], as the underlying aggregation scheme. LightChain is a
churn resilient DHT-based blockchain with O(logn) communication complexi-
ties on storing and retrieving the latest state a data object. Besides, LightChain
distributes the storage of the utility vectors uniformly among the nodes, so no
node is required to keep the entire blockchain database.

To improve the time and storage complexities, Pyramid squeezes the original
system of size n nodes to a significantly smaller size system of size logn nodes
that is called the virtual system. Pyramid provides an efficient many-to-one
mapping functionality for each original node to find its corresponding virtual
node. The utility vector of a virtual node represents the average of the utility
vectors of all its corresponding original nodes. The set of utility vectors of all the
virtual nodes is stored on the aggregation scheme and gets updated frequently
by the original nodes. We call this set the aggregated utility state of the system.
Each original node is able to read the latest aggregated utility state of the
system as well as to update it, i.e., by integrating its own latest utility vector
to the utility vector of its corresponding virtual node. Instead of operating
on the individual utility vectors of the original nodes, which requires linear
storage and time complexity in the system size, Pyramid receives the aggregated
utility state of the system and operates solely on it. As we discuss in Section
[[l mapping to the virtual system and operating on it results in the storage and
time complexities of O(logn) and O(log® n) for Pyramid, respectively.

4 Details of Pyramaid

4.1 Virtual System

As explained in Section [3] to perform the computation efficiently, Pyramid does
not directly operate on the original system. Rather, it operates on the virtual
system, which is the squeezed model of the original system. The virtual system
has the same set of landmarks and regions as the original system. Except,
multiple original nodes (i.e., nodes in the original system) are mapped into a
single node of the virtual system. The size of the virtual system is denoted
by vssize and is assumed as a protocol parameter known by all the nodes. As
we discuss later, we consider vsg,e = logn. The virtual nodes (i.e., nodes



in the virtual system) have an identifier length of [logwvss;..] bits. All the
original nodes that have [logvss;..| bits common prefix in their name IDs are
represented by a virtual node. For example, assuming that vsg;,. = 16, virtual
nodes have 4-bits identifiers, and all the original nodes with a name ID prefix
of 0001 are mapped to the virtual node 0001. So, each original node is able to
identify its corresponding virtual node by only taking the first [logvsg;..]| bits
of its own name ID. We denote the associated virtual node of the original node
J by virtual(j ).

4.2 Mapping to the virtual system

Mapping from the original system to the virtual system is done by the original
nodes computing a utility vector for their corresponding virtual nodes in a fully
decentralized manner by means of the underlying aggregation scheme of the
system. The set of the utility vectors of the virtual nodes corresponds to the
aggregated utility state of the system and is denoted by the table UT, which
is named the wtility table of the system. UT is a 3-dimensional table of size
|L| X vSgize X |[UV|. UTy ;¢ represents the utility vector of the virtual node 4 in
the region [ of the virtual system within the ¥ time slot of FPTI. The utility
vector of the virtual node i corresponds to the average of the utility vectors
of all the original nodes that are mapped to it. UT keeps the utility vector of
virtual node ¢ as the number of its corresponding original nodes as well as the
summation of their utility vectors. In this way, while the average utility vector
corresponding to each virtual node is efficiently computable, the number of
corresponding original nodes to each virtual node is also known. As we explain
later, Pyramid employs such information on replica placement. UT is shared
among the original nodes and maintained in a fully decentralized manner using
the underlying aggregation scheme (i.e., LightChain blockchain [55]). UT is
reset to zero at the beginning of each cycle of FPTI. Each online original node
j that belongs to the region [ of the original system and has free storage space,
updates UT once during each cycle of FPTI. The update is done by including
the updated utility vector of the original node j in the average utility vector of
its corresponding virtual node, i.e., UT} yirtuai(j)- The underlying aggregation
scheme also enables each node to efficiently retrieve the latest state of UT on
demand.

4.3 Pyramid Algorithm

Inputs and outputs: Pyramid is represented by Algorithm 1] and is exe-
cuted by a data owner to determine its replicas. The inputs to Pyramid are
the set of landmarks’ features (i.e., L), the replication degree (i.e., r), and the
utility table of the system (i.e., UT). By the landmarks’ features, we mean
their (IP) addresses and pairwise latencies, which are assumed as public static
information of the system. As the output, Pyramid returns oRepSet, which is
the set of identifiers of replicas in the original system.



Algorithm 4.1: Pyramid

Input: Set of landmarks L, replication degree r, utility table of system
ur
Output: Set of replicas in orginal system oRepSet

// System-wide distribution of replicas

R = SWD(L, r);

2 for each region Il € L do

// Computing the time slot coverage weights

3 W, = TCWD(UT;);

// Replicas placement in region [ of virtual system
4 vRepSet = vRepSet U RWD(UT;, R, ,W));

5 for each virtual replica vRep € vRepSet do

// Finding best original node for virtual replica vRep
oRep = searchForUtility(vRep);

add oRep to oRepSet;

publish oRepSet on the aggregation scheme;

=
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System-Wide Distribution of replicas (SWD) (Algorithm (4.1}, Line
[d): On receiving the inputs, Pyramid distributes the replication degree among
the regions of the system using SWD [I3]. Given the set of landmarks and the
replication degree, SWD returns the set of sub-replication degrees, denoted by
R where R; denotes the number of replicas that should be placed in the region
[ of the system considering only the locality-awareness of replicas. We skip the
details of SWD for sake of space, as the details of SWD are not required for
understanding our proposed Pyramid. The interested readers are referred to
[13] for details about SWD.

Time slots Coverage Weight Distribution (TCWD) (Algorithm [4.7],
Line [B)): The utility of the virtual nodes may not be distributed uniformly
among all the time slots. Some time slots may be covered with the majority
of high-utility virtual nodes, while the rest may be covered by only a few high-
utility ones, or even left uncovered. We call such time-slots that are covered
with only a few nodes or even no node as poorly covered time slots. To maximize
the utility of replicas during the poorly covered time slots, Pyramid identifies
the poorly covered time slots of each region by assigning a weight to each of
its time slots. The weight assignment is done by invoking the TCWD function
of Pyramid. Invoking TCWD on the utility table of region [ (i.e., UT}) results
in obtaining the vector W; of the utility coverage weights for that region. W,
is a number in [0, 1] and represents the utility coverage weight of the ¢** time
slot in region [ of the system, and is computed by Equation[2l In this equation,
count; + is the number of virtual nodes of region [ that their utility value at the
t*" time slot is less than or equal to the average utility value. The average is
taken over the entire utility table of region [. A larger W;; denotes a lower
utility coverage of the ' time slot of region .
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Region-Wide Distribution of replicas (RWD) (Algorithm [4.7], Line
M): Once the time slot utility coverage weights for the region [ of the virtual
system are determined, Pyramid invokes the RWD function. RWD determines
the placement of replicas in region [ of the virtual system considering the utility-
and locality-awareness of replicas. To place the replicas, RWD constructs an
ILP model that is represented by Equations [BIRl The presented ILP model is
for region [ of the virtual system, and hence [ is constant. The only decision
variables in this ILP are X and Y, and the rest are constant scalars. The decision
variable X is a three-dimensional binary table of size vSgjze X VSgize X |[UV].
X ;¢ = 1if the ILP assigns the virtual node ¢ as the corresponding replica for
the virtual node j during the ¢" time slot of FPTI, otherwise, X; ;, = 0. Y is
a one-dimensional decision variable of size vSg... Y; = 1 if the ILP decides to
place a replica on the virtual node i, otherwise Y; = 0. C' is a three-dimensional
table of the same size as X that is constructed by the RWD function. C; ;
represents the common prefix length between the name IDs of the virtual nodes
¢ and j. Name ID of the virtual node i corresponds to the binary representation
of i in [logvsgi.e| bits. Since Pyramid operates on a locality-aware overlay,
C; ; conveys an approximated inverse quantification of the latency between the
nodes ¢ and j in the virtual system, i.e., a higher C;; value implies a lower
latency.

(2)

[UV|vsgize vSsize

max » Y Y X Coy UT Wiy sit. (3)

t=1 i=1 j=1

vt € [17 |UV|]7 27.7 € [17 Ussize] sz > Xi,j,t (4)
lUV]vssize
Yt e [LIUV]i€ [Lvssize] Y. Y. Xiju2Yi (5)
t=1 j=1
Vi € [L |UV|]a.] € [Lvssize] Z Xije=1 (6)
=1
Y Yi=R (7)
i=1
V€ [L|UV]],irj € [1vssine] Yi € {0,1}, X0 € {0,1} (8)

Equation [B] shows the objective function of the Pyramid’s ILP that aims at
maximizing both the utility- and locality-awareness of replicas. By maximiz-
ing the locality-awareness, we mean maximizing the summation of the name
IDs’ common prefix length between the data requesters and their corresponding
replicas, which corresponds to minimizing the overall access delay of replicas. In
Equation3] when X ;, = 1, virtual node j experiences an access delay inversely
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proportional to C; ;, while benefits from the (maximum) utilization proportional
to UT} ;.. We consider the contribution of this replica assignment (i.e., virtual
node i as the corresponding replica of the virtual node j) to both utility- and
locality-awareness of the replication proportional to C; ; x UTy;; at every time
slot ¢. To lead the ILP on maximizing the utility of the selected replicas at each
time slot ¢, in the objective function, we project the utility of each virtual node
with the associated utility coverage weight in that time slot, i.e., W; ;. In this
way, the ILP prioritizes to select the high-utility virtual nodes that also cover
the poorly covered time slots, and improves the utility-awareness of replicas per
time slot.

Equations [ and [Bl represent the replica assignment constraints of the Pyra-
mid’s ILP. Equation M implies that a virtual node 7 should be assigned to
the virtual node i as its corresponding replica during the t** time slot (i.e.,
X, ;+ = 1) only if node ¢ itself is selected as a replica (i.e., ¥; = 1). Equation
says that if virtual node i is selected as a replica (i.e., Y; = 1), then it should
be the corresponding replica of at least one other virtual node during at least
one time slot.

Equation [ represents the data requester constraint of the Pyramid’s ILP.
It implies that at each time slot ¢, each node should be assigned to exactly
one replica. This is done to lead the ILP towards finding the best replica that
maximizes the objective function for the node. At each time slot ¢ and for each
virtual node j the summation of X ;: values over all ¢ values determines the
number replicas that node j is benefiting from during that time slot, which
should be exactly one replica considering this constraint.

Equation [ shows the constraint on the sub-replication degree of region I.
The summation in this equation corresponds to the overall number of permissible
replicas that the data owner grants Pyramid to place in the region [ of the
system, which should be exactly equal to the sub-replication degree of the region,
i.e., Rl.

Equation [ shows the constraint on the legitimate values of the decision
variables. That is, the only values that elements of X and Y decision variables
can take are either 0 or 1.

RWD solves the described ILP model and determines the placement of repli-
cas in each region [ of the virtual system. The identifiers of selected virtual nodes
by RWD as replicas are collected into the vRepSet, which contains the union
of the identifiers of replicas in all regions of the virtual system.

Virtual to original system mapping of replicas (Algorithm [4.7],
Lines [6H8]): Each virtual replica identifier in vRepSet corresponds to the name
ID prefix of several nodes in the original system. Although replicating on any
of these nodes satisfies the locality-awareness goal of Pyramid, not all of them
may be suitable considering the utility-awareness goal. This follows the fact
that the name IDs are assigned based on the locality information of the nodes,
and do not reflect any utility attribute of them. Additionally, contacting all the
original nodes with a name ID corresponding to a prefix and picking the one
with the best utility requires linear time and communication complexities, and
is not a scalable solution. To efficiently map a virtual replica to an original node
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Strategy Availability-Awareness | Locality-Awareness | Utility-Awareness
Replication on path [22,B1H33] Reactive X v
Virtual nodes [34] Reactive X v
Replication on neighbors [29,48] Reactive X v
Randomized [35-42] Proactive X X
Power-of-choice [56,57] Proactive X v
Cluster-based [43,44] Proactive X 4
Correlation-based [23,45] Proactive X v
GLARAS [13] - v X
Pyramid Proactive v v

Table 1: Comparison of various decentralized replication algorithms

with desirable utility, we develop a modified version of the search for name ID
protocol [12], which we call the search for utility. Given a virtual replica identi-
fier vRep € vRepSet, our search for utility protocol traverses at most « original
nodes with the name ID prefix of vRep, and returns the one with the maximum
utility score as the corresponding original node to vRep. The utility score of
each original node ¢ corresponds to the second norm of its utility vector (i.e.,
IUV;||). We assume « is a system-wide constant parameter of the search for
utility protocol. We denote the output of search for utility by oRep, which is
the corresponding original node of the virtual replica vRep. On receiving oRep
from search for utility, Pyramid adds it to the set of replicas in the original
system, i.e., oRepSet.

Once the mapping to the original system is done for all the virtual replicas,
Pyramid publishes the oRepSet on the underlying aggregation scheme. This
enables the data requesters to query the aggregation scheme with the identifier
of the data owner and retrieve its set of replicas.

5 Related Works

5.1 Decentralized Availability-Aware Replication

Reactive replication first performs an initial placement of replicas, and then
the replicas are frequently probed to detect the failure events. A replica that is
not answering the probe message in a certain while is presumed as failed, and is
substituted by a newly placed one [37]. Replication on path, virtual nodes, and
replication on neighbors are the well-known reactive replication mechanisms. In
replication on path [22L[3TH33], nodes piggyback their query load on the search
messages they route or initiate. The replication on search path then reacts to
the failure of replicas by creating a new replica and relocates the existing replicas
upon detection of a new query traffic hub. In the virtual nodes approach [34],
several peers are mapped to a single virtual node on the DHT overlay. The
corresponding peers of the same virtual node all keep the same set of data
objects. Virtual nodes approach reacts to the replication load of the peers by
frequently monitoring their loads, splitting the heavily loaded groups into two,
and re-distributing the data objects among them. In replication on neighbors
[29,48], each node frequently checks its neighbors to find better ones in terms of
replication load and availability, and relocates its replicas to its more available
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and loosely loaded neighbors. Relocating replicas upon failure is the common
drawback of the reactive replication [20]. Each reactive relocation applies a
communication overhead to the system that is linear in the size of the replicated
files.

Proactive replication aims at providing an average availability of replicas
for a long period of time, for example, a few months. At the end of the sched-
uled period, a proactive mechanism should re-evaluate the placement of replicas
based on the new state of the system and relocate the replicas if needed. Hence,
proactive replication also does replica relocation but at a drastically slower pace.
Power-of-choice is an enhanced version of randomized replication where the data
owner randomly selects two replica candidates and replicates on the least loaded
one [5657]. Cluster-based replication [43/44] groups the nodes based on features
like availability pattern, replication load, and bandwidth, and distributes the
replication degree among the clusters. In correlation-based replication [23]45],
the replication is done on the pairs of anti-correlated nodes, i.e., pairs of nodes
where the unavailability of one implies the availability of the other one with a
high probability.

5.2 Decentralized Locality-Aware Replication

In [13] GLARAS is proposed and experimentally shown that it is the best in
locality-awareness compared with the existing decentralized locality-aware repli-
cation algorithms that are applicable on Skip Graphs. Although GLARAS is
scalable with the ILP size of O(logn), it does not consider the availability and
utility of the nodes in replication. We skip surveying the other existing locality-
aware replication algorithms for the sake of space and refer the interested readers
to [I2L[I3] for a detailed discussion of locality-aware replication schemes.

Table [Tl summarizes a comparison between the existing decentralized repli-
cation algorithms and our proposed Pyramid. In this table, we mark an al-
gorithm as utility-aware if it considers the bandwidth of the nodes in replica
placement decision making. Compared to the existing solutions, Pyramid is
the only proactive and fully decentralized replication algorithm for Skip Graph
DHTs that provides utility- and locality-awareness of replicas simultaneously.

6 Simulation Setup

We extended the Skip Graph simulator, SkipSim [49] by adding the aggregation
functionality. We also enabled SkipSim to consider both the utility and locality
of the nodes in scenarios with heterogeneous bandwidth and storage capacity of
the nodes.

Churn model: Among the existing churn models, the Bittorrent-based
models in [19] are well-studied and parametrically clearer than the rest, e.g.,
[30,58,59]. We hence implemented their churn model in SkipSim with Weibull
distributions [60] for the session length and the inter-arrival time. In our imple-
mentation, all nodes follow the same Weibull-based session length distribution.
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However, to simulate different cliques of nodes with respect to the availability
behavior, nodes of different regions follow distinct Weibull-based inter-arrival
time distributions. Following our definition of regions in Section 2] this implies
that nodes that are in the proximity of each other in the underlying network
show a similar churn behavior. In our implemented churn model, considering
the entire system, on average each node has a 2.7 hours of session length followed
by an offline period of 2.8 hours.

Bandwidth and Storage Capacity: In our implementation, the band-
width of the nodes follows an exponential distribution with an average of 2Mbps.
We extracted the shape of distribution from [61], and adapted its scale with the
typical average bandwidth provided by the service providers for the household
customers [62]. The storage capacity of the nodes is drawn from a uniform
distribution in the range of [1,3]. We found this range as the one that quickly
makes nodes out-of-storage by being selected as replicas of multiple data owners
under randomized replication of 10 data owners with replication degree of 14.
Hence, we establish our simulation setups on this range as a challenging range
to decide on the replica placement for all the algorithms of interest. In our sim-
ulation, the storage capacity of a node denotes the maximum number of replicas
that it can take from different data owners, e.g., a storage capacity of 2 means
that the node can be the replica of two data owners simultaneously. Once a
node reaches its storage capacity, it simply stops sharing its utility vector as
well as taking any further replication duty.

Topologies: We generated 5 random topologies where each topology corre-
sponds to a distinct distribution of the nodes in the Skip Graph overlay as well
as their overlay connectivity. Each topology consists of 4096 nodes, and 10 ran-
domly chosen data owners. In SkipSim, one simulation step corresponds to an
hour. FPTI and ts were set to a day and an hour, respectively. Each topology
was simulated for a lifetime of 3 months. We spot a one-week learning phase
for the data owners to learn the underlying utility behavior of the nodes. As we
discuss in the followings the learning is done via aggregation and piggybacking.
The data owners replicate at the end of this one-week learning period.

Replication algorithms: We implemented our proposed Pyramid in Skip-
Sim. Additionally, for the sake of comparison, we also implemented GLARAS,
randomized replication, power-of-choice, cluster-based replication, and correlation-
based replication with the implementation details provided in Section[Bl For our
proposed Pyramid, SkipSim performs the aggregation of utility vectors every 24
time slots (i.e., hours). For the other algorithms, SkipSim provides O(n2) ran-
dom searches per time slot, where n, corresponds to the number of online nodes
during that time slot. These random searches enable data owners to benefit
from the piggybacked utility information of the nodes. By random searches, we
mean the search initiator and the search target are chosen randomly among the
set of online nodes. Each node on a search path piggybacks its utility vector to
the search message, while it receives the updated piggybacked utility vectors of
the previous nodes on the same path.

Virtual System Size: Based on our simulations for different values of the
virtual system size in different system capacities, we found vsg;.e = 1.33logn
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as a proper trade-off between the running time efficiency and performance of
Pyramid in providing utility- and locality-awareness of replicas, which is consis-
tent with our previous work [13]. Hence, during the simulations for the system
capacity of 4096 nodes, we set vSg.e = 16. Also, we simulated for different
values of «a in the search for utility procedure and found o« = 3 as a proper
trade-off between the communication overhead of Pyramid and its performance
in providing utility- and locality-awareness of replicas in system capacity of 4096
nodes. We skip the details for the sake of the page limit.

6.1 Algorithms used for comparison

For the sake of comparison with Pyramid, we choose the existing decentralized
and proactive replications that are applicable to our system model, i.e., they do
not change the operational complexity of the Skip Graph as well as its topology,
do not require a centralized party, and are computationally efficient for a data
owner peer to execute independently. For these algorithms, we implement pig-
gybacking to enable each node disseminating its utility vector across the system
efficiently. Also, as detailed in the followings, for all these algorithms except the
randomized replication, we use the same utility scoring as our proposed Pyra-
mid. Each node in the system piggybacks its utility vector and (IP) address
on the search messages it routes or initiates so that the receivers of the search
messages can benefit from its utility vector. It is worth to mention that Pyra-
mid does not require the piggybacking and solely operates on the aggregated
utility table of the nodes that is provided by the underlying aggregation scheme
(i.e., LightChain blockchain [55]). We discuss the asymptotic complexity of in-
teracting with LightChain later in this paper. We also choose GLARAS as the
best existing fully decentralized locality-aware replication for Skip Graph, and
implement it exactly as specified in [I3]. Followings are the implementation
details of the proactive replication algorithms.

Randomized Replication [35]: The data owner chooses its replicas uni-
formly from the set of obtained addresses, pings each, and replicates on the
online one that has free storage capacity. The data owner does this procedure
repeatedly until it satisfies the replication degree.

Power-of-choice [56//57]: Our implementation of power-of-choice is similar
to that of the randomized replication, except that to place a replica, the data
owner chooses two nodes randomly, and replicates on the one that has the higher
second norm of the utility vector.

Cluster-Based Replication [43l/44]: In our implementation of the cluster-
based replication, the data owner performs an r-mean clustering [63] of the nodes
based on their piggybacked utility vectors, where r is the replication degree of
the data owner. The data owner then replicates on the nodes with the highest
second norm of the utility vector from each cluster.

Correlation-Based Replication [23,/45]: In our implementation of the
correlation-based replication, the data owner aims to find 3 pairs of nodes with
the minimum correlation. To do this, the data owner first finds 5 nodes with
the maximum value of the second norm of the utility vector from its set of
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Figure 1: The performance of the replication algorithms with respect to the utility-awareness of
replicas. The X-axis corresponds to the replication degree. The Y-axis represents the average
available bandwidth of replicas per data requester at each time slot.

piggybacked utility vectors of nodes. For each of those nodes and in the same
set of piggybacked utility vectors, the data owner finds the node with the highest
fraction of the second norm of the utility vector over the correlation value, and
replicates on both nodes. We measure the correlation between two nodes as the
dot product of their utility vectors. The higher the dot product is, the higher
the two nodes are correlated with each other.

7 Performance Results

7.1 Utility-Awareness

As the utility-awareness metric, we measure the average available bandwidth per
data requester, where the average is taken over replicas of all the data owners,
during all the simulation time slots, and over the topologies under simulation.
For a single data requester, the corresponding replica with respect to a data
owner is the one with the minimum RTT to it among the replicas of the data
owner. We compute the average available bandwidth for each data requester
node by dividing its closest replica’s bandwidth by the number of correspond-
ing data requesters of that replica. Figure [I] represents the utility-awareness
performance of the replication algorithms. For a specific replication algorithm,
a point (x,y) in Figure [ is interpreted as "placing x replicas for a single data
owner using this algorithm results on the average available bandwidth of y Kbps
per data requester node”. As shown in the figure, by enforcing the replicas to be
placed solely with respect to the latency distribution of the nodes in the under-
lying network, GLARAS performs even worse than the randomized distribution
of the replicas in providing utility-awareness. Comparing the bandwidth of the
two randomly chosen replication candidates, and replicating on the better one
results in the power-of-choice strategy to outperform the randomized replication
especially in the larger replication degrees. The performance gap among Pyra-
mid, cluster-based and correlation-based, and the rest stems from the fact that
these three replication algorithms have utility-based scoring. As the replication
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Figure 2: The performance of the replication algorithms with respect to the locality-awareness of
replicas. The X-axis corresponds to the replication degree. The Y-axis shows the average latency
between each data requester and its closest online replica at each time slot.

degree of the data owner increases, and the cluster-based replication divides the
nodes into a larger number of cliques, the number of cliques with low availability
also increases increases. This justifies the poor performance of the cluster-based
replication compared to the correlation-based and Pyramid especially in higher
replication degrees. Nodes in our simulations have the average online and offline
duration of 2.7 and 2.8 hours, respectively. Mapping this to the uniform failure
model results in the uniform failure probability of about 0.5 for each node at
each time slot. This results in the appearance of many anti-correlated pairs of
nodes in the system, which are exploited by the correlation-based replication
algorithm, and makes it as the best among the existing applicable decentralized
solutions on the Skip Graph. Compared to the best existing solutions,
our proposed Pyramid improves the utility of replicas with a gain of
about 1.2 times on average.

7.2 Locality-Awareness

Figure [2] shows the performance of replication algorithms with respect to the
locality-awareness. At each time slot, we measure the locality-awareness as the
average access latency between each data requester node and its closest online
replica, which is performed for the replicas of every data owner at each time slot.
We report the average access delay of replication per data owner at each time
slot and over all the topologies under simulation. By purely considering the util-
ity of the nodes, correlation-based replication that performs the second best in
the utility-awareness, is the weakest one in the locality-awareness. As explained
in Section [6 in our simulation setups, nodes with similar locality features show
a similar availability behavior. Hence, by clustering the nodes into cliques based
on their utility vectors -that also contains their availability behavior- and plac-
ing a replica in each clique, the cluster-based replication performs better than
the correlation-based in locality-awareness. Cluster-based replication, however,
is outperformed by the randomized and power-of-choice replications in locality-
awareness. Since once the replica of a clique (temporarily) departs the system,
the data requesters of that replica should benefit from the available replicas in
the nearby cliques, which increases their average access delay. On the contrary,
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since randomized and power-of-choice replications choose the replicas uniformly
with respect to their latency distribution, any subset of their available replicas
follows a uniform distribution with respect to the locality. Among the existing
solutions, by purely considering the locality-awareness of the replicas, GLARAS
provides the minimum average access delay. GLARAS, however, distributes the
replicas totally regardless of the utility behavior of the nodes. This results in
time slots where crowded regions of the system remain without an available
replica and are imposed to use other regions’ replicas, which results in an in-
crease on the average access delay of the replication. In contrast to GLARAS,
Pyramid aims at minimizing the locality-awareness per time slot while consid-
ering the utility of replicas. Compared to GLARAS that acts as the best
existing locality-aware replication, our proposed Pyramid reduces the
average access delay of replicas under churn with a gain of about 1.1
times on average. Concerning the scalability, we also simulated Pyramid in
system sizes of 1024 and 2048 nodes and observed consistent performance re-
sults with the 4096 nodes setup in both the utility- and locality-awareness of
replicas. We exclude the details of scalability results for the sake of space.

7.3 Asymptotic Complexity of Pyram:id

Memory Complexity: Having the system capacity of n nodes, the data owner
that executes an instance of Pyramid only needs to maintain the the set of
landmarks’ features with the memory complexity of O(logn), the replication
degree with the memory complexity of O(1), and the utility table of the system
with memory complexity of O(|L| X v8gze X [UV]). Considering vsg;.. = logn
and |UV] as a constant parameter of the protocol, the memory complexity of
Pyramid is O(log®n).

Time Complexity: The asymptotic running time complexity of SWD is
O(log®n) [13]. TCWD function of Pyramid iterates twice over a table of size
V8size X |[UV], which causes a time complexity of O(logn). The ILP part of
Pyramid that is represented by Equations has both an objective function
size and the number of constraints of O(|[UV| x vs?,,,). Considering that |UV|
is a constant parameter, the ILP size of Pyramid is O(log® n) in terms of the
size of the objective function and the number of constraints. Running on Intel
i5 2.60 GHz CPU and 8 GB of RAM and using Ipsolve [64] to solve the ILP
model of Pyramid, a single execution of Pyramid in a 4096 nodes system takes
the average computation time of about 3 minutes to determine the placement
of 14 replicas for a single data owner.

Communication Complexity: By the communication complexity, we
mean the round complexity (i.e., the number of rounds of the protocol), the
message complexity (i.e., the total number of the transmitted messages), and
the bit complexity (i.e., the total number of transmitted bits), altogheter. In our
system model, a single node updates the utility table of the system by reporting
its utility vector on the underlying aggregation scheme (i.e., LightChain) once
during every cycle of FPTI (i.e., once every 24 hours based on our simulation
setup), which causes the communication complexity of O(logn) [55]. As an in-
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put to Pyramid, a data owner requires retrieving the latest state of the utility
table of the system, which causes a communication complexity of O(logn) [55].
Having the replication degree of r, Pyramid performs r searches for utility to
map the replicas from the virtual system to the original system. Each search
causes a communication complexity of O(logn) [12]. Hence, placing r replicas
for a single data owner using Pyramid costs an O(r x logn) communication
complexity.

8 Conclusion

To improve the response time of Skip Graph-based P2P cloud storage systems
under churn, we proposed Pyramid, which is the first fully decentralized utility-
and locality-aware replication algorithm for Skip Graph overlays. In replica
placement, Pyramid considers the heterogeneity of the nodes with respect to
their latency distribution in the underlying network, availability behavior, stor-
age capacity, and bandwidth. Pyramid enables a data owner to place its replicas
in a fully decentralized manner, and in a way that the utility- and locality-
awareness of replicas are achieved under churn. Pyramid is utility-aware as
it maximizes the average available bandwidth of replicas per time slot. Addi-
tionally, Pyramid is locality-aware as it minimizes the average response time
of replicas. Our simulation results show that compared to the best existing
replication algorithms that are applicable on a Skip Graph-based P2P overlay,
Pyramid improves the utility- and locality-awareness of replicas with a gain of
about 1.2 and 1.1 times, respectively.
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