

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/134048

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/134048
mailto:wrap@warwick.ac.uk

1

Accelerating Federated Learning via
Momentum Gradient Descent

Wei Liu, Li Chen, Yunfei Chen, Senior Member, IEEE , and Wenyi Zhang, Senior Member, IEEE

Abstract—Federated learning (FL) provides a communication-efficient approach to solve machine learning problems concerning
distributed data, without sending raw data to a central server. However, existing works on FL only utilize first-order gradient descent
(GD) and do not consider the preceding iterations to gradient update which can potentially accelerate convergence. In this paper, we
consider momentum term which relates to the last iteration. The proposed momentum federated learning (MFL) uses momentum
gradient descent (MGD) in the local update step of FL system. We establish global convergence properties of MFL and derive an upper
bound on MFL convergence rate. Comparing the upper bounds on MFL and FL convergence rate, we provide conditions in which MFL
accelerates the convergence. For different machine learning models, the convergence performance of MFL is evaluated based on
experiments with MNIST and CIFAR-10 datasets. Simulation results confirm that MFL is globally convergent and further reveal
significant convergence improvement over FL.

Index Terms—Accelerating convergence, distributed machine learning, federated learning, momentum gradient descent.

F

1 INTRODUCTION

R ECENTLY, data-intensive machine learning has been
applied in various fields, such as autonomous driving

[1], speech recognition [2], image classification [3] and dis-
ease detection [4] since this technique provides beneficial
solutions to extract the useful information hidden in data.
It now becomes a common tendency that machine-learning
systems are deploying in architectures that include ten of
thousands of processors [5]. Great amount of data is gener-
ated by various parallel and distributed physical objects.

Collecting data from edge devices to the central server
is necessary for distributed machine learning scenarios.
In the process of distributed data collection, there exist
significant challenges such as energy efficiency problems
and system latency problems. The energy efficiency of dis-
tributed data collection was considered in wireless sensor
networks (WSNs) due to limited battery capacity of sensors
[6]; In fifth-generation (5G) cellular networks, a round-trip
delay from terminals through the network back to terminals
demands much lower latencies, potentially down to 1 ms, to
facilitate human tactile to visual feedback control [7]. Thus,
the challenges of data aggregation in distributed system
urgently require communication-efficient solutions.

In order to overcome these challenges, cutting down
transmission distance and reducing the amount of uploaded
data from edge devices to the network center are two
effective ways. To reduce transmission distance, mobile
edge computing (MEC) in [8] is an emerging technique
where the computation and storage resources are pushed

• W. Liu, L. Chen and W. Zhang are with Department of Electronic
Engineering and Information Science, University of Science and Tech-
nology of China. E-mail: liuwei93@mail.ustc.edu.cn, {chenli87, weny-
izha}@ustc.edu.cn.

• Y. Chen is with the School of Engineering, University of Warwick,
Coventry CV4 7AL, U.K. E-mail: Yunfei.Chen@warwick.ac.uk.

Manuscript received 6 Oct. 2019; revised 14 Jan. 2020; accepted 15 Feb. 2020.
(Corresponding author: Li Chen.)
Recommended for acceptance by M. Parashar.

to proximity of edge devices where the local task and
data offloaded by users can be processed. In this way, the
distance of large-scale data transmission is greatly short-
ened and the latency has a significant reduction [9]. Us-
ing machine learning for the prediction of uploaded task
execution time achieves a shorter processing delay [10],
and dynamic resource scheduling was studied to optimize
resources allocation of MEC system in [11]. To reduce the
uploaded data size, model-based compression approaches,
where raw data are compressed and represented by well-
established model parameters, demonstrate significant com-
pression performance [12]. Lossy compression is also an
effective strategy to decrease the uploaded data size [13],
[14]. Compressed sensing, where the sparse data of the
edge can be efficiently sampled and reconstructed with
transmitting a much smaller data size, was applied to data
acquisition of Internet of Things (IoT) network [15]. All
the aforementioned works need to collect raw data from
individual device.

To avoid collecting raw data for machine learning in
distributed scenarios, a novel approach named Federated
Learning (FL) has emerged as a promising solution [16]. The
work in [17] provided a fundamental architecture design of
FL. Considering the growing computation capability of edge
nodes (devices), FL decentralizes the centralized machine
learning task and assigns the decomposed computing tasks
to the edge nodes where the raw data are stored and learned
at the edge nodes. After a fixed iteration interval, each edge
node transmits its learned model parameter to the central
server. This strategy can substantially decrease consumption
of communication resources and improve communication-
efficiency. To further improve the energy efficiency of FL,
an adaptive FL approach was proposed in [17], where
the aggregation frequency can be adjusted adaptively to
minimize the loss function under a fixed resource budget.
To reduce the uplink communication costs, the work in
[18] proposed structured and sketched updates method, and

2

compression techniques were adopted to reduce parameter
dimension in this work. In [19], gradient selection and
adaptive adjustment of learning rate were used for efficient
compression. For security aggregation of high-dimensional
data, the work in [20] provided a communication-efficient
approach, where the server can compute the sum of model
parameters from edge nodes without knowing the contri-
bution of each individual node. In [21], under unbalanced
resource distribution in network edge, FL with client (edge
node) selection was proposed for actively managing the
clients aggregation according to their resources condition.
In [22], non-i.i.d data distribution was studied.

However, existing FL solutions generally use gradient
descent (GD) for loss function minimization. GD is a one-
step method where the next iteration depends only on the
current gradient. Convergence rate of GD can be improved
by accounting for more preceding iterations [23]. Thus, by
introducing the last iteration, which is named momentum
term, momentum gradient descent (MGD) can accelerate
the convergence [24] [25]. Due to the improved conver-
gence of gradient methods brought by momentum, there
are several works which apply stochastic gradient descent
(SGD) with momentum in the field of distributed machine
learning. In [26], momentum is applied to the update at each
aggregation rounds for improving both optimization and
generalization. In [27], the linear convergence of distributed
SGD with momentum is proven. All these works with
momentum are based on stochastic GD generally. Compared
with SGD, deterministic gradient descent (DGD) can realize
more precise training results with improved generalization
and fast convergence under convex optimization [28].

Motivated by the above observations, we propose a new
federated learning design of Momentum Federated Learning
(MFL) in this paper. In the proposed MFL design, we
introduce momentum term in FL local update and leverage
MGD (in our paper, MGD means DGD with momentum)
to perform local iterations. Further, the global convergence
of the proposed MFL is proven. We derive the theoretical
convergence bound of MFL. Compared with FL [17], the
proposed MFL has an accelerated convergence rate under
certain conditions. On the basis of MNIST and CIFAR-10
datasets, we numerically study the proposed MFL and ob-
tain its loss function curve. The experiment results show that
MFL converges faster than FL for different machine learning
models. The contributions of this paper are summarized as
follows:

• MFL design: According to the characteristic that MGD
facilitates machine learning convergence in the cen-
tralized situation, we propose MFL design where
MGD is adopted to optimize loss function in local
update. The proposed MFL can improve the conver-
gence rate of distributed learning problem signifi-
cantly.

• Convergence analysis for MFL: We prove that the pro-
posed MFL is globally convergent on convex opti-
mization problems, and derive its theoretical upper
bound on convergence rate. We make a compara-
tive analysis of convergence performance between
the proposed MFL and FL. It is proven that MFL
improves convergence rate of FL under certain con-

..
.

Edge node 1

Edge node 2

Edge node N

Central server

Uplink

Downlink

Global

update

Global learning

model
 Local

update

Local learning

model

2

N

1

Fig. 1: The simplified structure of learning system for dis-
tributed user data

ditions.
• Evaluation based on MNIST and CIFAR-10 datasets: We

evaluate the proposed MFL’s convergence perfor-
mance via simulation based on MNIST and CIFAR-
10 datasets with different machine learning models
such as support vector machine (SVM), linear re-
gression, logistic regression and convolutional neural
network (CNN). Then an experimental comparison
is made between FL and the proposed MFL. The
simulation results show that MFL is convergent and
confirm that MFL provides a significant improve-
ment of convergence rate.

The remaining part of this paper is organized as follows.
We introduce the system model to solve the learning prob-
lem in distributed scenarios in Section 2 and subsequently
elaborate the existing solutions in Section 3. In Section 4,
we describe the design of MFL in detail. Then in Section
5 and 6, we present the convergence analysis of MFL and
the comparison between FL and MFL, respectively. Finally,
we show experimental results in Section 7 and draw a
conclusion in Section 8.

2 SYSTEM MODEL

In this paper, considering a simplified system model, we
discuss the distributed network as shown in Fig. 1. This
model has N edge nodes and a central server. These N edge
nodes, which have limited communication and computa-
tion resources, contain local datasets D1,D2, ...,Di, ...,DN ,
respectively. So the global dataset isD , D1∪D2∪· · ·∪DN .
Assume that Di ∩ Dj = ∅ for i 6= j. We define the number
of samples in node i as |Di| where | · | denotes the size of
the set. The total number of all nodes’ samples is |D|, and
|D| =

∑N
i=1 |Di|. The central server connects all the edge

nodes for information transmission.
We define the global loss function at the central server

as F (w), where w denotes the model parameter. Different
machine learning models correspond to different F (·) and
w. We use w∗ to represent the optimal parameter for min-
imizing the value of F (w). Based on the presented model,
the learning problem is to minimize F (w) and it can be
formulated as follows:

w∗ , argminF (w). (1)

3

Because of the complexity of machine learning model and
original dataset, finding a closed-form solution of the above
optimization problem is usually impossible. So algorithms
based on gradient iterations are used to solve (1). If raw user
data are collected and stored in the central server, we can use
centralized learning solutions to (1) while if raw user data
are distributed over the edge nodes, FL and the proposed
MFL can be applied to optimize this learning problem.

Under the situation where FL or MFL solutions are used,
the local loss function of node i is denoted by Fi(w) which
is defined merely on Di. Then we define the global loss
function F (w) on D as follows:

Definition 1 (Global loss function). Given the loss function
Fi(w) of edge node i, we define the global loss function on all the
distributed datasets as

F (w) ,

∑N
i=1 |Di|Fi(w)

|D|
. (2)

3 EXISTING SOLUTIONS

In this section, we introduce two existing solutions to solve
the learning problem expressed by (1). These two solutions
are centralized learning solution and FL solution, respec-
tively.

3.1 Centralized Learning Solution
Centralized machine learning is for machine learning model
embedded in the central server and each edge node needs
to send its raw data to the central sever. In this situation,
edge nodes will consume communication resources for data
transmission, but without incurring computation resources
consumption.

After the central server has collected all datasets from
the edge nodes, a usual way to solve the learning problem
expressed by (1) is GD as a basic gradient method. Further,
MGD is an improved gradient method with adding a mo-
mentum term to speed up learning process [24].

3.1.1 GD
The update rule for GD is as follows:

w(t) = w(t− 1)− η∇F (w(t− 1)). (3)

In (3), t denotes the iteration index and η > 0 is the
learning step size. The model parameter w is updated along
the direction of negative gradient. Using the above update
rule, GD can solve the learning problem with continuous
iterations.

3.1.2 MGD
As an improvement of GD, MGD introduces the momentum
term and we present its update rules as follows:

d(t) = γd(t− 1) +∇F (w(t− 1)) (4)
w(t) = w(t− 1)− ηd(t), (5)

where d(t) is the momentum term which has the same
dimension as w(t), γ is the momentum attenuation factor,
η is the learning step size and t is the iteration index.
By iterations of (4) and (5) with t, F (w) can potentially
converge to the minimum faster compared with GD. The

convergence range of MGD is −1 < γ < 1 with a bounded
η and if 0 < γ < 1, MGD has an accelerated convergence
rate than GD under a small η typically used in simulations
[29, Result 3].

3.2 FL Solution
In contrast with centralized learning solutions, FL avoids
collecting and uploading the distributed data because of
the limited communication resources at edge nodes and
privacy protection for local data. It decouples the machine
learning task from the central server to each edge node
to avoid storing user data in the server and reduce the
communication consumption. All of edge nodes make up
a federation in coordination with the central server.

The FL design and convergence analysis are presented
in [17] where FL network is studied thoroughly. In an FL
system, each edge node uses the same machine learning
model. We use τ to denote the global aggregation frequency,
i.e., the update interval. Each node i has its local model
parameter w̃i(t), where the iteration index is denoted by
t = 0, 1, 2, ... (in this paper, an iteration means a local
update). We use [k] to denote the aggregation interval
[(k − 1)τ, kτ] for k = 1, 2, 3, At t = 0, local model
parameters of all nodes are initialized to the same value.
When t > 0, w̃i(t) is updated locally based on GD, which
is the local update. After τ local updates, global aggregation
is performed and all edge nodes send the updated model
parameters to the centralized server synchronously.

The learning process of FL is described as follows.

3.2.1 Local Update
When t ∈ [k], local updates are performed in each edge
node by

w̃i(t) = w̃i(t− 1)− η∇Fi(w̃i(t− 1)),

which follows GD exactly.

3.2.2 Global Aggregation
When t = kτ , global aggregation is performed. Each node
sends w̃i(kτ) to the central server synchronously. The cen-
tral server takes a weighted average of the received parame-
ters from N nodes to obtain the globally updated parameter
w(kτ) by

w(kτ) =

∑N
i=1 |Di|w̃i(kτ)

|D|
.

Then w(kτ) is sent back to all edge nodes as their new
parameters and edge nodes perform local update for the
next iteration interval.

In [17, Lemma 2], the FL solution has been proven to be
globally convergent for convex optimization problems and
exhibits good convergence performance. So FL is an effec-
tive solution to the distributed learning problem presented
in (1).

4 DESIGN OF MFL
In this section, we introduce the design of MFL to solve
the distributed learning problem shown in (1). We first
discuss the motivation of our work. Then we present the
design of MFL detailedly and the learning problem based
on federated system. The main notations of MFL design and
analysis are summarized in Table 1.

4

TABLE 1: MFL notation summary

Notation Definition

T ; K; N number of total local iterations; number of global
aggregations/number of intervals; number of edge
nodes

t; k; τ ; [k] iteration index; interval index; aggregation fre-
quency with τ = T/K; the interval [(k − 1)τ, kτ]

w∗; wf global optimal parameter of F (·); the optimal pa-
rameter that MFL can obtain in Algorithm 1

η; β; ρ; γ the learning step size of MGD or GD; the β-smooth
parameter of Fi(·); the ρ-Lipschitz parameter of
Fi(·); the momentum attenuation factor which de-
cides the proportion of momentum term in MGD

Di; D the local dataset of node i; the global dataset

δi; δ the upper bound between∇F (w) and∇Fi(w); the
average of δi over all nodes

Fi(·); F (·) the loss function of node i; the global loss function

d(t); w(t) the global momentum parameter at iteration round
t; the global model parameter at iteration round t

d̃i(t); w̃i(t) the local momentum parameter of node i at itera-
tion round t; the local model parameter at iteration
round t

d[k](t); w[k](t) the momentum parameter of centralized MGD at
iteration round t in [k]; the model parameter of
centralized MGD at iteration round t in [k]

θ[k](t); θ; p the angle between vector ∇F (w[k](t)) and d[k](t);
θ is the maximum of θ[k](t) for 1 ≤ k ≤ K with
t ∈ [k]; p is the maximum ratio of ‖d[k](t)‖ and
‖∇F (w[k](t))‖ for 1 ≤ k ≤ K with t ∈ [k]

4.1 Motivation

Since MGD improves the convergence rate of GD [24], we
want to apply MGD to local update steps of FL and hope
that the proposed MFL will accelerate the convergence rate
for federated networks.

Firstly, we illustrate the intuitive influence on optimiza-
tion problem after introducing the momentum term into
gradient updating methods. Considering GD, the update
reduction of the parameter is η∇F (w(t − 1)) which is
only proportional to the gradient of w(t − 1). The update
direction of GD is always along gradient descent so that an
oscillating update path could be caused, as shown by the
GD update path in Fig. 2. However, the update reduction
of parameter for MGD is a superposition of η∇F (w(t− 1))
and γ(w(t − 2) − w(t − 1)) which is the momentum term.
As shown by the MGD update path in Fig. 2, utilizing
the momentum term can deviate the direction of parameter
update to the optimal decline significantly and mitigate the
oscillation caused by GD. In Fig. 2, GD has an oscillating
update path and costs seven iterations to reach the opti-
mal point while MGD only needs three iterations to do
that, which demonstrates mitigating the oscillation by MGD
leads to a faster convergence rate.

Because edge nodes of distributed networks are usually
resource-constrained, solutions to convergence acceleration
can attain higher resources utilization efficiency. Thus, mo-
tivated by the property that MGD improves convergence
rate, we use MGD to perform local update of FL and this
approach is named MFL.

A

B

Isopotential line of

loss function

A Starting point

B Optimal point of loss function

GD

MGD

Gradient component of each iteration

Momentum component of each iteration

Fig. 2: Comparison of MGD and GD

In the following subsections, we design the MFL learn-
ing paradigm and propose the learning problem based on
the MFL design.

4.2 MFL

In the MFL design, we use d̃i(t) and w̃i(t) to denote
momentum parameter and model parameter for node i,
respectively. All edge nodes are set to embed the same ma-
chine learning models. So the local loss functions Fi(w) is
the same for all nodes, and the dimension of both the model
parameters and the momentum parameters are consistent.
The parameters setup of MFL is similar to that of FL. We
use t to denote the local iteration index for t = 0, 1, ..., τ
to denote the aggregation frequency and [k] to denote the
interval [(k − 1)τ, kτ] where k denotes the interval index
for k = 1, 2, At t = 0, the momentum parameters and
the model parameters of all nodes are initialized to the
same values, respectively. When t ∈ [k], d̃i(t) and w̃i(t) are
updated based on MGD, which is called local update steps.
When t = kτ , MFL performs global aggregation steps where
d̃i(t) and w̃i(t) are sent to the central server synchronously.
Then in the central server, the global momentum parameter
d(t) and the global model parameter w(t) are obtained
by taking a weighted average of the received parameters,
respectively, and are sent back to all edge nodes for the next
interval.

The learning rules of MFL include the local update and
the global aggregation steps. By continuous alternations of
local update and global aggregation, MFL can perform its
learning process to minimize the global loss function F (w).
We describe the MFL learning process as follows.

First of all, we set initial values for d̃i(0) and w̃i(0). Then
1) Local Update: When t ∈ [k], local update is performed

at each edge node by

d̃i(t) = γd̃i(t− 1) +∇Fi(w̃i(t− 1)) (6)

w̃i(t) = w̃i(t− 1)− ηd̃i(t). (7)

According to (6) and (7), node i performs MGD to optimize
the loss function Fi(·) defined on its own dataset.

5

Central server

Fig. 3: Illustration of MFL local update and global aggregation steps from interval [k] to [k + 1].

Algorithm 1 MFL The dataset in each node has been set,
and the machine learning model embedded in edge nodes
has been chosen. We have set appropriate model parameters
η and γ.

Input:
The limited number of local updates in each node T
A given aggregation frequency τ

Output:
The final global model weight vector wf

1: Set the initial value of wf , w̃i(0) and d̃i(0).
2: for t = 1, 2, ..., T do
3: Each node i performs local update in parallel accord-

ing to (6) and (7).//Local update
4: if t == kτ where k is a positive integer then
5: Set d̃i(t) ← d(t) and w̃i(t) ← w(t) for all nodes

where d(t) and w(t) is obtained by (8) and (9)
respectively. //Global aggregation
Update wf ← argminw∈{wf ,w(kτ)} F (w)

6: end if
7: end for

2) Global Aggregation: When t = kτ , node i trans-
mits w̃i(kτ) and d̃i(kτ) to the central server which takes
weighted averages of the received parameters fromN nodes
to obtain the global parameters w(kτ) and d(kτ), respec-
tively. The aggregation rules are presented as follows:

d(t) =
∑N
i=1 |Di|d̃i(t)
|D|

(8)

w(t) =

∑N
i=1 |Di|w̃i(t)

|D|
. (9)

Then the central server sends d(kτ) and w(kτ) back to all
edge nodes where d̃i(kτ) = d(kτ) and w̃i(kτ) = w(kτ) are
set to enable the local update in the next interval [k+1]. Note
that only if t = kτ , the value of the global parameters w(t)
and d(t) can be observed. But we define d(t) and w(t) for
all t to facilitate the following analysis. A typical alternation
is shown in Fig. 3 which intuitively illustrates the learning
steps of MFL in interval [k] and [k + 1].

The learning problem of MFL to attain the optimal model
parameter is presented as (1). However, the edge nodes have

limited computation resources with a finite number of local
iterations. We assume that T is the number of local iterations
and K is the corresponding number of global aggregations.
Thus, we have t ≤ T and k ≤ K with T = Kτ . Considering
that w(t) is unobservable for t 6= kτ , we use wf to denote the
achievable optimal model parameter defined on resource-
constrained MFL network. Hence, the learning problem is
to obtain wf within T local iterations particularly, i.e.,

wf , argmin
w∈{w(kτ):k=1,2,...,K}

F (w). (10)

The optimization algorithm of MFL is explained in Algo-
rithm 1.

5 CONVERGENCE ANALYSIS

In this section, we firstly make some definitions and as-
sumptions for MFL convergence analysis. Then based on
these preliminaries, global convergence properties of MFL
following Algorithm 1 are established and an upper bound
on MFL convergence rate is derived. Also MFL convergence
performance with related parameters is analyzed.

5.1 Preliminaries
First of all, to facilitate the analysis, we assume that Fi(w)
satisfies the following conditions:

Assumption 1. For Fi(w) in node i, we assume the following
conditions:
1) Fi(w) is convex
2) Fi(w) is ρ-Lipschitz, i.e., |Fi(w1)−Fi(w2)| ≤ ρ‖w1−w2‖
for some ρ > 0 and any w1, w2

3) Fi(w) is β-smooth, i.e., ‖∇Fi(w1)−∇Fi(w2)‖ ≤ β‖w1 −
w2‖ for some β > 0 and any w1, w2

4) Fi(w) is µ-strong, i.e., aFi(w1)+(1−a)Fi(w2) ≥ Fi(aw1+

(1 − a)w2) +
a(1−a)µ

2 ‖w1 − w2‖2, a ∈ [0, 1] for some µ > 0
and any w1, w2 [30, Theorem 2.1.9]

Because guaranteeing the global convergence of central-
ized MGD requires that the objective function is strongly
convex [24], it is necessary to assume the condition 4.
Assumption 1 is satisfied for some learning models such as
SVM, linear regression and logistic regression whose loss
functions are presented in Table 2. Experimental results

6

as presented in Section 7.2.1 show that for non-convex
model such as CNN whose loss function does not satisfy
Assumption 1, MFL also performs well. From Assumption
1, we can obtain the following lemma:

Lemma 1. F (w) is convex, ρ-Lipschitz, β-smooth and µ-strong.

Proof. According to the definition of F (w) from (2), triangle
inequality and the definition of ρ-Lipschitz, β-smooth and
µ-strong, we can derive that F (w) is convex, ρ-Lipschitz,
β-smooth and µ-strong directly.

Then we introduce the gradient divergence between
∇F (w) and∇Fi(w) for any node i. It comes from the nature
of the difference in datasets distribution.

Definition 2 (Gradient divergence). We define δi as the upper
bound between ∇F (w) and ∇Fi(w) for any node i, i.e.,

‖∇F (w)−∇Fi(w)‖ ≤ δi. (11)

Also, we define the average gradient divergence

δ ,

∑
i |Di|δi
|D|

. (12)

Boundedness of δi and δ: Based on condition 3 of
Assumption 1, we let w2 = w∗i where w∗i is the opti-
mal value for minimizing Fi(w). Because Fi(w) is con-
vex, we have ‖∇Fi(w1)‖ ≤ β‖w1 − w∗i ‖ for any w1,
which means ‖∇Fi(w)‖ is finite for any w. According to
Definition 1 and the linearity of gradient operator, global
loss function ∇F (w) is obtained by taking a weighted
average of ∇Fi(w). Therefore, ‖∇F (w)‖ is finite, and
‖∇F (w)−∇Fi(w)‖ has an upper bound, i.e., δi is bounded.
Further, δ is still bounded from the linearity in (12).

Since local update steps of MFL perform MGD, the
upper bounds of MFL and MGD convergence rate exist
certain connections in the same interval. For the convenience
of analysis, we use variables d[k](t) and w[k](t) to denote the
momentum parameter and the model parameter of central-
ized MGD in each interval [k], respectively. This centralized
MGD is defined on global dataset and updated based on
global loss function F (w). In interval [k], the update rules
of centralized MGD follow:

d[k](t) = γd[k](t− 1) +∇F (w[k](t− 1)) (13)
w[k](t) = w[k](t− 1)− ηd[k](t). (14)

At the beginning of interval [k], the momentum parameter
d[k](t) and the model parameter w[k](t) of centralized MGD
are synchronized with the corresponding parameters of
MFL, i.e.,

d[k]((k − 1)τ) , d((k − 1)τ)

w[k]((k − 1)τ) , w((k − 1)τ).

For each interval [k], the centralized MGD is performed by
iterations of (13) and (14). In the Fig. 4, we illustrate the
distinctions between F (w(t)) and F (w[k](t)) intuitively.

Comparing with centralized MGD, MFL aggregation
interval with τ > 1 brings global update delay because of
the fact that centralized MGD performs global update on
every iteration while MFL is allowed to spread its global
parameter to edge nodes after τ local updates. Therefore,
the convergence performance of MFL is worse than that

...

Interval

[1]

Interval

[2]

Interval

[k]

Interval

[k+1]

L
o
ss

 f
u
n
ct

io
n
 v

al
u
e

Fig. 4: Illustration of the difference between MGD and MFL
in intervals

of MGD, which is essentially from the imbalance between
several computation rounds and one communication round
in MFL design. The following subsection provides the re-
sulting convergence performance gap between these two
approaches.

5.2 Gap between MFL and Centralized MGD in Interval
[k]

Firstly, considering a special case, we consider the gap be-
tween MFL and centralized MGD for τ = 1. From physical
perspective, MFL performs global aggregation after every
local update and there does not exist global parameter
update delay, i.e, the performance gap is zero. In Appendix
A, we prove that MFL is equivalent to MGD for τ = 1 from
theoretical perspective.

Now considering general case for any τ ≥ 1, the upper
bound of gap between w(t) and w[k](t) can be derived as
follows.

Proposition 1 (Gap of MFL¢ralized MGD in intervals).
Given t ∈ [k], the gap between w(t) and w[k](t) can be expressed
by

‖w(t)−w[k](t)‖ ≤ h(t− (k − 1)τ), (15)

where we define

A ,
(1+γ +ηβ)+

√
(1+γ+ηβ)2−4γ
2γ

,

B ,
(1+γ +ηβ)−

√
(1+γ+ηβ)2−4γ
2γ

,

E ,
A

(A−B)(γA− 1)
,

F ,
B

(A−B)(1− γB)

and h(x) yields

h(x)=ηδ

[
E(γA)x+F (γB)x− 1

ηβ
− γ(γ

x − 1)− (γ − 1)x

(γ − 1)2

]
(16)

for 0 < γ < 1 and any x = 0, 1, 2,
Because F (w) is ρ-Lipschitz from Lemma 1, it holds that

F (w(t))− F (w[k](t)) ≤ ρh(t− (k − 1)τ). (17)

7

Proof. Firstly, we derive an upper bound of ‖w̃i(t)−w[k](t)‖
for node i. On the basis of this bound, we extend this
result from the local cases to the global one to obtain the
final result. The detailed proving process is presented in
Appendix B.

Because h(1) = h(0) = 0 and h(x) increases with x for
x ≥ 1, which are proven in Appendix C, we always have
h(x) ≥ 0 for x = 0, 1, 2,

From Proposition 1, in any interval [k], we have h(0) = 0
for t = (k − 1)τ , which fits the definition w[k]((k − 1)τ) =
w((k−1)τ). We still have h(1) = 0 for t = (k−1)τ+1. This
means that there is no gap between MFL and centralized
MGD when local update is only performed once after the
global aggregation.

It is easy to find that if τ = 1, t − (k − 1)τ is either 0
or 1. Because h(1) = h(0) = 0, the upper bound in (15) is
zero, and there is no gap between F (w(t)) and F (w[k](t))
from (17). This is consistent with Appendix A where MFL
yields centralized MGD for τ = 1. In any interval [k], we
have t− (k− 1)τ ∈ [0, τ]. If τ > 1, t− (k− 1)τ can be larger
than 1. When x > 1, we know that h(x) increases with x.
According to the definition of A, B, E and F , we can obtain
γA > 1, γB < 1 and E,F > 0 easily. Because 0 < γ < 1,
the last term will linearly decrease with x when x is large.
Therefore, the first exponential term E(γA)x in (16) will be
dominant when x is large and the gap between w(t) and
w[k](t) increases exponentially with t.

Also we find h(x) is proportional to the average gradient
gap δ. It is because the greater the local gradient divergences
at different nodes are, the larger the gap will be. So consid-
ering the extreme situation where all nodes have the same
data samples (δ = 0 because the local loss function are the
same), the gap between w(t) and w[k](t) is zero and MFL is
equivalent to centralized MGD.

5.3 Global Convergence

We have derived an upper bound between F (w(t)) and
F (w[k](t)) for t ∈ [k]. According to the definition of MFL,
in the beginning of each interval [k], we set d[k]((k− 1)τ) =
d((k − 1)τ) and w[k]((k − 1)τ) = w((k − 1)τ). The global
upper bound on the convergence rate of MFL can be derived
based on Proposition 1.

The following definitions are made to facilitate analysis.
Firstly, we use θ[k](t) to denote the angle between vector
∇F (w[k](t) and d[k](t) for t ∈ [k], i.e.,

cos θ[k](t) ,
∇F (w[k](t))

Td[k](t)

‖∇F (w[k](t)‖‖d[k](t)‖

where θ is defined as the maximum value of θ[k](t) for 1 ≤
k ≤ K with t ∈ [k], i.e.,

θ , max
1≤k≤K,t∈[k]

θ[k](t).

Then we define

p , max
1≤k≤K,t∈[k]

‖d[k](t)‖
‖∇F (w[k](t))‖

and
ω , min

k

1

‖w((k − 1)τ)−w∗‖2
.

Based on Proposition 1 which gives an upper bound of
loss function difference between MFL and centralized MGD,
global convergence rate of MFL can be derived as follows.

Lemma 2. If the following conditions are satisfied:
1) cos θ ≥ 0, 0 < ηβ < 1 and 0 ≤ γ < 1;
There exists ε > 0 which makes
2) F (w[k](kτ))− F (w∗) ≥ ε for all k;
3) F (w(T))− F (w∗) ≥ ε;
4) ωα− ρh(τ)

τε2 > 0 hold,
then we have

F (w(T))− F (w∗) ≤ 1

T
(
ωα− ρh(τ)

τε2

) (18)

where we defined

α ,η(1− βη
2
)+ηγ(1− βη) cos θ− βη

2γ2p2

2
.

Proof. The proof is presented in Appendix D.

On the basis of Lemma 2, we further derive the following
proposition which demonstrates the global convergence of
MFL and gives its upper bound on convergence rate.

Proposition 2 (MFL global convergence). Given cos θ ≥ 0,
0 < ηβ < 1, 0 ≤ γ < 1 and α > 0, we have

F (wf)− F (w∗) ≤ 1

2Tωα
+

√
1

4T 2ω2α2
+
ρh(τ)

ωατ
+ ρh(τ).

(19)

Proof. The specific proving process is shown in Appendix
E.

According to the above Proposition 2, we get an upper
bound of F (wf) − F (w∗) which is a function of T and
τ . From inequality (19), we can find that MFL linearly

converges to a lower bound
√

ρh(τ)
ωατ + ρh(τ). Because h(τ)

is related to τ and δ, aggregation intervals (τ > 1) and
different data distribution collectively lead to that MFL does
not converge to the optimum.

In the following, we discuss the influence of τ on the
convergence bound. If τ = 1, we have ρh(τ) = 0 so that
F (wf) − F (w∗) linearly converges to zero as T → ∞, and
the convergence rate yields 1

Tωα . Noting h(τ) > 0 if τ > 1,
we can find that in this case, F (wf) − F (w∗) converges

to a non-zero bound
√

ρh(τ)
ωατ + ρh(τ) as T → ∞. On the

one hand, if there does not exist communication resources
limit, setting aggregation frequency τ = 1 and performing
global aggregation after each local update can reach the
optimal convergence performance of MFL. On the other
hand, aggregation interval (τ > 1) can let MFL effectively
utilize the communication resources of each node, but bring
about a decline of convergence performance.

6 COMPARISON BETWEEN FL AND MFL

In this section, we make a comparison of convergence
performance between MFL and FL.

8

The closed-form solution of the upper bound on FL
convergence rate has been derived in [17, Theorem 2]. It
is presented as follows.

F (wf
FL)−F (w∗)≤

1

2ηϕT
+

√
1

4η2ϕ2T 2
+
ρhFL(τ)

ηϕτ
+ρhFL(τ).

(20)

According to [17],

hFL(τ) =
δ

β
((ηβ + 1)τ − 1)− ηδτ

and ϕ = ωFL(1 − ηβ
2) where the expression of ωFL is

consistent with ω. Differing from that of ω, w((k − 1)τ) in
the definition of ωFL is the global model parameter of FL.

We assume that both MFL and FL solutions are applied
in the system model proposed in Fig. 1. They are trained
based on the same training dataset with the same machine
learning model. The loss function Fi(·) and global loss
function F (·) of MFL and FL are the same, respective. The
corresponding parameters of MFL and FL are equivalent
including τ , η, ρ, δ and β. We set the same initial value
w(0) of MFL and FL. Because both MFL and FL are con-
vergent, we have ω = 1

‖w(0)−w∗‖2 . Then according to the
definitions of ω and ωFL, we have w = wFL. Therefore,
the corresponding parameters of MFL and FL are the same
and we can compare the convergences between FL and MFL
conveniently.

For convenience, we use f1(T) and f2(T) to denote
the upper bound on convergence rate of MFL and FL,
respectively. Then we have

f1(T) ,
1

2Tωα
+

√
1

4T 2ω2α2
+
ρh(τ)

ωατ
+ ρh(τ) (21)

and

f2(T) ,
1

2ηϕT
+

√
1

4η2ϕ2T 2
+
ρhFL(τ)

ηϕτ
+ρhFL(τ). (22)

We consider the special case of γ → 0. For ωα and ηϕ, we
can obtain ωα → ωη(1 − βη

2) = ηϕ from the definition of
α. Then for h(τ) and hFL(τ), we have γA → ηβ + 1 and
γB → 0. Because A

A−B → 1 and B
A−B → 0, we can further

get E → 1
ηβ and F → 0 from the definitions of E and F .

So, according to (16), we have

lim
γ→0

h(τ) = ηδ

[
1

ηβ
(ηβ + 1)τ− 1

ηβ
− τ

]
=
δ

β
((1 + ηβ)τ − 1)− ηδτ = hFL(τ).

Hence, by the above analysis under γ → 0, we can find
MFL and FL have the same upper bound on convergence
rate. This fact is consistent with the property that if γ = 0,
MFL degenerates into FL and has the same convergence rate
with FL.

To avoid complicated calculations over the expressions
of f1(T) and f2(T), we have the following lemma.

Lemma 3. If there exists T1 ≥ 1 which satisfies that 1
2Tωα

dominates in f1(T) and 1
2ηϕT dominates in f2(T) for T < T1,

i.e.,
1

2Tωα
� max

ρh(τ),
√
ρh(τ)

ωατ


and

1

2ηϕT
� max

{
ρhFL(τ),

√
ρhFL(τ)

ηϕτ

}
,

then we have
f1(T) ≈

1

Tωα

and
f2(T) ≈

1

Tηϕ

for T < T1.

Proof. This obviously holds. We can find a such T1. For
example, considering (21), if η → 0, we have α → 0 from
the definition of α and h(τ) → 0 from Appendix F. So we

can easily derive ωαρh(τ) → 0 and
√

ωαρh(τ)
τ → 0. Then

we can find T1 ≥ 1 which satisfies 1
2T � ωαρh(τ) and

1
2T �

√
ωαρh(τ)

τ for T < T1. Hence, we have 1
2Tωα domi-

nates in f1(T) and f1(T) ≈ 1
Tωα . For the same reason, con-

sidering (22), if η → 0, we have ηϕ→ 0 from the definition
of ϕ and hFL(τ) → 0 from its definition. So we can easily

derive ηϕρhFL(τ) → 0 and
√

ηϕρhFL(τ)
τ → 0. Then for

T < T1, 1
2T � ηϕρhFL(τ) and 1

2T �
√

ηϕρhFL(τ)
τ . Hence,

we have 1
2ηϕT dominates in f2(T) and f2(T) ≈ 1

Tηϕ .

Based on Lemma 3, we have the following proposition.

Proposition 3 (Accelerated convergence of MFL). If the
following conditions are satisfied:

1) ηβ ≤ 1;
2) T < T1;
3) 0 < γ < min{ 2(1−ηβ) cos θβηp2 , 1},

MFL converges faster than FL, i.e.,

f1(T) < f2(T).

Proof. From condition 1 and condition 2, we have f1(T) ≈
1

Tωα and f2(T) ≈ 1
Tηϕ . Due to the definition of α and ϕ,

inequality 0 < γ < 2(1−βη) cos θ
βηp2 is equivalent to ωα > ηϕ.

So if ωα > ηϕ, it is obvious that 1
Tωα < 1

Tηϕ , i.e.,
f1(T) < f2(T). However, 0 < γ < 1 is the condition
of MFL convergence. Hence, condition 3 is the range of
MFL convergence acceleration after combining with MFL
convergence guarantee 0 < γ < 1.

7 SIMULATION AND DISCUSSION

In this section, we build and evaluate MFL system based
on MNIST and CIFAR-10 datasets. We first describe the
simulation environment and the relevant setups of param-
eters. Secondly, we present and evaluate the comparative
simulation results of MFL, FL and MGD under different
machine learning models, which include SVM, linear re-
gression, logistic regression and CNN. Finally, the extensive

9

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ss

 fu
nc

tio
n

FL
MFL
MGD

(a) SVM

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

FL
MFL
MGD

(b) SVM

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Lo
ss

 fu
nc

tio
n

FL
MFL
MGD

(c) Linear regression

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Lo
ss

 fu
nc

tio
n

FL
MFL
MGD

(d) Logistic regression

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

 fu
nc

tio
n

FL
MFL
MGD

(e) CNN w.r.t. MNIST

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

FL
MFL
MGD

(f) CNN w.r.t. MNIST

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0

0.5

1

1.5

2

2.5

Lo
ss

 fu
nc

tio
n

FL
MFL
MGD

(g) CNN w.r.t. CIFAR-10

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

A
cc

ur
ac

y

FL
MFL
MGD

(h) CNN w.r.t. CIFAR-10

Fig. 5: Loss function values and testing accuracy under FL, MFL and MGD. (a) and (b) are the loss function and test
accuracy curves of SVM, respectively; (c) and (d) are the loss function curves of linear regression and logistic regression,
respectively. (e) and (f) are the loss function and test accuracy curves of CNN trained on MNIST, respectively. (g) and (h)
are the loss function and test accuracy curves of CNN trained on CIFAR-10, respectively.

TABLE 2: Loss function of three machine learning models

Model Loss function

SVM λ
2
‖w‖2 + 1

2|Di|
∑
j max{0; 1− yjwTxj}

Linear regression 1
2|Di|

∑
j ‖yj −wTxj‖2

Logistic regression − 1
|Di|

∑
j‖yj log σ(w, xj) + (1 − yj) log(1 −

σ(w, xj))‖ where σ(w, xj) is given as (23)

experiments are implemented to explore the impacts of γ, τ
and non-i.i.d data distribution on MFL convergence perfor-
mance, and to investigate the communication efficiency of
MFL compared with that of FL.

7.1 Simulation Setup

Using the Python, we build a federated network framework
where distributed edge nodes coordinate with the central
server. In our network, the number of edge nodes can be
chosen arbitrarily. SVM, linear regression, logistic regression
and CNN are applied to model training. Loss functions of
the first three models at node i are presented as in Table 2
[31], and the loss function of CNN is cross-entropy (see [32]
for details). Note that |Di| is the number of training samples
in node i and the loss function of logistic regression is cross-
entropy. For logistic regression, model output σ(w, xj) is
sigmoid function for non-linear transform. It is defined by

σ(w, xj) ,
1

1 + e−wTxj
. (23)

In our experiments, training and testing samples are
randomly allocated to each node, which means that the

information of each node is uniform and the data distri-
bution at edge nodes is i.i.d. (Only in Section 7.2.2, non-i.i.d
data distribution are used and the rest of experiments use
i.i.d data distribution). We use FL and centralized MGD as
benchmarks for comparison of MFL. If based on SVM, linear
and logistic regression models, the deterministic gradient
methods are performed for MFL, FL and centralized MGD.
However, if based on CNN model, the stochastic gradient
methods are used for MFL, FL and centralized MGD due to
the large training data size.

SVM, linear and logistic regression are trained and
tested on MNIST dataset [33] which contains 50,000 training
handwritten digits and 10,000 testing handwritten digits.
In our experiments, we only utilize 5,000 training samples
and 5,000 testing samples because of the limited processing
capacities of GD and MGD. In this dataset, the j-th sample
xj is a 784-dimensional input vector which is vectorized
from 28 × 28 pixel matrix and yj is the scalar label corre-
sponding to xj . SVM, linear and logistic regression are used
to classify whether the digit is even or odd. If the image of xj
represents an even number, then we set yj = 1. Otherwise,
yj = −1. But for logistic regression, we set yj = 1 for the
even number and yj = 0 for the odd.

CNN is trained based on MNIST and CIFAR-10 datasets.
The CIFAR-10 dataset includes 50,000 color images for
training and 10,000 color image for testing, and has 10
different types of objects [34]. We use CNN to perform the
classification among the 10 different labels under MNIST
and CIFAR-10 datasets, respectively.

For experimental setups, we set 4 edge nodes in FL and
MFL and the training models are distributed into all the
edge nodes. The same initializations of model parameters
are performed and the same data distributions are set for

10

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Lo
ss

 fu
nc

tio
n

case 1
case 2
case 3

(a)

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0.65

0.7

0.75

0.8

0.85

A
cc

ur
ac

y

case 1
case 2
case 3

(b)

Fig. 6: (a) and (b) are loss function and testing accuracy curves under different data distribution cases, respectively.

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ss

 fu
nc

tio
n

FL
MFL:.=0
MFL:.=0.3
MFL:.=0.6
MFL:.=0.9

(a)

0 100 200 300 400 500 600 700 800 900 1000

Iterative times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

FL
MFL:.=0
MFL:.=0.3
MFL:.=0.6
MFL:.=0.9

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

.

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

Lo
ss

 fu
nc

tio
n

MFL
FL

(c)

Fig. 7: The influence of γ on MFL convergence. (a)Loss function values with iterative times under different γ; (b)Testing
accuracy with iterative times under different γ; (c)Loss function values with γ when T = 1000.

MFL and FL. Also di(0) = 0 is set for node i. We set the
learning step size η = 0.002 which is sufficiently small, SVM
parameter λ = 0.3 and the total number of local iterations
T = 1, 000 for the following simulations.

7.2 Simulation Evaluation

In this subsection, we verify the convergence acceleration of
MFL and explore the effects of non-i.i.d data distribution,
γ and τ on MFL convergence by simulation evaluation.
We further investigate the communication efficiency of MFL
compared with that of FL.

7.2.1 Convergence
In our first simulation, the models of SVM, linear regres-
sion, logistic regression and CNN are trained and we ver-
ify the accelerated convergence of MFL. We set aggrega-
tion frequency τ = 4 and momentum attenuation factor
γ = 0.5. MFL, FL and MGD are performed based on the
four machine learning models. MGD is implemented based
on the global dataset which is obtained by gathering the
distributed data on all nodes. The global loss functions of
the three solutions are defined based on the same global
training and testing data.

The curves of loss function values and accuracy with
iterative times are presented in Fig. 5. We can see that

the loss function curves for all the learning models are
gradually convergent with iterative times. Similarly, the test
accuracy curves for SVM and CNN gradually rise until
convergence with iterative times. Therefore, convergence
of MFL is verified. We also see that the descent speeds of
MFL loss function curves on the four learning models are
always faster than those of FL while the centralized MGD
convergence speeds are fastest. So compared with FL, MFL
provides a significant improvement on convergence rate.
MGD converges with the fastest speed because MFL and
FL suffer the delay in global gradient update for τ = 4.
Finally, compared with the results of CNN and SVM, we can
conclude that based on CNN model, MFL still shows similar
convergence performance compared with what MFL shows
in convex model training. So the proposed MFL can perform
well in neural networks with non-convex loss functions.

Because linear and logistic regression can not provide
the testing accuracy curves, we focus on the SVM model in
the following experiments and further explore the impact of
MFL parameters on convergence rate.

7.2.2 Effect of non-i.i.d data distribution
In the experiment, we consider three cases to distribute the
data samples into different nodes. The three data distribu-
tion cases at edge nodes are representative for uniform,
totally non-uniform information and the mixture of the

11

previous two cases, respectively. The specific settings of the
three cases are as follows:

• Case 1: For the uniform information distribution,
each data sample is randomly allocated to a node. In
this case, we think that the data on each node have
uniform characteristics. Therefore, this case satisfies
i.i.d data distribution as a benchmark.

• Case 2: All data samples at an individual node have
the same label (If there are more labels than nodes,
each node could have samples with more than one
label but not the total number of labels). Because the
global dataset has multiple labels, this case will lead
to a non-uniform information distribution, which
means characteristics brought by each node are
not uniform. Thus, this case corresponds to totally
non-i.i.d data distribution.

• Case 3: In this case, the first half of N nodes perform
random allocation rule of Case 1 to obtain uniform
information and the second half of the nodes perform
allocation rule of Case 2. This case is a combination
of uniform and non-uniform information. We use this
case to explore the effect of the mixture of i.i.d and
non-i.i.d data distribution.

In the experiment, SVM is used for the training of MFL
network under the above data distribution cases. We set
aggregation frequency τ = 4 and momentum attenuation
factor γ = 5 for general MFL algorithm.

The experimental results are shown in Fig. 6. The two
subfigures show the MFL convergence influence made by
different data distributions. We see that the loss function
and testing accuracy curves of MFL are always convergent
whether data distribution at edge nodes is i.i.d or non-i.i.d,
which means even though under non-uniform information
distribution, MFL training still achieves expected conver-
gence and shows its robustness. We also see that Case 2
and Case 3 have worse performance than Case 1, because
each node in Case 2 and Case 3 has total or partial non-
uniform information. Further, Case 2 shows the worst con-
vergence performance. The compared results illustrate that
non-i.i.d data distribution still remains MFL convergence
but decreases MFL convergence performance.

7.2.3 Effect of γ
We evaluate the impact of γ on the convergence rate of
loss function. In this simulation, we still set aggregation
frequency τ = 4.

The experimental results are shown in Fig. 7. Subfigure
(a) and (b) show that how different values of γ affect the
convergence curves of loss function and testing accuracy,
respectively. We can see that if γ = 0, the loss function
and accuracy curves of MFL overlap with the corresponding
ones of FL because MFL is equivalent to FL for γ = 0.
When γ increases from 0 to 0.9, we can see the convergence
rates on both loss function curves and accuracy curves also
gradually increase. Subfigure (c) shows the change of final
loss function value (T = 1000) with 0 < γ < 1. From this
subfigure, we can find the final loss function values of MFL
are always smaller than FL with 0 < γ < 1. Compared with

100 101 102 103 104

=

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

Lo
ss

 fu
nc

tio
n

MFL:T=60000
MFL:T=1000
FL:T=1000

Fig. 8: Loss function values with τ

FL, convergence performance of MFL is improved. This is
because 2(1−βη) cos θ

βηp2 > 1 and according to Proposition 3,
the accelerated convergence range of MFL is 0 < γ < 1.
We can see that when 0 < γ < 0.95, the loss function
values decrease monotonically with γ so the convergence
rate of MFL increases with γ. While γ > 0.95, the loss
function values of MFL start to increase with a gradual
deterioration of MFL convergence performance, and in this
situation, MFL can not remain convergence. If the γ values
are chosen to be close to 1, best around 0.9, MFL reaches the
optimal convergence rate.

7.2.4 Effect of τ
Finally, we evaluate the effect of different τ on loss function
of MFL. We record the final loss function values with τ
based on the three cases of T = 1, 000 for FL, T = 1, 000
for MFL and T = 60, 000 for MFL. We set γ = 0.5 for
MFL. The curves for the three cases are presented in Fig. 8.
Comparing FL with MFL for T = 1, 000, we see that the
final loss function values of MFL are smaller than those
of FL for any τ . As declared in Proposition 3, under a
small magnitude of T and η = 0.002 which is close to 0,
MFL always converges much faster than FL. Further, for
T = 1, 000, the effect of τ on convergence is slight because
the curves of FL and MFL are relatively plain. This can be
explained by Lemma 3, where 1

2ηϕT and 1
2ωαT dominate

the convergence upper-bound when the magnitude of T is
small. While T = 60, 000, change of τ affects convergence
significantly and the final loss function values gradually
increase with τ . As the cases of T = 1, 000 for MFL and
FL, the case of T = 60, 000 for MFL has a slight effect on
convergence if τ < 100. But if τ > 100, MFL convergence
performance is getting worse with τ . According to the above
analysis of τ , setting an appropriate aggregation frequency
will reduce convergence performance slightly with a decline
of communication cost (in our cases, τ = 100).

7.2.5 MFL communication efficiency
In the experiment, we evaluate the communication effi-
ciency of MFL compared with FL under different values
of γ. Because the momentum and weight are transmitted
between the edge nodes and the central server, we can
simply assume that the communication size of MFL is twice
that of FL due to the additional momentum parameters and
the same dimension of momentum and weight. Therefore,

12

0 20 40 60 80 100 120

Communication cost

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ss

 fu
nc

tio
n

FL
MFL:.=0
MFL:.=0.3
MFL:.=0.6
MFL:.=0.9

Fig. 9: Comparison of communication efficiency between
MFL and FL

we set that communication budget of one global aggrega-
tion for MFL is 1, so communication budget of one global
aggregation for FL is 0.5. The experiment is based on SVM
and we set aggregation frequency τ = 4. The experiment
consumes 125 communication budgets for MFL or FL, so
MFL performs 125 global aggregations and FL performs 250
global aggregations.

The experimental results are shown in Fig. 9. We see that
the communication efficiency is improved with increasing γ,
because γ affects the convergence rate of MFL significantly
as presented in Section 7.2.3. We can see that MFL with a
large value of γ performs better performance than FL and a
small γ results to worse performance based on the same
communication cost. For example, if γ = 0.6, MFL has
a better convergence with respect to communication cost
than FL. Thus, MFL shows higher communication efficiency
compared with FL for γ = 0.6.

8 CONCLUSION

In this paper, we have proposed MFL which performs MGD
in local update step to solve the distributed machine learn-
ing problem. Firstly, we have established global convergence
properties of MFL and derived an upper bound on MFL
convergence rate. This theoretical upper bound shows that
the sequence generated by MFL linearly converges to the
global optimum point under certain conditions. Then, com-
pared with FL, MFL provides accelerated convergence per-
formance under the given conditions as presented in Propo-
sition 3. Finally, based on MNIST and CIFAR-10 datasets,
our simulation results have verified the MFL convergence
and confirmed the accelerated convergence of MFL.

ACKNOWLEDGMENTS

This work is supported by the National Key Re-
search and Development Program of China under Grant
2018YFA0701603, and the National Natural Science Foun-
dation of China under Grant 61722114.

REFERENCES

[1] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianx-
iong Xiao. Deepdriving: Learning affordance for direct

perception in autonomous driving. In Proc. ICCV,
pages 2722–2730, 2015.

[2] Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao,
Dong Yu, Frank Seide, Michael Seltzer, Geoff Zweig,
Xiaodong He, Jason Williams, et al. Recent advances in
deep learning for speech research at microsoft. In Proc.
ICASSP, pages 8604–8608. IEEE, 2013.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Proc. NIPS, pages 1097–1105, 2012.

[4] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin
Ko, Susan M Swetter, Helen M Blau, and Sebastian
Thrun. Dermatologist-level classification of skin cancer
with deep neural networks. Nature, 542(7639):115, 2017.

[5] Michael I Jordan and Tom M Mitchell. Machine
learning: Trends, perspectives, and prospects. Science,
349(6245):255–260, 2015.

[6] Ramanan Subramanian and Faramarz Fekri. Sleep
scheduling and lifetime maximization in sensor net-
works: fundamental limits and optimal solutions. In
Proc. International Conf. Inf. Process. Sensor Netw., pages
218–225. IEEE, 2006.

[7] Gerhard P Fettweis. The tactile internet: Applications
and challenges. IEEE Veh. Technol. Mag., 9(1):64–70,
2014.

[8] Milan Patel, Brian Naughton, Caroline Chan, Nurit
Sprecher, Sadayuki Abeta, Adrian Neal, et al. Mobile-
edge computing introductory technical white paper.
White paper, mobile-edge computing (MEC) industry ini-
tiative, pages 1089–7801, 2014.

[9] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang,
and Khaled B Letaief. A survey on mobile edge com-
puting: The communication perspective. IEEE Com-
mun. Surv. Tutorials, 19(4):2322–2358, 2017.

[10] Miao Hu, Lei Zhuang, Di Wu, Yipeng Zhou, Xu Chen,
and Liang Xiao. Learning driven computation offload-
ing for asymmetrically informed edge computing. IEEE
Trans. Parallel Distrib. Syst., 2019.

[11] Xinhou Wang, Kezhi Wang, Song Wu, Sheng Di, Hai
Jin, Kun Yang, and Shumao Ou. Dynamic resource
scheduling in mobile edge cloud with cloud radio
access network. IEEE Trans. Parallel Distrib. Syst.,
29(11):2429–2445, 2018.

[12] Nguyen Quoc Viet Hung, Hoyoung Jeung, and Karl
Aberer. An evaluation of model-based approaches to
sensor data compression. IEEE Trans. Knowl. Data Eng.,
25(11):2434–2447, 2012.

[13] Sheng Di, Dingwen Tao, Xin Liang, and Franck Cap-
pello. Efficient lossy compression for scientific data
based on pointwise relative error bound. IEEE Trans.
Parallel Distrib. Syst., 30(2):331–345, 2018.

[14] Sheng Di and Franck Cappello. Optimization of error-
bounded lossy compression for hard-to-compress hpc
data. IEEE Trans. Parallel Distrib. Syst., 29(1):129–143,
2017.

[15] Gang Yang, Vincent YF Tan, Chin Keong Ho, See Ho
Ting, and Yong Liang Guan. Wireless compressive
sensing for energy harvesting sensor nodes. IEEE Trans.
Signal Process., 61(18):4491–4505, 2013.

[16] H Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, et al. Communication-efficient learn-

13

ing of deep networks from decentralized data. arXiv
preprint arXiv:1602.05629, 2016.

[17] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis,
Kin K Leung, Christian Makaya, Ting He, and Kevin
Chan. Adaptive federated learning in resource con-
strained edge computing systems. IEEE J. Sel. Areas
Commun., 37(6):1205–1221, 2019.

[18] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter
Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communi-
cation efficiency. arXiv preprint arXiv:1610.05492, 2016.

[19] Corentin Hardy, Erwan Le Merrer, and Bruno Sericola.
Distributed deep learning on edge-devices: feasibility
via adaptive compression. In 16 th IEEE Interna-
tional Symposium on Network Computing and Applications
(NCA), pages 1–8. IEEE, 2017.

[20] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical secure
aggregation for privacy-preserving machine learning.
In Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), pages 1175–1191. ACM, 2017.

[21] Takayuki Nishio and Ryo Yonetani. Client selection
for federated learning with heterogeneous resources in
mobile edge. arXiv preprint arXiv:1804.08333, 2018.

[22] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda,
Damon Civin, and Vikas Chandra. Federated learning
with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

[23] Arkadii Semenovich Nemirovsky and David Boriso-
vich Yudin. Problem complexity and method efficiency
in optimization. 1983.

[24] Boris T Polyak. Some methods of speeding up the
convergence of iteration methods. USSR Comput. Math.
Math. Phys., 4(5):1–17, 1964.

[25] Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and
Mikael Johansson. Global convergence of the heavy-
ball method for convex optimization. In 2015 European
Control Conf., pages 310–315. IEEE, 2015.

[26] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and
Michael Rabbat. Slowmo: Improving communication-
efficient distributed sgd with slow momentum. arXiv
preprint arXiv:1910.00643, 2019.

[27] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup
analysis of communication efficient momentum sgd for
distributed non-convex optimization. arXiv preprint
arXiv:1905.03817, 2019.

[28] Rie Johnson and Tong Zhang. Accelerating stochastic
gradient descent using predictive variance reduction.
In NIPS, pages 315–323, 2013.

[29] Ning Qian. On the momentum term in gradient de-
scent learning algorithms. Neural Netw., 12(1):145–151,
1999.

[30] Yurii Nesterov. Lectures on convex optimization, volume
137. Springer, 2018.

[31] Shai Shalev-Shwartz and Shai Ben-David. Understand-
ing machine learning: From theory to algorithms. Cam-
bridge university press, 2014.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016.

[33] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick
Haffner, et al. Gradient-based learning applied to doc-

ument recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[34] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

Wei Liu received the B.E. degree in electronic
information engineering from University of Sci-
ence and Technology of China, Hefei, China, in
2018. He is currently pursuing the M.E. degree
with the Department of Electronic Engineering
and Information Science, University of Science
and Technology of China. His research interests
include distributed machine learning and accel-
erated computation.

Li Chen received the B.E. in electrical and infor-
mation engineering from Harbin Institute of Tech-
nology, Harbin, China, in 2009 and the Ph.D.
degree in electrical engineering from the Univer-
sity of Science and Technology of China, Hefei,
China, in 2014. He is currently a faculty member
with the Department of Electronic Engineering
and Information Science, University of Science
and Technology of China. His research interests
include wireless IoT communications and wire-
less optical communications.

Yunfei Chen (S’02-M’06-SM’10) received his
B.E. and M.E. degrees in electronics engineer-
ing from Shanghai Jiaotong University, Shang-
hai, P.R.China, in 1998 and 2001, respectively.
He received his Ph.D. degree from the University
of Alberta in 2006. He is currently working as
an Associate Professor at the University of War-
wick, U.K. His research interests include wire-
less communications, cognitive radios, wireless
relaying and energy harvesting.

Wenyi Zhang (S’00-M’07-SM’11) is currently a
professor with the Department of Electronic En-
gineering and Information Science, University
of Science and Technology of China. He re-
ceived his bachelor’s degree in automation from
Tsinghua University in 2001, and his master’s
and Ph.D. degrees in electrical engineering from
University of Notre Dame, in 2003 and 2006,
respectively. He was affiliated with the Commu-
nication Science Institute, University of Southern
California, as a Post-Doctoral Research Asso-

ciate, and with Qualcomm Incorporated, Corporate Research and De-
velopment. His research interest includes wireless communications and
networking, information theory, and statistical signal processing. He was
an editor for IEEE Communications Letters, and is currently an editor for
IEEE Transactions on Wireless Communications.

	Introduction
	System Model
	Existing Solutions
	Centralized Learning Solution
	GD
	MGD

	FL Solution
	Local Update
	Global Aggregation

	Design of MFL
	Motivation
	MFL

	Convergence Analysis
	Preliminaries
	Gap between MFL and Centralized MGD in Interval [k]
	Global Convergence

	Comparison Between FL and MFL
	Simulation and discussion
	Simulation Setup
	Simulation Evaluation
	Convergence
	Effect of non-i.i.d data distribution
	Effect of
	Effect of
	MFL communication efficiency

	Conclusion
	Biographies
	Wei Liu
	Li Chen
	Yunfei Chen
	Wenyi Zhang

