
Automatic Generation of High-Performance
FFT Kernels on Arm and X86 CPUs

Zhihao Li , Haipeng Jia, Yunquan Zhang,Member, IEEE, Tun Chen,

Liang Yuan, and Richard Vuduc,Member, IEEE

Abstract—This article presents AutoFFT, a template-based code generation framework that can automatically generate

high-performance FFT kernels for all natural-number radices. AutoFFT is based on the Cooley-Tukey FFTalgorithm, which exploits the

symmetric and periodic properties of the DFTmatrix, as the outer parallelization framework. Because butterflies are the core operations

of the Cooley-Tukey algorithm, we explore additional symmetric and periodic properties of the DFTmatrix and formulate multiple

optimized calculation templates to further reduce the number of floating-point operations for butterflies of arbitrary natural numbers. To

fully exploit hardware resources, we encapsulate a series of optimizations in an assembly template optimizer. Given any DFT problem,

AutoFFTautomatically generates C FFT kernels using these calculation templates and converts them into efficient assembly kernels

using the template optimizer. Through a series of experiments on Arm, Intel, and AMD processors, we show that AutoFFT-generated

kernels can outperform those in Fastest Fourier Transform in the West (FFTW), the Arm Performance Libraries (ARMPL), and the Intel

Math Kernel Library (MKL).

Index Terms—AutoFFT, FFT, code generation, template, DFT

Ç

1 INTRODUCTION

THE discrete Fourier transform (DFT) is a basic discrete
transform used to perform Fourier analysis. The defini-

tion of the DFT is presented in Eq. (1):

Yk ¼
Xn�1
i¼0

xiW
ik
n ¼

Xn�1
i¼0

xi � e�
2pj
n ik; (1)

where x is the input sequence of n complex numbers, Y is
the corresponding output sequence, k 2 ½0; n� 1�, j ¼ ffiffiffiffiffiffiffi�1p

,

and Wn ¼ e�
2pj
n , which is called the twiddle factor (twiddle

for short). The DFT matrix ðWik
n Þn�n is an expression of the

DFT as a transformation matrix, as presented in Eq. (2). The
DFT can be represented by applying the DFT matrix to the
input vector through matrix multiplication. From this point
of view, the DFT is essentially a matrix-vector operation,
and the computational complexity of the naı̈ve matrix-vec-
tor implementation is Oðn2Þ

ðWik
n Þn�n ¼

W 0
n W 0

n . . . W 0
n

W 0
n W 1

n . . . Wn�1
n

..

. ..
. . .

. ..
.

W 0
n Wn�1

n . . . W ðn�1Þðn�1Þ
n

0
BBB@

1
CCCA: (2)

Many previous studies [1], [2], [3], [4], [5], [6] reduce the
computational complexity of the DFT from Oðn2Þ to
Oðn lognÞ by exploiting the symmetric and periodic proper-
ties of the DFT matrix. The Cooley-Tukey algorithm [1] is
the most widely used fast Fourier transform (FFT) algorithm
in many practical applications [7], [8], [9], [10], [11], [12],
[13]. It adopts a divide-and-conquer approach to recursively
break down a large DFT into smaller DFTs, achieving an
Oðn lognÞ complexity. For N ¼ rv with integers N; r, and v,
r is called the radix. We present the derivation of the radix-
2 FFT in Eq. (3)

Yk ¼
Xn�1
i¼0

xiW
ik
n

¼
Xn=2�1
i¼0

x2iW
2ik
n þ

Xn=2�1
i¼0

x2iþ1W ð2iþ1Þk
n

¼
Xn=2�1
i¼0

fi �Wik
n=2 þWk

n

Xn=2�1
i¼0

gi �Wik
n=2:

(3)

The radix-2 FFT divides a large DFT of size n into two
smaller DFTs of size n=2 in each recursive stage until it
obtains indivisible DFTs of size 2 (hence the name “radix-2
FFT”). A DFT of size 2 is also called a radix-2 butterfly.
Because the butterflies are critical to the FFT computation,
in this paper, we define the butterfly kernel to calculate one

� Z. Li is with the SKL of Computer Architecture, Institute of Computing
Technology, Chinese Academy of Sciences, Beijing 100864, China, the
University of Chinese Academy of Sciences, Beijing 100049, China, and
also with the Georgia Institute of Technology, Atlanta, GA 30332.
E-mail: lizhihao@ict.ac.cn.

� H. Jia, Y. Zhang, T. Chen, and L. Yuan are with the SKL of Computer
Architecture, Institute of Computing Technology, Chinese Academy of
Sciences, Beijing 100864, China.
E-mail: {jiahaipeng, zyq, chentun, yuanliang}@ict.ac.cn.

� R. Vuduc is with the School of Computational Science and Engineering,
Georgia Institute of Technology, Atlanta, GA 30332.
E-mail: richie@cc.gatech.edu.

Manuscript received 15 Oct. 2019; revised 9 Feb. 2020; accepted 26 Feb. 2020.
Date of publication 13 Mar. 2020; date of current version 7 May 2020.
(Corresponding author: Haipeng Jia.)
Recommended for acceptance by Y. Yang.
Digital Object Identifier no. 10.1109/TPDS.2020.2977629

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020 1925

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6149-0627
https://orcid.org/0000-0002-6149-0627
https://orcid.org/0000-0002-6149-0627
https://orcid.org/0000-0002-6149-0627
https://orcid.org/0000-0002-6149-0627
mailto:lizhihao@ict.ac.cn
mailto:jiahaipeng@ict.ac.cn
mailto:zyq@ict.ac.cn
mailto:chentun@ict.ac.cn
mailto:yuanliang@ict.ac.cn
mailto:richie@cc.gatech.edu

butterfly, which is the core computing unit of the FFT com-
putation, and define the FFT kernel to calculate multiple
butterflies (described in Section 5.2).

The performance of the FFT implementation is restricted
by its computational complexity and is dependent on the
effectiveness of finer optimizations. Therefore, this paper
proposes a template-based code generation framework,
named AutoFFT, that autogenerates optimized FFT kernels
in assembly by capitalizing on the symmetric and periodic
properties of the DFT matrix.

First, we summarize and extract two novel and highly
optimized patterns (the pair and quad patterns) with a
reduced number of floating-point operations for butterflies in
the following steps: 1) For the radix-r butterfly, we investi-
gate the symmetric properties in the horizontal and vertical
directions for radices of all natural numbers, which are
divided into three cases (r ¼ 2mþ 1, r ¼ 4mþ 2, and
r ¼ 4mþ 4). By observing the calculation of each output Yk,
Yk’s twiddles are symmetric in the horizontal direction, and
we reduce the multiplications for non-power-of-two and
power-of-two radices by factors of 2 and 4, respectively. In
the vertical direction, some outputs share a similar symmetric
feature, so we can further reduce the arithmetic complexity
for non-power-of-two and power-of-two radices by factors of
2 and 4, respectively. 2) We study a periodic property inside
each Yk for these three cases. By exploiting this property, the
arithmetic complexity can be further reduced by a factor of
gcdðk; rÞ, where gcd is the greatest common divisor.

Second, AutoFFT generates high-performance FFT kernels
based on the pair and quad patterns. In the beginning, the
computational template designer takes these two highly opti-
mized patterns as inputs and formalizes them into computa-
tional templates. Then these computational templates are
used by a C FFT kernel generator to generate C FFT kernels
according to the derived equations of these two patterns. Sub-
sequently, an assembly template optimizer, which is com-
posed of the optimization templates and the register
allocation strategy, is introduced to transform C kernels into
high-performance assembly FFT kernels for varying architec-
tures. Considering AutoFFT is built on templates, which are
the abstractions of typical calculation patterns in the FFT com-
putation, we refer to it as the template-based code generation
framework, which is the first framework that can directly gen-
erate high-performance assembly FFT kernels by taking
advantage of the optimized pair and quad patterns.

At runtime, to obtain the best FFT plan of a given DFT
problem, AutoFFT adopts a pruning-based dynamic pro-
gramming approach to empirically search for the optimal
plan. The optimal plan contains the necessary parameters
that are used to construct the corresponding butterfly net-
work of the best plan and invokes required FFT kernels to
perform the FFT computation. The experiments show that
AutoFFT outperforms the current state-of-the-art, such as
the Fastest Fourier Transform in the West (FFTW) [14], [15],
[16], ARM Performance Library (ARMPL) [17], and Intel
Math Kernel Library (MKL) [18], [19].

The key contributions and innovations of this paper are
summarized as follows:

� This paper is the first work that systematically summa-
rizes and extracts the integral andgeneralmathematical

expressions for the symmetric and periodic properties
of the DFT matrix. These mathematical expressions
minimize the number of floating-point operations for
all natural-number radices: the pair pattern for odd
numbers and the quad pattern for even numbers. Other
libraries can also accelerate their butterflies based on
these two optimized patterns.

� We propose a template-based code generation frame-
work, which is the first framework that is able to auto-
matically generate high-performance assembly FFT
kernels based on the highly optimized pair and quad
patterns for varying CPU architectures.

� Based on our code generation framework, we realize
a high-performance FFT library for ARMv8, Intel
Haswell, andAMDZenCPUs. This library is on aver-
age 2.14, 2.15, and 1.7 times faster than FFTW,
ARMPL, and IntelMKL, respectively.

This paper extends a conference version [20]. In particu-
lar, it adds: 1) compared to the conference version, which can
generate FFT kernels of prime-number and power-of-two
radices, this paper extends the generality of the framework
and is able to generate kernels for all natural numbers; 2) this
paper ports AutoFFT to AMD Zen CPUs and supplements
the experimental results; and 3) this paper illustrates the
implementations and optimizations adopted in AutoFFT’s
butterfly network.

The remainder of this paper is organized as follows.
Section 2 presents related studies, and Section 3 provides an
overview of the AutoFFT framework. Section 4 deduces the
pair and quad patterns, and Section 5 illustrates how
AutoFFT autogenerates high-performance assembly FFT ker-
nels based on these two patterns. Section 6 gives the imple-
mentations and optimizations of our butterfly network, and
Section 7 presents the experimental results. Finally, Section 8
concludes the paper.

2 RELATED WORK

Many FFT algorithms [1], [2], [3], [4], [5], [6], [21], [22] have
been proposed to compute the DFT. As the most popular
FFT algorithm, the Cooley-Tukey algorithm [1] is supported
by most mainstream FFT libraries. These libraries are opti-
mized by vendors or researchers to achieve high perfor-
mance on specific hardware architectures.

These highly efficient vendor-supplied FFT libraries,
which include ARMPL [17], Intel MKL [18], [19], AMD
Optimizing CPU Libraries (AOCL) [23], IBM Engineering
and Scientific Subroutine Library (ESSL) [24], and Apple
vDSP [25], are appropriately optimized using single instruc-
tion multiple data (SIMD) techniques for specific architec-
tures. These implementations have undergone extensive
architecture-dependent tuning on specific microarchitecture
features to pursue peak system performance.

Because these vendor-specific libraries cannot be ported to
processors of other vendors, many excellent auto-tuning sys-
tems have been developed. FFTW [14], [15], [16] and
UHFFT [26], [27] conduct performance tuning in two stages.
In the install-time stage, the special-purpose compiler gener-
ates several highly optimized instruction set architecture
(ISA)-specific SIMD codelets to boost performance. In the run-
time stage, its adaptive framework creates and empirically

1926 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

chooses the optimal plan according to the input parameters
and hardware features. The optimal plan organizes and
assembles required pregenerated codelets to perform FFTs
that involve large DFT problems. SPIRAL [28], [29] is a three-
stage framework. In the first stage, SPIRAL expresses the
mathematical formulas in the Signal Processing Language
(SPL) [22] for a given transform. The second stage converts
the SPL formulas into S-SPL [30], and then performs various
computational optimizations such as code reordering in
S-SPL. Finally, the optimized S-SPL is translated into high-
level code (SIMD intrinsics) for the given architecture [29].
Other open-source FFT implementations include Ne10 [31],
which contains FFT kernels that have been heavily optimized
for ARM-based CPUs equipped with NEON SIMD capabili-
ties, the Fastest Fourier Transform in the East (FFTE) [32],
which is a Fortran FFT package that supports problem sizes of
the form 2a3b5c for CPUs and GPUs, and the Fastest Fourier
Transform in the South (FFTS) [33], which is a hand-opti-
mized library for Intel andARMCPUs.

Significant progress has been made over the past decade
in the fields of code generation and automatic performance
tuning on GPUs. In addition to high-performance vendor-
tuned FFT libraries, such as cuFFT for NVIDIA GPUs [34],
clFFT for AMD GPUs [35], and genFFT for Intel processor
graphics [36], researchers have developed several FFT imple-
mentations [37], [38], [39], [40], [41]. Although the factors that
affect the FFT performance on GPUs can be quite different
than those on CPUs, most GPU frameworks are similar to
FFTW: 1) autogenerating ormanually writing optimized FFT
kernels that exploit the underlying hardware features, such
as GPUmemory hierarchy andwarp/wavefront scheduling,
and 2) searching for the optimal plan to exploit available
computational resources for a given transform.

According to the definition of the twiddle factor, the sym-
metric and periodic properties of the DFT matrix are inher-
ited from trigonometric functions, such as the sine and
cosine functions. Many FFT libraries, such as FFTW, Intel
MKL, ARMPL, SPIRAL, Ne10, and so on, utilize these prop-
erties more or less to optimize their FFT kernels, especially
for power-of-two radices. However, according to the public
materials of these libraries, none of them has provided inte-
gral and general mathematical expressions to combine the
symmetry and periodicity for all radices of natural numbers.
Besides, different from other FFT libraries, AutoFFT is built
on the templates, which are the abstractions of typical calcu-
lation patterns in the FFT computation. These templates are

defined based on the optimized pair and quad patterns and
used to autogenerate low-level assembly FFT kernels.
FFTW’s codelets are some fundamental kernels used to cal-
culate small DFTs. So FFTW’s codelets are conceptually
equivalent to AutoFFT’s FFT kernels, which means that
codelets and templates belong to different granularities (tem-
plates are in a finer granularity than codelets). Compared
with the prior work, this paper contains the following three
contributions. First, this paper is the first work that systemat-
ically summarizes and extracts the integral mathematical
expressions of the symmetric and periodic properties (the
pair and quad patterns) to minimize the arithmetic complex-
ity for all radices. Second, we formalize these two patterns
into templates so that these two patterns can be applied in
the code generation. Third, we build a novel framework
AutoFFT, which is based on the template methodology, to
enable the assembly code generation. Benefiting from the
template-based code generation mechanism, AutoFFT is
able to directly generate efficient assembly FFT kernels for
varying architectureswithout compiler intervention.

This paper compares AutoFFT with FFTW, ARMPL, and
Intel MKL on ARM, Intel, and AMD CPU platforms.
ARMPL and Intel MKL are the official math libraries for
ARM and Intel processors, respectively. These two vendor-
tuned libraries are well-optimized to achieve high perfor-
mance. The performance of FFTW is typically superior to
that of other publicly available FFT libraries and is even
competitive with vendor-tuned libraries. In contrast to ven-
dor-tuned libraries, FFTW’s performance is portable, which
means that FFTW performs well on most architectures.
According to AMD official description in [23], its official
math library AOCL regards FFTW as its FFT module.

3 THE AUTOFFT FRAMEWORK

This section introduces the two stages of AutoFFT, as shown
in Fig. 1. The install-time stage generates efficient FFT ker-
nels, and the runtime stage empirically searches for the opti-
mal plan to construct an efficient butterfly network for a
given FFT size and the underlying hardware features.

3.1 The Install-Time Stage

The install-time stage is responsible for generating high-per-
formance FFT kernels that are defined to calculate multiple
butterflies. To reduce the number of floating-point opera-
tions of different butterflies as many as possible, the pair

Fig. 1. Overview of AutoFFT.

LI ETAL.: AUTOMATIC GENERATION OF HIGH-PERFORMANCE FFT KERNELS ON ARM AND X86 CPUS 1927

and quad patterns are derived from the symmetric and peri-
odic properties of the DFT matrix ðWik

r Þr�r. These two pat-
terns are the foundation of the code generation framework.
The details of how to deduce these two patterns will be
given in Section 4. The install-time stage adopts three com-
ponents to capitalize on these two patterns.

First, we describe the computational template designer. To
make full use of the pair and quad patterns, a computational
template designer is introduced. This designer takes these two
highly optimized patterns as inputs and then obtains high-
level computational templates as outputs. The computational
templates are composed of meta templates and hybrid tem-
plates. Meta templates are predefined C preprocessor macros
that represent some basic complex number operations. Unlike
meta templates, hybrid templates are strongly related to radix
r. For different radix r, the number and type of meta templates
used by hybrid templates are different. Hence, hybrid tem-
plates are defined and extracted as C functions according to
the derived equations of the pair and quad patterns.

Second, we describe the C FFT kernel generator. This
generator takes the computational templates as inputs and
then enables the automatic generation of high-level FFT ker-
nels with the lowest arithmetic complexity for all radices
according to Algorithm 1, which is the concrete implemen-
tation of the pair and quad patterns.

Algorithm 1. butterfly kernel(out, in, tw, r, i, isFirst)

Input: in[]: the input data of current stage; tw[]: twiddles; r:
radix; i: the ith butterfly; isFirst: whether it is the first stage.

Output: out[]: output data.
1: Load inputs into tmpIn[] from in[] according to i
2: if isFirst=0 then
3: Load twiddles into tmpTW[] from tw[]
4: for i 1 to r do
5: CPX MUL(tmpIn[i], tmpIn[i], tmpTW[i-1])
6: end for
7: end if
8: o (r/2) mod 2
9: CALC LIKE TERMS(add, sub, tmpIn, r)
10: CALC OUT SPECIAL(tmpOut, add, sub, r)
11: if r is an odd number then
12: for i 1 to r/2 do
13: CALC OUT PAIR(tmpOut, add, sub, i, r)
14: end for
15: else if r is an even number then
16: for i 1 to r/4 do
17: CALC OUT QUAD(tmpOut, tmpIn, i, r, o)
18: end for
19: end if
20: Store outputs from tmpOut[] to out[]

Third, we describe the assembly optimizer. To further
exploit hardware resources, the optimizer defines optimiza-
tion templates that match the underlying hardware capabili-
ties, such as SIMD vectorization, register resources, and the
instruction set. In addition, it also categorizes small/medium/
large radices (described in Section 5.3.3). After that, the opti-
mizer takes the C FFT kernels and optimization templates as
inputs and transforms the C FFT kernels into high-perfor-
mance assembly FFT kernels according to the register alloca-
tion strategy.

Due to the limited register resources in modern CPUs, it
is difficult to transform the C FFT kernels of large radices
into efficient assembly code. Hence, AutoFFT can directly
generate assembly FFT kernels for small and medium radi-
ces without compiler intervention and generate C FFT ker-
nels for large radices. These kernels make up our FFT kernel
set. As the computational core of the FFT computation,
these kernels have a crucial impact on the overall perfor-
mance and will be invoked as needed at runtime.

3.2 The Runtime Stage

According to the Cooley-Tukey algorithm [1], a given trans-
form size is recursively factorized into smaller sizes until
they can no longer be decomposed. When the given size is
large, the size decomposition tree can be large too. Because
each branch of this tree represents a factorization for the
given FFT size, we call this decomposition tree as the factor-
ization tree, and each branch of the factorization tree is also
known as an FFT plan. The runtime stage is responsible for
reducing the search space of many potential FFT plans and
seeking the optimal plan for a given DFT problem. The run-
time stage consists of three components.

First, we describe the number factorizer. The factorizer
takes the FFT size as input, and then recursively factorizes
the given FFT size and builds the factorization tree. As a
result, it outputs many potential FFT plans. Each FFT plan
represents one factorization that holds the radix for each
stage of the butterfly network in radix½�.

Second, we describe the butterfly network generator.
AutoFFT adopts the Stockham auto-sort FFT [42], [43] net-
work, which is SIMD-friendly and requires no explicit bit-
reversal permutation. The generator takes the necessary
input parameters (radix½�, the transform direction, and
dimension) to construct the butterfly network.

Third, we describe the performance evaluator. Since the
factorization tree can be large, the evaluator adopts a depth-
first search to identify the shortest path of the tree and prune
unneeded branches. Because the Cooley-Tukey algorithm is
a memory-intensive algorithm, a branch with a shorter path
indicates that its network contains fewer stages, which may
lead to more efficient memory accesses. Subsequently, a bot-
tom-up dynamic programming method is adopted on the
pruned tree by making full use of the recursive structure of
the FFT. We build a performance table to record the mini-
mum execution time of the subsequences with various input
and output strides, so we do not need to reevaluate the same
subsequences with the same strides. Finally, the evaluator
evaluates all candidate factorizations to determine the best
factorization.

After obtaining the optimal plan, we construct the Stock-
ham butterfly network according to the best factorization
and call the needed FFT kernels to efficiently solve the given
DFT problem. The auto-tuning framework of AutoFFT
refers to the current state-of-the-art [16], [27], [39], and this
paper does not discuss the runtime stage in detail but rather
focuses on the FFT kernel generation.

4 OPTIMIZED CALCULATION PATTERNS

This section focuses on the algorithmic optimizations on but-
terflies. Performing algorithmic optimizations on butterflies

1928 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

and extracting general calculation patterns can bring two
great benefits. First, because butterflies are the core opera-
tions of the Cooley-Tukey algorithm, reducing the floating-
point operations of the butterfly kernels can significantly
enhance the overall performance. Second, these calculation
patterns regularize the calculation of the butterfly kernels,
facilitating and enabling the code generation process. In this
section, we systematically summarize the integral and gen-
eral mathematical expressions for the symmetric and peri-
odic properties and extract relatively optimized calculation
patterns for radices of all natural numbers.

In our previous work [20], we empirically divide radix r
into two cases from the perspective of engineering require-
ments: 1) r is a prime number and 2) r is a power of two.How-
ever, this divisionmanner of r limits the generality of the code
generation framework, which means the framework does not
support generating butterfly kernels for radices beyond these
two cases, such as radices 6, 9, 10, and so on. However, a
native radix may be faster than mixed radices. For example,
radix 6 can be faster than the combination of radix 2 and radix
3when processing FFTs of power-of-six sizes.

In this paper, we improve and supplement the generality
of AutoFFT based on the previous work [20] so that it can
generate butterfly kernels for all natural numbers. Here, the
natural numbers are divided into three cases: r ¼ 2mþ 1,
r ¼ 4mþ 2, and r ¼ 4mþ 4. To simplify the representation
of the formulas in this section, we introduce the following
symbols:

ci ¼ xi þ xr�i; and di ¼ xi � xr�i
ui ¼ xr=2�i þ xr=2þi; and vi ¼ xr=2�i � xr=2þi:

4.1 The Symmetry Property

4.1.1 The r ¼ 2mþ 1 Radices

Let r ¼ 2mþ 1. In this case, twiddles are symmetric about the
x-axis. Fig. 2a presents twiddles’ characteristics of radix 3,
which complieswith r ¼ 2mþ 1.

According to Eq. (1), when calculating Y0 for the radix-r
butterfly, because k ¼ 0, the following equality is always true:
Wik

r ¼W 0
r ¼ 1. Thus, Y0 is calculated separately using Eq. (4)

Y0 ¼ x0 þ
Pm

i¼1 ci: (4)

For the remaining outputs Yk with k 2 ½1; r� 1�, we mini-
mize the number of floating-point operations by taking
advantage of the horizontal and vertical symmetries of the
DFT matrix.

Regarding the horizontal symmetry, Wik
r and W ðr�iÞk

r are

symmetric about the x-axis, andW ðr�iÞk
r ¼W�ik

r whichmeans
that ReðWik

r Þ ¼ ReðW�ik
r Þ and ImðWik

r Þ ¼ �ImðW�ik
r Þ. We

refer to this as the horizontal symmetry since it exploits the
reuse along each row in Eq. (2). For each Yk, we define
Wik

r ¼ aik þ bik � j andW ðr�iÞk
r ¼W�ik

r ¼ aik � bik � j. Based on
this symmetry, the calculation of Yk can be reduced by uniting
the like terms xiW

ik
r and xr�iW ðr�iÞk

r , as presented in Eq. (5)

Yk ¼
Xr�1
i¼0

xiW
ik
r ¼ x0 þ

Xr�1
i¼1

xiW
ik
r

¼ x0 þ
Xm
i¼1

ci � aik þ
Xm
i¼1

di � bik � j:
(5)

Regarding the vertical symmetry, by observing Eqs. (5)
and (6), we find that Yk and Yr�k are like terms. We refer to
this as the vertical symmetry since it exploits the reuse
between rows in Eq. (2). Similar to Eq. (5), Yr�k can be calcu-
lated using Eq. (6). Accordingly, we further reduce the num-
ber of floating-point operations by uniting the like terms
and calculating Yk and Yr�k together

Yr�k ¼
Xr�1
i¼0

xiW
iðr�kÞ
r

¼ x0 þ
Xr�1
i¼1

xiW
ir�ik
r

¼ x0 þ
Xr�1
i¼1

xiW
�ik
r

¼ x0 þ
Xm
i¼1

ci � aik �
Xm
i¼1

di � bik � j:

(6)

4.1.2 The r ¼ 4mþ 2 Radices

Let r ¼ 4mþ 2. In this case, twiddles are symmetric about the
x-axis and the y-axis. Fig. 2bpresents the symmetric character-
istics of radix-6 twiddles, which complieswith r ¼ 4mþ 2.

For Y0 and Yr=2, all required twiddles can be simplified to
W 0

r ¼ 1 and Wr=2
r ¼ �1; therefore, Y0 and Yr=2 are calculated

separately using Eq. (7)

Y0 ¼
Xr�1
i¼0

xiW
i�0
r ¼

Xr=2�1
i¼0
ðxi þ xr�i�1Þ

Yr=2 ¼
Xr�1
i¼0

xiW
i�r=2
r ¼

Xr=2�1
i¼0
ðx2i � x2iþ1Þ:

(7)

Compared with the r ¼ 2mþ 1 case, the r ¼ 4mþ 2 case
has better symmetry in both horizontal and vertical directions.

Regarding the horizontal symmetry,when r ¼ 4mþ 2,Wik
r ,

W ðr�iÞk
r ,W ðr=2�iÞk

r , andW ðr=2þiÞk
r are symmetric to some extent.

BecauseW ðr=2�iÞk
r ¼ ð�1ÞkW�ik

r andW ðr=2þiÞk
r ¼ ð�1ÞkWik

r , we

haveWik
r ¼ aik þ bik � j,W ðr�iÞk

r ¼ aik � bik � j,W ðr=2�iÞk
r ¼ ð�1Þk

ðaik � bik � jÞ and W ðr=2þiÞk
r ¼ ð�1Þkðaik þ bik � jÞ. Yk’s calcula-

tion can be reduced by uniting these like terms xiW
ik
r ,

xr=2�iW ðr=2�iÞk
r , xr=2þiW ðr=2þiÞk

r and xr�iW ðr�iÞk
r , as presented

in Eq. (8) where k 2 ½1;m�

Fig. 2. These three subfigures present the symmetries of twiddles of (a)
radix 3, (b) radix 6, and (c) radix 8, respectively. The red points should be
processed separately and the green points contain good symmetry.

LI ETAL.: AUTOMATIC GENERATION OF HIGH-PERFORMANCE FFT KERNELS ON ARM AND X86 CPUS 1929

Yk ¼ x0 þ ð�1Þkxr=2

þ
Xm
i¼1
ðci þ ð�1ÞkuiÞaik

þ
Xm
i¼1
ðdi � ð�1ÞkviÞbik � j:

(8)

Regarding the vertical symmetry, Yr�k, Yr=2�k, and Yr=2þk
can be calculated using Eq. (9). Because the four outputs Yk,
Yr�k, Yr=2�k, and Yr=2þk contain like terms, we optimize the
calculation by uniting their like terms and calculating these
four results together

Yr�k ¼ x0 þ ð�1Þkxr=2

þ
Xm
i¼1
ðci þ ð�1ÞkuiÞaik �

Xm
i¼1
ðdi � ð�1ÞkviÞbik � j

Yr=2�k ¼ x0 þ ð�1Þkþ1xr=2 þ
Xm
i¼1
ð�1Þiðci � ð�1ÞkuiÞaik

�
Xm
i¼1
ð�1Þiðdi þ ð�1ÞkviÞbik � j

Yr=2þk ¼ x0 þ ð�1Þkþ1xr=2 þ
Xm
i¼1
ð�1Þiðci � ð�1ÞkuiÞaik

þ
Xm
i¼1
ð�1Þiðdi þ ð�1ÞkviÞbik � j:

(9)

4.1.3 The r ¼ 4mþ 4 Radices

Let r ¼ 4mþ 4. The calculation pattern for the r ¼ 4mþ 4
radices is very similar to the r ¼ 4mþ 2 case, where the
twiddles are symmetric about the x-axis and the y-axis.
Their main difference is that the former contains extra two
twiddles that are always symmetric about the x or y axis,
such as Wr=4�k

r and W 3r=4�k
r in Yk’s calculation. Hence, Y0,

Yr=2, Yr=4, and Y3r=4 can be calculated separately. The calcula-
tions of Y0 and Yr=2 remain the same as the r ¼ 4mþ 2 case
using Eq. (7). Regarding Yr=4, and Y3r=4, they are calculated
using Eq. (10). Fig. 2c presents twiddles’ characteristics of
radix 8, which complies with r ¼ 4mþ 4

Yr=4 ¼
Xr�1
i¼0

xiW
i�r=4
r

¼
Xr=4�1
i¼0
ððx4i � x4iþ2Þ � ðx4iþ1 � x4iþ3Þ � jÞ

Y3r=4 ¼
Xr�1
i¼0

xiW
i�3r=4
r

¼
Xr=4�1
i¼0
ððx4i � x4iþ2Þ þ ðx4iþ1 � x4iþ3Þ � jÞ:

(10)

The horizontal and vertical symmetries in the r ¼ 4mþ 4
radices are also similar to those in the r ¼ 4mþ 2 case. At
the same time, it should be noted that there are subtle differ-
ences between these two cases within the equations when
calculating Yr=2�k and Yr=2þk.

Regarding the horizontal symmetry, because W ðr=2�iÞk
r ¼

ð�1ÞkW�ik
r andW ðr=2þiÞk

r ¼ ð�1ÞkWik
r , we can unite like terms

xiW
ik
r , xr=2�iW ðr=2�iÞk

r , xr=2þiW ðr=2þiÞk
r and xr�iW ðr�iÞk

r for Yk,
as presented in Eq. (11) where k 2 ½1;m�

Yk ¼ x0 þ ð�1Þkxr=2 þ xr=4W
r=4�k
r þ x3r=4W

3r=4�k
r

þ
Xm
i¼1
ðci þ ð�1ÞkuiÞaik þ

Xm
i¼1
ðdi � ð�1ÞkviÞbik � j:

(11)

Regarding the vertical symmetry, we use Eq. (12) to cal-
culate Yr�k, Yr=2�k, and Yr=2þk. Because the four outputs Yk,
Yr�k, Yr=2�k, and Yr=2þk are like terms, we optimize the calcu-
lations by uniting the like terms and calculating these four
results together

Yr�k ¼ x0 þ ð�1Þkxr=2
þ
Xm
i¼1
ðci þ ð�1ÞkuiÞaik �

Xm
i¼1
ðdi � ð�1ÞkviÞbik � j

þ xr=4W
r=4�ðr�kÞ
r þ x3r=4W

3r=4�ðr�kÞ
r

Yr=2�k ¼ x0 þ ð�1Þkþ1xr=2 þ
Xm
i¼1
ð�1Þiðci þ ð�1ÞkuiÞaik

�
Xm
i¼1
ð�1Þiðdi � ð�1ÞkviÞbik � j

þ xr=4W
r=4�ðr=2�kÞ
r þ x3r=4W

3r=4�ðr=2�kÞ
r

Yr=2þk ¼ x0 þ ð�1Þkþ1xr=2 þ
Xm
i¼1
ð�1Þiðci þ ð�1ÞkuiÞaik

þ
Xm
i¼1
ð�1Þiðdi � ð�1ÞkviÞbik � j

þ xr=4W
r=4�ðr=2þkÞ
r þ x3r=4W

3r=4�ðr=2þkÞ
r :

(12)

4.2 The Periodic Property

The number of floating-point operations can be further
reduced by capitalizing on the twiddle periodicity. Let
p ¼ gcdðr; kÞ and q ¼ r=p. When p ¼ 1, Yk’s twiddles contain
only one period. When p 6¼ 1, Yk’s twiddles periodically
repeat at intervals of length q. We refer to this as the peri-
odic property. Consequently, inputs with a distance of q
multiply the same twiddle; therefore, we can obtain Eq. (13)

Yk ¼
Xr�1
i¼0

xiW
ik
r

¼
Xr�1
i¼0

xiW
ðik mod rÞ
r

¼
Xp�1
s¼0

Xq�1
t¼0

xtþs�qWtk
r

¼
Xq�1
t¼0

Xp�1
s¼0

xtþs�q

 !
�Wtk

r :

(13)

In this way, we divide Yk’s r twiddles into p groups, and
each group contains the same q twiddles. Benefiting from
this periodic property, like terms occur when calculating Yk;
thus, we can reduce the number of floating-point operations
by uniting these like terms, as presented in Eq. (13).

We define a new complex sequence x̂ to represent the
inner summation of Eq. (13). Because each Yk contains its
own x̂, when k is given, p and q are settled. Hence, each ele-
ment of x̂ is defined in Eq. (14) with t 2 ½0; q � 1�; thus, the
Yk in Eq. (13) can be re-expressed as the Yk in Eq. (14)

1930 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

x̂ðt;kÞ ¼
Xp�1
s¼0

xtþs�q

Yk ¼
Xq�1
t¼0

x̂ðt;kÞ �Wtk
r :

(14)

Next, we extract the periodic properties of these three
cases (r ¼ 2mþ 1, r ¼ 4mþ 2, and r ¼ 4mþ 4) to further
reduce the number of floating-point operations. At a higher
level of abstraction, the periodic properties can be seen as
the outer framework of the symmetric properties.

4.2.1 The r ¼ 2mþ 1 Radices

In our previous work [20], because we have not considered
the periodicity of the r ¼ 2mþ 1 case, it only support the
generation of prime radices, such as 3 and 5. Here, we fur-
ther generalize the r ¼ 2mþ 1 radices by formulating and
combining the horizontal and vertical symmetries with the
periodicity, so that we can generate radices of all odd num-
bers, such as radix 9. We split and parameterize the calcula-
tion of Eqs. (5) and (6) into parts that are denoted as A, C,
and D, as shown in Eq. (15). Based on these parameters, the
Yk in Eq. (5) and the Yr�k in Eq. (6) are re-expressed in
Eq. (16). Since this calculation pattern can calculate two
results at a time, we call it the pair pattern

A ¼ x̂ð0;kÞ
C ¼ ðx̂ði;kÞ þ x̂ðq�i;kÞÞaik
D ¼ ðx̂ði;kÞ � x̂ðq�i;kÞÞbik � j

(15)

Yk ¼ Aþ
Xm
i¼1

C þ
Xm
i¼1

D

Yr�k ¼ Aþ
Xm
i¼1

C �
Xm
i¼1

D:

(16)

4.2.2 The r ¼ 4mþ 2 and r ¼ 4mþ 4 Radices

Considering that there are few differences in symmetry and
periodicity between the r ¼ 4mþ 2 case and the r ¼ 4mþ 4
case, we use a unified way to represent them. We define
(o ¼ r=2 mod 2) to distinguish these two cases. When
r ¼ 4mþ 2, o ¼ 1; otherwise, o ¼ 0. Unlike our previous
work [20], which only supports the r ¼ 4mþ 4 case for

power-of-two radices, this paper can generate radices of all
even number including power-of-two radices.

To combine the horizontal and vertical symmetries with
the periodicity for the r ¼ 4mþ 2 and r ¼ 4mþ 4 radices,
we parameterize their calculation patterns of Yk, Yr�k, Yr=2�k,
and Yr=2þk using A, B, C, and D, as shown in Eq. (17). Based
on these parameters, these outputs can be re-expressed as
Eq. (18). Since this calculation pattern can calculate four
results at a time, we call it the quad pattern. Note that when
r ¼ 4mþ 4, Yr=4 and Y3r=4 are calculated separately here
based on A and B. When k ¼ r=4, o ¼ 0 and p ¼ q ¼ 4; there-
fore, we obtain Yr=4 ¼ AþB, and Y3r=4 ¼ A�B

A ¼ x̂ð0;kÞ � x̂ðq=2;kÞ
B ¼ ð1� oÞððx̂ðq=4;kÞ � x̂ð3q=4;kÞÞ � ImðWk

4pÞ � jÞ
C ¼ ððx̂ði;kÞ þ x̂ðq�i;kÞÞ

þ ð�1Þkþoðx̂ðq=2�i;kÞ þ x̂ðq=2þi;kÞÞÞaik
D ¼ ððx̂ði;kÞ � x̂ðq�i;kÞÞ

� ð�1Þkþoðx̂ðq=2�i;kÞ � x̂ðq=2þi;kÞÞÞbik � j

(17)

Yk ¼ AþBþ
Xq=4�1
i¼1

C þ
Xq=4�1
i¼1

D

Yr�k ¼ A�Bþ
Xq=4�1
i¼1

C �
Xq=4�1
i¼1

D

Yr=2�k ¼ A�Bþ
Xq=4�1
i¼1
ð�1Þi � C �

Xq=4�1
i¼1
ð�1Þi �D

Yr=2þk ¼ AþBþ
Xq=4�1
i¼1
ð�1Þi � C þ

Xq=4�1
i¼1
ð�1Þi �D:

(18)

5 FFT KERNEL GENERATION

5.1 The Computational Template Designer

The template-based code generation system is built on the
pair and quad patterns. To make full use of these patterns
and enable the code generation, we introduce a computa-
tional template designer. The template designer takes these
two patterns as inputs and then obtains high-level computa-
tional templates as outputs. The computational templates
are the basis of the code generation system. They consist of
meta templates and hybrid templates. Meta templates are
predefined hardcoded C preprocessor macros representing
some basic arithmetic operations on complex numbers.
Hybrid templates are defined as high-level C functions
extracted by the designer according to the pair and quad
patterns (Eqs. (16) and (18)). This is because the value of
radix r determines the number and type of meta templates
used in hybrid templates. Note that the input sequence x is
equal to the original inputs multiplied by twiddles, and Y is
the transformed result.

5.1.1 Meta Templates

As presented in Section 4, butterfly calculations consist of
some arithmetic operations on complex numbers; therefore,
we define these operation units as meta templates in Fig. 3.

Fig. 3. Meta templates supported in AutoFFT.

LI ETAL.: AUTOMATIC GENERATION OF HIGH-PERFORMANCE FFT KERNELS ON ARM AND X86 CPUS 1931

� CPX_ADD(), CPX_SUB(), and CPX_MUL() repre-
sent complex addition, subtraction, and multiplica-
tion, respectively.

� CPX_MLAðout; in1; in2; sÞ represents the fused mul-
tiply-add (FMA) operation on complex numbers. It is
used for the accumulation operations in Eqs. (16) and
(18). Likewise, CPX_MUL_Sðout; in; sÞ is used for
these two equations to complete the multiplication
between a complex number in and a real number s.

� CPX_OUTðhead; tail; A;BÞ is used to calculate a pair
of results (such as Yk and Yr�k, and Yr=4�k and
Y3r=4�k), as presented in Eqs. (16) and (18).

5.1.2 Hybrid Templates

Hybrid templates are extracted and formalized by the
computational template designer to implement the pair pat-
tern (Eq. (16)) for r ¼ 2mþ 1 radices, and the quad pattern
(Eq. (18)) for r ¼ 4mþ 2 and r ¼ 4mþ 4 radices, as shown
in Fig. 4.

� CALC_LIKE_TERMSðadd; sub; in; rÞ unites like terms.
When r ¼ 2mþ 1, according to Eq. (15), add stores
(x0), (x1 þ xr�1); . . . ; (xm þ xr�m), and sub stores (�x0),
(x1 � xr�1); . . . ; (xm � xr�m). When r is an even num-
ber, according to Eq. (17), add stores (x0 þ xm), (x1 þ
xr�1); . . . ; (xm þ xr�m), and sub stores (x0 � xm), (x1 �
xr�1); . . . ; (xm � xr�m); in contains x0 þ � � � þ xr�1.

� CALC_OUT_SPECIALðout; add; sub; rÞ adopts Eq. (4)
to separately calculate Y0 when r is an odd number;
when r is an even number, it separately calculates Y0

and Yr=2 using Eq. (7).
� CALC_OUT_PAIRðout; add; sub; k; rÞ implements the

pair pattern (Yk and Yr�k) according to Eq. (16).
Because this process only involves basic complex

number operations, we simplify the expressions for
calculating Eq. (15)’s x̂=A=C=D for readability.

� CALC_OUT_QUADðout; add; sub; k; rÞ implements
the quad pattern (Yk, Yr=2�k, Yr=2þk, and Yr�k) accord-
ing to Eq. (18). In addition, Yr=4 and Y3r=4 are calcu-
lated separately. We simplify the expressions for
calculating Eq. (17)’s x̂=A=B=C=D for readability.

Algorithm 2. FFT kernel(out, in, tw, r, butterfly num,
isFirst)

Input: in[]: inputs; tw[]: twiddles; r: radix; butterfly num: the
number of butterflies; isFirst: whether it is the first stage.

Output: out[]: outputs.
1: for i 0 to butterfly num do
2: butterfly kernel(out, in, tw, r, i, isFirst)
3: end for

5.2 The C FFT Kernel Generator

After we obtain the computational templates, a C FFT kernel
generator is designed to generate integral FFT kernels that
can independently calculate DFTs. According to Algorithm
1, this generator takes a given radix r (an arbitrary natural
number) as input and calls the needed computational tem-
plates, then an efficient C FFT kernel for the given radix r
can be automatically generated.

The butterfly kernel is the core computing module for
calculating one butterfly, so its implementation and optimi-
zation are critical to the overall performance. In Algorithm
1, lines 1�7 load and multiply the inputs and twiddles and
then store the results in the temporary complex array
tmpIn. In the first stage, all twiddles equal 1; thus, lines 3�6
are skipped. Line 9 calls CALC LIKE TERMS() to calculate
the like terms that can be reused by other hybrid templates.
When r is an odd number, line 10 calls CALC OUT SPE-
CIAL() to calculate Y0, and lines 12�14 then perform the
pair pattern. When r is an even number, line 10 calculates
Y0 and Yr=2, and lines 16�18 perform the quad pattern.
Finally, line 20 stores the results in out.

The FFT kernel is adopted to process multiple butterflies
in a for-loop, as shown in Algorithm 2. According to the
Stockham FFT network, adjacent butterflies can be calcu-
lated together, so we can SIMDize the for-loop to improve
the performance of the FFT kernel.

5.3 The Assembly Template Optimizer

The C FFT kernel generator is mostly concerned with reduc-
ing floating-point operations. However, the underlying hard-
ware designs for factors such as registers and pipeline
structure also have a high impact on the performance. To fur-
ther exploit the hardware resources, we need to accelerate
and transform the C FFT kernels into assembly kernels. To
automate the transformation process for varying architec-
tures, the assembly template optimizer is introduced. The
optimizer takes optimization templates as inputs, and then
automatically transforms the C FFT kernels into assembly
according to the register allocation strategy, which is defined
based on the underlying architectures. The optimization tem-
plates are hardcoded architecture-specific assembly templates
that are transformed from the high-levelmeta templates.

Fig. 4. Hybrid templates supported in AutoFFT.

1932 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

5.3.1 Butterfly Vectorization

Most modern CPUs provide SIMD techniques to boost per-
formance; therefore, AutoFFT adopts the SIMD-friendly
Stockham FFT network. In this network, the inputs and out-
puts of adjacent butterflies are contiguous in memory;
therefore, Algorithm 2 can be SIMDized to calculate multi-
ple butterflies simultaneously. Fig. 5 presents how to SIMD-
ize multiple radix-2 butterflies for a sequence of length N .
Four adjacent radix-2 butterflies are represented by four col-
ors. One radix-2 butterfly requires two inputs (such as x 0[0]
and x 0[1]) and yields two outputs (Y 0[0] and Y 0[1]).

5.3.2 Instruction Mapping

We define instruction mapping rules to translate the high-
level computational templates into architecture-specific
hardcoded optimization templates by selecting and schedul-
ing efficient assembly instructions. AutoFFT currently
focuses on the ARMv8 ISA and the x86-64 ISA. Their instruc-
tion mapping rules are listed in Fig. 6. When SIMDizing but-
terflies on the ARMv8 architecture, we use two 128-bit
registers to separately hold four complex numbers’ real and
imaginary parts. On the Intel Haswell and AMD Zen archi-
tectures, we use one 256-bit register to hold four complex
numbers by interleaving their real and imaginary parts. We
adopt this approach for the following reasons: 1) AVX2 does
not support efficient load/store instructions such as ld2/st2
instructions in ARM NEON; and 2) AVX2 provides the
vaddsubps instruction to efficiently perform multiplication
on complex numbers for the interleaved pattern.

To keep every execution unit of the processor busy with
instructions, AutoFFT reorders the instruction streams using
the following two methods. 1) Detach instructions with
dependencies, especially for memory instructions and corre-
sponding arithmetic instructions. Because the latencies of
memory instructions are high, we insert independent instruc-
tions between the memory instructions and the correspond-
ing dependent arithmetic instructions. 2) Rearrange
independent instructions based on the functionalities of the
issue ports. For example, the issue ports 0/1/5 of the Haswell
architecture perform arithmetic operations, and independent
instructions such as floating-point multiplication, FMA, and
shuffle can be dispatched to these three ports in parallel [44].

Benefiting from the optimization templates, when new
architectures emerge, we only need to implement the

corresponding optimization templates. As shown in Fig. 6,
the optimization templates use register aliases instead of
physical vector registers. In the following, we define the reg-
ister allocation strategy for different radices to transform the
C FFT kernels into corresponding assembly FFT kernels.

5.3.3 Register Allocation Strategy

Vector registers are scarce resources in modern CPUs. We
design a strict vector register allocation strategy to make
full use of register resources and enable the automatic gen-
eration of assembly FFT kernels. The register allocation
strategy contains two steps. The first step is the the register
alias usage step, which is used to reduce the difficulty of
the generation of assembly FFT kernels. The second step is
the vector register mapping step, which is used to complete
the mappings between register aliases and vector registers.

Register Alias Usage. The number of vector registers in
modern CPUs is limited. ARMv8 processors contain 32 128-
bit vector registers, while Intel Haswell and AMD Zen pro-
cessors contain 16 256-bit vector registers. Because AMD
Zen and Intel Haswell have the same amount of registers,
and their register alias usages are the same, we omit the
repeated description of AMD Zen’s register alias usage for
simplicity. During the process of assembly FFT kernel gen-
eration, vector registers become increasingly scarce as the
radix increases, so we introduce register aliases to reduce
the difficulty of assembly code generation. By using register
aliases, we do not need to worry about whether the number
of physical vector registers meets the needs of assembly
code generation. In this step, only register aliases are used
in the generated assembly FFT kernels.

The main idea of register alias usage is to group register
aliases according to their functionalities in Algorithm 1 and
to strictly define the usage rules and the required amount of
register aliases of each group. According to Algorithm 1,
AutoFFT divides register aliases into four groups: the input
group, the twiddle group, the temporary group, and the

Fig. 5. SIMDize four adjacent radix-2 butterflies. Note that in the ith
stage, in stride ¼ N=2 and out stride ¼ 2i.

Fig. 6. Instruction mapping rules between meta templates and optimiza-
tion templates.

LI ETAL.: AUTOMATIC GENERATION OF HIGH-PERFORMANCE FFT KERNELS ON ARM AND X86 CPUS 1933

output group. We now analyze the required register aliases
of the four groups for the radix-r kernel.

On the ARMv8 architecture, the input group requires 2r
registers for tmpIn, the twiddle group requires 2r� 2 regis-
ters for tmpTW , and the temporary group requires 2r regis-
ters for add=sub. The other required registers in the
temporary group and the output group are as follows:
1) When r is an odd number, the temporary variables (rr/
ii/ri/ir used in CPX MUL() and C=D used in
CALC OUT PAIR()) occupy 8 registers. In addition, 4 regis-
ters are needed to hold a pair of outputs. Thus, the sum of
the required registers is 6rþ 10. 2) When r is an even num-
ber, CALC OUT QUAD()’s A=B=C1=C2=D1=D2 occupy 12
temporary registers, and 8 registers for four outputs are
required. Thus, the sum of the required registers is 6rþ 18.
On the Haswell architecture, because we use one 256-bit reg-
ister to process 4 complex numbers, when r is an odd num-
ber, the sum of the required registers is 3rþ 5; when r is an
even number, the sum of the required registers is 3rþ 9.

Vector Register Mapping. So far, the assembly FFT kernels
generated from the register alias usage step only use regis-
ter aliases, however, to complete the code generation and
obtain runnable assembly FFT kernels, we still need to
replace register aliases with physical vector registers.
Hence, the main idea of the vector register mapping step is
to construct the mappings between register aliases and
physical vector registers. Because AMD Zen and Intel Has-
well have the same register resources, we omit the repeated
description of AMD Zen’s register mapping rule for sim-
plicity. The register mapping rule varies for different radi-
ces and can be divided into the following three cases based
on Algorithm 1:

(1) Small Radices. According to the analysis in the register
alias usage step, 1) when r is an odd number, on the
ARMv8 architecture, where the required vector registers are
6rþ 10 � 32, we have r � 11=3. On the Haswell architec-
ture, where 3rþ 5 � 16, we have r � 11=3; therefore, radix 3
is a small radix. 2) When r is an even number, on the
ARMv8 architecture, where 6rþ 18 � 32, we have r � 7=3;
on the Haswell architecture, where 3rþ 9 � 16, we have
r � 7=3. Therefore, radix 2 is a small radix. Hence, there are
sufficient registers for each group to independently perform
their tasks for radices 2 and 3.

(2) Medium Radices. As the radix grows, the four groups
require more vector registers, and the register resources
become insufficient to independently perform the tasks for
the four groups. Thus, we reuse registers according to the
following four rules: 1) Reuse tmpTW . the operations
between twiddles and inputs are independent; therefore, it
is unnecessary to load all twiddles at once, and we suggest
loading 4 twiddles each time. After the complex number
multiplications are completed, the registers can be reused
for the next 4 twiddles. In addition, after completing lines
1�7 of Algorithm 1, the registers used for tmpTW can be
freed. 2) Reuse tmpIn. For CALC LIKE TERMS() in line 9,
we introduce one temporary complex number to stagger
the registers used for add=sub and tmpIn; then, add=sub can
reuse tmpIN’s registers. 3) Reuse the temporary registers.
Temporary registers can also be used for the rr/ii/ri/ir of
CPX MUL(). 4) Reuse tmpOut. In lines 13 and 17, after
obtaining an output, we immediately store it in memory,

which means the output group only needs to maintain one
complex number.

As analyzed above, on the ARMv8 architecture, lines 1�7
in Algorithm 1 require 2rþ 8 registers for tmpIn and
tmpTW . Subsequently, we have the following: 1) When r is
an odd number, lines 9�20 require only 2rþ 6 registers: the
temporary group requires 2r registers for add=sub, 4 regis-
ters are used for the temporary variables, and tmpOut
requires 2 registers. By adopting the four reuse rules, 2rþ 8
registers are sufficient because they can be reused in lines
9�20; if 2rþ 8 � 32, we have r � 12. Similarly, the Haswell
architecture requires rþ 4 registers; if rþ 4 � 16, we have
r � 12; therefore, 5, 7, 9, and 11 are medium radices. 2)
When r is an even number, on the ARMv8 architecture,
lines 9�20 require 2rþ 12 registers, which is larger than
2rþ 8: add=sub require 2r registers, the temporary variables
require 12 registers, and tmpOut requires 2 registers. When
2rþ 14 � 32, we have r � 9. Similarly, the Haswell architec-
ture requires rþ 7 registers. When rþ 7 � 16, we have
r � 9; therefore, 4, 6, and 8 are medium radices.

(3) Large Radices. When r > 11, vector register resources
are insufficient: we have to use stack or memory instruc-
tions to temporarily hold relevant data, which degrades the
performance. Large radices require more vector registers,
which are limited in modern CPUs. AutoFFT provides C
FFT kernels to perform the FFT computation for large radi-
ces. Specialized FFT algorithms, such as Rader’s algo-
rithm [2], can achieve better performance than the Cooley-
Tukey algorithm for large radices.

To replace register aliases with specific physical vector
registers for assembly kernels of small and medium radices,
the template optimizer maintains a register resource pool
and a lookup register usage table based on the register map-
ping rule to guarantee the consistency of vector register
usage across the instruction streams. As analyzed above,
because there are sufficient vector registers for small radices,
the optimizer can directly take out the required registers in
the resource pool and map specific vector registers to corre-
sponding register aliases in the register usage table. For
medium radices, because we have strictly defined the regis-
ter mapping rule for them above, the optimizer determines
the exact reuse time of different registers based on the four
register reuse rules and fills out the register usage table.
When a vector register is ready for reuse, it will be labeled
the “usable” tag and returned to the register resource pool.

The register allocation strategy essentially is determined
by the number and the width of SIMD registers, so it can be
easily extended to the future ARM SVE and AVX-512 by
replacing the number and the width of corresponding
SIMD registers. Because the FFT kernels of radices 2/3/4/
5/6/7/8/9/11 (small and medium radices) are well-opti-
mized assembly code, AutoFFT is best at computing FFTs of
sizes of the form 2a3b5c7d11e (the exponents are arbitrary).
FFTs of other sizes are slower because they need to call the
C FFT kernels of large radices. Regardless, sizes of the form
2a3b5c7d11e meet the needs of most applications.

6 BUTTERFLY NETWORK OPTIMIZATIONS

The butterfly network determines data access patterns and
the order in which the needed FFT kernels are executed for

1934 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

a given DFT problem. Even for the same butterfly network,
different implementations and optimizations can lead to
different performances. Fig. 7 presents the differences
between the traditional decimation-in-time (DIT) [45] net-
work and the Stockham network when processing the FFT
of size eight. This section describes the specific implementa-
tions and optimizations adopted in AutoFFT’s network.

6.1 Specific Implementations of the Stockham
Network

The Stockham network is organized as a three-level net-
work in AutoFFT. These three levels are embodied as
three for-loops in the concrete implementation, as shown in
Algorithms 2 and 3. Here, we define the outermost for-loop
(Algorithm 3’s line 3) as the stage loop, the middle for-loop
(Algorithm 3’s line 7) as the section loop, and the innermost
loop as the butterfly loop (Algorithm 2’s line 1). In this
stage-section-butterfly network, the number of butterflies in
each stage is always equal to the given FFT size N over the
adopted radix r (N=r). In addition, one stage contains at
least one section, which contains at least one butterfly. Fig. 8
shows the stage-section-butterfly network of an eight-point
FFT based on radix 2. In this example, the first stage con-
tains four sections, and each section contains one radix-2
butterfly; the second stage contains two sections, and each
section contains two radix-2 butterflies; and the third stage
contains one section, which contains four radix-2 butterflies.

Algorithm 3 presents the pseudocode of the three-level
network. Compared with traditional Cooley-Tukey net-
works, such as the DIT network and decimation-in-fre-
quency (DIF) [45] network, the three-level network contains
three advantages: 1) No explicit bit-reversal permutation. In
traditional butterfly networks, such as the DIT network
shown in Fig. 7, the explicit bit-reversal permutation is
required to reorder data from the natural order to the bit-
reversed order. The bit-reversal permutation introduces
extra and incoherent memory accesses, which can be expen-
sive. Moreover, incoherent memory accesses can cause diffi-
culties in unifying memory access patterns of inputs and
outputs. Because both inputs and outputs of the three-level
network are in the natural order, no explicit bit-reversal per-
mutation is required. 2) SIMD-friendly. Considering that
memory layouts of inputs and outputs of adjacent butter-
flies in each section are contiguous, we can easily SIMDize
multiple adjacent butterflies in each section. 3) Mixed radi-
ces support. Since inputs and outputs are in the natural
order, our network supports the lengths of arbitrary combi-
nations of varying radices.

Algorithm 3. The Overview of the Butterfly Network

Input: in[]: inputs; radix[]: required radices in each stage; tw[]:
twiddles; stage num: stages in the network; section num:
sections in each stage.

Output: out[]: outputs.
1: r radix[0], butterfly num=1
2: FFT kernel(out, in, NULL, r, section num, 1)
3: for i 1 to stage num do
4: butterfly num=butterfly num*r
5: r radix[i] // radix in stage i
6: section num=section num/r
7: for j 0 to section num do
8: FFT kernel(out, in, tw, r, butterfly num, 0)
9: end for
10: end for

6.2 Optimizations in the First Stage

As shown in Fig. 8 and Algorithm 3, the first stage of the
network is processed and optimized independently to fur-
ther exploit the parallelism: 1) Unlike the other stages, twid-
dles in the first stage are always equal to the constant 1
according to the definition of twiddles, so memory read
operations of twiddles and complex number multiplications
between inputs and twiddles can be completely eliminated.
2) Since each section of the first stage only contains one but-
terfly, instead of SIMDizing butterflies within one section in
the section level similar to other stages, we need to directly
SIMDize butterflies across multiple sections in the first
stage. 3) To avoid explicit bit-reversal permutation and
unify memory access patterns for other stages, we rearrange
the memory layout of computational results of the first
stage, so the output stride of memory store operations in
the first stage is different from those in other stages. The
output stride can be calculated using Eq. (19), where radix½�
holds the radix of each stage. Regarding the input stride
in stride, it is equal toN=radix for all stages

out stride ¼ 1; stage 1ði ¼ 0ÞQi�1
j¼0 radix½j�; stage iþ 1 ði > 0Þ

�
:

(19)

Fig. 7. Dataflows of the DIT network and the Stockham network when
processing the FFTof size eight.

Fig. 8. The stage-section-butterfly network diagram for the FFT of size
eight. Red arrows represent one section in each stage.

LI ETAL.: AUTOMATIC GENERATION OF HIGH-PERFORMANCE FFT KERNELS ON ARM AND X86 CPUS 1935

6.3 Cache-Friendly Butterfly Execution Order

The CPU cache system has an important impact on the per-
formance of the FFT. Usually, the execution order of butter-
flies is performed stage-by-stage (breadth-first order) in
accordance with the butterfly network. For example, butter-
flies in the second stage need to wait for all butterflies in the
first stage to complete before they can be executed. In this
way, when the FFT size is large, it is very likely to cause L1
cache misses: the preceding butterfly calculation results in
the current stage will be replaced out of L1 cache by the
results of subsequent butterflies, resulting in cache misses
when butterflies in the next stage read their inputs.

To make better use of the cache system and reduce L1
cache misses, we adopt a cache-friendly manner to deter-
mine the execution order of butterflies in the butterfly net-
work: 1) Butterflies of the first two stages are executed in
the depth-first order; and 2) butterflies of the remaining
stages are executed in the breadth-first order. Fig. 9 presents
the depth-first execution order of the first two stages. In this
example, we assume the SIMD width is 2 for simplicity. To
ensure that the inputs (green points) for the blue butterflies
in the second stage are not replaced out of L1 cache when
reading them, we will calculate the blue butterflies as soon
as the calculations of the red butterflies are complete.

7 PERFORMANCE EVALUATION

This section evaluates the performance of AutoFFT on
server-grade ARMv8 and x86-64 (Intel Haswell and AMD

Zen) CPUs. AutoFFT supports complex/real and out-of-
place/in-place FFT computations. Because FFTW, ARMPL,
and Intel MKL are the most widely used and mature FFT
libraries, we compare the performance of AutoFFT with
them. For a one-dimensional (1D) FFT of length N with an
execution time of t seconds, we report its performance in
GFlops according to Eq. (20) [46], which is adopted in the
well-known benchmark benchFFT [47]. Note that the x-axis
of figures in this section represents the transform sizeN

GFlops ¼ 5N � log 2N � 10�9
t

: (20)

The experimental conditions are listed in Table 1. Our
experiments take the C version of AutoFFT as the baseline to
determine the performance boost achieved by AutoFFT’s
assembly kernels. In our experiments, we use the
FFTW MEASURE flag for all FFT plans. Considering Intel
MKL’s FFTW interfaces and its API share the same source
code [48], we use the FFTW interfaces for Intel MKL in our
experiments. In addition, because AMD takes FFTW as their
official FFT library of AOCL [23], our experiments use the
pre-built FFTW-3.3.8 library,which is compiled and provided
by AOCL. For simplicity, we define a new naming scheme (a
two-part string) that reflects the name of the FFT library
(AutoFFT/FFTW/ARMPL/MKL) and out-of-place/in-place
(out/in) FFT computations for the experimental figures. For
example, AutoFFT-out denotes an out-of-place transform of
AutoFFT. Because the 1D complex-to-complex (C2C) FFT is
the core operation of other transforms, we conduct an in-
depth analysis of the performance of the 1DC2C FFT.

Fig. 10 shows the performances of the 1D C2C FFTs of
AutoFFT, FFTW, ARMPL, and the baseline on the ARMv8
architecture. AutoFFT is faster than FFTW and ARMPL for
both single-precision (SP) and double-precision (DP)
sequences. From the C2C FFTs’ performance curves on the

Fig. 9. The depth-first butterfly execution order in the first two stages.
The order in which the butterflies of the first stage (red butterflies) is cal-
culated depends on what inputs are required for the butterflies of the
second stage (blue butterflies). For simplicity, we assume the SIMD
width is 2 (SIMDize two blue butterflies) in this example.

TABLE 1
Experimental Environment

CPU FT-2000+ Xeon E7-4850 v3 Hygon C86 7185
Arch. AArch64 Haswell Zen
Frequency 2.2 GHz 2.2 GHz 2.0 GHz
SIMD 128 256 256
L1 cache 32 KB 32 KB 32 KB
GCC 4.9.3 5.5.0 4.9.4
FFTW 3.3.8 3.3.8 3.3.8
ARMPL 19.2.0 - -
Intel MKL - 2019 Update 4 -

Fig. 10. The 1D C2C FFT performances on ARMv8 CPUs.

1936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

ARMv8 architecture in Fig. 10, we can conclude the follow-
ing. 1) These three libraries achieve similar performance
trends. When the FFT size is small and the transformed data
can reside in the cache system, the performance increases as
the FFT size increases;when the FFT size is large and the cache
system cannot hold all needed data, the cache miss rate is
high; so the performance decreases as the FFT size increases.
Hence, the performances of these libraries first increase and
then decrease as the FFT size increases. 2) Compared with
other libraries, the performance of AutoFFT stands out when
processing FFTs of non-power-of-two sizes. In addition, the
performance gaps between AutoFFT and the other libraries
on single-precision sequences are larger than those on dou-
ble-precision sequences. 3) Compared with AutoFFT and
FFTW, ARMPL’s performance gaps between the out-of-place
transform and the corresponding in-place transform are
larger. We believe that the performance of ARMPL’s in-place
transforms can be further improved. Table 2 lists the C2C FFT
average speedups of AutoFFT compared with FFTW,
ARMPL, and the baseline onARMv8CPUs.

Fig. 11 shows the performances of the 1D C2C FFTs for
AutoFFT, FFTW, Intel MKL, and the baseline on the Intel
Haswell architecture. Based on the performance curves of
C2C FFTs on the Intel Haswell architecture in Fig. 11, we
can conclude the following. 1) The performance trends

among AutoFFT, FFTW, and Intel MKL are similar, but
FFTW is generally slower than AutoFFT and Intel MKL. 2)
Compared with AutoFFT’s C kernels, its assembly kernels
achieve higher speedup on Intel Haswell than on ARMv8.
3) Intel MKL performs very well when the FFT size is a
power of two. For FFT sizes below 2,048, AutoFFT is faster
than Intel MKL. However, when the FFT size exceeds 2,048,
Intel MKL is close to that of AutoFFT, especially for DP
floating-point data. There are two possible reasons for this
difference in performance between AutoFFT and Intel
MKL. First, in addition to the Cooley-Tukey algorithm, Intel
MKL may adopt other FFT algorithms, such as the four-step
FFT algorithm (or six-step, depending on the number of
transpositions) [49], the split-radix [5], and the Rader-Bren-
ner [6] algorithms, to obtain higher performance at large
scales. Second, because our FFT kernels are autogenerated,
they can be further improved by adopting instruction reor-
dering and data prefetching. Table 3 lists the C2C FFT aver-
age speedups of AutoFFT compared with FFTW, ARMPL,
and the baseline on Intel Haswell CPUs.

Fig. 12 shows the performances of the 1D C2C FFTs for
AutoFFT, FFTW, and the baseline on the AMD Zen architec-
ture. As shown in Fig. 12, the performance of AutoFFT is
relatively stable at different sizes, and even when the data
size is large, it still achieves good performance. Besides, the

TABLE 2
The C2C FFTAverage Speedups Obtained by AutoFFT

on ARMv8 CPUs

Data Size
Single Precision Double Precision

FFTW ARMPL Baseline FFTW ARMPL Baseline

2n 1.53 3.01 3.24 1.72 2.56 2.63
Non-2n 1.98 1.77 2.99 1.49 1.63 1.76

Fig. 11. The 1D C2C FFT performances on Intel Haswell CPUs.

TABLE 3
The C2C FFTAverage Speedups Obtained by AutoFFT

on Intel Haswell CPUs

Data Size
Single Precision Double Precision

FFTW MKL Baseline FFTW MKL Baseline

2n 2.82 1.46 10.1 1.93 1.59 4.7
Non-2n 2.84 1.52 8.32 1.97 1.72 4.44

Fig. 12. The 1D C2C FFT performances on AMD Zen CPUs.

LI ETAL.: AUTOMATIC GENERATION OF HIGH-PERFORMANCE FFT KERNELS ON ARM AND X86 CPUS 1937

performances of AutoFFT’s in-place and out-of-place trans-
forms are close and stable, however, most of FFTW’s in-
place transforms are slower than its corresponding out-of-
place transforms. Table 4 lists the C2C FFT average speed-
ups of AutoFFT compared with FFTW, ARMPL, and the
baseline on AMD Zen CPUs. Compared with FFTW,
AutoFFT has significant performance advantages on the
AMD Zen architecture.

As illustrated in Section 4, the symmetric (the horizontal
and vertical symmetries, described in Section 4.1) and periodic
(described in Section 4.2) properties of the DFT matrix are
adopted to reduce the number of floating-point operations of
the butterflies. We call these three algorithmic optimizations
as the horizontal optimization, the vertical optimization, and
the periodic optimization, respectively. In this part, we evalu-
ate the performance effect of these three optimizations by com-
paring them with the DFT implementation (the baseline for
these three algorithmic optimizations). For simplicity, we
defineOpt to represent the fully optimized kernels (optimized
by the horizontal, vertical, and periodic optimizations), Sym to
represent the kernels optimized by the horizontal and vertical
optimizations, andHor to represent the kernels only optimized
by the horizontal optimization. Fig. 13 presents the perfor-
mance speedups of Opt, Sym, and Hor by comparing them
with the baseline. From this figure,we can see the performance
improvements brought by these three optimizations step by
step. Theoretically, for non-power-of-two radices, the horizon-
tal and vertical symmetries reduce arithmetic operations by a
factor of 4 (Both the horizontal and vertical optimizations can
halve the amount of the arithmetic operations by combining
like terms). However, Sym and Hor are only up to 2.79 times
and 1.87 times faster than the baseline, respectively. The main
reasonwhy Sym cannot achieve the theoretical 4x performance
boost (and why Hor cannot achieve the theoretical 2x perfor-
mance boost) is that althoughwe reduced the arithmetic oper-
ations of the Cooley-Tukey FFT kernels by a factor of 4, we did
not reduce any memory operations. As we all know, memory

operations are muchmore costly than arithmetic operations in
modern CPUs. Because the periodic property can further
reduce the arithmetic floating-point operations by a factor of
gcdðk; rÞ for each output Yk of radix r,Opt achieves better per-
formance than Sym. The performance curves in Fig. 13 confirm
this point: the red curves of these two subfigures are above the
corresponding green curves. The average speedups of Opt,
Sym, andHor over the baseline are listed in Table 5.

In many applications, the inputs or outputs are real num-
bers. AutoFFT currently supports the following trans-
forms [50]: real-to-complex (R2C); complex-to-real (C2R);
three types of real-to-real (R2R) transforms (real-to-“half-
complex”/“half-complex”-to-real (R2HC/HC2R); the dis-
crete Hartley transform (DHT); four kinds of discrete cosine
transforms (DCT I�IV); and four kinds of discrete sine
transforms (DST I�IV)). To reduce unnecessary computa-
tions and memory access, we adopt two reduction methods
to summarize and extract unified optimization patterns of
real FFTs. The first one is the complex reduction. For FFTs
with N real number inputs, the complex reduction is
defined to take N real numbers as N=2 complex numbers
and perform the N=2-point complex FFT, after that, split
operations are applied on the transformed results. Each real
FFT conducts a split operation according to its definitions.
The second one is the real reduction. Because DCT/DST
contains special symmetric properties in its inputs, the real
reduction is defined to reduce a N-point real FFT to a
N=2-point real FFT. Due to the space limitations of this
paper, we present the performances of the R2C/C2R and
R2R REDFT01/REDFT10 real FFTs below.

In Table 6, we provide the real FFT average speedups on
ARMv8, Intel Haswell, and AMD Zen architectures. 1) On
the ARMv8 architecture, because ARMPL does not support
real FFTs other than R2C/C2R FFTs, we provide the per-
formances of only ARMPL’s R2C/C2R FFTs here. Fig. 14
shows that the performances of AutoFFT’s real FFTs outper-
form those of FFTW, ARMPL, and the baseline, especially
when the FFT size is large. In general, most of the character-
istics of the real FFTs’ performance curves are similar to the
C2C FFTs’ performance curves on the ARMv8 architecture.
However, compared with other libraries, ARMPL’s perfor-
mance curves of R2C/C2R FFTs decrease faster as the FFT
size increases. Its performance curves are very close to or
even lower than those of the baseline at large scales, espe-
cially for the in-place transforms. 2) Fig. 15 shows the per-
formances of real FFTs of AutoFFT, FFTW, Intel MKL, and
the baseline on the Intel Haswell architecture. For R2C/C2R
FFTs, FFTW is generally slower than AutoFFT and Intel
MKL, and AutoFFT is faster than MKL FFT in most cases, as
shown in Figs. 15a and 15b. For R2R REDFT01/REDFT10,

TABLE 4
The C2C FFTAverage Speedups Obtained by AutoFFT

on AMD Zen CPUs

Data Size
Single Precision Double Precision

FFTW Baseline FFTW Baseline

2n 1.59 5.33 1.35 3
Non-2n 1.92 5.96 1.61 2.77

Fig. 13. These two subfigures present the performance speedups ofOpt,
Sym, and Hor over the DFT implementation of power-of-six and power-
of-nine sizes respecively on the ARMv8 architecture. From these two
subfigures, we can clearly see the empirical performance effect of the
horizontal, vertical, and periodic optimizations.

TABLE 5
The Average Speedups of the Symmetric (the Horizontal and
Vertical Symmetries) and Periodic Properties Over the DFT

Implementation on ARMv8 CPUs

Data Size
Single Precision Double Precision

Opt Sym Hor Opt Sym Hor

6n 2.9 2.51 1.73 2.74 2.23 1.64
9n 2.76 2.3 1.51 2.59 2.14 1.6

1938 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

AutoFFT outperforms the other two libraries, and FFTW is
much slower than AutoFFT and Intel MKL, and the R2R
FFT performances of FFTW and the baseline are very close,
as shown in Figs. 15c and 15d. 3) Fig. 16 presents the per-
formances of real FFTs of AutoFFT, FFTW and the baseline
on the AMD Zen architecture. The performances in Fig. 16
show that AutoFFT outperforms FFTW, and we believe that

AutoFFT is the best choice for the AMD Zen CPUs. Differ-
ent from R2C/C2R FFTs in Figs. 16a and 16b, we can see
that the R2R FFT performances of FFTW and the baseline
are very close, as shown in Figs. 16c and 16d. This phenome-
non also exists in Intel Haswell architecture, and we believe
that FFTW can further optimize real FFTs and achieve better
performances on these two architectures.

TABLE 6
The Real FFTAverage Speedups Obtained by AutoFFTon ARMv8, Intel Haswell, and AMD Zen Architectures

Architecture FFT Type
Single Precision Double Precision

FFTW ARMPL MKL Baseline FFTW ARMPL MKL Baseline

ARMv8
R2C/C2R 1.71 2.01 - 2.82 1.61 1.91 - 1.77

R2R 2.04 - - 2.66 1.51 - - 1.58

Intel Haswell
R2C/C2R 2.54 - 1.64 7.98 1.9 - 1.47 4.14

R2R 4.42 - 2.1 5.99 3.57 - 2.06 3.07

AMD Zen
R2C/C2R 1.76 - - 5.09 1.56 - - 2.48

R2R 3.54 - - 3.94 2.47 - - 2

Fig. 14. The 1D real FFT performances on ARMv8 CPUs.

Fig. 15. The 1D real FFT performances on Intel Haswell CPUs.

Fig. 16. The 1D real FFT performances on AMD Zen CPUs.

LI ETAL.: AUTOMATIC GENERATION OF HIGH-PERFORMANCE FFT KERNELS ON ARM AND X86 CPUS 1939

At the end of this section, we summarize the average and
maximum performance improvements of AutoFFT by com-
paring it with FFTW, ARMPL, Intel MKL, and the baseline
on ARMv8, Intel Haswell, and AMD Zen architectures in
Table 7.

8 CONCLUSION

This paper proposes a template-based framework named
AutoFFT that makes full use of the experience of the domain
and optimization experts to automatically generate extremely
high-performance FFT code of radices of all natural numbers
for ARM, Intel, and AMD platforms. AutoFFT thus substan-
tially reduces the laborious work of developing assembly ker-
nels manually. The experiments show that AutoFFT performs
generally better than FFTW, ARMPL, and Intel MKL. Our
futureworkwill concentrate on extending the template-based
methodology to other numerical algorithms.

ACKNOWLEDGMENTS

This work was supported by the National Key Research
and Development Program of China under Grant Nos.
2107YFB0202105, 2016YFB0200803, and 2017YFB0202302;
the National Natural Science Foundation of China under
Grant Nos. 61602443, 61432018, 61521092, and 61502450.

REFERENCES

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine cal-
culation of complex fourier series,” Math. Comput., vol. 19, no. 90,
pp. 297–301, 1965.

[2] C. M. Rader, “Discrete fourier transforms when the number of
data samples is prime,” Proc. IEEE, vol. 56, no. 6, pp. 1107–1108,
Jun. 1968.

[3] L. Bluestein, “A linear filtering approach to the computation of
discrete fourier transform,” IEEE Trans. Audio Electroacoustics,
vol. 18, no. 4, pp. 451–455, Dec. 1970.

[4] D. Kolba and T. Parks, “A prime factor FFT algorithm using high-
speed convolution,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 25, no. 4, pp. 281–294, Aug. 1977.

[5] P. Duhamel and H. Hollmann, “Split radix’FFT algorithm,” Elec-
tron. Lett., vol. 20, no. 1, pp. 14–16, 1984.

[6] C. Rader and N. Brenner, “A new principle for fast fourier trans-
formation,” IEEE Trans. Acoust., Speech, Signal Process., vol. 24,
no. 3, pp. 264–266, Jun. 1976.

[7] J. W. Cooley, P. A. Lewis, and P. D. Welch, “The fast fourier trans-
form and its applications,” IEEE Trans. Educ., vol. 12, no. 1,
pp. 27–34, Mar. 1969.

[8] K. Asanovic et al., “The landscape of parallel computing research:
A view from berkeley,” EECS Dept., Univ. California at Berkeley,
Berkeley, CA, USA, Tech. Rep. UCB/EECS-2006–183, 2006.

[9] P. Costa, “A FFT-based finite-difference solver for massively-par-
allel direct numerical simulations of turbulent flows,” Comput.
Math. Appl., vol. 76, no. 8, pp. 1853–1862, 2018.

[10] Z. Li et al., “Efficient parallel optimizations of a high-performance
SIFT on GPUs,” J. Parallel Distrib. Comput., vol. 124, pp. 78–91,
2019.

[11] D. Zhang, Z. Chen, C. Xiao, M. Qin, and H. Wu, “Accurate simula-
tion of turbulent phase screen using optimization method,” Optik,
vol. 178, pp. 1023–1028, 2019.

[12] C. Gong, W. Bao, and G. Tang, “A parallel algorithm for the Riesz
fractional reaction-diffusion equation with explicit finite differ-
ence method,” Fractional Calculus Appl. Anal., vol. 16, no. 3,
pp. 654–669, 2013.

[13] C. Gong, W. Bao, G. Tang, B. Yang, and J. Liu, “An efficient paral-
lel solution for Caputo fractional reaction–diffusion equation,” J.
Supercomput., vol. 68, no. 3, pp. 1521–1537, 2014.

[14] M. Frigo and S. G. Johnson, “The fastest Fourier transform in the
west,” Massachusetts Inst. Technol., Cambridge, MA, USA, Tech.
Rep. MIT-LCS-TR-728, Sep. 1997.

[15] M. Frigo and S. G. Johnson, “FFTW: An adaptive software archi-
tecture for the FFT,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 1998, pp. 1381–1384.

[16] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proc. IEEE, vol. 93, no. 2, pp. 216–231, Feb. 2005.

[17] ARM, “Arm performance libraries (ArmPL) 19.2.0,” 2019.
[Online]. Available: https://static.docs.arm.com/101004/1920/
arm_performance_libraries_reference_101004_1920_00_en.pdf

[18] E. Wang et al., “Intel math kernel library,” in High-Performance
Computing on the Intel� Xeon PhiTM. Berlin, Germany: Springer,
2014, pp. 167–188.

[19] Intel, “Intel math kernel library (Intel MKL) 2019 update 4,” 2019.
[Online]. Available: https://software.intel.com/en-us/mkl

[20] Z. Li et al., “AutoFFT: A template-based FFT codes auto-genera-
tion framework for arm and x86 CPUs,” in Proc. Int. Conf. High
Perform. Comput., Netw. Storage Anal., 2019. [Online]. Available:
https://doi.org/10.1145/3295500.3356138

[21] G. Bruun, “z-transform DFT filters and FFT’s,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 26, no. 1, pp. 56–63, Feb. 1978.

[22] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A language
and compiler for DSP algorithms,” in Proc. ACM SIGPLAN Conf.
Program. Lang. Des. Implementation, 2001, pp. 298–308. [Online].
Available: http://doi.acm.org/10.1145/378795.378860

[23] AMD, “AOCL: AMD optimizing CPU libraries,” 2020. [Online].
Available: https://developer.amd.com/amd-aocl/

[24] IBM, “ESSL: IBM engineering and scientific subroutine library,”
2020. [Online]. Available: https://www.ibm.com/support/
knowledgecenter/en/SSFHY8_6.1/navigation/welcome.html

[25] Apple, “The apple accelerate libraries - vDSP,” 2020. [Online].
Available: https://developer.apple.com/documentation/accelerate/
vdsp/fast_fourier_transforms

[26] D. Mirkovi�c, R. Mahasoom, and L. Johnsson, “An adaptive soft-
ware library for fast fourier transforms,” in Proc. 14th Int. Conf.
Supercomput., 2000, pp. 215–224. [Online]. Available: http://doi.
acm.org/10.1145/335231.335252

[27] S. Lennart Johnsson, “Automatic performance tuning in the
UHFFT library,” in Proc. Int. Conf. Comput. Sci. Lecture Notes Com-
put. Sci., 2001, pp. 71–80.

[28] M. Puschel et al.,“SPIRAL: Code generation for DSP transforms,”
Proc. IEEE, vol. 93, no. 2, pp. 232–275, Feb. 2005.

[29] F. Franchetti et al., “SPIRAL: Extreme performance portability,”
Proc. IEEE, vol. 106, no. 11, pp. 1935–1968, Nov. 2018.

[30] F. Franchetti, Y. Voronenko, and M. P€uschel, “Formal loop merg-
ing for signal transforms,” ACM SIGPLAN Notices, vol. 40, no. 6,
pp. 315–326, 2005.

[31] ARM, “Arm Ne10 project,” 2020. [Online]. Available: https://
github.com/projectNe10/Ne10

[32] D. Takahashi, “FFTE: A fast fourier transform package,” 2014.
[Online]. Available: http://www.ffte.jp/

[33] A. Blake and M. Hunter, “Dynamically generating FFT code,” J.
Signal Process. Syst., vol. 76, no. 3, pp. 275–281, 2014.

[34] Nvidia, “CuFFT library,” 2020. [Online]. Available: https://docs.
nvidia.com/pdf/CUFFT_Library.pdf

[35] AMD, “A software library containing FFT functions written in
OpenCL,” 2020. [Online]. Available: https://github.com/
clMathLibraries/clFFT

TABLE 7
The Average and Maximum Speedups of AutoFFT

Architecture Software Average Max

ARMv8
FFTW 1.7 2.04
ARMPL 2.15 3.01
Baseline 2.43 3.24

Intel Haswell
FFTW 2.75 4.42
MKL 1.7 2.1
Baseline 6.09 10.1

AMD Zen
FFTW 1.98 3.54
Baseline 3.82 5.96

1940 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

https://static.docs.arm.com/101004/1920/arm_performance_libraries_reference_101004_1920_00_en.pdf
https://static.docs.arm.com/101004/1920/arm_performance_libraries_reference_101004_1920_00_en.pdf
https://software.intel.com/en-us/mkl
https://doi.org/10.1145/3295500.3356138
http://doi.acm.org/10.1145/378795.378860
https://developer.amd.com/amd-aocl/
https://www.ibm.com/support/knowledgecenter/en/SSFHY8_6.1/navigation/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSFHY8_6.1/navigation/welcome.html
https://developer.apple.com/documentation/accelerate/vdsp/fast_fourier_transforms
https://developer.apple.com/documentation/accelerate/vdsp/fast_fourier_transforms
http://doi.acm.org/10.1145/335231.335252
http://doi.acm.org/10.1145/335231.335252
https://github.com/projectNe10/Ne10
https://github.com/projectNe10/Ne10
http://www.ffte.jp/
https://docs.nvidia.com/pdf/CUFFT_Library.pdf
https://docs.nvidia.com/pdf/CUFFT_Library.pdf
https://github.com/clMathLibraries/clFFT
https://github.com/clMathLibraries/clFFT

[36] D. Petre, A. T. Lake, andA.Hux, “OpenCLTM FFT optimizations for
intel�processor graphics,” in Proc. 4th Int. Workshop OpenCL, 2016,
pp. 12:1–12:4. [Online]. Available: http://doi.acm.org/10.1145/
2909437.2909451

[37] A. Nukada, Y. Maruyama, and S. Matsuoka, “High performance
3-D FFT using multiple CUDAGPUs,” in Proc. 5th Annu. Workshop
Gen. Purpose Process. Graph. Process. Units, 2012, pp. 57–63.
[Online]. Available: http://doi.acm.org/10.1145/2159430.2159437

[38] Y. Dotsenko, S. S. Baghsorkhi, B. Lloyd, and N. K. Govindaraju,
“Auto-tuning of fast fourier transform on graphics processors,”
SIGPLAN Notices, vol. 46, no. 8, pp. 257–266, Feb. 2011. [Online].
Available: http://doi.acm.org/10.1145/2038037.1941589

[39] Y. Li, Y.-Q. Zhang, Y.-Q. Liu, G.-P. Long, and H.-P. Jia, “MPFFT:
An autotuning FFT library for OpenCL GPUs,” J. Comput. Sci.
Technol., vol. 28, no. 1, pp. 90–105, 2013.

[40] A. Gholami, J. Hill, D. Malhotra, and G. Biros, “AccFFT: A library
for distributed-memory FFT on CPU and GPU architectures,”
CoRR, vol. abs/1506.07933, 2015. [Online]. Available: http://
arxiv.org/abs/1506.07933

[41] C. Cecka, “Low communication FMM-accelerated FFT on GPUs,”
in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2017,
pp. 54:1–54:11. [Online]. Available: http://doi.acm.org/10.1145/
3126908.3126919

[42] T. G. Stockham, Jr., “High-speed convolution and correlation,” in
Proc. Spring Joint Comput. Conf., 1966, pp. 229–233. [Online]. Avail-
able: http://doi.acm.org/10.1145/1464182.1464209

[43] P. N. Swarztrauber, “Vectorizing the FFTs,” in Parallel Computa-
tions, G. Rodrigue, Ed. New York, NY, USA: Academic, 1982,
pp. 51–83. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/B9780125921015500075

[44] Intel, “Intel 64 and IA-32 architectures optimization referenceman-
ual (chapter 2.1),” 2016. [Online]. Available: https://www.intel.
com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf

[45] A. V. Oppenheim, Discrete-Time Signal Processing. New Delhi,
India: Pearson Education India, 1999.

[46] M. Frigo and S. G. Johnson, “The benchmarking methodology of
benchFFT,” 2020. [Online]. Available: http://www.fftw.org/speed/

[47] M. Frigo and S. Johnson, “benchFFT,” 2020. [Online]. Available:
http://www.fftw.org/benchfft

[48] Intel, “Intel math kernel library developer reference’s Appendix
C: FFTW interface to Intel math kernel library,” 2020. [Online].
Available: https://software.intel.com/sites/default/files/mkl-
2019-developer-reference-c_2.pdf

[49] D. H. Bailey, “FFTs in external or hierarchical memory,” J. Super-
comput., vol. 4, no. 1, pp. 23–35, 1990.

[50] X. Wang, H. Jia, Z. Li, and Y. Zhang, “Implementation and optimi-
zation of multi-dimensional real FFT onARMv8 platform,” in Proc.
Int. Conf. Algorithms Archit. Parallel Process., 2018, pp. 338–353.

Zhihao Li is currently working toward the PhD
degreewith the State Key Laboratory of Computer
Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China. In
addition, he is a joint PhD student with the School
of Computational Science and Engineering, Geor-
gia Institute of Technology, Atlanta, Georgia. His
research interests include high performance com-
puting, optimized FFT library, and many-core/
large-scale parallel programmingmethod.

Haipeng Jia received the PhD degree from the
Ocean University of China, Qingdao, China, in
2012. He was a visiting PhD student with the Insti-
tute of Software, Chinese Academy of Sciences
from2010 to 2012. He is currently an assistant pro-
fessor with the State Key Laboratory of Computer
Architecture, Institute of Computing Technology,
Chinese Academy of Sciences. His research inter-
ests include heterogeneous computing and many-
core parallel programmingmethod.

Yunquan Zhang (Member, IEEE) received the
PhD degree with computer software and theory
from the Chinese Academy of Sciences, Beijing,
China, in 2000. He is currently a full professor of
computer science with the Institute of Computing
Technology, Chinese Academy of Sciences. His
research interests include the areas of high per-
formance computing, with particular emphasis on
large scale parallel computation and program-
ming models, and high-performance parallel
numerical algorithms.

Tun Chen received the master degree with com-
puter science from Hunan Normal University,
Changsha, China, in 2018. He is currently working
toward the PhD degree with the State Key Labora-
tory of Computer Architecture, Institute of Comput-
ing Technology, Chinese Academy of Sciences,
Beijing, China. His research interests include high
performance computing, heterogeneous comput-
ing, in-core parallelism, and optimized FFT library.

Liang Yuan received the PhD degree from the
Institute of Software, Chinese Academy of Scien-
ces, Beijing, China, in 2013. He was a visiting
PhD student with the University of Rochester, in
2011. He is currently an assistant professor with
the State Key Laboratory of Computer Architec-
ture, Institute of Computing Technology, Chinese
Academy of Sciences. His research interests
include large-scale parallel computing and het-
erogeneous computing.

Richard Vuduc (Member, IEEE) received the BS
degree with computer science from Cornell Uni-
versity, Ithaca, New York, and the PhD degree
in computer science from the University of
California, Berkeley, California. He is currently a
professor with the School of Computational
Science and Engineering, Georgia Institute of
Technology. His research lab, the HPC Garage, is
interested in high-performance computing,
with an emphasis on algorithms, performance
analysis, and performance engineering.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ETAL.: AUTOMATIC GENERATION OF HIGH-PERFORMANCE FFT KERNELS ON ARM AND X86 CPUS 1941

http://doi.acm.org/10.1145/2909437.2909451
http://doi.acm.org/10.1145/2909437.2909451
http://doi.acm.org/10.1145/2159430.2159437
http://doi.acm.org/10.1145/2038037.1941589
http://arxiv.org/abs/1506.07933
http://arxiv.org/abs/1506.07933
http://doi.acm.org/10.1145/3126908.3126919
http://doi.acm.org/10.1145/3126908.3126919
http://doi.acm.org/10.1145/1464182.1464209
http://www.sciencedirect.com/science/article/pii/B9780125921015500075
http://www.sciencedirect.com/science/article/pii/B9780125921015500075
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.fftw.org/speed/
http://www.fftw.org/benchfft
https://software.intel.com/sites/default/files/mkl-2019-developer-reference-c_2.pdf
https://software.intel.com/sites/default/files/mkl-2019-developer-reference-c_2.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

