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Simplified Workflow Simulation on Clouds based
on Computation and Communication Noisiness

1

Roland Matha", Sasko Ristov”, Thomas Fahringer”, Member, IEEE,
and Radu Prodan™, Member, IEEE

Abstract—Many researchers rely on simulations to analyze and validate their researched methods on Cloud infrastructures. However,
determining relevant simulation parameters and correctly instantiating them to match the real Cloud performance is a difficult and

costly operation, as minor configuration changes can easily generate an unreliable inaccurate simulation result. Using legacy values
experimentally determined by other researchers can reduce the configuration costs, but is still inaccurate as the underlying public Clouds
and the number of active tenants are highly different and dynamic in time. To overcome these deficiencies, we propose a novel model that
simulates the dynamic Cloud performance by introducing noise in the computation and communication tasks, determined by a small set of
runtime execution data. Although the estimating method is apparently costly, a comprehensive sensitivity analysis shows that the
configuration parameters determined for a certain simulation setup can be used for other simulations too, thereby reducing the tuning cost
by up to 82.46 percent, while declining the simulation accuracy by only 1.98 percent on average. Extensive evaluation also shows that our
novel model outperforms other state-of-the-art dynamic Cloud simulation models, leading up to 22 percent lower makespan inaccuracy.

Index Terms—Cloud computing, simulation, workflow applications, burstable instances, performance instability and noisiness
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INTRODUCTION

0 address complex research problems such as capacity
Tplanning, resource management and scheduling in Cloud
data centers, researchers typically rely on Cloud simulators
that allow faster, more flexible and more efficient coverage
of search space parameter configurations without costly
real deployment and execution. Unfortunately, the dynamic
nature of the underlying Cloud infrastructure leads to unsta-
ble performance [1] and to high variations [2], making
accurate simulation a very hard problem. To overcome this
challenge, state-of-the-art Cloud simulators, such as Dynami-
cCloudSim [3], support dynamic Cloud setup by configuring
several parameters, which is challenging even for experi-
enced users and hampers the accuracy of the Cloud simula-
tion because of three deficiencies.

First, commercial Cloud providers neither publish nor
ensure all performance parameters related to their Clouds.
For example, Amazon does not publish to its customers all
underlying hardware details of t2 virtual machine (VM)
instances designed for general purpose use. For such instan-
ces, the exact network performance is only indicated in fuzzy
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terms, such as “low”, or even “low to moderate”. These
terms represent a set of instance type-dependent network
performance parameters, such as sustained and burst limits
or burst duration limits [4]. A similar case are the CPU
resources of the t2 instances that provide a baseline perfor-
mance, but have the ability to burst above.

Second, researchers often provide only partial data about
the used public Cloud [4]. Even worse, this explored knowl-
edge has often a short lifetime and quickly becomes out-
dated, as Cloud infrastructures evolve over time [5].

Third, although Schad et al. [6] reported several Cloud
performance parameters as unstable following a normal dis-
tribution, we revealed in [7] that naively using this normal
distribution does not provide an accurate simulation.

To overcome these deficiencies that lead to an incomplete or
inaccurate Cloud simulation setup, we introduced in previous
work [8] a simple approach to determine and configure the
Cloud performance instability by noising the task execution
times. However, many scientific applications, such as work-
flows, are data intensive and spend up to 90 percent of their
makespan on file transfers [9]. Therefore, we go in this paper a
step further by introducing a novel model that simplifies the
complex setup of the large set of dynamic configuration
parameters to two metrics modelling the Cloud task execution
time (TET) noisiness and the incoming Cloud file transfer (FT)
noisiness. Our approach estimates the Cloud performance insta-
bility through a small set of training executions, and injects the
noisiness affecting both the TET and FT times instead of
naively generating values with a normal distribution.

Similar to related work [10], [11], we limit our experiments
to workflow executions on various homogeneous VM instan-
ces, and analyze the Cloud performance instability related
to the number of provisioned instances, instance types, and
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(different and carefully selected) scientific workflows. The
restriction to homogeneous types (apart from being
realistic [3]) is the initial step towards future analysis of het-
erogeneous types. Similar to the state-of-the-art Dynami-
cCloudSim [3] simulator, we measure and analyse the pure
Cloud performance related to instance types, while excluding
additional Cloud performance instability sources related to
different heterogeneous VM instance permutations.

We evaluate our model on an extensive experimental
setup with different homogeneous VM sets, varying the
number of instances and the instance types in Amazon EC2.
We used three real-world scientific workflows with different
computation and communication ratios (low and high) and
various control- and data-flow communication patterns. We
carefully selected the size of each workflow for the instance
types and number of VMs to maximise the instability in
workflow parallel sections and of the overall makespan. The
results show that our model outperforms existing state-of-
the-art simulation models in all experiments, reporting up to
22 percent smaller makespan inaccuracy.

Estimating the TET and FT noisiness requires a large set of
experiments, which motivated our analysis of reusing their
values from other experiments affects the accuracy of the
model. A sensitivity analysis exposed that the experimental
costs can be significantly reduced by up to 82.46 percent,
while worsening the simulation inaccuracy by a negligible
1.98 percent on average. The lower inaccuracy compared to
other state-of-the-art simulations is especially emphasized
for burstable VM instances (t 2) in Amazon EC2.

The paper is organized in seven sections. Section 2 for-
mally models workflow applications and Cloud infrastruc-
tures, used in Section 3 defining the noisiness process and
model. Section 4 presents the extensive evaluation method-
ology, followed by the experimental results in Section 5.
Section 6 discusses the related work and a threat to validity.
Section 7 concludes the paper and outlines the future work.

2 WORKFLOW AND CLOUD MODELS

This section formally models the workflow and Cloud envi-
ronment used in our noisiness model.

2.1 Workflow Application Model

We model a workflow application T as a directed acyclic graph
(DAG) represented as a tuple (7, D), consisting of a set
T = U {T;} of ntasks T; and a set D of precedence dependen-
cies. Two interconnected tasks 7;,7; € T, where 1 <4,j <n,
1 # j can have a control or data dependency between each
other. The task precedence dependencies modeled as a set
D = {(T;,T;, D) |(T;, Tj) € T x T}, where (T}, T}, D;;) express
that task 7; needs to be started after task 7; finished (control
flow) and D;; bytes of data need to be transferred from 7; to
T; over the network (data flow). We assume task scheduling
as non-preemptive, i.e., tasks cannot be suspended and
resumed after being started.

The function pred : T — P(T), where P denotes the power
set, returns the set of immediate predecessors of each task
T,eT (e, T; € pred(ﬂ,)(:)(Tj,ﬂ,,Dﬁ) € D), while the func-
tion succ: T — P(T) returns the set of immediate successors
of task T; (e, T € succ(T;) < (T;,Tj, D;j) € D). Each work-
flow has a start task T, with no predecessors (ie., T; € T :
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pred(Ts) =0) and an end task T, with no successors (i.e.,
T, € T : succ(T.) = 0).

Each task 7; has a requirement vector R;, which defines its
hardware or software constraints, such as the minimum
number of virtual CPUs (vCPU), or the minimum size of
memory or storage needed for execution. We express the
computational work w; (i.e., work) of each task 7; in million of
instructions (MI), and the total incoming data sizes d; of a
task T; as d; = EVZ}Epred(Y})Dji-

Multiple entry and exist tasks, as well as staging of input
and output data, can be expressed in this simplified work-
flow model by introducing new “dummy” start and end
tasks with zero computational work.

2.2 Cloud Infrastructure Model

We represent the set of available (provisioned) VM instances
as I = |J . {I;}, where m is constant during the workflow
execution and each instance I}, is of the same homogeneous
type I7. Since our analysis explores Cloud performance
instability related to VM instance types and number of VM
instances, we use homogeneous environments to minimize
any additional performance instabilities caused by hetero-
geneous VM types. Nevertheless, in order to generalize our
model, we evaluate it with different instance types and
number of instances, as presented in Section 5.

The completion time ct(T;) of task T; is the latest comple-
tion time of all its predecessors plus the sum of its task execu-
tion time (TET) t; and incoming files transfer time (FT) f; of its
total incoming data size d;:

fi +ti, T, =Ts;
ct(Ti) = H(T, } b, T @)
Tperﬁgﬁm ct(Ty)| + fi+ti, T, 4T,

The completion time depends on the instance type and the
number of instances, and can differ even in the same envi-
ronment due to Cloud performance instability [1].

Finally, we express the workflow makespan M through the
completion time ct(T) of end task T.:

M = ct(T,). ©)

Our goal is not to optimize the makespan using a new
scheduling algorithm, but to provide an accurate simulation
of the makespan for various workflow applications using
different instance types and number in various Clouds.

3 NOISINESS MODEL

This section gives first a high-level overview of the process of
noising the TET and FT. We further model an experiment
and its test case repetitions to estimate the workflow and
Cloud performance. Then, we present our model in detail,
represented by two Cloud noisiness metrics and their corre-
sponding intermediate workflow noisiness. Finally, we pres-
ent our model for noising the overall makespan through
noising TET and FT and introduce a metric to quantify its
inaccuracy.

3.1 Noising Process

State-of-the-art simulators, such as CloudSim [12] or Groud-
Sim [13], regard the Cloud as a white box and require
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Fig. 1. Noising process of Cloud workflow simulations.

configuring a large set of parameters, which are partially
oblivious to the user, difficult to determine, or changing
over time [5]. Our novel approach differs from the state-of-
the-art simulations and aims to extract the noisiness gener-
ated from the Cloud during a workflow’s execution, and
then to inject this noise into the simulation. We therefore
aim to simulate the Cloud by determining its behavior
through a small set of execution performance data. The
main idea is to extract the Cloud performance instability
from a set of repeated workflow executions and to introduce
it as Cloud noisiness into the Cloud simulator to approxi-
mate its real behavior.

We propose a noising process with four consecutive steps,
depicted in Fig. 1. In the first step (1), we repeatedly run the
workflow on a Cloud for N times and with the same setup
(2a), as the Cloud performance is usually uncertain [14] and
changes over time [6]. Every workflow execution contains
essential information about the Cloud performance instabil-
ity and stores the results in a database (2b). The monitored
performance data is used in step (3) that extracts the Cloud
performance instability from the workflow execution traces
and determines the Cloud noisiness. The fourth step (4) sim-
ulates the workflow makespan by adding noise (7) to TET
and incoming FTs in the simulator.

3.2 Experiment and Test Case Model

We define an experiment as a triple (W, IT, m), which denotes
that a workflow W is executed on a set of m provisioned VM
instances I of type IT. For example, (BWA, t2.small,?2)
denotes that the BWA workflow is executed on two VM
instances of typet2.small.

To quantify the unstable Cloud behavior, we repeat each
experiment N times. We call each execution as test case TC,,
which represents the cth repetition of the experiment. We
denote the measured TET of task T; of the test case 7C, as t; ,
and the measured incoming FT as f; .

3.3 Workflow Noisiness Metrics

We first model the noisiness in two workflow executions
(test cases). For this, we introduce the relative TET difference
peq(t;) and the relative FT difference p.q(f;) of the task T; € T
for two test cases TC, and TC; of the same experiment using
a common scaling function max:

| fic = fidl
max (f’z',ca fi,d) '

Using the relative TET difference p.4(t;) and the relative FT
difference p,,( f;) for each task 7;, we determine the instability

ti(t_tid|
Pealti) = ————~
eil ) max (ti, tia)
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or workflow noisiness of workflow W for two test cases 7C, and
TC; of the same experiment. Both deviations introduce the
workflow TET noisiness ZTETM and the workflow FT noisiness
Apr .. metrics:

1

ATET cd =
n

n . 1 &
1=1 i=1

n

Both wgrkﬂow TET noisiness Arpr .y and workflow FT
noisiness Ay .4 metrics quantify the average noisiness of
two repetitions of all n tasks of a single workflow W.

3.4 Cloud Noisiness Metrics
As both workflow noisiness metrics show the instability in
workflow TET and FT for two different test cases, we need to
define a metric for the Cloud environment instability deter-
mined by all test cases of a single experiment (i.e., by each
pair of N repeated test cases). Thus, we introduce the Cloud
noisiness as the mean workflow noisiness of a set of test cases
for an experiment. Analogue to the two workflow noisiness
metrics, we introduce two Cloud noisiness metrics, one for
the TET and one for FT.

We define the Cloud TET noisiness Appr as the average
workflow TET noisiness Argr..q of each pair 7C,. and TC,
from the set of IV test cases of the same experiment:

. 1
Aer =y DL

2 Ve, d|1<e <d<N

ATET cd- (5)

Similarly, the Cloud FT noisiness Apr is the average work-
flow FT noisiness Ay q of each pair of test cases 7C. and
TC, from the set of N test cases of the same experiment:

1
N-(N-1)

AFT,(:(I- (6)
Ve, d|1<e <d<N

Apr =

The goal is to use the TET and FT Cloud noisiness metrics,
i.e., Arpr and Ay, instead of several parameters as in other
state-of-the-art simulations [3]. The Equations (5) and (6)
capture the contribution of each test case of an experiment to
the Cloud noisiness metrics.

3.5 Noising Model

After defining both Cloud noisiness metrics, we inject them
into a simulation framework to generate the noised TET 7(t;)
and noised FT 7(f;) and simulate the noised makespan M.

3.5.1 Noised TET Model

To analyze the distribution of TET per experiment, we define
the TET’s mean value of task T;:

1 X
fi= ; tio- @)

The noised TET T(t;) of the task T is the mean TET value %;,
noised by the Cloud TET noisiness Azpr and the Gaussian
normal distribution N (0,0 (Arpr)) with the standard devia-
tion of the Cloud TET noisiness:

Ht;) = [1 + Agpr + N(o, a(KTET))} i ®)
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Similar to Bux and Leser [3], we also use a normal distri-
bution. However, we introduce two innovations in our
noised TET model. First, we shift the mean TET values by the
Cloud TET noisiness and add a normal distributed noise.
Second, as Argr depends on the average workflow TET noisi-
ness that quantifies the average noises over all tasks within a
workflow, we inject the standard deviation of G(KTET) as a
noise of shifted #;. We reported in previous research [7] the
problems of naively using the standard deviation o(%;), as
any delay in the execution time on the workflow critical path
directly affects the overall makespan. For example, the exe-
cution time #; — o(t;) may not affect the overall makespan if
the execution time of another task ¢, is ; 4+ o(¢;) and both run
in parallel. Our noised model estimates these effects and
inter-task dependencies.

3.5.2 Noised FT Model

To analyze the distribution of FT per experiment, we define
the incoming files transfer time mean value of task T;:

_ 1 X

Similar to 7(¢;), the noised FT 7( f;) of the task 7} is the mean FT
time f;, noised by the Cloud FT noisiness Ay and the normal
distribution with the standard deviation of the Cloud FT
noisiness N (0, o(Arr)):

() = [1+ 8+ N(0,0@m))] - T (10)
3.5.3 Noised Makespan Model M

We use the noised TET 7(¢;) and FT 7(f;) in Equation 1 to
compute the noised completion time ct(T):

HT) = . Csz(Tp)} +3(fi) +7(t), T # T

1n

From Equations (11) and (2), we define the noised makespan M:

M = ci(T,) (12)
3.6 Noised Makespan Inaccuracy

To analyze the distribution of makespans per experiment, we
define the mean makespan:

1 &
=37’ ]V[u

where M, denotes the makespan of test case 7C),, defined in
Equation (2) for experiments in a Cloud environment and in
Equation (12) in a simulated noised environment.

To quantify the accuracy of the simulations, we define
the inaccuracy metric § € [0,100%) as the relative difference
of the simulated mean makespan M gjmuiareq to the true measured
mean makespan M Measureq i a0 experiment:

(13)

M vieasure: - ML i"LU ateda
5= | Measured Simulat l|.100. (14)

M Measured
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Fig. 2. Schematic structure of the experimental workflows (solid lines
show the control flow, dotted lines the data flows, and dashed rectangles
the parallel sections size).

4 TESTING METHODOLOGY

We present in this section the reproducible testing methodol-
ogy for evaluating our noisiness model from Section 3. The
methodology covers three types of workflow applications
with high and low computation and communication ratios
(Section 4.1), executed in Amazon EC2 Cloud with various
types and number of VM instances that generalise our find-
ings. Our methodology not only maximises the testbed diver-
sity (Section 4.2), but also maximises the makespan instability
by rigorous selection of amount and types of VMs in each
experiment (Section 4.3). We also compare our model with
the most common state-of-the-art simulation approaches
(Section 4.4).

4.1 Workflow Applications

We carefully selected three scientific workflows with signifi-
cantly different characteristics (evenly, high and low compu-
tation versus communication load) and sources of instability,
as described in the following sections.

4.1.1 Montage

Montage [15] is a well known astronomy application, which
assembles flexible image transport system images into cus-
tom mosaics of the sky. Montage is used in many scientific
researches due to its complex structure [3], [16], [17], sche-
matically depicted in Fig. 2a. To simplify the presentation of
this complex workflow, Table 1 defines several task name
abbreviations. Montage consists of two branches after tasks
a and d, and three parallel sections. The first parallel section
consists of a single task b and multiple instances of a task c,
whose number is determined by the input parameter. The
second parallel section has two branches: one is a sequence
of a task e and a parallel section of multiple instances of a
task g, while the other comprises a single task £. The third
parallel section consists of multiple instances of the same
task h. Every instance of the task ¢ downloads a single image
from an online archive and re-projects it, while instances of
task g apply corrections to multiple images from instances of
task ¢ according to the correction table determined by the
task e. Finally, multiple instances of a task h perform a coad-
dition of images belonging to a tile of the final mosaic,
shrunk by a predefined factor. The data flow mostly follows
the control flow, such that each successor task waits not only
for the control flow, but also for the data from its predeces-
sors. The only exception are instances of task g, which
receive files from the instances of task c, apart from input
data from the predecessor task e.
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TABLE 1
Total Incoming Data Sizes d; in each Montage,
Wien2k, and BWA Workflow Task
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TABLE 2
Montage, Wien2k, and BWA diversity: A Parallel Section has
Tasks of Same (Hom.) or Different (Het.) Types

Montage Wien2k BWA

D Task d; [MB] Task d; [MB] Task d; [MB]
a RetrieveImageList 0.0 lapw0 1.14 index 204.58
b CalculateOverlaps 0.003 lapwl 1.06 splitl 204.58
c DownloadAndProject 0.005 kpoints 0.28 split2 204.58
el CalcDiffFitMulti 14343  lapw2 1.77 bwa  380.75
e CalcBackgroundModel 0.015 last 49.09 concat 485.18
£ CalcTiles 0.003

g BgCorrectionMulti 143.43

h AddAndshrink 143.44

i AddTiles 38.74

There are many sources of TET and FT makespan insta-
bility in Montage. The former is mainly affected by the
instability of the task a, the parallel section of tasks c, the
task d, the task e, the parallel section of tasks g, the parallel
section of tasks h and the task i. The makespan instability is
not directly affected by tasks b and £, since their TETs and
FTs are lower than the other concurrent branches (tasks c, e
and g). Another source of makespan instability is due to the
FTs between the same computational tasks, and the FTs
between tasks ¢ and g.

4.1.2 Wien2k

The Wien2k workflow [18] uses a full-potential Linearized
Augmented Plane Wave (LAPW) approach for the computa-
tion of crystalline solids. The workflow structure consists of
two parallel sections (Lapwl and lapw2) of the same size
with three synchronization tasks (lapw0, kpoints, and
last) in between, as depicted in Fig. 2b. Similar to Montage,
the data flow follows the control flow for all tasks. Addition-
ally, the input of task kpoints is also transferred as an input
to task last. The size of parallel sections is defined by an
input parameter.

Although the structure of Wien2k is simpler than Mon-
tage, its makespan is still affected by instability in all TET
and, therefore, by all FT too. Wien2k conducts a higher com-
putation versus communication load than to Montage.

4.1.3 BWA

The Burroughs-Wheeler Alignment tool (BWA) [19] is a
genomics analysis workflow, which maps low-divergent
sequences against a large reference genome, such as the
human genome. BWA has a specific structure starting with
three parallel tasks (index, splitl and split2), followed
by a parallel section of multiple instances of a task bwa, and
a final task concat, as depicted in Fig. 2c. The first three
tasks load one input file each (i.e., I0, I2 as databases for
comparison and Il as sequences to test), and produce a set
of output files scattered among the parallel section of multi-
ple instances of task bwa. Finally, the concat task merges
all output files from all instances of task bwa into a single file.
Similar to the other workflows, the data flow follows the con-
trol flow, except the input file in task index scattered to each
bwa task of the parallel section.

Although BWA has a simple structure too, its makespan
is affected by the TET of each task, as well as by each FT. As

Characteristic Montage Wien2k BWA
Communication vs. computation ~ < >
No. of start tasks 1 3
Structure No. of parallel sections 3 2
Parallel section sizes 19,11,4 44,44 3,19
Parallel section types Het. Hom. Het. / Hom.
Data flow FOHOW-S control flow mainly .
Exceptions ctog lapwltolast I1toindex

opposed to Wien2k, this workflow generates a higher com-
munication versus computation load.

4.2 Workflow Diversity

We carefully selected the three workflows (Montage,
Wien2k and BWA) with different structures, computation
and communication loads, to maximise the testbed diversity
and generalise our findings. We rigorously selected specific
input parameters, which determine the size of the parallel
sections and FTs between the tasks. According to our previ-
ous research [7], the parallel section size has negligible
impact on the makespan instability. We also configured the
input parameters for the three workflows according to their
performance using two t2 . small instances, such that their
makespans are of approximately 10min.

Table 2 shows that all three workflows have specific com-
munication and computation characteristics, different struc-
tures, and data flows. For instance, Wien2k has lower
communication than computation load transferring only a
few MB between tasks. In contrast, Montage is a more commu-
nication intensive workflow that transfers up to 143.44 MB,
while BWA transfers up to 485.18 MB. Table 1 details the total
incoming data sizes d; in MB transferred to the VM instance
executing task 7; for all three workflows. For example, the
task 1ast of Wien2k collects its required data from all 1apwl
and lapw2 tasks, totalling 49.09 MB. Besides the different
data sizes, the workflows differ in the number of transferred
files. More precisely, Wien2k transfers many smaller files com-
pared to Montage and BWA.

4.3 Experimental Testbed

We carefully selected an extensive Cloud experimental
setup and VM instances with different features to general-
ise our noising model evaluation. To maximise the perfor-
mance instability, we chose the number of VM instances
multiplied by the corresponding number of vCPUs smaller
than the size of the largest parallel section in each work-
flow. This ensures that some of the parallel tasks need to
be serialised during execution, increasing their perfor-
mance instability.

We used the public Amazon EC2 Cloud in Table 3 with
two instance families: (i) burstable general purpose t2 with
unstable network, computing and I/O performance, and (ii)
compute-optimised c5 with stable compute performance, ded-
icated elastic block storage and high network bandwidth up
to 10 Gbps. We used three t 2 instance types (i.e., t2.small
with 1 vCPU, t2.medium with 2 vCPUs, and t2.xlarge
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TABLE 3
Experimental Amazon EC2 Cloud Instance Types

Instance type ~ Performance  Baseline [%] — vCPU  Memory [GiB]  Storage [GiB] Network Physical processor Clock [GHz]
t2.small burstable 20 1 2 EBS-Only low to moderate Intel Xeon family <33
t2.medium burstable 40 2 4

t2.xlarge burstable 90 4 16 moderate <3.0
c5.large stable NA 2 4 <10 Gbps Intel Xeon Platinum <35

with 4 vCPUs), and one compute optimised instance type
c5.1large with 2 vCPUs. We selected these instance fami-
lies to evaluate our model for highly unstable performance,
and stable computation with limited communication perfor-
mance. For example, t2 instances provide variable elastic
compute unit (ECU) performance, while c¢5.large con-
stantly provide 9 ECU." We started from t2.small and
avoided t2.micro free for Amazon EC2 users in the first
year, possibly biasing the results. To avoid sequential work-
flow executions on t2.small instances, we started all
experiments of each family with two instances. Using hori-
zontal scaling, the number of instances varies between two
(21, three, four (22) and eight (2%) in each experiment. For
t2.xlarge instances, we omit experiments with eight
instances to avoid expensive idle instances, as 19 parallel
bwa tasks and 18 parallel ¢ tasks can only be inefficiently
scattered among 8 - 4 = 32 vCPUs. Since the maximum size
of the parallel section for each workflow varies from 19 for
Montage, to 18 for BWA and 44 for Wien2k, we run each
experiment with maximum 16 cores to have at least one par-
allel section with less vCPUs than its size, thereby maximis-
ing the makespan instability.

We used the US East Amazon EC2 region with two
default Linux images, ami-lecae776 for the burstable t2
instances and ami-14c5486b for the compute-optimised
c5 instances, as they include AWS command line tools,
Python, Ruby, Perl, and Java packages. We executed and
monitored all workflows using the ASKALON execution
engine [20]. We ran 20 test cases of each experiment, accord-
ing to the sensitivity analysis from our previous work on
the minimum number of repetitions required for an accu-
rate simulation [7], leading to a total of 900 test cases.

4.4 Simulation Environment

We compared the Sypr/rr model with our previous work
Ster [8] (which noises TET only), the standard Dynami-
cCloudSim model Spcg with its standard heterogeneity
parameter values, and the real Cloud experimental results
(denoted as (). We implemented both Srgr and Sper/rr
models in DynamicCloudSim besides its default Spcs
model. To decouple Spcs from Srpr and Syer /ET, We deacti-
vated the dynamic characteristics of Spcg during the evalua-
tion of the other two models by setting all its dynamic
features to negligible values € (i.e., ¢ — 0 to avoid “division
by zero” exceptions). For a fair comparison, we configured
all three simulations with the same network, storage and
computation speed settings. We simulated the same experi-
ments and all test cases for each simulation model as in the
real Cloud experiments. Since we did not detect any VM

1. https:/ /aws.amazon.com/en/ec2/pricing/on-demand

failures during experiments, we configured the correspond-
ing parameters to € for Spcg too to avoid nonexistent make-
span delays, as reported by Bux and Leser [3] for Spcs. We
used the same greedy task queue workflow scheduling for
all three simulations, since it outperforms static schedulers
in performance instability for Spcs [3].

5 [EVALUATION

In this section, we present the experimental results that eval-
uate the accuracy of our nosing model. First, we draw several
important conclusions for the Cloud noisiness metrics. Sec-
ond, we present the makespan inaccuracy for each simulated
experiment and evaluate the impact of specific workflow
and Cloud resources. Third, we analyse the network perfor-
mance instability and present sensitivity analysis results,
showing that the number of test cases and experiments can
be significantly reduced in the estimating phase with negligi-
ble impact on the simulation inaccuracy. Finally, we evaluate
the scalability of our model with an enhanced number of t 2.
small instances.

5.1 Cloud Noisiness Analysis

We first analyse the correlation between the Cloud noisiness
metrics and specific workflow applications, instance types,
and number of instances. Tables 4, 5, and 6 present the Cloud
TET noisiness Argr and the Cloud FT noisiness Apr
with their corresponding standard deviations o(Arer)
and U(A pT) for the Montage, Wien2k, and BWA workflow
experiments with t2.small, t2.medium, t2.xlarge,
and c5.large VM instances. Each column presents a spe-
cific experiment denoted as the product of the number of
instances m and the abbreviation of VM type IT. For exam-
ple, 2 x TS denotes an experiment with two VM t2.small
instances, while 4 x TXL denotes an experiment with four
t2.xlarge instances.

The main observation is that the Cloud FT noisiness Apr is
higher than the Cloud TET noisiness Apr, which clarifies its
importance. This feature is more emphasised for Montage
and BWA, as they transfer larger files.

5.1.1 Montage

Table 4 presents the Cloud TET and FT noisiness metrics for
the Montage experiments. For all t2 instances with two up
to four instances, we observe a high Arpr between 0.154 and
0.206. An exception are the Aggr values of 0.101 and 0.102 for
eight t2.small and t2.medium instances, which are bur-
stable. Another reason is the changed VM placement on eight
instances to balance the CPU use among physical machines.
The Apr value is not affected. Section 5.5 presents further
details about the scaling performance.


https://aws.amazon.com/en/ec2/pricing/on-demand
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TABLE 4
Cloud Noisiness Metrics and their Standard Deviation Values (o) for the Montage Workflow
2XTS 3XTS 4XTS 8xTS 2xTM 3XxTM 4xTM 8xTM 2xTXL 3xTXL 4xTXL 2xCL 3xCL 4xCL 8xCL
KTET 0.154 0.188 0.158 0.101 0.193 0206 0.166 0.102 0.179 0197 0.187 0212 0.195 0.227 0.185
d (Argr) 0.024 0.029 0.029 0.020 0.033 0034 0.025 0.021 0030 0031 0.028 0.033 0028 0.032 0.026
Apr 0.154 0.166 0.158 0.158 0.181 0.252 0.213 0207 0.216 0261 0.253 0229 0224 0.261 0.290
o(Apr) 0.045 0.033 0.027 0041 0.030 0.055 0.047 0.033 0.028 0.060 0.070 0.037 0.029 0.049 0.059
TABLE 5
Cloud Noisiness Metrics and their Standard Deviation (o) for the Wien2k Workflow
2XTS 3XTS 4XTS 8xTS 2xTM 3xTM 4xTM 8xTM 2xTXL 3xTXL 4xTXL 2xCL 3xCL 4xCL 8xCL
ZTET 0.092 0.121 0.171 0.089 0.124 0.151 0.169 0.132 0.174 0.188 0.192 0.146 0.192 0.216 0.184
g(ATET) 0.031 0.045 0.107 0.010 0.013 0.013 0.015 0.012 0.015 0.014 0.014 0.013 0.015 0.016 0.014
Apr 0.134 0.168 0.181 0.201 0.165 0.193 0.224 0231 0225 0232 0241 0.169 0.187 0.201 0.245
o(Apr)  0.011 0.012 0017 0.023 0014 0017 0.022 0.025 0019 0017 002 0023 0014 0.014 0.030
TABLE 6
Cloud Noisiness Metrics and their Standard Deviation (o) for the BWA Workflow
2XTS 3XTS 4xTS 8xTS 2xTM 3xTM 4xTM 8xTM 2xTXL 3XTXL 4xTXL 2xCL 3xCL 4xCL 8xCL
Argr  0.080 0.087 0.091 0.106 0.102 0.106 0.111 0.114 0.121 0.131  0.125 0.128 0.131 0.131 0.137

J(KTET) 0.0220.0200.0240.0220.0190.0210.0220.0220.0210.0280.0280.0200.0190.0190.027

For ¢5 instances, A7z remains on similar high level from
0.185 up to 0.227. The Apr values show an increasing ten-
dency with the number of instances, up to an overall maxi-
mum value of 0.290, due to the limited network bandwidth
of 10 Gbps with undefined baseline performance. Section 5.3
presents an analysis of the network performance instability
for various system setups and file sizes.

5.1.2 Wien2k

Table 5 lists the Cloud TET and FT noisiness metrics for the
Wien2k experiments. We observe a correlation between both
Cloud noisiness metrics (A7zr and Agp), and the number of
instances for each instance type. Using more VM instances
increases the Cloud noisiness metrics. Similar to Montage,
we observe two outliers for 8 x TS and 8 x TM instances,
where the Cloud noisiness A7y becomes comparably small
again, as for the corresponding 2 x TS and 2 x TM experi-
ments. This occurs because t 2 instances are burstable, or the
VM placement changes on eight instances.

We identify a further indication for the burstable VM
instance in o(A7gr), which is unstable (up to 0.107) for
t2.small, and more stable (up to 0.015) for t2.medium
and t2.xlarge instances. In contrast, J(ZFT) is more stable
regardless of the instance types, with values of up to 0.026.
As expected, the standard deviation o(Apr) slightly increases
for more VM instances, since the network communication
increases between VMs across different physical servers com-
pared to the intra-server communication. The experimental
results with ¢5 instances show similar high Arpr values as

for the t2.xlarge instances, while the Ay values follow
the t2 .mediuminstance behavior.

5.1.3 BWA

Table 6 shows the Cloud noisiness A7z and App with their
standard deviations for the BWA experiments with t2.
small, t2.medium, t2.xlarge, and c5.large VM
instances. We observe that Az slightly increases with the
number of t 2 instances, as BWA has lower computation load
and utilises the CPUs less. Additionally, the performance
peaks are small enough to be compensated by the t2 bursts.
All £2 instances show high Cloud FT noisiness A between
0.210 and 0.292, and a high standard deviation G(ZFT)
between 0.030 and 0.100. We expected such high values since
BWA utilises the network bandwidth more intensively than
Wien2k or Montage, which exhausts the burstable network
offered by the t 2 instance types.

For the compute-optimized c5.large instances, we
notice an expected stable and constant Argr. In contrast, A pp
and o (Apr) increase with the number c5. large instances,
which matches the Wien2k and Montage results. The reason
for the increased Ay and U(ZH) is the ambiguous baseline
network performance of the ¢5 instances, of “up to 10Gbps”
(see Table 3). The standard deviation U(KTET) is stable and
congruent with our observation with values of up to 0.028
over all VM instance types.

5.2 Simulation Accuracy Analysis
We analyse in this section the simulation accuracy for each
workflow and each instance type separately.

5.2.1  Workflow Simulation Accuracy

Fig. 3 depicts the mean makespan along with the standard
deviations for the three workflows. The X-axis denotes
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Fig. 3. Mean makespan and its standard deviation (left, where C denotes the Cloud) and the corresponding makespan inaccuracies § relative to the

Cloud makespan (right) for different workflows and instance types.

different experiments as the product between the number of
instances m and the VM instance type abbreviation.
Montage: We observe in Fig. 3a that Srpr)pr achieves in
almost all experiments the smallest makespan inaccuracy
from 1.73 percent up to 28.31 percent, while for eight t2.
small instances the inaccuracy has a peak of 40.40 percent.
Comparing the real Cloud makespans C for 4 x TS and
8 x TS, doubling the number of instances improves the
makespan by only 15s and the speedup stagnates due to the
FT times of the g tasks. While the FT times of other the Mon-
tage tasks are negligibly affected by the number of instances,
the FT time of g tasks is 17 s slower for 8 x TS than for4 x TS
and almost double compared to 2 x TS. We explain this
through the limited network bandwidth of TS instances,
neglected by all simulation models that simulate higher
bandwidth per VM and consequently, lower overall average
makespan. The S7xr model obtains values from 3.74 percent
up to 45.52 percent and Spcs from 4.98 percent even up to
50.84 percent. Especially for experiments with c¢5.large
instances, Srpr/rr shows reduced makespan inaccuracy
between 1.73 and 16.98 percent. Comparing the differences
in inaccuracies per experiment, we notice that Srgr,pr has
between 4.71 percent (i.e., 8.45% — 3.74%) and 17.56 percent
smaller makespan inaccuracy than Srgr, and between 3.46
and 22.81 percent lower inaccuracy than Spcs. The only

experiment where Srer, pr reported higher but still compara-
ble simulation inaccuracy is for 2 x TM explained by the
incoming FTs of the g tasks, which are on average at least 10s
faster for 2 x TM than for a higher number of TM instances.
Wien2k: Fig. 3b shows that Srpr,pr exhibits in all experi-
ments the smallest makespan inaccuracy between 2.95 and
28.22 percent, while Sy achieves values from 10.68 percent
up to 36.29 percent, and Spcg from 11.29 percent up to 37.13
percent. Especially on c5.large instances, Srgr/pr shows
the lowest makespan inaccuracy with the lowest value of 2.95
percent for two instances and the highest value of 13.21 per-
cent for eight instances. This is explained by the stable com-
puting performance of ¢5 instances and the increasing in
makespan inaccuracy with Apr, as presented in Table 3b.
Comparing the differences in makespan inaccuracies per
experiment, Sppr/pr shows between 3.56 and 13.55 percent
(i.e., 26.76% — 13.21%) smaller inaccuracy than Sygr, and
between 5.95 and 15.02 percent smaller inaccuracy than Spcs.
BWA: Similar to the other two workflows, Fig. 3 ¢ confirms
that Srpr)pp obtains the smallest makespan inaccuracy for all
experiments, from negligible 0.63 percent up to 20.32 percent.
Similarly, Ster achieves from 7.47 percent up to 24.56 percent,
and Spcg from 9.36 percent even up to 31.25 percent.
Especially for experiments with t2.small and t2.medium
instances, Sty rr reduced the makespan inaccuracy to almost
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negligible values between 0.85 and 2.69 percent for t 2. small,
and between 0.63 and 3.08 percent for t2.medium. Compar-
ing the inaccuracy per experiment, Sypr/rr has between
2.63% — 10.37% lower makespan inaccuracy than Spgr, and
between 6.24% — 15.15% lower inaccuracy than Spcs.

Summary: Since Srgr,/pr introduces communication noise
besides computation, it is more accurate than Srgr by 7.02
percent for BWA, 8.46 percent for Wien2k, and 9.23 percent
for Montage workflows. Although it generates high instability
in networking, Sppr/ pr achieved the highest improvement for
Montage, explained by the incoming FTs of the g tasks. Intro-
ducing the instability in simulated FT improves the simula-
tion accuracy. Section 5.3 elaborates in detail how various file
sizes and instance types affect the network performance. We
can also correlate the accuracy of Sygr/rr with the specific
workflow characteristics and instance types. While Srzr) pr is
evenly accurate for Montage across all instance types, it gener-
ates higher accuracy for Wien2k (with higher computation) on
c5.large instances (compute optimised) and for BWA (with
higher communication) on t 2 instances (computing unstable,
assigning only fraction of the cycles to a VM).

5.2.2 Instance Type Simulation Accuracy

In this section, we analyse the impact of Cloud instance types
on simulation inaccuracy. For t2.small instances, we
observe that Sypr/pr achieves values between 6.16 percent
(2 x TS) and 19.21 percent (8 x TS), Sypr between 12.15 and
25.68 percent, and Spcs between 13.52 and 31.20 percent. Our
Ster/rr model shows an average inaccuracy of 10.76 percent,
which is 6.60 percent more accurate than Srgr, and 10.87 per-
cent better than Spcg. We obtained similar inaccuracies for
t2.medium instances as for £2.small, with values from
6.08 percent (2 x TM) up to 18.40 percent (8 x TM) for Srer/rr,
compared to 9.96% — 26.78% for Sypp, and 12.50% — 25.74%
for Spcs. The average inaccuracies are also similar, 10.85 per-
cent for SrgryFr, which is 7.87 percent less than Srpr, and
10.20 percent less inaccurate than Spcs, explained by their
similar properties (see Table 3). For experiments with t2.
xlarge instances, all three models achieve higher inaccuracy
between 8.99 percent (2 x TXL) and 21.72 percent (4 x TXL) for
Ster/rr, between 18.60 and 29.52 percent for Srpr, and
between 24.07 and 30.98 percent for Spcs. The average inaccu-
racy for Sygr/pr is 15.23 percent, which is 9.78 percent better
than Srgr and 12.55 percent better than Spcg. For the c5.
large experiments, Sypr/pr Obtains inaccuracies between
6.18 percent (2 x CL) and 16.84 percent (8 x CL), compared to
14.12% — 27.54% for Ster, and 14.57% — 27.46% for Spcg. The
average makespan inaccuracy of Ster/rr 18 11.34 percent,
which is 9.07 percent better than S7zr and 10.58 percent better
than S DCS-

We conclude that Sypr/pr is more accurate among all
instance types. Comparing the average makespan inaccura-
cies per instance type independent from the number of
instances and models, t2.small and t2.medium report
the smallest and similar average inaccuracies, shortly before
c5.large and followed by t2.xlarge. All simulation
models generate the highest inaccuracy for t2.xlarge
because it has the highest number of vCPUs (four). The
first-come-first-served scheduling policy used does not aim
to minimise the traffic between VMs, which generates a
higher instability in experiments with the higher number of
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Fig. 4. Average FT throughput per instance type for Montage, Wien2k,
and BWA workflows.

instances comprising more vCPUs. We achieved the lowest
inaccuracy for 2 x TS, and the highest inaccuracy for 4 x TS.

5.3 Network Performance Variability

We observe in Fig. 3 that the simulation models underesti-
mate the Cloud makespan in almost all experiments. We
identify two reasons for this behavior: the performance vari-
ability of Cloud networking and improper simulation sup-
port in DynamicCloudSim for network variability.

5.3.1 Cloud Network Variability

To analyse the network variability in real Clouds, we mea-
sured the throughput for the tasks in Table 1. Fig. 4 shows
the dispersed average throughput for each instance type and
total incoming data sizes d; (introduced in Section 2.1) larger
than 2 MB, affected by: (i) the incoming data sizes, (ii) the net-
work bandwidth for a specific instance type, and (iii) the
number of instances associated to tasks and VM schedules.

Impact of the incoming data size: Fig. 4 shows three impor-
tant observations considering the incoming data size d;. First,
each instance type achieves different average throughput
when transferring data of different size to a successor task. For
example, c¢5 . large reported the highest discrepancy for the
average throughput, starting from 11.2 Mbps for a data size of
49.09 MB (Wien2k), up to 696.6 Mbps for transferring 485.18
MB (BWA). Second, each instance type achieves different aver-
age throughput when transferring the same incoming data
size d;. For example, Montage transfers 143.4 MB in 36 x 4 MB
files to one (d), nine (g), and four (h) tasks with a throughput
of 74 Mbps to 99 Mbps, 21 Mbps to 43 Mbps, respectively 30
Mbps to 51 Mbps. Finally, we do not identify any file size
related pattern. For example, the TS instances show an aver-
age throughput of 84.1 Mbps for 38.74 MB, 11.6 Mbps for
49.09 MB, while 111.9 Mbps for 380.75 MB (again high).

We conclude that the Cloud offers a variable throughput
for a VM instance. The FT time is not a simple linear func-
tion of the data size d;, but various (even the same) data gen-
erate different throughput depending both on the total size
and number of files.

Impact of the instance type: Fig. 4 shows that instance types
do not follow their declared network performance for the
same incoming data size. For example, in almost all experi-
ments, t2 instances do not follow their network performance
definitions, i.e., TXL should achieve higher throughput than
TM and TS. But, only for FTs of 485.18 MB (19 x 25.5 MB to
one task), we detect TXL instances being the fastest, followed
by TM and TS instances. In contrast, c5.large instances
achieve in almost all experiments the highest throughput as
they are equipped with 10 Gbps network interface cards. How-
ever, even if AWS declares the lowest network bandwidth
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Fig. 5. Average throughput per number of t2 instances for Montage and
BWA workflows for various incoming data size d;. The dashed horizontal
lines show the bandwidth per instance type configured in DynamicCloudSim.

with “low to moderate” for TS instances, TS achieved even the
maximum throughput of 43 Mbps among all instance types
for incoming file transfers of Montage’s g tasks.

We conclude, that the specification about the network is
unreliable and its performance does not follow the instance
type specification. Moreover, instance types specified with
smaller network bandwidth (TS) could achieve higher
throughput than more powerful instances (e.g., TXL or CL),
even for the same incoming data size.

Impact of the number of instances: Besides incoming
data size and instance type, we analyze in Fig. 5 the impact
of the number of instances on the throughput for the Mon-
tage and BWA communication intensive workflows.

First, we observe that different number of instances achieve
various network throughput for the same instance type and
workflow. For example, Fig. 5a shows that an incoming data
size of 38.74 MB with 4 x TS and 8 x TS shows similar
throughput of 90.30 Mbps to 93.44 Mbps, while 2 x TS and
3 x TS show only 75.65 Mbps to 77.9 Mbps. For the same
incoming data size, we observe another pattern for TM.
Namely, 2 x TM and 8 x TM shows almost identical through-
put with 80.08 Mbps and 79.32Mbps, while 3 x TMis the slow-
est with 63.61 Mbps and 4 x TMis the fastest with 92.86 Mbps.

Second, we observe that the same instance type, number
of instances, and workflow achieve different performance
for specific incoming data sizes. For instance in Fig. 5a,
8 x TS achieves throughput from 26.30 Mbps to 77.69 Mbps
for 143.44 MB, while in Fig. 5b, 2 x TS achieves a through-
put from 74.46 Mbps to 117.76 Mbps for 204.58 MB.

Summary: The analysis for Cloud network performance
variability reveals that various incoming data sizes generate
different throughput for experiments with same instance
type, number of instances, and task of the same workflow. As
a consequence, the network bandwidth should be individu-
ally configured for each task in each experiment. Moreover,
the Cloud network performance does not follow the instance
type specification and cannot be defined as a simple linear
function of the incoming data size. There is no pattern for net-
work performance for specific incoming data size, number of
files, instance type, number of instances and the workflow.
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5.3.2 Network Simulation Challenges

Besides the network variability, the proper network configu-
ration in a simulator is challenging due to several reasons.
First, the specifications of public Cloud providers are vague,
such as “<10 Gbps” or “low to moderated”. For example,
while ¢5. large instances in Fig. 4 provide the highest per-
formance for almost all workflows regardless of incoming
data size, their network performance is still far lower than
the specified upper limit of 10 Gbps. On the other side, the
TS instances with “low to moderate” network may outper-
form other, more powerful instances, as in the Wien2k
experiments with a file size of 49.09 MB.

Second, the network is a well-known bottleneck in Cloud
environments with a FT variation of up to 65 percent in
Amazon EC2, as reported by Jackson et al. [21].

Third, many simulators rely on flow-level or simplistic
packet-level network models to simulate FTs. Velho et al. [22]
showed a few invalidation experiments for four well-known
simulators including CloudSim and GroudSim. Based on
this, Casanova et al. [23] identified two reasons for discrepan-
cies between a simulation and real Cloud measurements
using the WorkflowSim example. First, WorflowSim uses
the simplistic network model from CloudSim that leads to
simulation bias related to FT times. Second, WorkflowSim
does not capture all relevant details of the system and the
execution. Both reasons hold for DynamicCloudSim, since
its network model is also based on CloudSim.

5.3.3 Cloud Networking Overestimation

Unfortunately, DynamicCloudSim supports the setup of only
one network bandwidth value per instance type. Following
the Cloud provider network specification, we assume that the
same instance types achieve the same or at least comparable
performance. Nevertheless, we approximated the network
performance as the average throughput of all tasks per work-
flow and instance type. We observe in Fig. 5 that our deter-
mined values are well-suited tradeoffs between the slowest
and the fastest FTs, but the throughput is sensitive to the num-
ber of instances. For instance, the configured simulation net-
work bandwidth (the dashed lines in Fig. 5) for Montage TM
instances (36 Mbps) is lower than for TS instances (43 Mbps),
while for BWA is the other way around (i.e., 250 Mbps for T™M
versus 170 Mbps for TS), as shown in Fig. 5. On the other side,
both ™ and TS have the same “low to moderate” network
specification. This means that some simulation experiments
capture slower FT due to network performance underestima-
tion, caused by a lower average simulation bandwidth config-
uration. Similarly for smaller files, we capture faster FT due to
network performance overestimation. As extreme example,
we consider the file sizes of 3 kB to 15 kB, grouped as 0 in
Fig. 5a, to show the possible effect of selecting only one trade-
off network bandwidth. For such files, the measured Cloud
throughput ranges from 5.5 Kbps to 12.8 Kbps with FT times
of 1.62 s to 17.92 s. In contrast, the approximated network per-
formance for Montage and TS is 36 Mbps, which leads to over-
estimated FT times of only 0.66 ms to 3.33 ms. The extent of
such misestimations on the overall simulated makespan
depends on the workflow structure and its critical path. For
example, Figs. 5a and 3a overestimate the average throughput
of tasks g and h of Montage on 8 x TS instances to 16.93 s and
3.27 s. Since both task types are within parallel sections, this



MATHA ET AL.: SIMPLIFIED WORKFLOW SIMULATION ON CLOUDS BASED ON COMPUTATION AND COMMUNICATION NOISINESS

A SMtg

40 I

A G2X @ 2% 2x
Shirg O Swer @ ST, 01Spwa MSLy

A T T T T T

A
[

L ) = 2
o s 8
= B o B \ \ \ \
3ATS 4K TO U TO g Ty T gt Ty 78Ty S iba ¢ CB 4 % CD gy CT
System configuration (Number of instances x instance type)

Inaccuracy [%]

| bt L

Fig. 6. Makespan inaccuracy § for Montage (Mtg), Wien2k (W2k), and
BWA by using proper (denoted as S) and exchanged (denoted as S2*)
Cloud noisiness values.

overestimation is considered twice for g tasks (9 tasks divided
by 8 x TS) and once for h tasks (4 tasks divided by 8 x TS).

In summary, although we carefully configured the net-
work performance per instance type and workflow, we still
do not achieve accurate results due to Cloud network per-
formance variations, vague specifications, and simulation
model discrepancies. We conclude that a simple VM band-
width configuration is inadequate, but this goes beyond our
current scope and will be part of the future work.

5.4 Sensitivity Analysis

To reduce the number of experiments and costs charged by
the public Cloud provider, we conduct two sensitivity anal-
yses that investigate the tradeoff in simulation accuracy by
reusing Cloud noisiness values determined in other experi-
ments: resource sensitivity and workflow sensitivity.

5.4.1 Resource Sensitivity

Resource sensitivity investigates how to conduct test cases of
one experiment with two instances of a specific type, using
the Cloud noisiness Arzr and Agr determined in other
experiments of the same workflow with more instances of
the same type.

Fig. 6 depicts the makespan inaccuracy of the Montage,
Wien2k, and BWA workflows. The simulations Sy, Spwa,
Sang use the Cloud noisiness values displayed in Tables 4, 5,
and 6. The S3j, Siy;, and S, simulations use the Cloud
noisiness of the experiments with two instances of the same
instance type. All experiments on t2.small, t2.medium,
t2.xlarge and c¢5.large instances use a Cloud noisiness
of 2 x TS, 2 x TM, 2 x TCL, respectively 2 x CL for the same
workflow. Thus, Fig. 6 omits the results on two instances of
any type. The results for Montage show that Sz, and SJZWXty
have similar inaccuracies for each experiment, starting from
inaccuracy differences of 0.44 percent for 4 x TS up to 6.59
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percent for 4 x TXL, with an average difference of 1.89 per-
cent. The results for Wien2k show that Sy, and S35, have
similar inaccuracies for each experiment, starting from inac-
curacy differences of 0.64 percent for 3 x TXL up to only 5.91
percent for 4 x TS, with an average difference of 2.67 percent.
The BWA results show even smaller inaccuracy differences
for each experiment, starting from negligible inaccuracy dif-
ferences of 0.24 percent for 8 x TM up to only 3.67 percent for
8 x CL, with an average difference of 1.37 percent. We
expected these results, as Table 6 shows similar Cloud noisi-
ness values and deviations per instance type. We also observe
that S5, leads in some experiments to smaller makespan
inaccuracy than Spa, with precisely determined Cloud nois-
iness. This occurs in experiments 3 x TM and 8 x TM, where
the inaccuracy of Sgy4 is negligible (lower than 1 percent).

This analysis shows that our model has a huge cost saving
potential of 82.46 percent due to 73.33 percent less experiments
to learn the values of Cloud noisiness metrics, while declining
the simulation inaccuracy by 1.98 percent in average.

5.4.2 Workflow Sensitivity

The workflow sensitivity investigates the increase in simula-
tion inaccuracy by using the Cloud noisiness metrics Azzr
and Apy determined in an experiment with another work-
flow on the same resources. Fig. 7 shows the makespan inac-
curacies of the Montage (Mtg), Wien2k (W2k), and BWA
(BWA) workflows, where Sy, Swar, and Spwa denote again
the simulations with the correct Cloud noisiness for the three
workflows, while S} denotes the simulation of a workflow
a with the exchanged Cloud noisiness of workflow b. For
example, Sy 2" uses the Cloud noisiness of the BWA work-
flow (i.e., Aygr = 0.114 and App = 0.227 from Table 6) for
8 x TM experiments, instead of the Wien2k one (i.e., Arpr =
0.132and Ajp = 0.231 from Table 5).

Fig. 7a depicts the makespan simulation inaccuracies of
Montage, where S7;"*" reports values from 0.06 percent for
2 x TXL up to 5.13 percent for 2 x CL, with an average dif-
ference of 238 percent. The S;,/"" shows values from
0.02 percent for 3 x TS up to 10.49 percent for 2 x CL, with
an average difference of 3.75 percent. For the Wien2k work-
flow analysed in Fig. 7b, Sj,Z" reports inaccuracies
between 0.16 percent for 3 x TS and 5.98 percent for 2 x CL,
with an average difference of only 2.19 percent. Similarly,
55,50 shows inaccuracies in the range from 0.02 percent for
2 X TXL up to4.76 percent for 2 x CL, with an average differ-
ence of 2.42 percent. We observe similar results for the BWA

workflow presented in Fig. 7c, with S5;}" 2" from 0.02 percent
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Fig. 7. Workflow sensitivity of makespan inaccuracy § for Montage (Mtg), Wien2k (W2k), and BWA using proper (denoted as S) and exchanged

(denoted as S™) Cloud noisiness values.
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for 3 x TMup to 5.77 percent for 4 x CL, with an average dif-
ference of 2.44 percent. Finally, S;%ﬁ" achieves values from
0.005 percent for 4 x TS up to 8.28 percent for 2 x CL, with
an average difference of 2.91 percent.

In summary, we expected the results with t2 instances for
the exchanged Wien2k and BWA values, since both workflows
have different computation to communication ratios, making
BWA with higher communication load more stable against
changes in Aqpr, but sensitive on changes in Apr. Wien2k,
however, exhibits the opposite behaviour. Considering the
2xTM experiments, we observe a decrease in inaccuracy for

a4 and an increase for S, 2*. Comparing the correspond-
ing values in Tables 5 and 6, we notice a positive difference of
21.56 percent for A7y, and a negative difference of 57.57 per-
cent for Agr. Consequently, the inaccuracy increases for the
BWA workflow sensitive to changes in Apr. For Wien2k, the
high difference in NS compensates the decrease in Aggr and
achieves an even lower inaccuracy. We observe similar results
for Montage with its intensive communication and complex
structure, where both 55,/7?* and 57,5 report the same aver-
age difference of 2.33 percent for t2 instances.

Overall, the experimental results for CL instance types are
different than most t2 instance types. For instance, even if
the Azpr results for CL show comparatively higher values
per workflow than TXL, the inaccuracy is sensitive to the Apr
values due to the different data communication sizes. Never-
theless, we notice that Wien2k and Montage report similarly
high Apr values, higher than BWA. Thus, the exchanged
results 5312 and S}, achieve average differences of 2.54
and 3.36 percent, respectively.

This workflow sensitivity analysis shows that our model
provides lower inaccuracy for t2 than for CL. VM instance
types for the tested workflows. Since all three workflows have
similar makespans and Amazon charges its instances on an
hourly basis, we were able to save costs, number of experi-
ments and time for using t2 instances by 66.6 percent, while
reducing simulation accuracy by 1.92 percent in average.

5.5 Scalability Analysis

To evaluate the accuracy of our model at a higher scale, we
designed a sample testbed with 64 t2.small instances and
increased the size of the parallel sections of Montage (to
36xc, 18xg, 9xh), Wien2k (to 146 x 1apwl, 146 x lapw2), and
BWA (to 99xbwa) to obtain comparable makespans of
approximately 12min (denoted as Montage-36, Wien2k-146,
and BWA-99). We selected the t2.small instances to mini-
mise the overall costs.

Fig. 8 shows the mean makespan and standard devia-
tion of the scaled workflow executions. Similar to the pre-
vious results at a lower scale, Srgy/Fr achieves the smallest
makespan inaccuracy for all three workflows between
1.19% — 9.73%, while S7gr achieves between 16.58% — 21.47%,
and Spcg between 4.68% — 26.47%. Despite the higher devia-
tion in the makespan for all three workflows, Syer/pr is
appropriate for higher scale experiments with t2.small
instances achieving even lower inaccuracy on average than
at lower scale. In contrast to our experimental results in
Section 5.2, the communication intensive workflow BWA-99
obtained the highest inaccuracy for t2.small instances,
explained this by their network bandwidth limitations. More
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for Montage-36 (M-36), Wien2k-146 (W-146), and BWA-99 (B-99) with
64 xTS.

precisely, BWA-99 transfers 364.384 MB to all 64 instances in
parallel, which causes a mean FT times of 104.78 + 47.08s.

6 DISCUSSION

This section compares our approach with other related
research, presents how its advances beyond the state-of-the-
art, and discusses a threat of its validity.

6.1 Related Work
6.1.1  Performance Instability

Public Cloud providers, such as Amazon EC2, offer different
instance types with certain computation and communication
capacity (e.g., CPU speed, network bandwidth), following a
pay-as-you-go model. Nonetheless, they omit to publish all
parameters and do not ensure them in service level agreements
(SLASs) for all instance types. Moreover, they change the Cloud
parameters over time, leading to performance instability. An
instance of the same VM type may show different performance
when executing the same task over some time period. The
causes for performance instability are manifold and originate
from different underlying hardware for similar instances [21],
CPU model of the same instance type, the hour of the day, or
the day of the week, as detected by Schad et al. [6]. Iosup
et al. [5] observed yearly and daily patterns of performance
instability, as well as periods of constant performance.

In computer workloads and natural sciences, heavy-tailed
distributions are ubiquitous. For example, Feitelson [24]
declares the distribution of process runtimes as a skewed dis-
tribution with many small elements dominated by rare large
elements. Normal distributions are rarely used in workload
modeling, because the symmetrical and short-tailed normal
distribution is inappropriate to directly match skewed
data [24]. Our work assumes task and data transfer lengths
are normally distributed [3], [25], while Schad ef al. [6] report
such times as not normally distributed. We will address the
model under this assumption in future work.

6.1.2 Cloud Simulation

A number of Grid simulators [26] have been developed in the
last decades scaling up to hundreds of thousands of heteroge-
neous machines. Many such simulators such as GroudSim [13]
have been extended for Cloud, giving researchers the oppor-
tunity to simulate scalable data centers resources (e.g., CPU,
memory, network) and application executions on top. Cloud-
Sim [12] provides large-scale Cloud simulations for schedul-
ing and resource provisioning purposes, but does not support
Cloud performance instability by default. Instead, CloudSim
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supports the configuration of various input workloads with
rather constant computation and communication VM capac-
ity. The GloudSim [27] simulator introduces partial execution
dynamics by resizing the simulated instances, but keeps the
VM performance constant over time. NetworkCloudSim [28]
extends CloudSim with a scalable network and generalized
application model, allowing a more accurate evaluation of
scheduling and resource provisioning policies for Cloud
infrastructure optimization. Nonetheless, an accurate simula-
tor configuration is challenging, as most public Cloud pro-
viders do not provide sufficient network details, while the
details of their underlying computing resources are generally
unknown.

DynamicCloudSim, developed by Bux and Leser [3] as
an extension to CloudSim, is the first significant step for-
ward in performance instability and heterogeneity simula-
tion. The heterogeneity parameters are extensive and cover
heterogeneous underlying hardware for the same VM
instance type, VM stragglers, VM failures, long and short
term fluctuations, and so on. However, the configuration of
several heterogeneity parameters is challenging and can
easily overwhelm users, as some parameters may require
hidden knowledge of the internal Cloud infrastructure. To
configure DynamicCloudSim in its evaluation, the authors
used a comprehensive set of external research results to be
performed before each simulation, as the underlying hard-
ware infrastructure continuously changes and updates.
DynamicCloudSim does not model burstable resources and,
therefore, does not offer appropriate configuration for simu-
lation. In contrast, our model does not need to model bur-
stable resources, which is an important advantagem, and
becomes even more accurate when simulating experiments
with burstable t2 VM instances.

Bux and Leser [3] also evaluated DynamicCloudSim in a
homogeneous environment with eight m1.small general
purpose instances with baseline performance and without
burstable features. In comparison, we used a more complex
testing environment comprising various compute-optimised
and general purpose burstable instances, highly unstable
due to bursting above the baseline performance. Similar
to [3] and other related works, we also used a homogeneous
environment per experiment. A heterogeneous environment
falls beyond the scope of this work.

6.1.3 Predictive Simulation

Another approach to simulating workflow execution is by
predicting TET of each task [29] based on offline machine
learning. Pham et al. [30] observed a difficulty in predicting
short TET and bandwidth dependent tasks using a two-stage
machine learning approach. Nadeem et al. [31] predicted TET
by creating a template based on several parameters, including
networking. However, they used evolutionary programming,
which is computationally intensive in a large search space.
Seneviratne and Levy [32] used linear regression to predict
several runtime parameters (i.e., CPU utilization, disk load)
and finally TET. All these works confirmed that predicting
TET is not trivial, as the Cloud performance is unstable and
varies [21]. Therefore, Cloud noisiness is a valuable metric
providing a global view of performance variability generated
by workflow and Cloud.
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6.2 Threat to Validity

There is a tradeoff for higher accuracy in our simulation
approach that requires several training repetitions to deter-
mine the workflow performance on specific Cloud resources.
Our sensitivity analysis can significantly reduce the number
of these experiments by determining the Cloud noisiness from
simulations with two VM instances only and reusing it to sim-
ulate experiments with a higher number of instances. How-
ever, these benefits are limited and can be leveraged only for
similar number of instances for the same workflow, when the
sensitivity analysis does not cause major increase in error rate.
The exchange of Cloud noisiness metrics does not hold true
for scaling both the problem and the resources sizes, which
produce a higher variation for different scheduling and
resource contention strategies. For example, we observed a
Apr of 0.434 for the scaled BWA-99 workflow, which is nearly
double compared to the lower scale BWA with t2.small
instances. Nevertheless, the additional pre-executions are neg-
ligible compared to the effort required for determining the cor-
rect values of the DynamicCloudSim parameters.

We evaluated our model for workflows running up to
10 min. A possible threat to the validity of our model are
long running workflows, whose makespans spread across
multiple hourly or daily patterns of performance instability,
as reported by losup [5] and Schad [6].

7 CONCLUSION AND FUTURE WORK

We presented a new method for simulating (reproducing) a
scientific workflow execution in a dynamic Cloud environ-
ment. Our model is the first to offer a simple and accurate sim-
ulation of burstable instances and provides more accurate
simulations than other systems such as DynamicCloudSim
supporting stable baseline performance only. In contrast to
state-of-the-art simulators, such as DynamicCloudSim that
require configuring several of parameters, our approach
needs only two metrics called Cloud TET and Cloud FT noisi-
ness, determined by executing several repetitions of a single
workflow application.

We conducted an extensive evaluation using three scien-
tific workflows with different computing and communica-
tion requirements on Amazon EC2 resources. Our model
was on average at least twice more accurate than the
state-of-the-art models, regardless of the workflow, the
instance types and the number of instances. We observed
similar results on an extended testbed with 64 t2.small
instances. However, the simulated values of the makespan
for all simulation models, including our nosining model, are
almost always below the actual values of the cloud. Our in-
depth analysis revealed that this phenomenon appears due
to the limits of DynamicCloudSim to configure all aspects of
Cloud networking variability and various workflow data-
flow dependencies with a single parameter.

Although determining the Cloud noisiness in public
Clouds is costly, the comprehensive sensitivity analysis
showed significant reduction in this overhead and in the
cost of determining the Cloud instability at both workflow
and resource levels. At the resource level, we reduced this
time by 67.80 percent by reusing the Cloud noisiness from
one experiment in another with different number of resour-
ces, thereby diminishing the costs by up to 82.46 percent
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and the number of experiments by up to 73.33 percent. The
tradeoff in this case is a negligibly lower inaccuracy of up to
1.98 percent in average. At the workflow level, we reduced
the costs to determine the Cloud noisiness for burstable
instances in public Clouds by 66.6 percent by reusing the
results of experiments with other workflows, with a negligi-
ble inaccuracy increase of 1.92 percent.

Our proposed noising model accurately simulates the
Cloud performance for homogeneous VM instances and
workflows with various communication and computation
ratios and data flows. In the future, we will generalize it
to heterogeneous VM instances and workflows with vari-
ous control flow patterns, and identify additional Cloud
and application performance instability sources that fur-
ther influence their behavior and execution. Additionally,
we will evaluate other distributions than normal (e.g.,
exponential, heavy-tailed) for long-running workflows.
Finally, we will analyse network simulation model dis-
crepancies and evaluate different VM bandwidth configu-
ration approaches.

APPENDIX A
ARTIFACT DESCRIPTION

We present the reproducibility artifact of our experimental
validation, following the template proposed by the IEEE
Transactions on Parallel and Distributed Systems journal.

A.1 Overview
Programs: DynamicCloudSim® and ASKALON?;
Compilation: see Section A.6;
Data set: see Section A.5;
Run-time environment: Eclipse IDE 2019- 034;
Hardware: see Section A.3;
Deployment and execution:
Section A.6;
e Cloud execution (see Section 4):
— Amazon EC2 instance types (us-east):
* t2.small (1 vCPU);
* t£2.medium (2 vCPUs);
* t2.xlarge (4 vCPUs);
* ¢5.large (2 vCPU);
— Total expected experimental cost on Amazon EC2
(estimated theoretically): ~ $80;
— No third-party services.

see Section A.2 and

A.2 How Delivered

We share a capsule” at the Code Ocean platform®. The capsule
provides our source code with the experimental setup, the
Cloud noisiness metric files, and the simulation workloads.

A.3 Hardware Dependencies

DynamicCloudSim and ASKALON do not have any special
hardware requirements. We executed both on an Intel Core
i7-5500U CPU@ 2 x 2.4GHz machine with 8G DDR3L
SDRAM and 256 G of SSD storage. The operating system is
Ubuntu 18.04 LTS.

2. https:/ / github.com/marcbux/dynamiccloudsim
3. http:/ /www.askalon.org

4. https:/ /www.eclipse.org
5.10.24433/C0.6447616.v1

6. https://codeocean.com/
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A.4 Software Dependencies

DynamicCloudsim and ASKALON are both written in Java
and have the following minimal software requirements.

e ASKALON requires JDK (1.7.x), and Ant (1.9.2+);
e DynamicCloudSim requires JDK (1.7.x), Maven (3.6).

A.5 Data Sets

We run the three workflows, Montage (version 6.0), Wien2k,
and BWA, with the ASKALON environment available in
gitlab”. Section 4 of the paper gives a detailed explanation of
the workflows and Table A1 lists their parameters. Table A2
shows the parameter differences to Table A1, used to scale
the workflows for the experiments with 64 t2.small
instances. We contributed all execution traces of Montage,
Wien2k, and BWA to a novel open-access workflow trace
archive (WTA®).

TABLE A1
Workflow Parameters
(a) Montage.
Name Value
SURVEY 2mass
BAND j
LOCATION mb>51
WIDTH 0.5
HEIGHT 0.5
TILESIZE 1000
MAXLENGTH 8192
ALGORITHM normal
SEQ OVERLAPS 40
SEQ_CORRECTIONS 2
(b) Wien2k.
Name Value
integerFraction 7
decimalFraction 0
startInput STARTINPUTS50.txt
fIn0 /atype/atype.in0
fInl /atype/atype.inl
fClmsum /atype/atype.clmsum
fStruct /atype/atype.struct
fIn2 /atype/atype.in2
fVspdn /atype/atype.vspdn
testvalue 1
fInc /atype/atype.inc
flnm /atype/atype.inm
overFlag true
doubleValue 9.0
experimentName sample
(c) BWA.
Name Value
input0 /inputdata/xmedium/input0
jobparams /inputdata/xmedium/job.params
inputl /inputdata/xmedium/inputl
input2 /inputdata/xmedium/input2
num_reads 5000

7. https:/ / gitlab.itec.aau.at/roland-matha/askalon-workflows.git
8. https:/ /wta.atlarge-research.com
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TABLE A2
Scaled Workflow Parameters

(a) Montage-36.

Name Value
WIDTH 0.8
HEIGHT 0.8
SEQ _OVERLAPS 200
(b) Wien2k-146.
Name Value
startInput STARTINPUT150.txt
(c) BWA-99.

Name Value
num_reads 1000

A.6 Installation Outside Code Ocean

ASKALON is free to use for research and/or educational

purposes. The source code can be requested at (http://

www.askalon.org). For our experiments, we deployed

ASKALON according to the ASKALON User Guide v.1.2°.
We downloaded DynamicCloudSim from github® and

run it without installation in Eclipse IDE 2019-03.

A.7 Experiment Workflow

The simulation experiments are executable in Code Ocean
by the run.sh script. The script compiles the source files
and runs different simulation scenarios. All simulation
results are printed on the output console. The approximated
execution time of all simulation scenarios is ~ 30 s.
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