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ABSTRACT
Common Midpoint (CMP) and Common Re�ection Surface (CRS)

are widely used methods for improving the signal-to-noise ratio in

the �eld of seismic processing. �ese methods are computationally

intensive and require high performance computing. �is paper op-

timizes these methods on the Sunway many-core architecture and

implements large-scale seismic processing on the Sunway Taihu-

light supercomputer. We propose the following three optimization

techniques: 1) we propose a so�ware cache method to reduce the

overhead of memory accesses, and share data among CPEs via the

register communication; 2) we re-design the semblance calculation

procedure to further reduce the overhead of memory accesses; 3)
we propose a vectorization method to improve the performance

when processing the small volume of data within short loops. �e

experimental results show that our implementations of CMP and

CRS methods on Sunway achieve 3.50× and 3.01× speedup on aver-

age compared to the-state-of-the-art implementations on CPU. In

addition, our implementation is capable to run on more than one

million cores of Sunway TaihuLight with good scalability.

KEYWORDS
Many-core Architecture, Sunway TaihuLight, Seismic Processing,

Common Midpoint, Common Re�ection Surface, Performance Op-

timization

1 INTRODUCTION
Seismic processing techniques re�ne seismic data to evaluate the

design of di�erent models with cross-section images. �ese tech-

niques help geologists to build models of the interested areas, which

can be used to identify oil and gas reservoirs beneath the earth sur-

face [23]. Common Midpoint (CMP) method [20] and Common

Re�ection Surface (CRS) method [10] are widely used seismic pro-

cessing techniques. �e general idea of the CMP method is to

acquire a series of traces (gather) that are re�ected from the same

mid-point under the surface. �e traces are then stacked horizon-

tally with auto-correction so that it improves the quality of the

seismic data with high signal-to-noise ratio. �e fold of the stack is

determined by the number of traces in the CMP gather. Di�erent

from the CMP method, the CRS method is based on the ray theory,

especially the paraxial ray theory. �e CRS method treats the corre-

sponding ray at the speci�c re�ection point in the underground as

the central ray. �e other rays in the neighborhood of the re�ection

point are regarded as the paraxial rays. All the paraxial rays deter-

mine a stacking surface. �e energy stacked on the same stacking

surface results in a stacked pro�le with high signal-to-noise ratio.

�e computation demand of seismic processing is tremendous.

�e GPUs are commonly used as acceleration devices in seismic

processing to achieve high performance. �e GPUs are used to

accelerate the 3D output imaging scheme (CRS-OIS) in seismic

processing [19], which utilizes the many-core architecture of GPU

and achieves a good performance speedup on datasets with high

computational intensity. �e OpenCL is also used to implement the

computation of semblance and traveltime [18], that accelerates the

CRS method. �e existing work [11] also demonstrates the ability

of OpenACC on improving the performance of seismic processing.

Compared to the unoptimized OpenACC implementation, the �ne-

tuning technique can obtain a signi�cant speedup. In addition to

the GPU, there is also research work [17] a�empts to optimize

seismic processing on dedicated accelerating device such as FPGA.

�e Sunway TaihuLight is the �rst supercomputer with a peak

performance of over 100 PFlops. It was ranked the �rst place in

Top500 in June 2016. �e Sunway TaihuLight uses China home-

made Sunway SW26010 processor. Each Sunway processor contains

four Core Groups (CGs), and each CG consists of one Management

Processing Element (MPE) and 64 Computing Processing Elements

(CPEs). �e many-core architecture design of Sunway processor

has the great potential for high-performance computing. A�er built

in place, the Sunway processor has demonstrated its success in var-

ious scienti�c applications for high performance. Especially, the

atmospheric dynamics [22] and earth-quake simulation [7] running

on the full system of Sunway TaihuLight for large-scale computa-

tion won the ACM Gordon Bell prize. Moreover, the optimization

of various computation kernels, such as SpMV [16] and stencil [1],

also demonstrates the unique performance advantage of Sunway ar-

chitecture. In addition to the traditional scienti�c applications, the

Sunway processor has also shown its potential to support emerging

applications. For instance, swDNN [6] is a highly optimized library

to accelerate deep learning applications on Sunway, and swCa�e

[13] is a deep learning framework supports large-scale training on

Sunway TaihuLight.

Although existing works have explored di�erent architectures

to optimize seismic processing, it is impossible to naively adopt

the existing works to Sunway due to its unique architecture design.

Speci�cally, the following challenges need to be addressed in order

to achieve good performance for the CMP and CRS methods on

Sunway. First, unlike the traditional x86 processor, the design of the

CPEs does not contain a cache, but a 64KB user-controlled scratch

pad memory (SPM), which means without careful management,

the frequent accesses to main memory could lead to severe perfor-

mance degradation. Secondly, in order to achieve the ideal memory

bandwidth on Sunway, the DMA transfers issued from the CPEs

must contain at least 1024B data. However in the CMP and CRS
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methods, only a tiny data ranging from 4B to 76B is required during

each computation step, which is prohibitive to achieve optimal the

performance on Sunway. Moreover, the operations applied to the

tiny data within short loops make it di�cult to take advantage of

the vector units on Sunway processor.

In order to solve the above challenges, this paper proposes a

re-design of the CMP and CRS methods on Sunway processor.

In addition, several optimization techniques are also proposed to

adapt to the architecture features of Sunway e�ciently. �e experi-

ment results demonstrate our implementation of seismic processing

achieves signi�cant speedup when scaling to massive number of

Sunway cores. Speci�cally, this paper makes the following contri-

butions:

• We propose a so�ware cache method for seismic process-

ing on Sunway CPEs. �is method utilizes the architecture

features of DMA and LDM on Sunway. When the memory

access occurs, the CPE sends the data request to the so�-

ware cache. A�er receiving the data request, the so�ware

cache retrieves data from the memory through DMA, and

then send the data back to the CPE. A�er that, the data is

bu�ered in the so�ware cache to e�ectively alleviate the

long memory access delay.

• We re-design the Common Depth Point (CDP) procedure

that dominates the performance of CMP and CRS meth-

ods to adapt to the Sunway architecture. Speci�cally, we

combine multiple search processes onto a single CPE, and

synchronize across search processes by bu�ering the inter-

mediate results from each computation step. In addition,

we combine the data to be accessed at each step of the

search processes, and thus reduce the number of DMA

accesses.

• We propose a vectorization method to improve the compu-

tation e�ciency when processing the tiny data within short

loops. We �rst convert the global reduction operations into

several independent element-wise vector operations, and

then use the vector array to perform element-wise vector

operations with the ending element processed separately.

�e rest of this paper is organized as follows: In Section 2, we

introduce the background of the CMP and CRS methods, as well

as the Sunway architecture. Section 3 presents our design and

optimization of seismic processing on Sunway to achieve massively

scaling. �e evaluation results are given in Section 4. Section 5

discusses the related work and Section 6 concludes this paper.

2 BACKGROUND
2.1 Common Midpoint Method
�e fundamental idea of the CMP method is shown in Figure 1(a).

�e sound source placed at the source point Si is excited. A�er the

sound wave is re�ected by the underground re�ection point R, the

receiver on the surface receives the signal at point Gi . Each data

record captured is a seismic trace and a group of seismic traces that

share the same midpoint is called a CMP gather. When the re�ection

surface is horizontal and the speed does not change horizontally,

the CMP gathers are equivalent to Common Depth Point (CDP)

gathers. �is is the seismic data this paper deals with, therefore we

use the term CMP and CDP interchangeably.

S1S2 G1 G2M

R

S2 S1 M G1 G2

R

NMO

(a) (b)

Figure 1: �e illustration of the common midpoint method
(CMP).

In the CMP method, traces belonging to the same CMP gather are

corrected and stacked, which generates a stacked trace. As shown

in Figure 1(b), before the traces are stacked together, a Normal

Moveout (NMO) correction is applied to the re�ection traveltimes

according to the distances between their sources and receivers,

which groups signals that are produced by the same re�ectors.

�e quality of the stacked trace depends on the quality of the

NMO correction. �e NMO in the CMP method is to correct the

hyperbolic curve (also known as traveltime curve), which depends

on the distance between the source and the receiver as well as the

average velocity in which the wave propagated during the seismic

data acquisition. Although the distance is known in advance, the

velocity is usually unknown. �erefore, it is necessary to �nd the

best stacking velocity.

To �nd the best stacking velocity, the CMP method enumerates

through di�erent velocities. For each of enumerated velocities, it

computes the semblance, a coherence metric that indicates whether

the traveltime curve de�ned by a given velocity would produce a

good stacking. �e semblance computation is performed over a

traveltime curve that intersects seismic traces. Considering that

the traces are represented by discrete samples, some points of the

intersections may not align with the actual elements in the dataset.

�erefore, we use the interpolation of nearby samples to estimate

the seismic amplitude at that point. �e Equation 1 de�nes the

computation for semblance. �ere are M traces in a single CDP, fi j
represents the j − th sample of the i − th trace, and the intersection

of the traveltime curve of the trace is k . �e semblance calculation

is performed in a window of length w , which walks through the

traces of the current CDP and access w samples in each intersec-

tion. �e value of w is determined by the sampling interval during

data acquisition. In the CMP method, there is no dependency be-

tween the computation of individual CDPs, therefore they can be

computed in parallel.

Sc (k) =
∑k+w/2
j=k−w/2(

∑M
i=1

fi j )2∑k+w/2
j=k−w/2

∑M
i=1

f 2

i j

(1)

2.2 Common Re�ection Surface Method
As shown in Figure 2(a), the ray from the exciting point S to the

receiving point G is the central ray, whereas the ray from the

exciting point S̄ to the receiving point Ḡ is the paraxial ray. �e
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Figure 2: �e illustration of the common re�ection surface
method (CRS).

central pointsm0 andm1 belong to CDP0 and CDP1 respectively.

According to the paraxial ray theory, when processing the central

ray SG , it requires the data of the paraxial ray S̄Ḡ . �erefore, when

computing the CDP0, it requires the data from CDP1. In Figure 2(b),

the orange pointm0 represents the central point, and the neighbors

within the radius r include four CDPs (m1,m2,m3,m4) that are

represented with blue dots, and the remaining green dots are not in

the neighborhood ofm0. It also means, when processing CDP0, the

data from CDP1, CDP2, CDP3 and CDP4 is required. �e semblance

computation in the CMP method can be easily extended to the

CRS method. �e only di�erence is to obtain the trace data of the

CDPs in its neighborhood when processing the central CDP, as

well as change the NMO curve to a curved surface. For large-scale

processing, we partition the two-dimensional coordinates of the

middle points of each CDP using grid, and map the grids to di�erent

CGs of the Sunway processor. �e adjacent grids exchange data

through asynchronous MPI communication.

2.3 �e Sunway Many-core Architecture
�e Sunway TaihuLight supercomputer provides a theoretical peak

performance of 125PFlops. It consists of 40,960 Sunway SW26010

processors with 1.4PB memory and an aggregated bandwidth of

4,473.16TB/s. �e architecture of the Sunway processor is shown

in Figure 3, which is composed of four core groups (CGs). Each CG

contains a Management Processing Element (MPE) and 64 Com-

puting Processing Elements (CPE), and each CG is a�ached of 8GB

DDR3 memory. �e 8GB a�ached memory can be accessed by both

MPE and CPEs with the bandwidth of approximately 136GB/s. �e

MPE has 32KB L1 instruction cache and 32KB L1 data cache, in

addition to 256KB L2 cache for both instruction and data. Each CPE

has its own 16KB L1 instruction cache but no data cache. How-

ever, there is 64KB local device memory (LDM) on each CPE that

is explicitly managed by so�ware. �e CPEs can initiate a direct

memory access (DMA) operation that reads data from memory to

the LDM, or writes data from the LDM to memory. �e CPEs in the

same row or column of the CG can communicate with each other

through register communication. Each CPE has a vector unit that

supports 256-bit wide vector �oating-point operation. �e survey

paper [8] has shown that the memory bandwidth of Sunway pro-

cessor is quite limited compared to the massive computation power.

�erefore, the most e�ective optimization techniques on Sunway

include the rational use of LDM, data transfer through register

MPE 8*8 CPE
Mesh

MC CG0

Memory

Noc

MPE8*8 CPE
Mesh

MCCG1

Memory

MPE 8*8 CPE
Mesh

MC CG2

Memory

MPE8*8 CPE
Mesh

MCCG3

Memory

…
…

…

…

…

… … … … …

LDMCPE

Figure 3: �e architecture of Sunway SW26010 processor.

communication between CPEs, computation acceleration through

vector units and data access through DMA for higher bandwidth.

2.4 Challenges on Sunway Architecture
As the dominant computation of the seismic processing with both

CMP and CRS methods, accelerating the procedure of semblance

calculation is critical to achieve satisfactory performance on Sun-

way. However, the data access pa�ern during the semblance cal-

culation is prohibitive to obtain good performance on Sunway for

two reasons: 1) the data accesses are random, which leads to high

memory access latency due to the lack of data cache on CPEs; 2)
the volume of data accesses is quite small, which is unable to fully

utilize the precious DMA bandwidth as well as the vector units for

performance acceleration. �e speci�c challenges are as follows:

• �e random data accesses during the semblance calcula-

tion deteriorate the performance of seismic processing on

Sunway. Due to the lack of data cache on CPEs, a so�-

ware cache method is necessary to bu�er the data accessed

from main memory by using the limited LDM on CPEs

e�ectively.

• �e semblance calculation only accesses a small volume

of data, which is hard to fully utilize the DMA bandwidth.

�erefore, it is necessary to re-design the process of sem-

blance calculation by combining the computations and

bu�ering the intermediate results on each CPE in order to

improve bandwidth utilization.

• In addition to the low bandwidth utilization, the small vol-

ume of data during the semblance calculation also prohibits

the exploration of vectorization. �erefore, to utilize the

vector units on Sunway, it requires revealing the vector-

ization potential by adjusting the computation pa�ern of

semblance calculation.

3 RE-DESIGNING THE SEISMIC PROCESSING
FOR MASSIVELY SCALING

3.1 Design Overview
Figure 4 shows the design and optimization of the CDP computa-

tion of the CMP and CRS methods on Sunway architecture. Firstly,

the MPE on each CG reads the partitioned seismic data. Seismic

data consists of several CDPs, and each CDP contains several traces,
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each of which is composed of ns samples. For the CMP method, the

computation on each CDP is independent from the rest. Whereas

for the CRS method, the computation of the central CDP requires

data from the surrounding CDPs. In such case, the MPE calcu-

lates the two-dimensional coordinates of the middle point of each

CDP, and then divides the inner and outer regions according to the

two-dimensional coordinates. �e calculation of the outer region

involves the region of the adjacent mesh, which requires the CDPs

in the outer region to be sent to the adjacent mesh. As shown in

Figure 4 step 1©, the data transfer of the outer region and the cal-

culation of the inner region is performed simultaneously through

asynchronous MPI. A�er the central CDP receives the data from

surrounding CDPs, the CDP computation is the same in both CRS

and CMP methods. �erefore, we take the computation of a single

CDP for an example to illustrate the optimizations we have applied

on each Sunway CG.

�e CDP computation involves the semblance calculation that

walks through the traces of the current CDP. In order to improve

the performance of the CDP computation on Sunway, we propose

several techniques to re-design and optimize the computation proce-

dures. First, we use the master CPE and worker CPEs collaboratively

to implement a so�ware cache to eliminate random data accesses

at the intersection (step 2©). Second, we propose a vectorization

method to improve the computation e�ciency when processing

the tiny data within short loops (step 3©). �ird, we re-design the

calculation process so that each worker CPE can process multi-

ple sample-NMO velocity pairs simultaneously to further improve

bandwidth utilization (step 4©).

To be�er illustrate how our proposed techniques work together,

we take the processing of one CDP as shown in the upper part of

Figure 4 for example. �ere are two adjacent traces (tracen and

tracen+1) in a single CDP stored in continuous memory region, and

each trace contains three (sample, NMO velocity) pairs (e.g., Pj ,
Pj+1, Pj+2). When memory access occurs, the so�ware cache �rst

takes into e�ect (step 2©.) Every two adjacent CPEs in each row of

the CPE mesh are organized into a group, with one of them serving

as the master CPE and the other one serving as the worker CPE.

�e worker CPE �rst sends a data request to the master CPE in its

own group through register communication. A�er the master CPE

receives the request, it retrieves the data from the memory through

DMA, then sends the requested data back to the worker CPE. �e

requested data is bu�ered in the LDM of the master CPE. �e vector-

ization method (step 3a© and 3b©) converts the reduction operation

into independent element-wise vector operations, then uses the

vector array to perform element-wise vector operation with the

ending elements processed separately. �e re-designed calculation

process (step 4©) synchronizes the processing of Pj , Pj+1 and Pj+2

in sequence on tracen , and bu�ers their intermediate results. �en,

the CPE group continues to process next trace (tracen+1). �e above

steps are repeated until the last trace is processed. A�er all the

(sample, NMO velocity) pairs have been processed, the computation

of a single CDP completes.

3.2 Improving Parallelism within a CG
Since the CDP computation dominates the execution time of seis-

mic processing, the optimization of the CDP on a CG is critical to

fully exploit the performance of Sunway processor. �e maximal

number of traces in a CDP is the f old of the dataset and the total

number of CDPs in a dataset is denoted as ncdps . Each seismic trace

is represented by an array, where each element is a sample. We

assume that the seismic traces have the same number of samples

(ns) across all CDPs, which is widely accepted in literature [9]. Fig-

ure 5(a) shows that a CDP contains 4 traces, each of which contains

several samples. In the same CDP, two adjacent traces are stored

in continuous memory region. In addition, the samples of a single

trace are also stored continuously. As shown in Figure 5(a), the

center of the four colored boxes is the intersection of the traveltime

curve with the four traces. �e semblance is computed within a

window of width w , which also represents the number of samples

in each color boxes.

In order to achieve parallel processing of the CDP on a single

CG, we chose a grid-based search method. �e entire computation

is divided into three phases, including initialization, calculation

and result writing back. �e initialization phase is performed on

the MPE. Firstly, the CDP data is accessed, and the NMO velocity

array is generated according to the upper and lower bounds of the

NMO velocity. �en the halfpoints are computed that are necessary

for calculating the traveltime curve. �e NMO velocity is stored

in an array of size nc , whereas the halfpoints are stored in another

array, each element of which corresponds to a trace in the CDP.

�e MPE then creates a semblance matrix S with size of ns × nc in

memory, which is used in the semblance computation to �nd the

most coherent NMO speed. At the same time, the MPE also creates

an array with size of ns in memory to store the most coherent NMO

velocity.

�e calculation phase involves �nding the most coherent NMO

velocity for each sample from the NMO velocity array. For each

sample, we enumerate the elements in the NMO velocity array, and

compute the semblance of each (sample, NMO velocity) pair by

walking through the traces of the current CDP according to the

traveltime curve. Each (sample, NMO velocity) pair is independent

from each other and can be processed in parallel. Figure 5(b) shows

how the computing grid is divided among the CPEs and how the

results are wri�en back to the semblance matrix. Each point in

the computing grid represents a (sample, NMO velocity) pair. In

this example, there are 6 NMO speeds (nc) and 5 samples (ns).
�e enlarged area shows how the points in the computing grid

are mapped to CPEs, which means each CPE is responsible for

computing a (sample, NMO velocity) pair. A�er �lling in the entire

semblance matrix, we need to �nd the NMO velocity with biggest

semblance value for each sample. �is velocity is the best coherent

velocity required.

�e computation procedure of a single CDP is shown in Algo-

rithm 1. For each CDP, it enumerates the sample-NMO velocity

pairs (line 2), and then �nds the intersection of the traveltime curve

and traces. At each intersection, it �rst obtains the halfpoint of

the current trace (line 9-11), then accesses the data with size of w
(line 12-13), and �nally retrieves the data computed in a window

of width w (line 14-19). Each trace has its own corresponding half-

points, therefore the accesses to halfpoints are continuous when

walking through the traces sequentially. Based on this observation,

we can reserve a space h s of size size h on LDM to prefetch the
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Figure 5: �e data structure of CDP (a), and the mapping of
(sample, NMO velocity) pair search to CPEs (b).

halfpoints in advance and save them in h s . We can control the

amount of prefetched data in LDM by adjusting size h.

Algorithm 1 �e computation of a single CDP on a CG

1: function CDP(sample-NMO pairs)

2: for each sample-NMO pair i do
3: for j = 0→ w do
4: num[j] ← 0

5: end for
6: ac linear ← 0

7: den ← 0

8: for t = 0→ ntrace do
9: if t%size h == 0 then

10: prefetch size h halfpoints through DMA

11: end if
12: calculate index k1 of random data access

13: get data of size w by k1 through DMA

14: for j = 0→ w do
15: v ← (cache[j + 1] − cache[j]) ∗ x + cache[j]
16: num[j] ← num[j] + v
17: den ← den + v ∗ v
18: ac linear ← ac linear + v
19: end for
20: end for
21: end for
22: end function

3.3 Eliminating Random Memory Access
3.3.1 So�ware Cache within a CG. Due to the limited memory

bandwidth on Sunway, we propose a so�ware cache to alleviate

the long memory access delay caused by random data access. We

design a so�ware cache, that is, two adjacent CPEs in each row

of the CPE mesh are organized into a group, and one CPE in each

group is selected to act as the so�ware cache of the group. �e

selected CPE for caching is the master CPE, and the other one is the

worker CPE. When memory access occurs, the master CPE accesses

the data through DMA and distributes the data to the worker CPE

through register communication. Existing research [21] reveals

that when the accumulative data size of the DMA accesses from

the 64 CPEs within a CG is less than 1024B, the achievable DMA

bandwidth is proportional to the size of data accesses. In both CMP

and CRS methods, the maximum size of data access is 76B. �erefore,

the proposed so�ware cache is capable to combine multiple DMA

accesses, which not only reduces the number of memory accesses,

but also increases the achievable DMA bandwidth.

When designing the so�ware cache, we also consider the compu-

tation characteristics of CDP. �e memory accesses at the so�ware

cache during the CDP computation are shown in Figure 6. We

denote the processing of a trace as a phase. �e master and worker

CPEs calculate their corresponding memory region of data access,

and the worker CPE sends the requested memory region to the

master CPE. A�er the master CPE receives the request, it identi�es

the minimum and maximum memory address among the regions,

and then copies the data between the minimum and the maximum

address to the LDM of the master CPE. �e master CPE sends back

the data to the worker CPE based on the requested memory region.

�en both the master and worker CPEs start their corresponding

calculations. When the master and worker CPEs �nish processing

current trace, they proceed to the next trace.

We implement a synchronization-free mechanism to reduce syn-

chronization overhead for the communication between the master

5
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CDP computation.
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Figure 7: �e synchronization-free mechanism for the com-
munication between the master and worker CPEs.

and worker CPEs. As shown in Figure 7, a request signal is sent to

the master CPE from the worker CPE. A�er obtaining the data from

the memory, the master CPE sends the data back to the worker

CPE. We name the above procedure as a round of communication.

A�er multiple rounds of communication, the worker CPE �nishes

the calculation and sends a f in signal to the master CPE. A�er the

master CPE receives the f in signal, it also sends a f in signal to

the worker CPE, and releases the so�ware cache. �en the master

CPE enters the calculation mode to complete the remaining cal-

culations. Since we assign more tasks to the master CPE than the

worker CPE, the master CPE always completes its calculation later

than the worker CPE. It is clear that with the above mechanism,

no synchronization is required for the communication between the

master and worker CPEs.

3.3.2 Re-designing the Computation for Semblance. Due to the

poor data locality in the semblance calculation, we re-design the

semblance calculation procedure and the data access pa�ern in

order to reduce the number of memory accesses and improve the

data reuse. �e original procedure of the semblance calculation is

shown in Figure 8(a). For each trace, the computing grid contains

ns×nc points. To perform the search, there are ns×nc intersections

randomly distributed in the trace, which leads to a large number

of random memory accesses. As shown in Figure 8(b), a�er the

calculation re-design, we process all the intersections in a trace

continuously, and save the intermediate results from the computa-

tion of each intersection before moving on to the next trace. �e

above procedure is repeated until the last trace is processed. A�er

the re-design, the calculation of next trace can reuse the interme-

diate results from the previous trace in the LDM. In addition to

the calculation re-design, we also re-design the data access pa�ern.

Each CPE has ns × nc ÷ cores intersections of a trace. Before the

re-design, each data access happens in a di�erent time period, with

no opportunity to merge data accesses or reuse the data. However,

a�er the re-design, the intersections on each CPE are processed

continuously. Based on this property, we identify the minimum

(min la) and maximum (max lb) memory regions for all the sam-

ples within a trace, and prefetch the data between the memory

regionmin la andmax lb before processing the trace.

Algorithm 2 presents the re-designed procedure of the semblance

calculation. Multiple sample-NMO velocity pairs are processed si-

multaneously on a single CPE. For each sample-NMO velocity pair,

the num, ac linear and den variables used during the computa-

tion have been expanded with one more dimension respectively for

bu�ering data (line 2- 8), compared to Algorithm 1. A�er initial-

ization, the traces in a CDP are processed in sequence (line 9) and

the data halfpoints is prefetched before a new trace is processed

(line 10- 12). For the current trace, the memory addresses of the

data accesses are calculated for each sample-NMO velocity pair

and kept in the k1 array (line 13- 15). �en, the maximum and

minimum memory address in k1 array is identi�ed (line 16- 18)

and used to determine the memory range (lenдth) of data accesses

(line 19). �e data within the memory range is copied to LDM at

one time through DMA operation (line 20). Finally, the calculation

is performed in a window size of w for each sample-NMO velocity

pair and the intermediate results are kept in the num, ac linear
and den arrays (line 21- 29). A�er processing the current trace,

the algorithm continues to process the next trace until all traces

in the CDP are processed. �e �nal results are stored in the num,

ac linear and den arrays.

Compared to the CMP method, the CRS method is more computa-

tionally intensive. Due to the limited LDM on each CPE, we cannot

prefetch the data of all merged intersections at once. �erefore it

is necessary to tile the merged intersections in order to assign the

computation to multiple tasks. For instance, if the original loop

size is len i to process the merged intersections. A�er tiling, the

loop is divided into two tightly nested loops. �e inner loop size

is tile size and the outer loop size is len i ÷ tile size . �e LDM

space occupied by the merged intersections is proportional to the

tile size other than the len i . �erefore, the tile operation allows

the program to e�ectively control the usage of LDM by the merged

intersections .

3.4 Exploiting Vectorization
We further exploit the opportunity for vectorization a�er the re-

design of semblance calculation. As shown in Algorithm 1, each

sample-NMO velocity pair maintains the corresponding num array

and ac linear , den variables. In the innermost loop, the element-

wise vector calculations are applied to the num array, whereas

the reduction calculations are applied to ac linear and den vari-

ables. As shown in Figure 9, the random accessed data is only a

small portion of the samples from each trace, which is recorded

as sub samples . To vectorize the above calculations on Sunway,
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Algorithm 2 Re-designing the computation of semblance

function re-design(sample-NMO pairs)

2: for each sample-NMO pair i do
for j = 0→ w do

4: num[i][j] ← 0

end for
6: ac linear [i] ← 0

den[i] ← 0

8: end for
for t = 0→ ntrace do

10: if t%size h == 0 then
prefetch size h halfpoints through DMA

12: end if
for each sample-NMO pair i do

14: calculate index k1[i] of random data access

end for
16: for each sample-NMO pair i do

�nd the min and max valmin la max lb in k1[i]
18: end for

lenдth ←max lb −min la
20: get data of size lenдth bymin la through DMA

for each sample-NMO pair i do
22: k ← k1[i] −min la

for j = 0→ w do
24: v ← (cache[k + j + 1] − cache[k + j]) ∗ x [i] + cache[k + j]

num[i][j] ← num[i][j] + v
26: den[i] ← den[i] + v ∗ v

ac linear [i] ← ac linear [i] + v
28: end for

end for
30: end for

end function
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Figure 8: �e original (a) and re-designed (b) computation
procedure of semblance calculation.

two challenges need to be addressed. Firstly, the window size w
may not be a multiple of four, which is the width of the vector unit

on Sunway. Considering the reduction operation, if we directly

vectorize the innermost loop, then for each sub samples , the end-

ing data cannot be e�ectively vectorized which requires additional

processing. In particular, if w is small, which means the innermost

loop is a short loop, then the overhead of processing the ending

data outweighs the bene�t of vectorization. Secondly, sub samples
may not be 32B aligned in LDM due to the random data access. On

Sunway, the unaligned SIMD load/store throws an exception and

then is split into several normal load/store instructions, which fails

to exploit the computation capability of the vector unit.

Figure 9 shows an example on how the vectorization method is

applied to a single CDP. In order to load the unaligned sub samples
into the vector register, we use the simd set f loatv4 instruction

that can load four unrelated �oat variables into the f loat v4 vari-

able, without requiring these four variables to be 32B aligned. How-

ever, compared to the standard simd load instruction, it requires

multiple LDM accesses. For element-wise vector operations, we use
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Figure 9: An illustrative example for applying the vectoriza-
tion method on a single CDP.

the vector array that consists of the f loat v4 vector variables with

the length of ceil(w×1.0
4
). Taking Figure 9 as an example, when

w equals to 11, the sub samplesi contains 11 elements of s1 ∼ s11,

and the num vector array contains three f loat v4 variables of

va, vb, and vc , altogether representing the sub samplesi . �ree

simd set f loatv4 instructions are required to load s1 ∼ s12 into

the vector array in order to perform element-wise vector calcula-

tions. For the reduction calculation, the vector array consists of

two f loat v4 variables vd and ve . �e s1 ∼ s4 and s5 ∼ s8 are

�rst loaded into vd sequentially, and then the vector calculation is

performed. A�er that, the s9 ∼ s12 are loaded into ve for the vector

calculation. When the calculation of the current trace (tracei ) com-

pletes, it proceeds to the next trace (tracei+1a). A�er all the traces

in a CDP are processed, the num vector array contains the results

of element-wise vector operations on all sub samples of the CDP.

To derive the results of reduction calculations, the four elements in

vd and the �rst three elements in ve need to be accumulated.

In Figure 9, the data in s12 is invalid, and thus the result in this

corresponding position is also invalid for both element-wise vec-

tor calculation and reduction calculation. Although it seems to

consume extra space and computing resources, such design can

e�ectively reduce the overhead of processing the data at the end

of sub samples in the short loop. With the re-design of semblance

calculation, the intermediate results of processing multiple sample-

NMO search pairs need to be bu�ered on the same CPE. �e inter-

mediate results of element-wise vector calculations and reduction

calculations including vector arrays num, ac linear and den are

also need to be bu�ered.

3.5 Asynchronous Parallel Processing among
CGs

For both CMP and CRS methods, the semblance calculation for a

single CDP is the similar, however the calculation among CDPs

is quite di�erent. For the CMP method, there is no dependency

among di�erent CDPs. �erefore, for large-scale processing, we

use the CDP as the granularity of a task. We divide the data into

many partitions, and each MPE reads a separate data partition

and processes the CDPs within the partition by assigning the CDP

computation to the CPEs. A�er the processing of current CDP,

the intermediate results are bu�ered before proceeding to the next

CDP. In the CRS method, each CDP calculates the two-dimensional

coordinates of the middle point according to the coordinates of the
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Figure 10: �e parallel processing among CGs using asyn-
chronous MPI communication.

source point and the receiving point. As shown in Figure 10, each

CDP draws a circle based on its two-dimensional coordinates of

the middle point. �e data of all CDPs in this circle is collected by

the central CDP to be processed. �erefore, for the CRS method

we take the computation of the central CDP as the task granularity.

We divide the coordinate grid by the coordinate of the middle point.

�e CDP at the boundary of the grid needs to obtain data from its

neighbors, whereas the rest of the CDPs only need to obtain data

within the grid.

Speci�cally, we pre-process the CDP data, during which the

CDP data belonging to the same grid is wri�en to the same data

partition. Each MPE reads a data partition, aggregates the traces

into corresponding CDPs, and then calculates the middle coordi-

nates for each CDP. According to the radius apm used in the CRS

method, the MPE identi�es the boundary of each grid, denoted as

outer region, and leaves the rest as the inner region. As shown in

Figure 10, the gray points belong to the outer region, whereas the

blue points belong to the inner region. �e MPE packs the CDP

data of the outer region and sends it to the neighboring grids in the

four directions, as well as receives the data from the neighboring

grids. Since the calculation of the inner region does not require

data from other grids, the MPE assigns the calculation of the inner

region to the CPEs for parallelization. �e calculation of the inner

region and the data transfer of the outer region can be performed

simultaneously bye using the MPI asynchronous communication.

A�er the MPE asynchronously sends data through MPI, it calls

CPEs to process the inner region in parallel. A�er the inner region

is processed, the MPE checks whether the asynchronous communi-

cation �nishes. A�er each grid receives the outer region data sent

by its neighboring grids, each MPE proceeds to process the outer

region of its own grid.

4 EVALUATION
4.1 Experimental Setup
In the experiments, we use the Sunway SW26010 processor for

performance evaluation. For comparison, we use the-state-of-the-

art implementations [9] of the CMP and CRS methods running on

2 Intel E5-2680 V4 processors with 28 physical cores and Nvidia

Table 1: �e detailed properties of the seismic datasets.

Seismic Dataset fold ns dt ncdps (large scale)

data1 60 550 220 2,648,430

data2 60 550 240 2,648,430

data3 60 1,650 220 1,000,000

data4 60 1,650 240 1,000,000

data5 1,000 550 220 202,500

data6 1,000 550 240 202,500

data7 1,000 1,650 220 61,628

data8 1,000 1,650 240 61,628

K40 GPU. We use the -O3 and -DNDEBUG options to compile the

program. We also turn on the auto-vectorization during the compila-

tion. We generate 8 diverse seismic datasets with detailed properties

shown in Table 1. In general, the number of CDPs (ncdps) is propor-

tional to the size of the dataset. Our synthesized datasets contain

the number of CDPs ranging from 61,628 to 2,648,430. For a single

CDP, the f old describes the number of traces contained in a CDP,

the ns describes the number of samples in each trace, and the dt
determines the number of data per random data access. Since there

are no public seismic datasets available, our datasets are synthesized

with diverse properties that we believe to be representative. �e

performance metric used in the evaluation is semblance trace/s ,
which equals to the number of intersections produced by all sem-

blance calculations divided by the total execution time.

In the �eld of seismic processing, single precision �oating point

is accurate enough to derive valid results [9]. Hence, all evaluation

results presented in this paper are in single precision �oating point.

In order to verify whether our approach a�ects the accuracy of

CMP and CRS method, we provide the relative error of the results

compared to the executions on CPU. In addition, we compare the

relative error of our optimized parallel implementations on CPEs,

the sequential implementations on MPE as well as the parallel im-

plementations on GPU. Since the trend of the relative error is almost

the same between CMP and CRS method, we only provide the rel-

ative error of CRS in Table 2. It is clear that the relative error of

CRS running on Sunway is much smaller compared to running on

GPU. In addition, the relative error of the parallel implementation

on CPEs is almost the same compared to the sequential implemen-

tation on MPE. �is demonstrates our approach hardly a�ects the

accuracy of the CMP and CRS method.

4.2 Single Node Evaluation
�e performance comparison of the CMP and CRS implementa-

tions on one Sunway processor, dual CPU and GPU K40 is shown

in Figure 11. We scale down the ncdps of all datasets in Table 1

to 8 in order to �t the resources on a single node across all archi-

tectures. �e performance on dual CPU is chosen as the baseline.

We also show the performance impact a�er applying our optimiza-

tion techniques such as so�ware cache, calculation re-design and

vectorization (simd). As shown in Figure 11, the naive implementa-

tions on Sunway are limited by the memory bandwidth and cannot

fully utilize the computation power of CPEs. It is also clear that

our optimization techniques are quite e�ective to mitigate random

memory accesses as well as exploit the vectorization for improving
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Table 2: �e relative error of parallel implementation on
GPU, sequential implementation on MPE and parallel im-
plementation on CPEs of CRS method compared to CPU.

Seismic Dataset GPU SeqMPE ParaCPEs
data1 5.88e-02 3.29e-05 3.29e-05

data2 7.44e-02 2.79e-05 2.79e-05

data3 7.42e-02 1.22e-04 1.22e-04

data4 7.76e-02 1.35e-04 1.35e-04

data5 3.31e-02 1.43e-04 7.81e-03

data6 4.40e-02 7.81e-03 7.81e-03

data7 3.34e-02 6.7e-310 6.9e-310

data8 5.24e-02 7.81e-03 7.81e-03

the performance of seismic processing on Sunway. A�er apply-

ing all our optimization techniques on Sunway, the CMP and CRS

method achieves 3.50× and 3.01× speedup on average respectively

across all datasets compared to the baseline. We notice that the

CMP method achieves be�er performance in all eight datasets com-

pared to GPU, whereas the CRS method is slightly worse than GPU

on three datasets (data2, data3 and data4). �is is mainly due to

the limited memory bandwidth of Sunway processor (90.4GB/s),

whereas the memory bandwidth of GPU K40 is higher by an order

of magnitude (288GB/s).

4.3 Roo�ine Model Analysis
We use the roo�ine model analysis to be�er understand the perfor-

mance impact of our proposed optimization techniques on Sunway.

Due to the similar computation pa�ern between CRS and CMP, we

only provide the roo�ine model analysis of CRS for conciseness.

We analyze the performance results of CRS implementation on

data1 dataset. Other evaluation results show the similar tendency.

As shown in Figure 12, the operational intensity of the original

program is 1.52 FLOPS/byte. In addition, the roo�ine model of a

Sunway CG reveals that in order to fully utilize its performance,

33.84FLOPS calculations should be performed when accessing one

byte data in memory. As shown in Figure 12, a�er applying our

so�ware cache, the operational intensity is doubled due to the data

access by di�erent intersections can be used by each other. In ad-

dition to the so�ware cache, a�er re-designing the procedure of

semblance calculation, the operational intensity I can be derived

using Equation 2. For a particular dataset, w is a constant, the size

of the tile is mainly determined by the size of the LDM, and size дet
refers to the size of the data accessed by a DMA operation on a

CPE. �e more intersections processed by a single CPE at a time,

the more data is overlapped and can be reused for la�er calculation.

�e operational intensity a�er applying the calculation re-design

increases to 16.96 FLOPS/byte. �e roo�ine model analysis demon-

strates our optimization techniques are e�ective to improve the

performance of seismic processing on Sunway.

I =
tile × (12 + 7 ×w)

size дet × 4

(2)

4.4 Scalability
We evaluate both the strong and weak scalability of the CMP

and CRS methods on Sunway. �e performance is measured by

semblance trace/s of both methods excluding the I/O time. �e size

of the datasets ranges from 336GB to 418GB. For strong scalability,

the number of CGs used for seismic computation scales from 1,024

to 16,384 with the input dataset unchanged. For weak scalability,

when the number of CGs doubles, the size of the input dataset also

doubles. We use the performance when running on 1,024 CGs as the

baseline. �e evaluation results for strong scalability is shown in

Figure 13. Since the CMP method does not exchange data between

processes, it maintains good scalability in general. Whereas the

CRS method exchanges the boundary data between processes, its

scalability is poorer than CMP method in all cases.

Figure 14 shows the evaluation results of weak scalability. We

use 16,384 CGs to process the dataset with maximum size, and scale

down the size of the dataset as the number of CGs decreases. Similar

to the strong scalability experiments, the CMP method achieves

be�er scalability compared to CRS in all cases. Note that each

CG contains 65 Sunway cores, therefore the number of cores used

in the experiments ranges from 66,560 (1, 024 × 65) to 1,064,960

(16, 384× 65, more than one million Sunway cores!). �e scalability

results demonstrate our implementations of seismic processing are

capable to run in large scale on Sunway TaihuLight supercomputer.

4.5 Portability
Although the proposed optimization techniques are targeting the

Sunway TaihuLight supercomputer, these techniques are also ap-

plicable on other systems [4] that adopt the similar many-core

cache-less architecture. Speci�cally, 1) the re-design of semblance

calculation procedure increases the computing intensity of seismic

processing signi�cantly as shown in the roo�ine model analysis.

�is technique is e�ective to improve the performance of seismic

processing on systems that lack L2 cache or with limited L2 cache;

2) the vectorization method improves the computation e�ciency

when processing the tiny data within short loops. �is technique

is necessary for seismic processing to exploit the powerful vector

units with ever-increasing width on emerging architectures (e.g.,

AVX512 on Intel KNL).

5 RELATEDWORK
5.1 Performance Optimization of Seismic

Processing
�ere has been a lot of work trying to improve the CMP method.

Silva et al. [3] evaluate the performance of the CMP method on dif-

ferent platforms. �e CMP method is implemented using the SYCL

programming model and compared with the implementations us-

ing OpenCL and OpenMP. However, the evaluated platforms have

high memory bandwidth, which dose not su�er the performance

problem on Sunway due to the limited memory bandwidth. Zeng

et al. [24] explore a di�erent signal-to-noise ratio optimizer with

the time-frequency domain-phase weighted stacking. �ey imple-

ment their method using the FFTW C library and the cuFFT CUDA

library with signi�cant performance improvement. However, these

high performance CUDA libraries do not exist on the emerging
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Figure 11: �e performance comparison of the CMP and CRS implementations on one Sunway processor, dual CPU and GPU
K40. �e speedup on the y axis is normalized to the baseline performance on CPU.
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architectures such as Sunway. Lawrens et al. [12] analyze the char-

acteristics of the CRS algorithm and applies the NUMA parallel

computation scheme to optimize the CRS-Stack computation. Due

to the unique architecture design of Sunway processor, existing

optimization techniques of seismic processing are di�cult to di-

rectly apply to Sunway. �e above reasons motivate our work to

re-design and optimize the CMP and CRS method to adapt to the

Sunway architecture, so that they can fully exploit the massive

computation power of Sunway TaihuLight.

5.2 Performance Optimization on Sunway
A large number of applications have been optimized on Sunway

Taihulight supercomputer. Duan et al. [5] have realized large-scale

simulation of molecular dynamics, which fully exploits the archi-

tecture advantages of Sunway with the design of complex so�ware

cache. �ere are also research works devoted to optimize of the

computation kernels on Sunway. For instance, Liu et al. [16] im-

plement the e�cient Sparse Matrix-Vector Multiplication (SpMV)

on Sunway, which uses register communication to implement a

complex communication mechanism, and thus achieves e�cient

mapping of SpMV algorithm to the hardware resources. Li et al. [14]

implement an e�cient multi-role based SpTRSV algorithm on Sun-

way. It leverages the unique register communication mechanism to

address memory bandwidth limitations. Chen et al. [2] re-design

the earthquake simulation algorithm to reduce memory access costs

tailored for the heterogeneous many-core architecture of Sunway.

All the above optimization works on Sunway have inspired our re-

design and optimization techniques for the CMP and CRS method

on Sunway. To the best of our knowledge, this paper is the �rst

work to implement large-scale seismic data processing on the Sun-

way TaihuLight supercomputer with highly optimized CMP and

CRS implementations targeting the Sunway architecture.

6 CONCLUSION
In this paper, we propose e�cient implementations of seismic pro-

cessing using both the CMP and CRS methods on the Sunway

TaihuLight supercomputer for massively scaling. Speci�cally, we

propose a so�ware cache to alleviate the random memory accesses

during the computation. We re-design the semblance calculation

procedure to improve the bandwidth utilization by combining the

search processes and bu�ering the intermediate results on each

CPE. Moreover, we propose a vectorization method to improve

the computation e�ciency when processing tiny data within short

loops. �e experimental results show that our implementations of

the CMP and CRS method on one Sunway processor achieve 3.50×
10
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Figure 13: Strong scalability for both CMP and CRS methods on Sunway. �e x axis indicates the number of Sunway CGs, and
the y axis indicates the performance in terms of giga-semblance-trace/sec (log scaled).
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Figure 14: Weak scalability for both CMP and CRS methods on Sunway. �e x axis indicates the number of Sunway CGs, the
y axis indicates the performance in terms of giga-semblance-trace/sec (log scaled).

and 3.01× speedup on average respectively than the-state-of-the-art

implementations on CPU. Moreover, our approach is able to scale

to more than one million Sunway cores with good scalability.
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re�ection-surface stack: Image and a�ributes. Geophysics 66, 1 (2001), 97–109.

[11] Ahmad Lashgar and Amirali Baniasadi. 2016. Openacc cache directive: Oppor-

tunities and optimizations. In 2016 �ird Workshop on Accelerator Programming
Using Directives (WACCPD). IEEE, 46–56.

[12] Fernando Lawrens, Aditya Jiwandono, and Rachmat Sule. 2015. Implementation

of non uniform memory address (NUMA) parallel computation in order to speed

up the common re�ection surface (CRS) stack optimization process. In Proceedings
of the 12th SEGJ International Symposium, Tokyo, Japan, 18-20 November 2015.

Society of Exploration Geophysicists and Society of Exploration �, 48–51.

[13] Liandeng Li, Jiarui Fang, Haohuan Fu, Jinlei Jiang, Wenlai Zhao, Conghui He, Xin

You, and Guangwen Yang. 2018. swCa�e: A Parallel Framework for Accelerating

Deep Learning Applications on Sunway TaihuLight. In 2018 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 413–422.

[14] Mingzhen Li, Yi Liu, Hailong Yang, Zhongzhi Luan, and Depei Qian. 2018. Multi-

role SpTRSV on Sunway Many-Core Architecture. In 20th IEEE International
Conference on High Performance Computing and Communications; 16th IEEE
International Conference on Smart City; 4th IEEE International Conference on Data
Science and Systems, HPCC/SmartCity/DSS 2018, Exeter, United Kingdom, June
28-30, 2018. 594–601. h�ps://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00109

[15] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wenguang Chen,

Lufei Zhang, Torsten Hoe�er, Xiaosong Ma, Xin Liu, et al. 2018. ShenTu: pro-

cessing multi-trillion edge graphs on millions of cores in seconds. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage, and Analysis. IEEE Press, 56.

[16] Changxi Liu, Biwei Xie, Xin Liu, Wei Xue, Hailong Yang, and Xu Liu. 2018.

Towards e�cient spmv on sunway manycore architectures. In Proceedings of the
2018 International Conference on Supercomputing. ACM, 363–373.

[17] P Marche�i, D Oriato, O Pell, AM Cristini, and D �eis. 2010. Fast 3D ZO

CRS Stack–An FPGA Implementation of an Optimization Based on the Simul-

taneous Estimate of Eight Parameters. In 72nd EAGE Conference and Exhibition
incorporating SPE EUROPEC 2010.

[18] Paolo Marche�i, Alessandro Prandi, Bruno Stefanizzi, Herve Chevanne, Ernesto

Bonomi, and Antonio Cristini. 2011. OpenCL implementation of the 3D CRS

optimization algorithm. In SEG Technical Program Expanded Abstracts 2011.

Society of Exploration Geophysicists, 3475–3479.

[19] Yao Ni and Kai Yang. 2012. A GPU Based 3D Common Re�ection Surface Stack

Algorithm with the Output Imaging Scheme (3D-CRS-OIS). In SEG Technical
Program Expanded Abstracts 2012. Society of Exploration Geophysicists, 1–5.

[20] Richard O�olini and Jon F Claerbout. 1984. �e migration of common midpoint

slant stacks. Geophysics 49, 3 (1984), 237–249.

[21] Zhigeng Xu, James Lin, and Satoshi Matsuoka. 2017. Benchmarking sw26010

many-core processor. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 743–752.

[22] Chao Yang, Wei Xue, Haohuan Fu, Hongtao You, Xinliang Wang, Yulong Ao,

Fangfang Liu, Lin Gan, Ping Xu, Lanning Wang, et al. 2016. 10M-core scalable

fully-implicit solver for nonhydrostatic atmospheric dynamics. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 6.
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