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Abstract—Realistic, relevant, and reproducible experiments often need input traces collected from real-world environments. In this
work, we focus on traces of workflows—common in datacenters, clouds, and HPC infrastructures. We show that the state-of-the-art in
using workflow-traces raises important issues: (1) the use of realistic traces is infrequent and (2) the use of realistic, open-access
traces even more so. Alleviating these issues, we introduce the Workflow Trace Archive (WTA), an open-access archive of workflow
traces from diverse computing infrastructures and tooling to parse, validate, and analyze traces. The WTA includes > 48 million
workflows captured from > 10 computing infrastructures, representing a broad diversity of trace domains and characteristics. To
emphasize the importance of trace diversity, we characterize the WTA contents and analyze in simulation the impact of trace diversity
on experiment results. Our results indicate significant differences in characteristics, properties, and workflow structures between

workload sources, domains, and fields.

Index Terms—Workflow, open-source, open-access, traces, characterization, archive, survey, simulation

1 INTRODUCTION

RKFLOWS are already a significant part of private
datacenter and public cloud infrastructures [1], [2].

This trend is likely to intensify [3], [4], as organizations
and companies transition from basic to increasingly more
sophisticated cloud-based services. For example, 96 percent
of companies responding to RightScale’s 2018 survey are
using the cloud [5], up from 86 percent in 2012 [6]; the
average organization combines services across five public
and private clouds. To maintain, tune, and develop the com-
puting infrastructures for running workflows at the massive
scale and with the diversity suggested by these trends, the
systems community requires adequate capabilities for test-
ing and experimentation. Although the community is
aware that workload traces enable a broad class of realistic,
relevant, and reproducible experiments, currently such
traces are infrequently used, as we summarize in
Fig. 1 (left) and quantify in Section 2. Toward addressing
this problem, we focus on improving trace availability and
understanding by proposing a new, free and open-access
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Workflow Trace Archive (WTA), as detailed in Fig. 1 (right)
and in the remainder of this work.

The need for workflow traces is stringent [4], [7]. In
this work, we adopt the workflow model of Coffman
and Graham [8]. In this model, a workflow is considered
a directed acyclic graph (DAG) where each vertex repre-
sents a task and an edge a computation/data constraint.
As such, we do not consider workflow formalisms with
iteration (loops) and human interaction, such as BPMN/
BPEL [9] and Petri nets [10]. We consider as tasks a
broad range of activities, that is, black boxes ranging
from simple compute and data operations to entire
workflows, recursively.

A workflow trace is a recording of useful, relevant infor-
mation during the processing of the workflow. Traces can
be used to create models with, or used in emulations and sim-
ulations to replay the execution of a workflow in a controlled
environment, etc. Not only the sheer volume of workloads
has increased significantly over time [2], but also the users
of datacenters and cloud operations are expecting increas-
ingly better Quality of Service (QoS) from the workflow-
management systems, including elasticity, reliability, and
low-cost, under strong assumptions of validation [4], [7] and
reproducibility [3], [11]. Developing workflow management
systems to meet these requirements requires considerable sci-
entific and technical advances and, correspondingly, compre-
hensive trace-based experimentation and testing. This can be
conducted (i) in vivo, i.e., experimenting in live/production
settings, (ii) in vitro, i.e., experimenting using emulation, and
(iii) in silico i.e., experimenting in simulation [12].

Testing such systems, especially at cluster and data-
center scale, often cannot be done in vivo, due to
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Fig. 1. A visual map to this work: (leff) The problem: infrequent use of
Realistic (=~ 40%) and open-source (= 15%) workflow-traces in represen-
tative articles (see Section 2), which can affect the relevance and repro-
ducibility of experiments for the entire community. (right) Toward an
answer: the WTA stakeholders, process, and tools provide the commu-
nity with open-source traces of relevant workflows running in public and
private computing infrastructures.

downtime or the operational costs required. Instead,
workflow traces can be replayed in silico, allowing mul-
tiple setups to run in parallel, testing individual compo-
nents, etc. without the downtime nor costs. Although
realistic workflow traces are key for testing, tuning, vali-
dating, and inspiring system designs, they are currently
still scarce [13]. Prior work, such as WorkflowHub [14],
has introduced numerous workflow traces, yet only from
the science domain. As Fig. 1 (left) indicates, and Sec-
tion 2 quantifies and explains, less than 40 percent of rel-
evant articles focusing on workflow systems conduct
experiments with realistic traces, and less than 15 percent
conduct experiments with realistic and open-source traces.

The current scarcity of traces forces researchers to
either use synthetically generated workloads or to use
one of the few available traces. Synthetic traces may
reduce the representatives and quality of experiments, if
they do not match relevant real-world settings. Using
realistic traces that correspond to a narrow application-
domain may result in overfitting; Amvrosiadis et al. [15]
demonstrate this for cluster-based infrastructures. Addi-
tionally, a lack of realistic traces may lead to limited or
even wrong understanding of workflow characteristics,
their performance, and their usage, which hampers the
reuse of the systems tested with such (workloads of)
workflows [16]. This gives rise to the research question
RQ-1: How diverse are the workflow traces currently used by
the systems community?

We identify the need to share workflow traces collected
from relevant environments running relevant workloads
under relevant constraints. Effective sharing requires uni-
fied trace formats, and also support for emerging and new
features. For example, since the introduction of commercial
clouds, clients have increasingly started to ask for better
QoS, and in particular have started to increasingly express
non-functional requirement (NFRs) such as availability, pri-
vacy, and security demands in traces [4], [17]. This leads us
to research question RQ-2: How to support sharing workflow
traces in a common, unified format? How to support in it arbi-
trary NFRs?

Persuading both academia and industry to release
data is vital to address the problems stated prior. We
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tackle this issue with two main approaches. First, by
offering tools to obscure sensitive information, while still
retaining significant detail in shared traces. Second, by
encouraging the same organization to share the data
across its possibly multiple workflow management
systems (sources), and by explicitly aiming to collect data
across diverse application domains and fields. The avail-
ability of diverse data and tools stimulate the benefits
of making available such traces, while simultaneously
reducing the concerns of competitive disadvantage or
of an (accidental) disclosure of sensitive information.
The community is already helping with both approaches,
by increasingly focusing on the problem of reproducibil-
ity. For example, ACM introduced artifact review and
badges to stimulate the release of both software and
data artifacts for reproducibility and verification pur-
poses [18]. We add to this community-effort ours, which
is scientific in nature: RQ-3: What is the impact of the
source and domain of a trace on the characteristics of
workflows?

Addressing research questions 1-3, our contribution is
four-fold:

1)  Toanswer RQ-1, we conduct the first comprehensive
survey of how the systems community uses work-
flow traces (Section 2). We collect, select, and label
articles from top conferences and journals covering
workflow management. We analyze the types of
traces used in the community, and the domains and
fields covered in published studies. To improve
reproducibility and promote extensions, we make
public all (raw) data used for this survey.

2) Toanswer RQ-2, we design the WTA for open-access
to traces of workloads of workflows (Section 3). We
identify a comprehensive set of requirements for a
workflow trace archive. A key conceptual contribu-
tion of the WTA is the design of a unified trace for-
mat for sharing workflows, the first to generalize
NFRs support at both workflow- and task-levels.
The WTA currently archives a diverse set of (1) real
workflow traces collected from real-world environ-
ments, (2) realistic workflow traces used in peer-
reviewed publications, and (3) workflow traces col-
lected from simulated and emulated environments
commonly used by the systems community. WTA
also introduces tools to detail and compare its traces.

3) To address RQ-3, we compare key workload charac-
teristics across traces, domains, and sources (Section 4).
Our effort is the first to characterize the new trace from
Alibaba, and the first to investigate the critical path
task length, level of parallelism, and burstiness using
the Hurst exponent on workloads of workflows. Over-
all, the archive comprises 96 traces, featuring more
than 48 million workflows containing over 2 billion
CPU core hours.

4) To validate our answers to RQs 1-3, we analyze vari-
ous threats (Section 5). We conduct a trace-based
simulation study and qualitative analysis. Our
results for the former indicate systems should be
tested with different traces to validate claims about
the generality of the proposed approach.
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Fig. 2. The article selection process. Subsequent stages decrease the

amount of articles: from a corpus of 18 412 articles, down to 104 relevant
references.

2 A SURVEY OF WORKFLOW TRACE USAGE

To assess the current usage of workflow traces in the sys-
tems community and the need for a workflow archive, we
systematically survey a large body of work published in top
conferences and journals, and investigate articles that per-
form experiments using workflow traces, either through
simulation or using a real-world setup. The process and out-
come of this survey answer RQ-1.

2.1 Article Selection and Labeling

Selection. Fig. 2 displays our systematic approach to select
articles relevant to this survey, based on [19]. First, we col-
lect data from DBLP [20] and Semantic Scholar [21]. We fil-
ter them by venue, retaining only articles from the 10 key
conferences and journals in distributed systems listed in the
caption of Table 1, including TPDS. While not an exhaustive
list, this covers a significant part of the systems community.
This yields 18,412 articles. Next, we automatically select all
articles from the last decade (2009-2018) containing the
word “workflow” in either title or abstract, yielding 397
articles. This step provides articles that focus on all aspects
of workflows, e.g., scheduling, analysis, and design. Finally,
to obtain insights into workflow traces usage, we manually
check the 397 articles. Overall, this systematic process yields
104 articles using workflow traces. To highlight the rele-
vance of papers, we use Google Scholar to obtain citation
counts. In total the 104 papers have been cited 3,965 times.

Labeling. We label for each of the 104 articles the type of
trace usage. For articles explicitly describing their use, we
use the label realistic for traces collected from real-world
workflow executions. For all others, including workflows
extrapolated from real-world data or generated from known
statistical distributions, we use the label synthetic.

We further label traces as open-access (or open-source) if
they are available online and to a broad audience, and
closed-access (or closed-sources) otherwise. In our analysis,
we include among the open-access traces only those that are
also realistic.

We also label traces by domain and field. Domains are corre-
sponding to the area of study of which the trace originates
from. We label sub-domains within these domains as fields.
We adopt the domains and fields reported by the respective
authors, where mentioned. If the domain or field are not men-
tioned, yet the application appears in another article by name
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and with labels, we remain consistent in our labeling
by adopting the domain/field from this prior article.
We have not encountered cases where an application is
labelled as belonging to multiple domains or fields. We
identify in articles explicit use of traces from the domains
“scientific”, “engineering”, “multimedia”, “governmental”,
and “industry”, and from fields such as “bioinformatics”,
“astronomy”, “physics”, etc. We further label a trace with
uncategorized when its origin remains unexplained.

All data used in this survey is available as open-access
data' and can be used to verify and extend this survey.

2.2 Types of Traces Used in the Community
We analyze here the types of traces used by the community,
with the following Observations (Os):

O-1:  Less than 40 percent of articles use realistic traces.
O-2: Only one-seventh of all articles use open-access traces.

Table 1 presents the types of traces used in the commu-
nity, focusing on realistic (R) and open-access (R+0) traces.
The community uses traces for experiments across both con-
ference and journal articles, across various levels of (high)
quality. In contrast to this positive finding, the results indi-
cate that, from the total number of articles using traces at
all, the fraction of articles using realistic and even open-
access traces is relatively small. Across all venues, only
38 percent of the articles use at least one realistic trace, and
only 13 percent of the articles use at least one open-access
trace.

These findings match the perceived difficulty in repro-
ducing studies in the field [11], [12], and may hint why so
few of these seemingly successful designs are adopted for
use in practice [22].

2.3 Workflow Domains and Fields
We analyze the domains and fields from which the commu-
nity sources workflows, with as main observations:

O-3:  The community sources workflows from 5+ domains
and 25+ fields.

Traces containing scientific workflows are used signifi-
cantly more (20x) than workflows from other domains,
e.g., industry and engineering, in the surveyed articles.
Bioinformatics workflows are the most commonly
used, but three other fields exhibit usage within a fac-
tor of 3.

Many traces have uncategorized domain (14 percent)
and/or field (31 percent).

Overall, we find that the community uses diverse work-
flows, sourced from 5+ domains and 25+ fields.

We further investigate the distribution of use, per
domain and per field. Fig. 3 (top) shows that the scientific
domain is over-represented in the literature in the top-five
trace domains encountered, due to the large number of
available open-access traces and from their conventional
use in prior work. In particular, a large portion of the
articles use workflow traces from the Pegasus project, which
covers the scientific domain. The number of traces in this
domain exceeds 200, which is larger than the number of

O-4:

O-5:

O-6:

1. https:/ / github.com/atlarge-research /wta-analysis
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TABLE 1
Workflow Trace Usage in Venues Having at Least One Paper Returned in the Initial Query
Acronym Total FGCS CCGrid TPDS Other
T Articles using traces 104 37 17 17 33
R Articles using realistic traces 40 (38%) 13 (35%) 8 (47%) 6 (35%) 13 (39%)
R+O  Articles using traces that are both realistic and open-access 14 (13%) 6 (16%) 2 (12%) 3 (18%) 3 (9%)

The venues with > 5 hits have their individual column. The column “Other” shows combined results for conferences with < 5 hits: ATC, CLOUD, CLUSTER,
e-Science, Euro-Par, GRID, HPDC, JSSPP, IC2E, ICDCS, ICPE, IPDPS, NSDI, OSDI, SC, SIGMETRICS, and WORKS. Percentages are computed from the
total in the corresponding column, e.g., 13 out of 37 for the cell corresponding to row R and column FGCS.

articles in the study as each article uses multiple traces. In
contrast, the next-largest domains are industry and engi-
neering, each with less than 10 traces representing less than
one-twentieth of the scientific domain.

We remark the positive diversity of the workflow
domains, considering that the entire community is tem-
pered by the extreme focus on scientific workflows. This
confirms the bias demonstrated by Amvrosiadis et al. [23]
with the popular Google-cluster traces. A similar situation
appears for fields, but more tempered, as Fig. 3 (bottom)
indicates. A large portion of the traces have their domains
and fields as “uncategorized” (14 and 31 percent, respec-
tively) which is unhelpful when determining if the pro-
posed solution works in a certain environment.

Overall, the results reveal that the community has a
strong bias for one domain (scientific) and favors scientific
fields (especially bioinformatics). We conjecture the large
amount of open-access data from these fields facilitates
this bias. This is consistent with our findings O-4 and O-5,
and with the assumption of people selecting traces with
equal probability. An alternative is that the domains and
fields whose data are used more, share artifacts that are
more easily reused and rerun. An example of a well-
known initiative for reproducibility in the scientific domain
is the MyExperiment repository [24]. To overcome such
biases, and to further reduce the large fraction of uncatego-
rized traces evident in both plots of Fig. 3, we posit the
community should require that open-access and diverse
traces be used in articles claiming the generality of their
techniques and indicate the domains and fields of the
workflows used.

Scientific
Uncategorized
Industry
Engineering
Multimedia
0 25 50 75 100 125 150 175 200
Count

Uncategorized
Bioinformatics
Physics
Astronomy
Geology
0 20 40 60 80 100
Count

Fig. 3. (top) Top-5 (out of 6) domains and (bottom) Top-5 (out of 28)
fields from which the community sources workflows. (“Uncategorized”
for unclear domain or field.)

3 THE WORKFLOW TRACE ARCHIVE

In this section, we outline the design of the WTA, the uni-
fied trace format used, tools to support consumers with the
trace selection according to their use-case, and give a sum-
marized overview of the current contents of the archive.
Furthermore, that facilitates the continuous growth of the
archive, we provide tools for trace anonymization and a col-
lection of trace parse scripts for different trace sources.

Similar to how the design of experiments is now com-
monly described in publications in our field, as the setup
leading to experimental results, we include an overview of
the design process that led to the design presented in this
section. Outlining the design and the process that led to the
design is important for understanding how the final design
came to be and how it fits the intended goal [25].

We started by listing initial requirements (see Section 3.1)
that the WTA has to fulfill, and co-evolved the requirements
with the development of the solution (the archive). For example,
we added explicitly the requirement to provide scripts and
datasets to aid users in building their own tools, as we dis-
covered how difficult it was to engineer them from scratch
(see Section 3.6). Next, we defined an initial format, cen-
tered around a number of unique features, such as non-
functional requirements (NFRs) that are missing in other
workflow trace formats. We improved this format itera-
tively, to meet the requirements and/or to pass various
thought experiments. For the latter, whenever we encoun-
tered a new data-format that was not fully covered by our
format, we discussed which properties and/or objects
should be added to the format (see Section 3.4). We assessed
the trade-off between format comprehensiveness (what to
include?) and brevity (what is too much or too complex?)
based on personal experience, on the perceived importance
of data-fields in literature, and on their frequency of use in
other archives. Finally, we designed the analysis tools itera-
tively, including in them initially our own ideas and then
aspects highlighted by other archives, literature reports,
and perceived shortcomings.

3.1 Use Cases and Requirements
We foresee four direct use cases for the WTA. First, trace
characterization and workload analysis for understanding
and tuning systems. As workloads evolve it is important to
characterize the changes in, e.g., structure and resource con-
sumption to see if schedulers require change, can be
improved or if these changes can be exploited. Such charac-
terizations can provide interesting insights (see Section 4).
Second, experimentation using emulation or simulation.
As discussed in Section 1, emulations and simulations may
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be the only viable option for specific scenarios (e.g., what
if?, long-term operational analysis). Having an archive that
offers diverse, heterogeneous traces allows for more diverse
testing scenarios. Especially when a new scheduler is devel-
oped for multiple domains or scenarios, it is important to
experiment with diverse workloads covering the scenarios
and domains targeted (see Section 5, C-1).

Third, workload and operational models can arise from
the characterization and simulation results. In turn, these
models can lead to new insights or to new variations to
experiment with.

Last, such data can be used for education and training.
As systems grow more complex, education and training
becomes more important for both students and employ-
ees [26]. Models and heterogeneous traces are useful in edu-
cation, to demonstrate scenarios and to provide hands-on
experience.

To meet these use cases, we identify five key require-
ments for the structure, content, and operation of a useful
archive for workflow traces.

R-1: Diverse Traces for Academia, Industry, and Education.
Trace archives, such as Google’s and Alibaba’s, offer only
workloads from a single domain, e.g., industrial workloads.

We identify as requirement that an archive must include a
diverse set of traces to cover a broad spectrum of workflow
sizes, structures, and other characteristics, including both
general characteristics to many domains and fields, and idio-
syncratic characteristics corresponding to only one domain
or field. This requirement is based on the conjectures that dif-
ferent traces can have workflows with significantly different
characteristics (tested in Section 4) and such differences
impact system performance (tested in Section 5, C-1).

Addressing this requirement is important for academia
to demonstrate the generality and applicability of a novel
approach, for industry to test production-ready systems or
to validate techniques proposed by academia [27], and for
education to train employees on more complex systems.

R-2: A Unified Format for Workload of Workflows
Traces.

To improve the reusability of diverse traces and to support
the reproducibility of experimental results, long-term, we
identify as a requirement the use of a unified trace format for
workloads of workflows. The format must cover a broad set
of data about the workloads and about the workflow manage-
ment systems including: workload metadata; workflow-level
data including NFRs; task-level data including per-task NFRs
and operational metadata; inter-dependencies between tasks
and other operational elements such as data transfers;
system-level information including resource provisioning,
allocation, and consumption; etc.

Addressing this requirement simplifies trace exchange
and integration effort, prevents redundant work for other
users, and supports the development of dataset indepen-
dent tools (expressed as R-3).

R-3: User level adapted insights into Trace Properties.

To improve trace discovery, the archive must provide
detailed trace insights adapted to the level of the broad audi-
ence, from beginner to expert, as implied by R-1. Broad
insights include extrinsic properties, such the number of work-
flows and tasks, and intrinsic properties, such the workflow
arrival patterns and the resource consumption per-task. In
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contrast, detailed expert-level insights include analysis of sin-
gle traces at workload-, workflow-, and system-level; and col-
lective analysis across all traces or traces filtered by a feature
(e.g., all traces of a domain or field). These properties must
be accessible through readily available tools (see R-4) and,
possibly, through interactive online reports. Addressing this
requirement helps to correlate information across different
traces, resulting in better quantitative evidence, intuition
about otherwise black-box applications, and understanding
that helps avoiding common pitfalls [28].

R-4: Tools for Trace Access, Parsing, Analysis, Validation.

The most important tool is the online presence of the
archive itself. The archive must further provide tools to parse
traces from different sources to the unified format (see
also R-2), to provide insight into traces (see also R-3), and to
validate common properties (e.g., the presence of and correct-
ness of properties). An absence of such tools would lead to
users unable to select appropriate traces, validate their prop-
erties, and compare them.

The archive should further aid users in building more
sophisticated tools. Newly built tools can then be added to
the selection of tools so more parties can make use of them
(contributing to R-5)

R-5: Methods for Contribution.

The archive must reflect the continuous evolution of
workflow use in practice, by increasing the coverage of dif-
ferent scenarios. We make a distinction between two types of
contribution: (1) traces from a new domain or application-
field, and (2) traces, introducing new properties. To facilitate
the former contribution, the archive must provide a method
for the upload and (basic) automated traces verification. To
facilitate the latter, the format must integrate specific provi-
sions that enable upgrades and long-term maintainability,
such as adding a version to each component of the format.

Addressing this requirement encourages new and exist-
ing contributors to submit new traces. In particular, tools to
add new domains are of particular importance, to support
emerging paradigms with realistic data.

3.2 Overview of the WTA

We design the WTA as a process and set of tools helping a
diverse set of stakeholders. We consider three roles for the
WTA community members, outlined in Fig. 1. The contribu-
tor supplies, as the legal owner or representative, one or
more traces to the WTA. A workflow trace contains histori-
cal task execution data, resource usage, NFRs, resource
description, inputs and outputs, etc. To fulfill R-5, the WTA
team assists the contributor in parsing, anonymizing, and
converting the traces into the unified format (Section 3.4),
minimizing the risk of competitive disadvantage, and veri-
fying their integrity. WTA fulfills R-1 as it incrementally
expands with contributors of traces from different domains
with different properties.

The user represents non-expert or expert trace consumers.
Non-expert users often need to rely on generic domain or
trace properties, whereas the expert users have detailed
knowledge of their system and require fine-grained details
for selecting the correct trace. In addition, expert users may
comment on (missing) properties and may develop new
tools, models or other techniques to further compare and
rank the traces. Both user types require assistance in selecting
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TABLE 2

Overview of the Current WTA Content, Grouped by Source
SourceID.Name #WL D DS #PA #PL #5 #A #WF #T #U #G  Year(s) Timespan TCH
S1. Askalon Old 2 Eng - - 1 - mixed 4,583 167,677 x7 *6 2007 19 months 4,685,300
S2. Askalon New 67  Sci - *2 2 67 *3 1,835 91,599 *67  *67 2016 47 days 193
S3. LANL 2 Sci - - 1 - mixed 1,988,397 475555927 - - 2011-2016 63 months  *9,625,431
S4. Pegasus 8 Sci - - 6 - 8 56 10,573 9 - 2011 4 days 1,477
S5. Shell 1 Ind - - 1 - mixed 3,403 10,208 - - 2016 10 minutes 25
S6. SPEC 2 Sci - - 1 - mixed 400 28,506 - - 2017 - 1,231
S7. Two Sigma 2 Ind - - 1 - mixed 41,607,237 50,518,481 610 1 2016 16 months 69,992,196
S8. WorkflowHub 10 Sci *5  *4 5 - 3 10 14,275 10 - 2017 - 52
S9. Alibaba 1 Ind - - 1 - mixed 4,210,365 1,356,691,136 1 1 2018 8 days 1,526,925,484
510. Google 1 Ind - 1 1 - mixed 494,179 17,810,002 430 2011 29 days 434,821,345
Total 96 - . *7 *20 67 - 48,310,465 1,900,898,384 *1,134 *76 - - 2,046,052,734

Legend: D = Domain, DS = Datasets, PA = parameters, PL = Platform, S = Setup, A = Applications, WL = workload, WF=workflow, T = task, U = user, G =
group, * = minimum, Eng = Engineering, Sci = Scientific, Ind = Industry, and TCH = Total Core Hours. Items in bold are workloads introduced by this work.
Items where workflows are for the first time analyzed in this work are in italics. The symbol  next to S7 indicates data with promise to release, but for which the
legal forms have not been completed yet; WT A can already release all other workloads.

the most suitable trace given a set of criteria (Section 3.5) as
well as analysis and validation (Section 3.6) from the avail-
able set of traces (Section 3.7). To support both user types, the
WTA discloses both high-level and low-level details.

3.3 Workflow Model

There are numerous types of workflow models used across
different communities. A 2018 study by Versluis ef al. finds
DAGs are the most commonly used formalism in computer
system conferences [29]. Popular formalisms such as
CWL [30] and Condor DAG [31] are also DAG-based. There-
fore, for the first design of this archive, we adopt DAGs as
the workflow model.

A workflow constructed as a DAG in which nodes are
computational tasks and directed edges depict the computa-
tional or data constraints between tasks. Entry tasks are
tasks with no incoming dependencies and, once submitted
to the system, immediately are eligible for execution. Simi-
larly, end tasks are nodes that have no outgoing edges. A
collection of workflows submitted to the same infrastruc-
ture over a certain period of time is considered a workload.

Although popular, we specifically do not focus in this
work on BPMN and BPEL, Petri nets, hyper graphs, general
undirected, or cyclic graphs. These formalisms either
include business and human-in-the-loop elements [32] or
add additional complexity due to having a large set of con-
trol structures such as loops, conditions, etc. [9] which we
consider out of scope for this work.

Executable formalisms are meant to define what resour-
ces and software should be available before execution. Our
formalism needs to capture the system state during execu-
tion. Both types of formalisms are needed, and are comple-
mentary to each other. For example, a person could use the
CWL to define and run their workload, then turn to our for-
malism and tools to analyze its execution and subsequently
improve various operational aspects.

Given the different nature of these formalisms, if we
were to extend an existing executable workflow formalism,
e.g., CWL, several elements would not be used. This would
lead to feature creep. Conversely, the additions made by our
formalism could be regarded as feature-creep by the CWL
community. This is emphasized by the CWL community

currently developing CWLProv [33]. This formalism aims at
fully reproducible workflows, including re-execution which
is not a goal of the WTA. While promising, CWLProv is still
a work in progress; elements such as capturing resource
usage (e.g., CPUs and power consumption) are still lacking.

3.4 Unified Trace Format

Creating a unified format (R-2) requires from the designer a
careful balance between limiting the number of recorded
fields while supporting a diverse set usage scenarios for all
stakeholders in Section 3.2. Modern logging and tracing
infrastructure can capture thousands of metrics for each
machine and workflow-task involved [34], from which the
designer must select. We specifically envision support for
common system and workflow properties found in the typi-
cal scenarios considered in the top venues surveyed in
Section 2, such as engineering a workflow engine [35], char-
acterizing the properties of workloads of workflows [36],
and designing and tuning new workflow schedulers [37].

Our unified format attempts to cover different trace
domains, while preserving valuable information, such as
resource consumption and NFRs, contributing to fulfilling
R-1 and 3. The full technical description of the format can
be found in our technical report [38] and on the WTA web-
site.” By analyzing the raw data formats, we carefully
selected useful properties to include in our unified format,
omitting low-level details, such as cycles per instruction,
page cache sizes, etc.

Answering RQ-2 and fulfilling R-2, our trace format is
the first to support arbitrary NFRs both at task and work-
flow levels. For example, one of the LANL traces (intro-
duced in Table 2) contains deadlines per workflow and the
Google cluster data features task priorities, both are sup-
ported by the WTA unified format. Capturing these proper-
ties is important to test QoS-aware schedulers.

As depicted in Fig. 4, the WTA format includes seven
objects: Workload, Workflow, Task, TaskState Resource, Resour-
ceState, and DataTransfer. Each of these objects contains a
version field, updated whenever the set of properties is
altered (R-5).

2. https:/ /wta.atlarge-research.com/traceformat.html
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Fig. 4. The WTA trace format.

Each trace is a single workload, consisting of multiple
workflows and their arrival process. Workload properties
include the number of workflows, tasks, users, domain and
field when available, authors list, and resource consumption
statistics. Each workload belongs to one or more domains.
and contains a description including its source, execution
environment, etc.

Each workflow in the workload has a unique identifier, an
arrival time, and contains a set of tasks and several proper-
ties, including scheduler used, number of tasks, critical path
length, NFRs, and resource consumption. Each workflow
also has the name of its field of study, when possible. Differ-
ent related fields constitute a domain.

Each Task has a unique identifier and lists its submission
and waiting time, runtime and resource requirements,
including required (compute) resource type, memory, net-
work, and energy usage. Additionally, each task provides
optional dictionaries for task-specific execution parameters
and NFRs. To model dependencies between tasks, the WTA
format maintains for each workflow its topology by specify-
ing parents and children per task. Similarly, data dependen-
cies are recorded as a list of data transfers.

Resource objects cover various resource types, such as
cloud instances, cluster nodes, and IoT devices. A resource
has a unique identifier and contains several properties, such
as resource type (e.g., CPU, GPU, threads), number, proces-
sor model, memory, disk space, and operating system. An
optional dictionary provides further details, such as instance
type or Cloud provider. The ResourceState event snapshots
periodically the resource state, including availability and uti-
lization. Analogous to the ResourceState, the TaskState
records periodically the resource consumption of the task
(the Task object records the resource demand).

Each DataTransfer describes a file transfer from a source
to a destination task, which can be a local copy on the same
resource or a network transfer from a remote source, etc. To
support bandwidth analysis, a data transfer introduces sub-
mission time, transfer time, and data size. Each data transfer
also provides an optional dictionary with detailed event
timestamps (e.g., pause, retry).

3.5 Mechanisms for Trace Selection

We address R-3 by assisting archive users in retrieving
appropriate traces for their scenarios, using filter and selec-
tion mechanisms. The website is the most important such
filter and mechanism, containing an overview of all traces
in a general table with the number of workflows, tasks,
users, etc. This table is sortable and searchable, allowing
website users to interact with the more than 90 traces cur-
rently in the WTA (column “#WL”, row “Total” in Table 2).
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TABLE 3

Trace Anonymization Methods Used in WTA Tools
Obfuscation method Description
Jigg Encodes IPv4 addresses
Mail and host Obfuscate mail and host names
File paths Hide file paths in Linux and Windows format
Executable files Encode executable file names, e.g., py, sh, exe, jar
All files Hide all file names, ending with 2, 3, or 4 letters
Keywords Anonymize a list of custom keywords
All Apply all obfuscation methods listed above

We provide, online and as separate tools, a detailed report
for each trace. Each report includes automatically generated
statistics, such as the number of workflows and tasks, then
resource properties such as compute, memory, and IO, and
job and task arrival times and runtime distributions (see
Section 4). The metrics featured in the report are reported as
important by prior studies [39], [40] and enable developers
to select traces appropriate for their intended use-case.

3.6 Tools for Analysis and Validation

We implement the unified trace format using the Parquet
file format and the Snappy compression algorithm. Parquet
is a binary file format that is supported by many big data
tools such as Apache Spark, Flink, Druid, and Hadoop [41].
Many programming languages also have libraries to parse
this format, such as PyArrow for Python and parquet-avro
for Java. Snappy” compression reduces the size of the data-
set significantly and has low CPU usage during extraction.

Beside trace selection support and to address R-4, the
WTA offers several tools to facilitate and incentivize the
continuous growth of the archive. Most of these tools
required significant engineering effort to develop, due to
the typical challenges of big data processing (high volume,
noisy data, diverse input-formats, etc.). The WTA simplifies
the upload of new traces by providing a set of parsing
scripts for different trace sources, such as Google, Pegasus,
and Alibaba. Parsing traces can become non-trivial, once
they grow both in complexity and size. Such traces require
big data tools, such as Apache Spark, and enough resources,
a cluster, to compute. Noisy data raise another non-trivial
issue: both Google’s and Alibaba’s cluster data contained
either anomalous fields, undocumented attributes, and non-
DAG workflows. Some of these issues were never discov-
ered by their respective communities and were corrected in
our parsing tools. Debugging, filtering, and correcting noisy
big data requires significant compute power and detailed
engineering.

Because traces may contain sensitive information, the
WTA offers a trace anonymization tool, which supports users
to automatically replace privacy and security-related infor-
mation, to avoid an accidental reveal of proprietary infor-
mation. Specifically, to remove sensitive information from
trace files, we use two common techniques [42], culling and
transforming. Culling is done during trace conversion, by
omitting parts of the raw trace data which do not match our
workflow trace format. For the transformation, as presented
in Table 3, our anonymization tool automatically scans the

3. https://github.com/google/snappy
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TABLE 4
Overview of Properties Available Per Source
Source ID Task details Task resource req. Structural information Disk Memory Network Energy NFRs
S1 v v v
S2 v v v
S3 ~ v ~ J/
S4 v v v
S5 v v v
S6 v v v v
S7 v v ~ v
S8 v v v v v
S9 v v v v v v
S10 v ~ v v vV

Legend: v = available, ~ = partially available, blank = not available, and Task details = individual task information.

workflow trace file for sensitive data, such as IP addresses,
file paths, names, etc., by string pattern matching. Beside
these standard sensitive-data checks, the WTA offers the
option to search for custom privacy-critical strings.

Finally, all matched strings are replaced by a salted SHA-
256 hash key. This approach using cryptographic hash
functions offers protection of sensitive data, while preserv-
ing the relationships between the matched values in the
same trace file [42]. Additionally, our tool hides potential
relations to other trace files by adding a salt of length 16 to
the hash key generation, which is randomly generated on
each tool run.

To validate traces, the WTA provides a wvalidation script
that checks the integrity and summarizes important charac-
teristics of a trace. During trace conversion, using the valida-
tion script, we successfully identified several parse bugs and
inconsistencies in the data that we subsequently corrected.

Specifically, because tasks build the base of each trace,
our tool checks if all contained tasks are well defined. This,
for example, means that all parsed control dependencies,
such as children and parents, link only to existing tasks
with valid properties. A task property is valid, if the parsed
property type matches the property type definition, and the
property value is allowed e.g., task runtime > 0. Based on
and similar to this fundamental validation, our tool pro-
vides options to check the workflow and data transfer prop-
erties to identify inconsistencies, as well.

These tools help combating perceived barriers to share
data described by Sayogo et al. [43]. Several technological
barriers are addressed by using a unified format and valida-
tion (data architecture, quality, and standardization), Legal
and policy barriers are more difficult to address. Our ano-
nymization tool aids in overcoming the data protection bar-
rier, yet legal and other enforced policies may require
tailored solutions.

Besides offering these tools, the WTA also hosts the trace
data, addressing logistic and economical barriers. The
increasing focus on sharing data artifacts by the community,
is lowering the barrier regarding competition for merit and
reputation for quality and bolsters the culture of open shar-
ing. Finally, each trace has its own DOI by also uploading it
to Zenodo* which can be cited and thus provides authors
with the appropriate credits (incentive barrier).

4. https:/ /zenodo.org/

3.7 Current Content

Having a diverse set of traces available is necessary to use in
experimentation. When using traces in experimentation, dif-
ferent traces should be used to prove generality of the pro-
posed approach (see Section 5). Gathering and parsing raw
logs and other traces requires significant computing effort.
Using 16 nodes (32 eight-core Xeon E5-2630 v3 and 1TB
RAM) from the Dutch DAS5 super computer [44], several
traces require up to a day to compute using big data tools
such as Apache Spark. In total, the WTA team spent more
than two person months on converting traces to the unified
trace format. By offering these parse scripts and the data,
we contribute to R-4.

The WTA features currently 96 workloads from 10 differ-
ent sources, with over 48 million workflows and 2 billion
CPU core hours. All of them are available on the WTA archive
website.” Each workload is uniquely identified by a combina-
tion of the following properties if available: source, runtime
environment, application, and application parameters [45].
Tables 2 and 4 summarize these traces. From these tables we
observe that WTA contains a vast amount of different traces,
from different sources and domains, with various number of
workflows, properties, number of tasks, timespans, and core
hour counts. Although supported by our format, no trace cur-
rently has information on energy consumption, highlighting
the need of such traces [14]. These traces are collected by com-
bining open-access data (logs, traces, etc.) and closed-access
data throughout the years in collaboration with both industry
and academia. This contributes to R-1.

This diversity enables new workflow management tech-
niques and systems to be thoroughly tested for their feasi-
bility, strengths, and, equally important, weaknesses.

4 A CHARACTERIZATION OF WORKLOADS OF
WORKFLOWS

To answer RQ-3, we perform in this section a characteriza-
tion of the workloads in the WTA. These workloads origi-
nate from publicly available archives combined with
workloads we obtained from collaborations. As we expect
these workloads to be heterogeneous in many dimensions,
we characterize them using a variety of metrics and proper-
ties, including workflow size, resource usage, and structural

5. https:/ /wta.atlarge-research.com/
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patterns. Our characterization reveals significant differences
between workloads from different domains and sources.
Such differences further support our claim that the commu-
nity needs to look beyond just scientific workloads, and con-
sider a wider range of domains and sources for experimental
studies when developing workflow management systems
aimed at multiple domains or for general applicability.

We present in this section only detailed insights that lead
to new observations for the community. We include in our
technical report other types of analysis, such as task and
workflow inter-arrival times, task and workflow runtimes,
and their breakdown per domain and source [38].

4.1 Structural Patterns

O-7:  Scientific, industrial, and engineering workflows
exhibit various structural patterns, but at least 60 per-
cent of tasks in a domain match the dominant pattern
of that domain.

O-8:  Industry workflows stand out by exhibiting primarily

scatter patterns, as opposed to pipeline operations.

This characterization quantifies five structural patterns in
workflows often used by researchers [46]: scatter (data dis-
tribution), shuffle (data redistribution), gather (data aggre-
gation), pipeline, and standalone (process). Investigating
these structural patterns is important to understand the
types of applications being executed and tune a system’s
performance. We exclude from this analysis the LANL,
Two Sigma, and Google traces, which lack structural infor-
mation, that is, task parent-child relationship information.

Fig. 5 depicts the structural patterns found per domain.
From this figure, we observe that in each domain a domi-
nant pattern emerges that accounts for 61-85 percent of
tasks. In the scientific and engineering domains, the major-
ity of tasks are simple pipelines. Interestingly, the industrial
workflows include primarily scatter operations. This obser-
vation matches known properties of the Alibaba trace,
which accounts for over 99 percent of tasks with structural
information we analyzed in this domain. In particular, the
Alibaba trace includes MapReduce jobs, each consisting of
many “map” tasks (scatter operations) and a smaller num-
ber of “reduce” tasks (gather operations).

4.2 Arrival Patterns

0-9:  From all domains, industrial traces show on average
orders of magnitude higher rates of task arrival.
O-10: Scientific traces can show high variability in task

arrival rates, unlike industrial and engineering
traces.
O-11: Two Sigma shows a typical workday diurnal pattern.
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To investigate the weekly trends that may appear in work-
load traces, we depicts in Fig. 6 for several traces the average
number of tasks that arrive per day of the week. We omit the
Askalon new source from the hourly task-arrival plot as they
contain 4 or 5 data points, which is too few to plot a trend.
We observe that traces have significantly different arrival
rates and patterns. The Alibaba trace features the highest
task arrival rates, peaking at over 10,000,000 tasks per hour.
Google and the Two Sigma workloads follow with 100-
10,000 tasks per hour. This shows that industrial workloads
included in this work have significantly more tasks per hour
than the other compute environments, which agrees with
companies such as Alibaba and Google operating at a global
scale. The non-industrial traces show significant fluctuations
throughout the week, whereas both Alibaba and Google do
not. This might be due to the global, around-the-clock opera-
tion of Alibaba’s and Google’s services, which can lead to a
more stable task arrival rate.

To observe differences in daily trends, we depict the
average task rate per hour of day in Fig. 7. This figure reaf-
firms our observation that the two largest traces—Alibaba
and Google-have a relatively stable arrival pattern through-
out the day. In contrast, the Two Sigma 1 trace exhibits a
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Fig. 7. Hourly task-arrival trend, per source.
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TABLE 5
The Design and Setup of our Characterization

ID Section Description Traces Metric Granularity
El 41 Analyze structural patterns in workflows per domain ~ AllbutS3,7,10  Structural patterns ~ Workflow level
E2 42 Longitudinal analysis S1,S3,57,59, S10 Tasks per day Workload level
E3 43 Analysis of burstiness per trace All but 54-8 Hurst exponent Workload level
E4 4.4 Measure the level of parallelism per workflow AllbutS3,7,10  Level of parallelism Workflow level
E5 4.5 Analysis of critical path length AllbutS3,7,10  Critical path length ~ Workflow level

typical office hours pattern; task arrival rates increase
around hour 7 and start dropping around 17. The same pat-
tern occurs to a lesser extent in the Two Sigma 2 trace. The
highly variable arrival rates of tasks in the LANL traces, as
observed in Fig. 6, are also evident in our analysis of daily
trends. We study this in more depth in Section 4.3.

4.3 Burstiness

O-12: Most traces investigated exhibit bursty behavior
within small window sizes.

O-13: The LANL trace exhibits maximum burstiness at
medium window sizes.

O-14: The largest traces (Alibaba and Google) exhibit

uniquely bursty behavior: low burstiness at small
and high burstiness at large, window sizes.

To investigate if workloads expose bursty behavior, a
special kind of arrival pattern, the Hurst exponent H is
used. H quantifies the effect previous values have on the
present value of the time series. A value of H < 0.5 indi-
cates a tendency of a series moving in the opposite direction
based on the previous values, and thus exhibit jittery behav-
ior (sporadic burst). A value of H > 0.5 indicates a ten-
dency to move in the same direction, and thus towards well
defined peaks (sustained burst). When H = 0.5, the series
behaves like a random Brownian motion.

In this experiment, we inspect busty behavior by com-
puting the Hurst exponent for task arrivals. The results of
this experiment are visible in Fig. 8. From this figure, we
observe most traces depict bursty behavior at least for one
of small, medium, and large window size. They are also not
bursty for at least one window size. This is expected, as in
most systems task arrivals vary at (sub-)second interval.
Interestingly, LANL traces exhibit most bursty behavior at
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Fig. 8. Hurst exponent estimations for different time windows per trace.
Horizontal axis does not start at zero.

medium window sizes. This might be due to national labo-
ratories workflows being submitted in batches. A batch of
tasks is submitted all at once, leading to a burst. But, the
batch itself is processed at a constant rate. The workload is
also stable over longer time periods as evidenced by
H =~ 0.5 for larger windows. Finally, the two largest traces
in this work, Alibaba and Google, exhibit increasingly burst
behavior for larger windows. This indicates that for larger
arrival times, the workloads (in absolute numbers) vary
more than for the other sources. This matches the observa-
tions in Section 4.2.

4.4 Parallelism in Workflows

O-15: Task parallelism per workflow can differ signifi-
cantly between workload domains and sources.

O-16: Industrial workflows exhibit the highest level of
parallelism.

O-17:  Out of all sources, Alibaba workflows have the high-

est level of parallelism, followed by Pegasus and
WorkflowHub.

With the structural patterns observed, we investigate if
the large occurrence of the pass-through patterns expresses
in a high level of parallelism. The level of parallelism indi-
cates how many tasks can maximally run in parallel for a
given workflow, provided sufficient resources. Fig. 9
depicts the approximated level of parallelism per domain.
The approximation algorithm used produces results very
close to the true level of parallelism as demonstrated by
Ilyushkin et al. [47]. From this figure, we observe the indus-
trial domain exhibits the highest level of 99th percentile par-
allelism, up to hundreds of thousands of tasks. This is likely
a consequence of the many MapReduce workflows, which
are highly-parallel by nature, that are present in the Alibaba
trace. Alibaba also contains bag of tasks workflows, which
by nature have a high parallelism. Scientific workflows
exhibit low median parallelism but high 99th percentile par-
allelism, featuring levels of parallelism up to thousands of
tasks. Engineering traces exhibit a moderate amount of
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Fig. 9. Workflow level-of-parallelism, per domain.
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median parallelism, between industry and scientific, with at
most 1000 concurrent running tasks.

Fig. 10 shows the level-of-parallelism per source. From
this figure, we observe that Alibaba exhibits the highest lev-
els of parallelism, as discussed previously. Second are the
Pegasus and WorkflowHub workflows. These sources con-
tain a variety of scientific applications, commonly known
for their parallel structures, as observed in Section 4.1. Other
traces demonstrate less parallelism, with up to 1000 concur-
rent running tasks. As Shell exist entirely of sequential pipe-
lines, the source does not exhibit any variation.

4.5 Limits to Parallelism in Workflows

O-18: Workflows from the scientific domain have signifi-
cantly different critical-path lengths.

O-19: The amount of tasks on the critical path is the highest
for engineering workflows.

0-20: Although highly parallel, industrial workflows exhibit

longer critical paths than scientific workflows.

The critical path (CP) refers to the longest sequence of
dependent tasks in a workflow, from any entry task to any
exit task. By quantifying the CP length, we investigate if
workflow runtimes are primarily dominated by a few heavy
tasks, or by many small tasks. Fig. 11 presents the results of
this characterization per workload domain. From this figure
we observe the CP length for engineering workflows is the
highest. This matches with the parallelism observations in
Sections 4.1 and 4.4. Interestingly, even though industrial
workflows are often highly parallel, their critical paths are
often longer than those of scientific workflows. This indi-
cates that industrial workflows are bigger in size than scien-
tific workflows, which our data supports.

Fig. 12 presents the results of CP characterization per
workload source. From this figure we observe the CP length
differs significantly per trace. Based on the prior findings,
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Fig. 11. Workflow level-of-parallelism, per domain.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

5 1 —o— Alibaba

8 —2— Askalon New
v 0.75

g —=- Askalon Old
§ 0.50 Pegasus

o

2 025 SPEC

= 0 Shell

2 WorkflowHub

10° 10! 102
Num. tasks on critical path

Fig. 12. Workflow level-of-parallelism, per source. Curves are shaded by
domain, to further reveal patterns.

the engineering traces are expected to show longer critical
paths. As we can observe, the Askalon old traces contains
workflows with the longest critical path. Alibaba workflows
also exhibit long critical paths, indicating their workflows
next to being highly parallel, also contain a lot of tasks with
stages. More concentrated, the other traces exhibit lower
critical path lengths, yet the traces are still clearly distinct.
As the Shell trace contains solely sequential workflows, the
critical path length is one.

5 ADDRESSING CHALLENGES OF VALIDITY

In this section, we discuss challenges to the validity of this
work. We address the challenges through either trace-based
simulation (the first) or argumentation (the others).

Challenge C-1. Trace diversity does not impact the perfor-
mance of workflow schedulers. As outlined in Sections 3.7
and 4, the WTA traces are diverse. However, what is the impact
of trace diversity?

To demonstrate the impact of trace diversity on scheduler
performance, we conduct a trace-based simulation study. The
simulator used is an optimized version of DGSim [48] which
we publish as open-access artifact.® We simulate workloads
from five sources using two scheduler configurations. We
equip the simulated scheduler with either the first-come first-
serve (FCFS) or the shortest job first (SJF) queue sorting policy.
For both scheduler configurations, we further use a best-fit
task placement policy. We do not use a fixed resource envi-
ronment to prevent bias when sampling or scaling traces [28].
Instead, we tailor the amount of available resources for each
trace to reach roughly a 70 percent resource utilization on
average, based on the amount of CPU (core) seconds of trace
and its length. Although ambitious, 70 percent resource utili-
zation is achievable in parallel HPC environments [49] and
can be seen as a target for cloud environments. To evaluate
the performance of each scheduler, we use three metrics com-
monly used to assess schedulers’ performance [50], [51]: task
response time (ReT), bounded task slowdown (BSD, using a
lower bound of 1 second), and normalized workflow schedule
length (NSL, the ratio between a workflow’s response time
and its critical path). The entire experiment, including soft-
ware and data, can be reproduced on Code Ocean.”

We report the performance of each simulated scheduler in
Table 6 per source. From this table we observe significant dif-
ferences between schedulers and trace sources. In particular,

6. Available at https:/ /github.com/atlarge-research /wta-sim
7. https:/ /doi.org/10.24433 /CO.8484557.v1
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TABLE 6
The Performance in Simulation of Two Schedulers for Traces
From Different Sources

Source of Trace

Metric ~ Policy Askalon Old Askalon New Pegasus Shell SPEC
Avg.ReT FCFS 2.02-10°s 167 s 2.43-10%s 9.76s 491
SJF 1.74-10° s 113s 2.12-10*s 9.52s 248 s
Avg.BSD FCFS  1.53-10% 65.1 1.31-10° 113 474
SJF 0.14-10° 11.6 0.10-10° 1.06 22
Avg.NSL FCFS  1.05-10° 2.50 2.35-10° 1.12 139
SJF 0.01-10° 3.14 0.06-10° 1.07 1.78

Lower values are better.

we find that the relative performance of schedulers differs
between trace sources. For example, SJF outperforms FCFS
on the normalized schedule length metric by up to two
orders of magnitude on traces from Askalon Old and Pega-
sus. In contrast, on traces from Askalon New and Shell, the
scheduling policies perform similarly. For other metrics,
these differences are present, but less pronounced. SJF per-
forms better than FCFS on response time and slowdown for
each trace source, but the differences in performance
between the schedulers vary greatly across traces.

Overall, we kept the working environment fixed per
trace, yet obtained significantly different results depending
on the scheduler and input trace. Thus, our trace-based sim-
ulations give practical evidence that researchers require
experimenting with different traces to claim generality and
feasibility of their proposed approaches.

C-2. Limited venue selection in the survey. Besides
omitting venues that yielded no results on our initial query,
we made sure that journals, workshops, and conferences
were covered at various levels in term of quality. The
selected venues are highly ranked in several of the available
rankings, including CORE,® Google Scholar.” and AMiner."”
As these rankings use different metrics to define the top-
ranking, we made a selection that covers different types of
venues that also match our experience in terms of quality,
see the list in Table 1. We believe this covers the field of sys-
tems community to a degree where conclusions can be
drawn from. We specifically focus on articles published in
the systems communities as specialized communities, e.g.,
bioinformatics, focus on systems that solve domain-specific
problems, but rarely conduct in-depth experiments, includ-
ing trace-based, to test the system-level capabilities and
behavior.

C-3. Level of data anonymization. The Google team pub-
lished interesting work data [42], but their anonymization
approach, of normalizing values of both resource consump-
tion and available resources, reduces significantly the
usability of traces and the characterization details they pro-
vide. We argue this type of anonymization is not preferred.
When available resources per machine, e.g., available disk

8. http://portal.core.edu.au/conf-ranks

9. https:/ /scholar.google.com/ citations?view_op=top_venues&hl=
en&vq=eng_computingsystems

10. https:/ /cn.aminer.org/ranks/conf
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space, memory, etc., and resource consumption numbers
are normalized, reusing traces for different environments
becomes difficult. Researchers then need to make assump-
tion on what kind of hardware the workflows were exe-
cuted as done in the work of Amvrosiadis ef al. [15] or need
to assume a homogeneous environment. Instead, obfusca-
tion techniques, such as multiplying both consumption and
resources by a certain factor, allow for relative comparisons
and the possibility to replay scheduling the workload on
the resources while still concealing the original data.

C-4. The Workflow Trace Format. A fourth challenge is
the properties included in the workload trace format. For
each encountered property in other formats, we carefully
decided whether to include it or not. Low-level details such
as page caches are omitted to not complicate unnecessarily
the traces. If future work demands change, the versioning
schema per object will allow for these additions. In defining
the fields of our trace format, we also looked at a variety of
workflow specification languages and formalisms, from the
very generic (e.g.,, BPMN/BPEL and Petri net) to the execut-
able workflow formalisms (e.g., CWL and DAX).

6 RELATED WORK

We survey in this section the relevant body of work focus-
ing on trace archives and on characterizing workloads. Dif-
ferently from other archives, the WTA focuses on workloads
of workflows, preserving workflow-level arrival patterns and
task inter-dependencies not found in other archives. Differ-
ently from other characterization work, ours is the first to
reveal and compare workflow characteristics across differ-
ent domains and fields of application.

Open-Access Trace Archives. Closest to this work is Work-
flowHub [14], which archives traces of workflows executed
with the Pegasus workflow engine and offers them in a uni-
fying format containing structural information. Workflow-
Hub also provides a tool to convert Pegasus execution logs
to traces, similar to our parsing tools. Different from this
work, WorkflowHub’s traces include a single workflow and
thus not a workload with a job-arrival pattern. WorkFlow-
Hub also does not provide statistical insights per trace and
thus, they do not meet requirements R-1 and R-3, and only
partially meet R-4.

Also relatively close to this work, the ATLAS repository
maintained by the Carnegie Mellon University [15] contains
two traces (the S3 traces in this work), with other two traces
announced but not yet released (as announced, the S7 traces
in this work). None of their published traces contains task-
interdependency data, so, although overlapping with our
S3 and S7, the ATLAS work is different in scope and in par-
ticular does not address workflows. Further, they do not
consider different domains nor fields, and their archive
lacks a unified format, statistical insights, selection mecha-
nisms, and tooling—thus, they do not meet our require-
ments R1-4.

Other trace-archives with similarities to this work
include the MyExperiment archive (ME) [24], the Parallel
Workloads

Archive (PWA) [52], and the Grid Workloads Archive
(GWA) [53]. ME stores workflow executables, and semantic
and provenance-data, but not provide execution traces as
WTA does and thus has different scope. The PWA includes


http://portal.core.edu.au/conf-ranks
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traces collected from parallel production environments,
which are largely dominated by tightly-coupled parallel jobs
and, more recently, by bag-of-tasks applications. The GWA
includes traces collected from grid environments; differently
from this work, these traces are dominated by bag-of-tasks
applications and by virtual-machine lease-release data.

Workload Characterization, Definition, and Modeling. There
is much related and relevant work in this area, from which
we compare only with the closely related; other characteriza-
tion work does not focus on comparing traces by domain
and does not cover a set of characteristics as diverse as this
work, leading to so many findings. Closest to this work, the
Google cluster-traces have been analyzed from various
points of view, e.g., [54], [55], [56]. Amvrosiadis et al. [15],
[23] compare the Google cluster traces with three other clus-
ter traces, of 0.3-3 times the size and 3-60 times the duration,
and find key differences; our work adds new views and
quantitative data on diversity, through both survey and
characterization techniques. Bharathi ef al. [46] provide a
characterization on workflow structures and the effect of
workflow input sizes on said structures. Five scientific work-
flows are used to explain in detail the compositions of their
data and computational dependencies. Using the characteri-
zation, a workflow generator for parameterized workflows
is developed. Juve et al. [36] provide a characterization of six
scientific workflows using workflow profiling tools that
investigate resource consumption and computational char-
acteristics of tasks. The teams of Feitelson and Iosup have
provided many characterization and modeling studies for
parallel [57], grid [58], and hosted-business [59] workloads;
and Feitelson has written a seminal book on workload
modeling [60]. In contrast, this work addresses in-depth the
topic of workloads of workflows.

7 CONCLUSION AND ONGOING WORK

Responding to the stringent need for diverse workflow
traces, in this work we propose the Workflow Trace Archive
(WTA), which is an open-access archive containing work-
flow traces.

We conduct a survey of how the systems community
uses workflow traces, by systematically inspecting articles
accepted in the last decade in peer-reviewed conferences and
journals. We find that, from all articles that use traces, less
than 40 percent use realistic traces, and less than 15 percent
use any open-access trace. Additionally, the community
focuses primarily on scientific workloads, possibly due to the
scarcity of traces from other domains. These findings suggest
existing limits to the relevance and reproducibility of work-
flow-based studies and designs.

We design and implement the WTA around five key
requirements. At the core of the WTA is an unified trace for-
mat that, uniquely, supports both workflow- and task-level
NEFRs. The archive contains a large and diverse set of traces,
collected from 10 sources and encompassing over 48 million
workflows and 2 billion CPU core hours.

Finally, we provide deep insight into the WTA traces,
through a statistical characterization revealing that: (1) there
are large differences in workflow structures between scien-
tific, industrial, and engineering workflows, (2) our two big-
gest traces— from Alibaba and Google—have the most stable
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arrival patterns in terms of tasks per hour, (3) industrial
workflows tend to have the highest level of parallelism, (4)
the level of parallelism per domain is clearly divided, (5)
engineering workloads tend to have the most tasks on the
critical path, (6) the three domains inspected in this work
show distinct critical path curves, (7) in order to claim gener-
ality of an approach, one should test a system with a variety
of traces with different properties, possibly from different
domains.

In ongoing work, we aim to attract more organizations to
contribute real-world traces to the WTA, and to encourage
the use of the WTA content and tools in educational and pro-
duction settings. One of our goals is to develop a library sys-
tem administrators can integrate into their systems to
generate traces in our format. Our preliminary experience
with this learns that developing such a library, even for a sin-
gle system, requires significant engineering effort and is thus
left for future work. We aim to support other formalisms in
the future, including directed graphs, BPMN workflows, etc.
based on the community’s needs. Investigating if formalisms
such as CWLProv can be used to further enhance the
archive’s content, possibly by merging, is another interesting
item for future work. Finally, we aim to improve the trace
format and statistics we report for each trace, based on com-
munity feedback.

REPRODUCIBILITY STATEMENT

We support reproducible science. A full description on how
to reproduce our findings can be found in our technical
report [38]. The WTA datasets are available online on the
archive’s website https://wta.atlarge-research.com/. The
WTA tools, simulator, and parse scripts and survey data are
available as free open-source software at https://github.
com/atlarge-research/wta-tools, https://github.com/
atlarge-research/wta-sim, and https://github.com/atlarge-
research/wta-analysis, respectively. The experiment con-
ducted in Section 5, C-1 can be reproduced using our
Code Ocean capsule available at https://doi.org/10.24433/
CO.8484557.v1.
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