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Abstract—In this article, we present techniques used to implement our portable vectorized library of C standard mathematical

functions written entirely in C language. In order to make the library portable while maintaining good performance, intrinsic functions of

vector extensions are abstracted by inline functions or preprocessor macros. We implemented the functions so that they can use

sub-features of vector extensions such as fused multiply-add, mask registers, and extraction of mantissa. In order to make computation

with SIMD instructions efficient, the library only uses a small number of conditional branches, and all the computation paths are

vectorized. We devised a variation of the Payne-Hanek argument reduction for trigonometric functions and a floating point remainder,

both of which are suitable for vector computation. We compare the performance with our library to Intel SVML.

Index Terms—Parallel and vector implementations, SIMD processors, elementary functions, floating-point arithmetic

Ç

1 INTRODUCTION

THE instruction set architecture of most modern process-
ors provides Single Instruction Multiple Data (SIMD)

instructions that process multiple instances of data concur-
rently [1]. The programming model that utilizes these
instructions is a key technique for many computing systems
to reach their peak performance. Most software SIMD
optimizations are introduced manually by programmers.
However, this approach introduces a portability problem
because the code needs to be re-written when targeting a
new vector extension. In order to improve portability of
codes with SIMD optimizations, recent compilers have
introduced auto-vectorizing capability [2]. To fully exploit
the SIMD capabilities of a system, the transformation for
auto-vectorization of a compiler must be able to invoke a
version of functions that operates on concurrent iterations,
or on a vector function. This applies particularly to C mathe-
matical functions defined in math.h that are frequently
called in hot-loops.

In this paper, we describe our implementation of a
vectorized library of C standard math functions, called
SLEEF library. SLEEF stands for SIMD Library for Evaluat-
ing Elementary Functions, and implements a vectorized ver-
sion of all C99 real floating-point math functions. Our
library provides 1-ULP accuracy version and 3.5-ULP accu-
racy version for most of the functions. We confirmed that
our library satisfies such accuracy requirements on an empir-
ical basis. Our library achieves both good performance and

portability by abstracting intrinsic functions. This abstrac-
tion enables sub-features of vector extensions such as
mask registers to be utilized while the source code of
our library is shared among different vector extensions.
We also implemented a version of functions that returns
bit-wise consistent results across all platforms. Our library
is designed to be used in conjunction with vectorizing
compilers. In order to help development of vectorizing
compilers, we collaborated with compiler developers in
designing a Vector Function Application Binary Interface
(ABI). The main difficulty in vectorizing math functions is
that conditional branches are expensive. We implemented
many of the functions in our library without conditional
branches. We devised reduction methods and adjusted
domains of polynomials so that a single polynomial covers
the entire input domain. For an increased vector size, a
value requiring a slow path is more likely to be contained
in a vector. Therefore, we vectorized all the code paths in
order to speed up the computation in such cases. We
devised a variation of the Payne-Hanek range reduction
and a remainder calculation method that are both suitable
for vectorized implementation.

We compare the implementation of several selected func-
tions in our library to those in other open-source libraries.
We also compare the reciprocal throughput of functions in
our library, Intel SVML [3], FDLIBM [4], and Vector-
libm [5]. We show that the performance of our library is
comparable to that of Intel SVML.

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 discusses how portability
is improved by abstracting vector extensions. Section 4
explains the development of a Vector ABI and a vectorized
mathematical library. Section 5 shows an overview of the
implementation of SLEEF, while comparing our library
with FDLIBM and Vector-libm. Section 6 explains how our
library is tested. Section 7 compares our work with prior
art. In Section 8, the conclusions are presented.
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2 RELATED WORK

2.1 C Standard Math Library

The C standard library (libc) includes the standard mathe-
matical library (libm) [6]. There have been many implemen-
tations of libm. Among them, FDLIBM [4] and the libm
included in the GNU C Library [7] are the most widely used
libraries. FDLIBM is a freely distributable libm developed
by Sun Microsystems, Inc., and there are many derivations
of this library. Gal et al. described the algorithms used in the
elementary mathematical library of the IBM Israel Scientific
Center [8]. Their algorithms are based on the accurate tables
method developed by Gal. It achieves high performance
and produces very accurate results. Crlibm is a project to
build a correctly rounded mathematical library [9].

There are several existing vectorized implementations of
libm. Intel Short Vector Math Library (SVML) is a highly
regarded commercial library [3]. This library provides
highly optimized subroutines for evaluating elementary
functions which can use several kinds of vector extensions
available in Intel’s processors. However, this library is pro-
prietary and only optimized for Intel’s processors. There are
also a few commercial and open-source implementations of
vectorized libm. AMD is providing a vectorized libm called
AMD Core Math Library (ACML) [10].

Some of the code from SVML is published under a free
software license, and it is now published as Libmvec [11],
which is a part of Glibc. This library provides functions with
4-ULP error bound. It is coded in assembly language, and
therefore it does not have good portability. C. K. Anand et al.
reported their C implementation of 32 single precision libm
functions tuned for the Cell BE SPU compute engine [12].
They used an environment called Coconut that enables rapid
prototyping of patterns, rapid unit testing of assembly
language fragments and patterns to develop their library.
M. Dukhan published an open-source and portable SIMD
vector libm library named Yeppp! [13], [14]. Most of vector-
ized implementations of libm utilizes assembly coding or
intrinsic functions to specify which vector instruction is used
for each operator. On the other hand, there are also other
implementations of vector versions of libmwhich arewritten
in a scalar fashion but rely on a vectorizing compiler to gen-
erate vector instructions and generate a vectorized binary
code. Christoph Lauter published an open-source Vector-
libm library implemented with plain C [5]. VDT Mathemati-
cal Library [15], is a math library written for the compiler’s
auto-vectorization feature.

2.2 Translation of SIMD Instructions

Manilov et al. propose a C source code translator for substitut-
ing calls to platform-specific intrinsic functions in a source
code with those available on the target machine [16]. This
technique utilizes graph-based pattern matching to substitute
intrinsics. It can translate SIMD intrinsics between extensions
with different vector lengths. This rewriting is carried out
through loop-unrolling.

N. Gross proposes specialized C++ templates for making
the source code easily portable among different vector
extensions without sacrificing performance [17]. With these
templates, some part of the source code can be written in a
way that resembles scalar code. In order to vectorize

algorithms that have a lot of control flow, this scheme
requires the bucketing technique is applied, to compute all
the paths and choose the relevant results at the end.

Clark et al. proposes a method for combining static
analysis at compile time and binary translation with a JIT
compiler in order to translate SIMD instructions into those
that are available on the target machine [18]. In this method,
SIMD instructions in the code are first converted into an
equivalent scalar representation. Then, a dynamic translation
phase turns the scalar representation back into architecture-
specific SIMD equivalents.

Leißa et al. propose a C-like language for portable and
efficient SIMD programming [19]. With their extension,
writing vectorized code is almost as easy as writing tradi-
tional scalar code. There is no strict separation in host code
and kernels, and scalar and vector programming can be
mixed. Switching between them is triggered by the type sys-
tem. The authors present a formal semantics of their exten-
sion and prove the soundness of the type system.

Most of the existing methods are aiming at translating
SIMD intrinsics or instructions to those providedby a different
vector extension in order to port a code. Intrinsics that are
unique in a specific extension are not easy to handle, and trans-
lation works only if the source and the target architectures
have equivalent SIMD instructions. Automatic vectorizers in
compilers have a similar weakness. Whenever possible, we
have specialized the implementation of the math functions to
exploit the SIMD instructions that are specific to a target vector
extension. We also want to make special handling of FMA,
rounding and a few other kinds of instructions, because these
are critical for both execution speed and accuracy. We want to
implement a library that is statically optimized and usable
with Link Time Optimization (LTO). The users of our library
do not appreciate usage of a JIT compiler. In order tominimize
dependency on external libraries, we want to write our library
in C. In order to fulfill these requirements, we take a cross-
layer approach. We have been developing our abstraction
layer of intrinsics, the library implementation, and the algo-
rithms in order to make our library run fast with any vector
extensions.

3 ABSTRACTION OF VECTOR EXTENSIONS

Modern processors supporting SIMD instructions have
SIMD registers that can contain multiple data [1]. For exam-
ple, a 128-bit wide SIMD register may contain four 32-bit
single-precision FP numbers. A SIMD add instruction might
take two of these registers as operands, add the four pairs of
numbers, and overwrite one of these registers with the
resulting four numbers. We call an array of FP numbers
contained in a SIMD register a vector.

SIMD registers and instruction can be exposed in a C pro-
gramwith intrinsic functions and types [20]. An intrinsic func-
tion is a kind of inline function that exposes the architectural
features of an instruction set at C level. By calling an intrinsic
function, a programmer can make a compiler generate a spe-
cific instruction without hand-coded assembly. Nevertheless,
the compiler can reorder instructions and allocate registers,
and therefore optimize the code. When intrinsic functions cor-
responding to SIMD instructions are defined inside a compiler,
C data types for representing vectors are also defined.
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In SLEEF, we use intrinsic functions to specify which
assembly instruction to use for each operator. We abstract
intrinsic functions for each vector extension by a set of inline
functions or preprocessor macros. We implement the func-
tions exported from the library to call abstract intrinsic func-
tions instead of directly calling intrinsic functions. In this
way, it is easy to swap the vector extension to use. We call
our set of inline functions for abstracting architecture-specific
intrinsicsVector Extension Abstraction Layer (VEAL).

In some of the existing vector math libraries, functions
are implemented with hand-coded assembly [11]. This
approach improves the absolute performance because it is
possible to provide the optimal implementation for each
microarchitecture. However, processors with a new micro-
architecture are released every few years, and the library
needs revision accordingly in order to maintain the optimal
performance.

In other vectormath libraries, the source code is written in
a scalar fashion that is easy for compilers to auto-vectorize
[5], [15]. Although such libraries have good portability, it is
not easy for compilers to generate a well-optimized code. In
order for each transformation rule in an optimizer to kick in,
the source code must satisfy many conditions to guarantee
that the optimized code runs correctly and faster. In order to
control the level of optimization, a programmermust specify
special attributes and compiler options.

3.1 Using Sub-Features of the Vector Extensions

There are differences in the features provided by different
vector extensions, and we must change the function imple-
mentation according to the available features. Thanks to the
level of abstraction provided by the VEALs,we implemented
the functions so that all the different versions of functions
can be built from the same source files with different macros
enabled. For example, the availability of FMA instructions is
important when implementing double-double (DD) opera-
tors [21].We implementedDD operators bothwith andwith-
out FMA by manually specifying if the compiler can convert
each combination of multiplication and addition instructions
to an FMA instruction, utilizing VEALs.

Generally, bit masks are used in a vectorized code in
order to conditionally choose elements from two vectors.
In some vector extensions, a vector register with a width
that matches a vector register for storing FP values, is used
to store a bit mask. Some vector extensions provide nar-
rower vector registers that are dedicated to this purpose,

which is SLEEF makes use of these opmask registers by
providing a dedicated data type in VEALs. If a vector
extension does not support an opmask, the usual bit mask
is used instead of an opmask. It is also better to have an
opmask as an argument of a whole math function and
make that function only compute the elements specified by
the opmask. By utilizing a VEAL, it is also easy to imple-
ment such a functionality.

3.2 Details of VEALs

Fig. 1 shows some definitions in the VEAL for SVE [22]. We
abstract vector data types and intrinsic functions with type-
def statements and inline functions, respectively.

The vdouble data type is for storing vectors of double
precision FP numbers. vopmask is the data type for the
opmask described in Section 3.1.

The function vcast_vd_d is a function that returns a
vector in which the given scalar value is copied to all ele-
ments in the vector. vsub_vd_vd_vd is a function for vec-
tor subtraction between two vdouble data. veq_vo_vd_vd
compares elements of two vectors of vdouble type. The
results of the comparison can be used, for example, by
vsel_vd_vo_vd_vd to choose a value for each element
between two vector registers. Fig. 2 shows an implementa-
tion of a vectorized positive difference function using a
VEAL. This function is a vectorized implementation of the
fdim function in the C standard math library.

3.3 Making Results Bit-Wise Consistent Across
All Platforms

The method of implementing math functions described so
far, can deliver computation results that slightly differ
depending on architectures and other conditions, although
they all satisfy the accuracy requirements, and other specifi-
cations. However, in some applications, bit-wise consistent
results are required.

To this extent, the SLEEF project has been working
closely with Unity Technologies,1 which specializes in
developing frameworks for video gaming, and we discov-
ered that they have unique requirements for the functionali-
ties of math libraries. Networked video games run on many
gaming consoles with different architectures and they share
the same virtual environment. Consistent results of simula-
tion at each terminal and server are required to ensure fair-
ness among all players. For this purpose, fast computation
is more important than accurate computation, while the
results of computation have to perfectly agree between
many computing nodes, which are not guaranteed to rely
on the same architecture. Usually, fixed-point arithmetic is

Fig. 1. A part of definitions in VEAL for SVE.

Fig. 2. Implementation of vectorized fdim (positive difference) function
with VEAL.

1. https://unity3d.com/.
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used for a purpose like this, however there is a demand for
modifying existing codes with FP computation to support
networking.

There are also other kinds of simulation in which bit-wise
identical reproducibility is important. In [23], the authors
show thatmodeledmean climate states, variability and trends
at different scalesmay be significantly changed or even lead to
opposing results due to the round-off errors in climate system
simulations. Since reproducibility is a fundamental principle
of scientific research, they propose to promote bit-wise identi-
cal reproducibility as aworldwide standard.

One way to obtain bit-wise consistent values from math
functions is to compute correctly rounded values. However,
for applications like networked video games, this might be
too expensive. SLEEF provides vectorized math functions
that return bit-wise consistent results across all platforms
and other settings, and this is also achieved by utilizing
VEALs. The basic idea is to always apply the same sequence
of operations to the arguments. The IEEE 754 standard guar-
antees that the basic arithmetic operators give correctly
rounded results [24], and therefore the results from these
operators are bit-wise consistent. Because most of the func-
tions except trigonometric functions do not have a condi-
tional branch in our library, producing bit-wise consistent
results is fairly straightforward with VEALs. Availability of
FMA instructions is another key for making results bit-wise
consistent. Since FMA instructions are critical for perfor-
mance, we cannot just give up using FMA instructions. In
SLEEF, the bit-wise consistent versions of functions have
two versions both with and without FMA instructions. We
provide a non-FMA version of the functions to guarantee
bit-wise consistency among extensions such as Intel SSE2
that do not have FMA instructions. Another issue is that the
compiler might introduce inconsistency by FP contraction,
which is the result of combining a pair of multiplication and
addition operations into an FMA. By disabling FP contrac-
tion, the compiler strictly preserves the order and the type
of FP operations during optimization. It is also important to
make the returned values from scalar functions bit-wise
consistent with the vector functions. In order to achieve
this, we also made a VEAL that only uses scalar operators
and data types. The bit-wise consistent and non-consistent
versions of vector and scalar functions are all built from
the same source files, with different VEALs and macros
enabled. As described in Section 5, trigonometric functions
in SLEEF chooses a reduction method according to the max-
imum argument of all elements in the argument vector. In
order to make the returned value bit-wise consistent, the
bit-wise consistent version of the functions first applies the
reduction method for small arguments to the elements cov-
ered by this method. Then it applies the second method
only to the elements with larger arguments which the first
method does not cover.

4 THE DEVELOPMENT OF A VECTOR FUNCTION

ABI AND SLEEF

Recent compilers are developing new optimization techni-
ques to automatically vectorize a code written in standard
programming languages that do not support paralleliza-
tion [25], [26]. Although the first SIMD and vector computing

systems [27] appeared a few decades ago, compilers with
auto-vectorization capability have not been widely used until
recently, because of several difficulties in implementing such
functionality for modern SIMD architectures. Such difficulties
include verifying whether the compiler can vectorize a loop
or not, by determining data access patterns of the operations
in the loop [2], [28]. For languages like C andC++, it is also dif-
ficult to determine the data dependencies through the itera-
tion space of the loop, because it is hard to determine aliasing
conditions of the arrays processed in the loop.

4.1 Vector Function Application Binary Interface

Vectorizing compilers convert calls to scalar versions of
math functions such as sine and exponential to the SIMD
version of the math functions. The most recent versions of
Intel Compiler [29], GNU Compiler [30], and Arm Com-
piler for HPC [31], which is based on Clang/LLVM [32],
[33], are capable of this transformation, and rely on the
availability of vector math libraries such as SVML [3],
Libmvec [11] and SLEEF respectively to provide an imple-
mentation of the vector function calls that they generate. In
order to develop this kind of transformations, a target-
dependent Application Binary Interface for calling vectorized
functions had to be designed.

The Vector Function ABI for AArch64 architecture [34]
was designed in close relationship with the development of
SLEEF. This type of ABI must standardize the mapping
between scalar functions and vector functions. The exis-
tence of a standard enables interoperability across different
compilers, linkers and libraries, thanks to the use of stan-
dard names defined by the specification.

The ABI includes a name mangling function, a map that
converts the scalar signature to the vector one, and the call-
ing conventions that the vector functions must obey. In par-
ticular, the name mangling function that takes the name of
the scalar function to the vector function must encode all
the information that is necessary to reverse the transforma-
tion back to the original scalar function. A linker can use
this reverse mapping to enable more optimizations (Link
Time Optimizations) that operate on object files, and does
not have access to the scalar and vector function prototypes.
There is a demand by users for using a different vector
math library according to the usage. Reverse mapping is
also handy for this purpose. A vector math library imple-
ments a function for each combination of a vector extension,
a vector length and a math function to evaluate. As a result,
the library exports a large number of functions. Some vector
math libraries can only implement part of all the combina-
tions. By using the reverse mapping mechanism, the com-
piler can check the availability of the functions by scanning
the symbols exported by a library.

The Vector Function ABI is also used with OpenMP [35].
From version 4.0 onwards, OpenMP provides the directive
declare simd. A user can decorate a function with this direc-
tive to inform the compiler that the function can be safely
invoked concurrently on multiple instances of its argu-
ments [36]. This means that the compiler can vectorize the
function safely. This is particularly useful when the function
is provided via a separate module, or an external library, for
example in situations where the compiler is not able to
examine the behavior of the function in the call site. The
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scalar-to-vector function mapping rules stipulated in the
Vector Function ABI are based on the classification of vector
functions associated with the declare simd directive of
OpenMP. Currently, work for implementing these OpenMP
directives on LLVM is ongoing.

The Vector Function ABI specifications are provided for
the Intel x86 and the Armv8 (AArch64) families of vector
extensions [34], [37]. The compiler generates SIMD function
calls according to the compiler flags. For example, when tar-
geting AArch64 SVE auto-vectorization, the compiler will
transform a call to the standard sin function to a call to the
symbol _ZGVsMxv_sin. When targeting Intel AVX-512 [38]
auto-vectorization, the compiler would generate a call to the
symbol _ZGVeNe8v_sin.

4.2 SLEEF and the Vector Function ABI

SLEEF is provided as two separate libraries. The first library
exposes the functions of SLEEF to programmers for inclu-
sion in their C/C++ code. The second library exposes the
functions with names mangled according to the Vector
Function ABI. This makes SLEEF a viable alternative to libm
and its SIMD counterpart libmvec, in glibc. This also ena-
bles a user work-flow that relies on the auto-vectorization
capabilities of a compiler. The compatibility with libmvec
enables users to swap from libmvec to libsleef by simply
changing compiler options, without changing the code that
generated the vector call. The two SLEEF libraries are built
from the same source code, which are configured to target
the different versions via auto-generative programs that
transparently rename the functions according to the rules of
the target library.

5 OVERVIEW OF LIBRARY IMPLEMENTATION

One of the objectives of the SLEEF project is to provide a
library of vectorized math functions that can be used in con-
junction with vectorizing compilers. When a non-vectorized
code is automatically vectorized, the compiler converts calls
to scalar math functions to calls to a SIMD version of the
math functions. In order to make this conversion safe and
applicable to wide variety of codes, we need functions with
1-ULP error bound that conforms to ANSI C standard. On
the other hand, there are users who need better perfor-
mance. Our library provides 1-ULP accuracy version and
3.5-ULP accuracy version for most of the functions. We con-
firmed that our library satisfies the accuracy requirements
on an empirical basis. For non-finite inputs and outputs, we
implemented the functions to return the same results as
libm, as specified in the ANSI C standard. They do not set
errno nor raise an exception.

In order to optimize a program with SIMD instructions,
it is important to eliminate conditional branches as much
as possible, and execute the same sequence of instructions
regardless of the argument. If the algorithm requires condi-
tional branches according to the argument, it must prepare
for the case where the elements in the input vector contain
both values that would make a branch happen and not
happen. Recent processors have a long pipeline and there-
fore branch misprediction penalty can reach more than 10
cycles [39]. Making a decision for a conditional branch also
requires non-negligible computation, within the scope of

our tests. A conditional move is an operator for choosing
one value from two given values according to a condition.
This is equivalent to a ternary operator and can be used in
a vectorized code to replace a conditional branch. Some other
operations are also expensive in vectorized implementa-
tion. A table-lookup is expensive. Although in-register table
lookup is reported fast on Cell BE SPU [12], it is substan-
tially slower than polynomial evaluation without any table
lookup, within the scope of our tests. Most vector exten-
sions do not provide 64-bit integer multiplication or a vector
shift operator with which each element of a vector can be
specified a different number of bits to shift. On the other
hand, FMA and round-to-integer instructions are supported
by most vector extensions. Due to the nature of the evalua-
tion methods, dependency between operations cannot be
completely eliminated. Latencies of operations become an
issue when a series of dependent operations are executed.
FP division and square root are not too expensive from
this aspect.2

The actual structure of the pipeline in a processor is com-
plex, and such level of details are not well-documented for
most CPUs. Therefore, it is not easy to optimize the code
according to such hardware implementation. In this paper,
we define the latency and throughput of an instruction or a
subroutine as follows [41]. The latency of an instruction or a
subroutine is the delay that it generates in a dependency
chain. The throughput is the maximum number of instruc-
tions or subroutines of the same kind that can be executed
per unit time when the inputs are independent of the pre-
ceding instructions or subroutines. Several tools and meth-
ods are proposed for automatically constructing models of
latency, throughput, and port usage of instructions [42],
[43]. Within the scope of our tests, most of the instruction
latency in the critical path of evaluating a vector math func-
tion tends to be dominated by FMA operations. In many
processors, FMA units are implemented in a pipeline man-
ner. Some powerful processors have multiple FMA units
with out-of-order execution, and thus the throughput of
FMA instruction is large, while the latency is long. In
SLEEF, we try to maximize the throughput of computation
in a versatile way by only taking account of dependencies
among FMA operations. We regard each FMA operation as
a job that can be executed in parallel and try to reduce the
length of the critical path.

In order to evaluate a double-precision (DP) function to
1-ULP accuracy, the internal computation with accuracy
better than 1 ULP is sometimes required. Double-double
arithmetic, in which a single value is expressed by a sum of
two double-precision FP values [44], [45], is used for this
purpose. All the basic operators for DD arithmetic can be
implemented without a conditional branch, and therefore it
is suitable for vectorized implementation. Because we only
need 1-ULP overall accuracy for DP functions, we use sim-
plified DD operators with less than the full DD accuracy. In
SLEEF, we omit re-normalization of DD values by default,
allowing overlap between the two numbers. We carry out
re-normalization only when necessary.

2. The latencies of 256-bit DP add, divide and sqrt instructions are 4,
14 and 18 cycles, respectively on Intel Skylake processors [40].
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Evaluation of an elementary function often consists of
three steps: range reduction, approximation, and recon-
struction [21]. An approximation step computes the elemen-
tary function using a polynomial. Since this approximation
is only valid for a small domain, a number within that range
is computed from the argument in a range reduction step.
The reconstruction step combines the results of the first two
steps to obtain the resulting number.

An argument reduction method that finds an FP remain-
der of dividing the argument x by p is used in evaluation of
trigonometric functions. The range reduction method sug-
gested by Cody and Waite [46], [47] is used for small argu-
ments. The Payne and Hanek’s method [48] provides an
accurate range-reduction for a large argument of trigono-
metric function, but it is expensive in terms of operations.

There are tools available for generating the coefficients of
the polynomials, such as Maple [49] and Sollya [50]. In order
to fine-tune the generated coefficients, we created a tool for
generating coefficients that minimizes the maximum relative
error. When a SLEEF function evaluates a polynomial, it eval-
uates a few lowest degree terms in DD precision while other
terms are computed in double-precision, in order to achieve
1-ULP overall accuracy. Accordingly, coefficients inDDpreci-
sion or coefficients that can be represented by FP numbers
with a fewmost significant bits inmantissa are used in the last
few terms.We designed our tool to generate such coefficients.
We use Estrin’s scheme [51] to evaluate a polynomial to
reduce dependency between FMA operations. This scheme
reduces bubbles in the pipeline, and allows more FMA opera-
tions to be executed in parallel. Reducing latency can improve
the throughput of evaluating a function because the latency
and the reciprocal throughput of the entire function are close
to each other.

Below, we describe and compare the implementations of
selected functions in SLEEF, FDLIBM [4] and Christoph
Lauter’s Vector-libm [5]. We describe 1-ULP accuracy ver-
sion of functions in SLEEF. The error bound specification of
FDLIBM is 1 ULP.

5.1 Implementation of sin and cos

FDLIBM uses Cody-Waite range reduction if the argument
is under 218p. Otherwise, it uses the Payne-Hanek range
reduction. Then, it switches between polynomial approxi-
mations of the sine and cosine functions on ½�p=4;p=4�.
Each polynomial has 6 non-zero terms.

sin and cos in Vector-libm have 4-ULP error bound. They
use a vectorized path if all arguments are greater than 3.05e-
151, and less than 5.147 for sine and 2.574 for cosine. In the
vectorized paths, a polynomial with 8 and 9 non-zero terms is
used to approximate the sine function on ½�p=2; p=2�, follow-
ing Cody-Waite range reduction. In the scalar paths, Vector-
libmuses a polynomial with 10 non-zero terms.

SLEEF switches among two Cody-Waite range reduction
methodswith approximationwith different sets of constants,
and the Payne-Hanek reduction. The first version of the algo-
rithm operates for arguments within ½�15; 15�, and the sec-
ond version for arguments that are within ½�1014; 1014�.
Otherwise, SLEEF uses a vectorized Payne-Hanek reduction,
which is described in 5.8. SLEEF only uses conditional
branches for choosing a reduction method from Cody-Waite
and Payne-Hanek. SLEEF uses a polynomial approximation

of the sine function on ½�p=2;p=2�, which has 9 non-zero
terms. The sign is set in the reconstruction step.

5.2 Implementation of tan

After Cody-Waite or Payne-Hanek reduction, FDLIBM
reduces the argument to [0,0.67434], and uses a polynomial
approximation with 13 non-zero terms. It has 10 if state-
ments after Cody-Waite reduction.

tan in Vector-libm has 8-ULP error bound. A vectorized
path is used if all arguments are less than 2.574 and greater
than 3.05e-151. After Cody-Waite range reduction, a polyno-
mial with 9 non-zero terms for approximating sine function
on ½�p=2;p=2� is used twice to approximate sine and cosine
of the reduced argument. The result is obtained by dividing
these values. In the scalar path, Vector-libm evaluates a
polynomial with 10 non-zero terms twice.

In SLEEF, the argument is reduced in 3 levels. It first
reduces the argument to ½�p=2;p=2� with Cody-Waite or
Payne-Hanek range reduction. Then, it reduces the argu-
ment to ½�p=4;p=4� with tan a1 ¼ 1= tan ðp=2� a0Þ. At the
third level, it reduces the argument to ½�p=8;p=8� with the
double-angle formula. Let a0 be the reduced argument with
Cody-Waite or Payne-Hanek. a1 ¼ p=2� a0 if ja0j > p=4.
Otherwise, a1 ¼ a0. Then, SLEEF uses a polynomial approx-
imation of the tangent function on ½�p=8;p=8�, which has 9
non-zero terms, to approximate tan ða1=2Þ. Let t be the
obtained value with this approximation. Then, tan a0 �
2t=ð1� t2Þ if ja0j � p=4. Otherwise, tan a0 � ð1� t2Þ=ð2tÞ.
SLEEF only uses conditional branches for choosing a reduc-
tion method from Cody-Waite and Payne-Hanek. Anno-
tated source code of tan is shown in Appendix A, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/
TPDS.2019.2960333

5.3 Implementation of asin and acos

FDLIBM and SLEEF first reduces the argument to ½0; 0:5�
using arcsinx ¼ p=2� 2 arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� xÞ=2p
and arccosx ¼

2 arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� xÞ=2p

.
Then, SLEEF uses a polynomial approximation of arcsine

on ½0; 0:5�with 12 non-zero terms.
FDLIBM uses a rational approximation with 11 terms

(plus one division). For computing arcsine, FDLIBM
switches the approximation method if the original argu-
ment is over 0.975. For computing arccosine, it has three
paths that are taken when jxj < 0:5, x � �0:5 and x � 0:5,
respectively. It has 7 and 6 if statements in asin and
acos, respectively.

asin and acos in Vector-libm have 6-ULP error bound.
asin and acos in Vector-libm use vectorized paths if argu-
ments are all greater than 3.05e-151 and 2.77e-17, respec-
tively. Vector-libm evaluates polynomials with 3, 8, 8, and 5
terms to compute arcsine. It evaluates a polynomial with 21
terms for arccosine.

5.4 Implementation of atan

FDLIBM reduces the argument to ½0; 7=16�. It uses a polyno-
mial approximation of the arctangent function with 11
non-zero terms. It has 9 if statements.
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atan in Vector-libm have 6-ULP error bound. Vector-
libm uses vectorized paths if arguments are all greater than
1.86e-151 and less than 2853. It evaluates four polynomials
with 7, 9, 9 and 4 terms in the vectorized path.

SLEEF reduces argument a to ½0; 1� using arctan x ¼
p=2� arctanð1=xÞ. Let a0 ¼ 1=a if jaj � 1. Otherwise, a0 ¼ a.
It then uses a polynomial approximation of arctangent func-
tion with 20 non-zero terms to approximate r � arctan a0.
As a reconstruction, it computes arctan a � p=2� r if
jaj � 1. Otherwise, arctan a � r.

5.5 Implementation of log

FDLIBM reduces the argument to ½ ffiffiffi
2

p
=2;

ffiffiffi
2

p �. It then
approximates the reduced argument with a polynomial that
contains 7 non-zero terms in a similar way to SLEEF. It has
9 if statements.

log in Vector-libm has 4-ULP error bound. It uses a vec-
torized path if the input is a normalized number. It uses a
polynomial with 20 non-zero terms to approximate the loga-
rithm function on ½0:75; 1:5�. It does not use division.

SLEEF multiplies the argument a by 264, if the argument
is a denormal number. Let a0 be the resulting argument,
e ¼ blog2ð4a0=3Þc and m ¼ a0 � 2�e. If a is a denormal num-
ber, e is subtracted 64. SLEEF uses a polynomial with 7 non-

zero terms to evaluate logm � P6
n¼0 Cn

m�1
mþ1

� �2nþ1
, where

C0 . . .C6 are constants. As a reconstruction, it computes
log a ¼ e log 2þ logm.

5.6 Implementation of exp

All libraries reduce the argument range to ½�ðlog 2Þ=2;
ðlog 2Þ=2� by finding r and integer k such that x ¼ k log 2þ
r; jrj � ðlog 2Þ=2.

SLEEF then uses a polynomial approximation with 13
non-zero terms to directly approximate the exponential
function of this domain. It achieves 1-ULP error bound
without using a DD operation.

FDLIBM uses a polynomial with 5 non-zero terms to
approximate fðrÞ ¼ rðer þ 1Þ=ðer � 1Þ. It then computes
expðrÞ ¼ 1þ 2r=ðfðrÞ � rÞ. It has 11 if statements.

The reconstruction step is to add integer k to the expo-
nent of the resulting FP number of the above computation.

exp in Vector-libm has 4-ULP error bound. A vectorized
path covers almost all input domains. It uses a polynomial
with 11 terms to approximate the exponential function.

5.7 Implementation of pow

FDLIBM computes y log2 x in DD precision. Then, it com-
putes pow(x, y) = elog 2�y log2 x. It has 44 if statements.

Vector-libm does not implement pow.
SLEEF computes eylogx. The internal computation is car-

ried out in DD precision. In order to compute logarithm
internally, it uses a polynomial with 11 non-zero terms. The
accuracy of the internal logarithm function is around 0.008
ULP. The internal exponential function in pow uses a poly-
nomial with 13 non-zero terms.

5.8 The Payne-Hanek Range Reduction

Our method computes rfracð2x=pÞ � p=2, where rfracðaÞ :¼ a
�roundðaÞ. The argument x is an FP number, and therefore

it can be represented as M � 2E , where M is an integer man-
tissa and E is an integer exponent E. We now denote the
integral part and the fractional part of 2E � 2=p as IðEÞ and
F ðEÞ, respectively. Then,

rfracð2x=pÞ ¼ rfracðM � 2E � 2=pÞ
¼ rfracðM � ðIðEÞ þ F ðEÞÞÞ
¼ rfracðM � F ðEÞÞ:

The value F ðEÞ only depends on the exponent of the
argument, and therefore, can be calculated and stored in a
table, in advance. In order to compute rfracðM � F ðEÞÞ in
DD precision, F ðEÞ must be in quad-double-precision. We
now denote F ðEÞ ¼ F0ðEÞ þ F1ðEÞ þ F2ðEÞ þ F3ðEÞ, where
F0ðEÞ . . .F3ðEÞ are DP numbers and jF0ðEÞj � jF1ðEÞj
� jF2ðEÞj � jF3ðEÞj. Then,

rfracðM � F ðEÞÞ
¼rfracðM � F0ðEÞ þM � F1ðEÞ
þM � F2ðEÞ þM � F3ðEÞÞ

¼rfracðrfracðrfracðrfracðM � F0ðEÞÞ þM � F1ðEÞÞ
þM � F2ðEÞÞ þM � F3ðEÞÞ;

(1)

because rfracðaþ bÞ ¼ rfracðrfracðaÞ þ bÞ. In the method, we
compute (1) in DD precision in order to avoid overflow. The
size of the table retaining F0ðEÞ . . .F3ðEÞ is 32K bytes. Our
method is included in the source code of tan shown in
Appendix A, available in the online supplemental material.

FDLIBM seems to implement the original Payne-Hanek
algorithm with more than 100 lines of C code, which
includes 13 if statements, 18 for loops, 1 switch state-
ment and 1 goto statement. The numbers of iterations of
most of the for loops depend on the argument.

Vector-libm implements a non-vectorized variation of the
Payne-Hanek algorithm which has some similarity with our
method. In order to reduce argument x, it first decomposes jxj
into E and n such that 2E � n ¼ jxj. A triple-double (TD)
approximation to tðEÞ ¼ 2E=p� 2 � b2E�1=pc is looked-up
from a table. It then calculatesm ¼ n � tðEÞ in TD. The reduced
argument is obtained as a product of p and the fractional part of
m. In Table 1, we compare the numbers of FP operators in the
implementations. Note that the method in Vector-libm is used
for trigonometric functions with 4-ULP error bound, while our
method is used for functionswith 1-ULP error bound.

5.9 FP Remainder

We devised an exact remainder calculation method suitable
for vectorized implementation. The method is based on the
long division method, where an FP number is regarded as a
digit. Fig. 3 shows an example process for calculating the FP

TABLE 1
Number of FP Operators in the Payne-Hanek

Implementations

Operator SLEEF (1-ULP) Vector-libm (4-ULP)

add/sub 36 71
mul 5 18
FMA 11 0
round 8 0
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remainder of 1e+40 / 0.75. Like a typical long division, we
first find integer quotient 1.333e+40 so that 1.333e+40 �0:75
does not exceed 1e+40. We multiply the found quotient
with 0.75, and then subtract it from 1e+40 to find the divi-
dend 4.836e+24 for the second iteration.

Our basic algorithm is shown in Algorithm 1. If n, d and
qk are FP numbers of the same precision p, then rk is repre-
sentable with an FP number of precision 2p. In this case, the
number of iterations can be minimized by substituting qk
with the largest FP number of precision p within the range
specified at line 3. However, the algorithm still works if qk is
any FP number of precision p within the range. By utilizing
this property, an implementer can use a division operator
that does not return a correctly rounded result. The source
code of an implementation of this algorithm is shown in
Fig. 6 in Appendix B, available in the online supplemental
material. A part of the proof of correctness is shown in
Appendix C, available in the online supplemental material.

FDLIBM uses a method of shift and subtract. It first con-
verts the mantissa of two given arguments into 64-bit inte-
gers, and calculates a remainder in a bit-by-bit basis. The
main loop iterates ix� iy times, where ix and iy are the
exponents of the arguments of fmod. This loop includes 10
integer additions and 3 if statements. The number of itera-
tions of the main loop can reach more than 1,000.

Vector-libm does not implement FP remainder.

Algorithm 1. Exact Remainder Calculation

Input: Finite positive numbers n and d
Output: Returns n� dbn=dc
1: r0 :¼ n; k :¼ 0
2: while d � rk do
3: qk is an arbitrary integer satisfying ðrk=dÞ=2 � qk � rk=d
4: rkþ1 :¼ rk � qkd
5: k :¼ kþ 1
6: end while
7: return rk

5.10 Handling of Special Numbers, Exception
and Flags

Our implementation gives a value within the specified error
bound without special handling of denormal numbers,
unless otherwise noted.

When a function has to return a specific value for a specific
value of an argument (such as a NaN or a negative zero) is
given, such a condition is checked at the end of each function.
The return value is substitutedwith the special value if the con-
dition is met. This process is complicated in functions like pow,
because theyhavemany conditions for returning special values.

SLEEF functions do not give correct results if the compu-
tation mode is different from round-to-nearest. They do not

set errno nor raise an exception. This is a common behavior
among vectorized math libraries including Libmvec [11]
and SVML [3]. Because of SIMD processing, functions can
raise spurious exceptions if they try to raise an exception.

5.11 Summary

FDLIBM extensively uses conditional branches in order to
switch the polynomial according to the argument(sin, cos,
tan, log, etc), to return a special value if the arguments are
special values(pow, etc.), and to control the number of itera-
tions (the Payne-Hanek reduction).

Vector-libm switches between a fewpolynomials inmost of
the functions. It does not provide functions with 1-ULP error
bound, nevertheless, the numbers of non-zero terms in the pol-
ynomials are larger than other two libraries in some of the
functions. A vectorized path is used only if the argument is
smaller than 2.574 in cos and tan, although these functions
are frequently evaluated with an argument up to 2p. In most
of the functions, Vector-libm uses a non-vectorized path if the
argument is very small or a non-finite number. For example, it
processes 0 with non-vectorized paths in many functions,
although 0 is a frequently evaluated argument in normal situa-
tions. If non-finite numbers are once contained in data being
processed, the whole processing can become significantly
slower afterward. Variation in execution time can be exploited
for a side-channel attack in cryptographic applications.

SLEEF uses the fastest paths if all the arguments are
under 15 for trigonometric functions, and the same vector-
ized path is used regardless of the argument in most of the
non-trigonometric functions. SLEEF always uses the same
polynomial regardless of the argument in all functions.

Although reducing the number of conditional branches
has a few advantages in implementing vector math librar-
ies, it seems to be not given a high priority in other libraries.

6 TESTING

SLEEF includes three kinds of testers. The first two kinds of
testers test the accuracy of all functions against high-preci-
sion evaluation using the MPFR library. In these tests, the
computation error in ULP is calculated by comparing the
values output by each SLEEF function and the values out-
put by the corresponding function in the MPFR library, and
it is checked if the error is within the specified bounds.

6.1 Perfunctory Test

The first kind of tester carries out a perfunctory set of tests
to check if the build is correct. These tests include standards
compliance tests, accuracy tests and regression tests.

In the standards compliance tests, we test if the functions
return the correct values when values that require special
handling are given as the argument. These argument values
include 	 Inf, NaN and 	 0. Atan2 and pow are binary

Fig. 3. Example computation of FP remainder.
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functions and have many combinations of these special
argument values. These are also all tested.

In the accuracy test, we test if the error of the returned
values from the functions is within the specified range,
when a predefined set of argument values are given. These
argument values are basically chosen between a few combi-
nations of two values at regular intervals. The trigonometric
functions are also tested against argument values close to
integral multiples of p=2. Each function is tested against
tens of thousands of argument values in total.

In the regression test, the functions are tested with argu-
ment values that triggered bugs in the previous library
release, in order to prevent re-emergence of the same bug.

The executables are separated into a tester and IUTs
(Implementation Under Test). The tests are carried out by
making these two executables communicate via an input/
output pipeline, in order to enable testing of libraries for
architectures which the MPFR library does not support.

6.2 Randomized Test

The second kind of tester is designed to run continuously.
This tester generates random arguments and compare the
output from each function to the output calculated with the
corresponding function in the MPFR library. This tester is
expected to find bugs if it is run for a sufficiently long time.

In order to randomly generate an argument, the tester
generates random bits of the size of an FP value, and rein-
terprets the bits as an FP value. The tester executes the ran-
domized test for all the functions in the library at several
thousand arguments per second for each function on a com-
puter with a Core i7-6700 CPU.

In the SLEEF project, we use randomized testing in
order to check the correctness of functions, rather than for-
mal verification. It is indeed true that proving correctness
of implementation contributes to the reliability of imple-
mentation. However, there is a performance overhead
because the way of implementation is limited in a form
that is easy to prove the correctness. There would be an
increased cost of maintaining the library because of the
need for updating the proof each time the implementation
is modified.

6.3 Bit-Identity Test

The third kind of tester is for testing if bit-identical results
are returned from the functions that are supposed to return
such results. This test is designed to compare the results
among the binaries compiled with different vector exten-
sions. For each predetermined list of arguments, we calcu-
late an MD5 hash value of all the outputs from each
function. Then, we check if the hash values match among
functions for different architectures.

7 PERFORMANCE COMPARISON

In this section, we present results of a performance com-
parison between FDLIBM Version 5.3 [4], Vector-libm [5],
SLEEF 3.4, and Intel SVML [3] included in Intel C Com-
piler 19.

We measured the reciprocal throughput of each function
by measuring the execution time of a tight loop that repeat-
edly calls the function in a single-threaded process. In order

to obtain useful results, we turned off optimization flags
when compiling the source code of this tight loop,3 while
the libraries are compiled with their default optimization
options. We did not use LTO. We confirmed that the calls to
the function are not compiled out or inlined by checking the
assembly output from the compiler. The number of function
calls by each loop is 1010, and the execution time of this loop
is measured with the clock_gettime function.

We compiled SLEEF and FDLIBM using gcc-7.3.0
with “-O3 -mavx2 -mfma” optimization options. We com-
piled Vector-libm using gcc-7.3.0 with the default “-O3
-march=native -ftree-vectorize -ftree-vector-

izer-verbose=1 -fno-math-errno” options. We
changed VECTOR_LENGTH in vector.h to 4 and com-
piled the source code on a computer with an Intel Core i7-
6700 CPU.4 The accuracy of functions in SVML can be cho-
sen by compiler options. We specified an “-fimf-max-
error=1.0” and an “-fimf-max-error=4.0” options for
icc to obtain the 1-ULP and 4-ULP accuracy results,
respectively.

We carried out all the measurements on a physical PC
with Intel Core i7-6700 CPU @ 3.40 GHz without any virtual
machine. In order to make sure that the CPU is always run-
ning at the same 3.4 GHz clock speed during the measure-
ments, we turned off Turbo Boost. With this setting, 10 nano
sec. corresponds to 34 clock cycles.

The following results compare the the reciprocal
throughput of each function. If the implementation is vec-
torized and each vector has N elements of FP numbers, then
a single execution evaluates the corresponding mathemati-
cal function N times. We generated arguments in advance
and stored in arrays. Each time a function is executed, we
set a randomly generated argument to each element of the
argument vector (each element is set with a different value).
The measurement results do not include the delay for gener-
ating random numbers.

7.1 Execution Time of Floating Point Remainder

We compared the reciprocal throughput of double-preci-
sion fmod functions in the libm included in Intel C
Compiler 19, FDLIBM and SLEEF. All the FP remainder
functions always return a correctly-rounded result. We
generated a random denominator d and a numerator uni-
formly distributed within ½1; 100� and ½0:95r � d; 1:05r � d�,
respectively, where r is varied from 1 to 1025. Fig. 4 shows
the reciprocal throughput of the fmod function in each
library. Please note that SVML does not contain a vector-
ized fmod function.

The graph of reciprocal throughput looks like a step func-
tion, because the number of iterations increases in thisway.

3. If we turn on the optimizer, there is concern that the compiler
optimizes away the call to a function. In order to prevent this, we have
to introduce extra operations, but this also introduces overhead. After
trying several configurations of the loop and optimizer settings, we
decided to turn off the optimizer in favor of reproducibility, simplicity
and fairness. We checked the assembly output from the compiler and
confirmed that the unoptimized loop simply calls the target function
and increments a counter, and therefore that the operations inside a
loop are minimal.

4. Vector-libm evaluates functions with 512 bits of vector length by
default. Because SLEEF and SVML are 256-bit wide, the setting is
changed.
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7.2 Comparison of Overall Execution Time

We compared the reciprocal throughput of 256-bit wide vec-
torized double-precision functions in Vector-libm, SLEEF
and SVML, and scalar functions in FDLIBM. We generated
random arguments that were uniformly distributed within
the indicated intervals for each function. In order to check
execution speed of fast paths in trigonometric functions, we
measured the reciprocal throughput with arguments within
½0:4; 0:5�. The result is shown in Table 2.

The reciprocal throughput of functions in SLEEF is com-
parable to that of SVML in all cases. This is because the
latency of FP operations is generally dominant in the exe-
cution time of math functions. Because there are two levels
of scheduling mechanisms, which includes the optimizer
in a compiler and the out-of-order execution hardware,
there is small room for making a difference to the through-
put or latency.

Execution speed of FDLIBM is not very slow despite
many conditional branches. This seems to be because of a
smaller number of FP operations, and faster execution
speed of scalar instructions compared to equivalent SIMD
instructions.

Vector-libm is slow even if only the vectorized path is
used. This seems to be because Vector-libm evaluates poly-
nomials with a large number of terms. Auto-vectorizers are
still developing, and the compiled binary code might not be
well optimized. When a slow path has to be used, Vector-
libm is even slower since a scalar evaluation has to be car-
ried out for each of the elements in the vector.

Vector-libm uses Horner’s method to evaluate polyno-
mials, which involves long latency of chained FP opera-
tions. In FDLIBM, this latency is reduced by splitting
polynomials into even and odd terms, which can be evalu-
ated in parallel. SLEEF uses Estrin’s scheme. In our experi-
ments, there was only a small difference between Estrin’s
scheme and splitting polynomials into even and odd terms
with respect to execution speed.

8 CONCLUSION

In this paper, we showed that our SLEEF library shows per-
formance comparable to commercial libraries while main-
taining good portability. We have been continuously
developing SLEEF since 2010.5 [52] We distribute SLEEF

under the Boost Software License [53], which is a permissive
open source license. We actively communicate with devel-
opers of compilers and members of other projects in order
to understand the needs of real-world users. The Vector
Function ABI is important in developing vectorizing com-
pilers. The functions that return bit-identical results are
added to our library to reflect requests from our multiple
partners. We thoroughly tested these functionalities, and
SLEEF is already adopted in multiple commercial products.

Fig. 4. Reciprocal throughput of double-precision fmod functions.

TABLE 2
Reciprocal Throughput in Nano Sec

5. https://sleef.org/
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