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Integrating Task Duplication in Optimal Task
Scheduling with Communication Delays

Michael Orr and Oliver Sinnen

Abstract—Task scheduling with communication delays is an NP-hard problem. Some previous attempts at finding optimal solutions to
this problem have used branch-and-bound state-space search, with promising results. Duplication is an extension to the task
scheduling model which allows tasks to be executed multiple times within a schedule, providing benefits to schedule length where this
allows a reduction in communication costs. This paper proposes the first approach to state-space search for optimal task scheduling
with task duplication.Also presented are new definitions for important standard bounding metrics in the context of duplication. An
extensive empirical evaluation shows that the use of duplication significantly increases the difficulty of optimal scheduling, but the
proposed approach also gives certainty that a large proportion of task graphs can be scheduled more effectively when duplication is
allowed, and permits to quantify the exact advantage.
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1 INTRODUCTION

E FFICIENT schedules are required in order to maximise
the potential of parallel systems to improve the execu-

tion time of programs. The classic problem of task schedul-
ing with communication delays, known as P |prec, cij |Cmax

using the α|β|γ notation[25] (see Section 2.1), involves a set
of tasks, along with precedence constraints and communi-
cation costs, which must be scheduled on a set of processors
with the goal of minimising the overall execution time. This
problem is NP-hard, which means that no polynomial time
algorithm is known which can solve it optimally [15]. For
that reason, task scheduling problems are usually solved
with approximation algorithms, giving non-optimal but
hopefully good solutions [7], [9]. Unfortunately, there is no
way to guarantee the quality of these approximate solutions
relative to the optimal, as no α-approximation scheme is
known for the problem[4]. This means that it is necessary to
be able to find optimal solutions in order to fully evaluate
the performance of approximation algorithms. Branch-and-
bound state-space search has been used for optimally solv-
ing the problem with homogeneous processors, and shown
some promise[16]. In particular, a state-space model known
as Allocation-Ordering (AO) has demonstrated to be most
effective with this method [12]. The AO model avoids the
duplication of states, i.e. partial schedules, not to be mistaken
with the duplication of tasks, addressed in this paper.

Duplication of tasks is an extension to the basic task
scheduling problem which allows tasks to be executed mul-
tiple times within a schedule, with different copies of a task
assigned to different processors. The resulting problem can
be referred to as P |prec, cij , dup|Cmax. While it might not
seem intuitive that a schedule can be improved by perform-
ing the same work multiple times, duplication can provide
a benefit through the reduction of communication costs.
Often, the additional computation time needed to re-execute
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a task on a different processor is less than the time that
would be needed to communicate the task’s output data to
its children on that processor. Allowing duplication to occur
can therefore significantly improve schedule lengths. Dupli-
cation is often incorporated into approximation methods, or
introduced in a pre- or post-processing step with heuristic
methods. In this work we aim to incorporate duplication
fully with an optimal solving method, allowing provably
optimal schedules with duplication to be found.

In this work, changes to branching procedures for both
phases of the AO model are proposed to allow an optimal
schedule to be found among all valid schedules with or
without duplicated tasks. We propose significantly different
definitions for allocated top and bottom levels in the context
of task duplication, and use these to propose admissable
lower bound heuristics for the modified AO model. An ex-
perimental evaluation shows the impact of task duplication
on the difficulty of optimal solving, demonstrating that it
makes the problem significantly more difficult. It is also
shown how the exact benefit of task duplication for schedule
lengths can be quantified through optimal solving with this
model. With this method, we see that a large number of
problem instances receive some benefit, particularly those
with certain graph structures or with high communication-
to-computation ratios.

In Sections 2 and 3 we discuss relevant background
information and related work, including the task scheduling
model used and the original formulation of the AO model.
Section 4 discusses how the AO model was reformulated
to allow duplication, and the additional complexity this
introduces to the state-space. Section 5 discusses necessary
changes to the way lower bounds are calculated when du-
plication is introduced. Subsequently, Section 6 presents an
empirical evaluation of the performance of the reformulated
AO model when duplication is allowed, and which task
graphs benefit from duplication when optimally scheduled.
Finally, Section 7 presents the conclusions of the paper.
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Figure 1. A simple task graph and valid schedule.

2 BACKGROUND

2.1 Task Scheduling Model

The problem addressed by this work is the classic problem
of task scheduling with communication delays, known as
P |prec, cij |Cmax using the α|β|γ notation for scheduling (α
denotes the processor environment, β denotes properties of
the tasks, and γ denotes the objective function). P means
that the processors are homogeneous. prec, cij means the
tasks have precedence constraints with associated commu-
nication costs. Cmax means the objective is to minimise the
maximum completion time among all tasks, i.e. the schedule
length. The problem is defined as creating a schedule S for
a task graph G on a set of processors P .

Definition 2.1. Task Graph
A task graph G = {V,E,w, c} is a directed acyclic graph

(DAG) representing a program to be executed. Nodes n ∈ V
represent specific tasks that need to be completed by the
program, with weight w(n) (also called computation cost)
indicating a number of time units needed to complete a task.
An edge eij ∈ E indicates that task nj depends on task ni;
in other words, task ni must be completed before task nj
can begin execution - data produced as an output of task ni
is necessary as an input of nj . The edge weight c(e) (also
called communication cost) represents a number of time
units needed to communicate the required data between
processors, if necessary.

An example of a task graph can be seen in Figure 1.
The set of parents (or predecessors) of task n is denoted by
pred(n), while the set of children (or successors) is denoted
by succ(n). With deg−(n) and deg+(n) we denote the in-
degree and out-degree, respectively, of a task n, which is the
number of incoming and outgoing edges. In this model, we
assume that the processors p ∈ P are fully connected by a
homogeneous communication subsystem. Data is transmit-
ted between any pair of processors pi, pj ∈ P uniformly
and without contention, and the computational work of
the processors is not affected. The specific details of the
communication links between processors are not considered
beyond the assumption that they result in these properties.
Both computation and communication costs are considered
to be fixed and unchanging for the purposes of this model.
The exception is that local communication, from pito pi, has
zero cost - if a parent and child task are executed by the
same processor, no communication is necessary.

Definition 2.2. Schedule
A schedule S = {proc, ts} is a plan for execution of a

task graph G on a set of processors P . proc(n) maps a task
n ∈ V to a processor p ∈ P , signifying that n is to be

executed by p. ts(n) gives a start time for task n, being the
number of time units after the start of the program’s execu-
tion at which this n should begin to be executed by proc(n).
A valid schedule must define proc(n) and ts(n) for all
n ∈ V , such that two constraining conditions are met. The
processor constraint mandates that only one task may be
executed by a processor at any given time. The precedence
constraint requires that a task n may only begin execution
once all of its predecessors have completed execution, and
all of the required data produced by those predecessors has
been communicated to proc(n). A schedule’s length (also
sometimes called its makespan) is the time taken for the
full schedule to be executed: this is equal to the largest of
ts(n) + w(n) among all n ∈ V .

In optimal task scheduling, our goal is to find a schedule
which has the lowest possible total execution time, denoted
as S∗. Figure 1 shows a valid optimal schedule for the
simple task graph.It is also useful to introduce the concept
of node levels. Given a task n, the top level tl(n) is usually
defined as the length of the longest path in the task graph
ending with n. Here, length means the sum of the weights
of the tasks included in the path. It excludes the weight of n
itself, and does not include the weights of any edges. The
top level for a task n is intended to define the absolute
minimum value that could be given to ts(n) in a valid
schedule. This is why communication costs are not included:
a schedule can always be constructed in which all tasks on
the path are placed on the same processor, and therefore
all relevant communications have zero cost. Similarly, the
bottom level bl(n) is the length of the longest path in the
task graph beginning with n. This value includes the weight
of n, but still excludes communication costs. Another useful
value is the data-ready time drt(n, p). This is the time at
which all data from the parents of task n would finish
communication to processor p. In other words, it is the
earliest possible time that task n could begin execution on
processor p. This value is only defined when all parents of
n have been allocated and given start times.

2.2 Duplication
Duplication is an extension to the basic task scheduling
problem which allows tasks to be executed multiple times
within a schedule, with different copies of a task assigned
to different processors [1]. The function proc is now defined
such that proc(n) maps to some subset of P , rather than a
single member p ∈ P . Each task can be allocated to any
number of processors, but only once per processor. The
instance of task ni allocated to processor pj can be denoted
as task nji . A child nk of ni, where ni is duplicated, can
have its necessary input data provided by any one of the
duplicates nji . We say that nk is enabled by nji . The child nk
may also be duplicated, in which case each of its instances
nlk must of course be enabled by some nji . We denote the set
of all instances of task ni with dups(ni).

While it is valid to duplicate any task, there are limited
circumstances in which doing so will allow a schedule to
be improved. To demonstrate the general case in which it is
beneficial, say that we have a task ni allocated on processor
pi, and one of its children nj allocated on pj . The start time
of nj will be at least drt(ni, pi) + w(ni) + c(eij) - it may be



3

P1 P2

A

B

C

P1 P2

A1

B C

A2
A

CB

Figure 2. A basic example of beneficial duplication.

later due to communication from another parent of nj , or if
nj is delayed by other tasks on pj . If niwas duplicated, with
n1
i on pi and n2

i on pj , it would be possible for n2
i to enable

nj starting from time drt(ni, pj)+w(ni). The elimination of
the cost c(eij) means that nj may be able to begin execution
earlier, which in turn may allow the total schedule length
to be decreased. Figure 2 demonstrates how a simple fork-
type task graph can be scheduled with duplication in a
beneficial way. The source task A can start at time zero
on every processor, and therefore duplication allows all
communication costs for its children to be avoided. This is a
case that applies to any task graph with just one source task.

2.2.1
2.3 Branch-and-Bound
Branch-and-bound is the name of a family of state-space
search algorithms which are widely used to solve combina-
torial optimisation problems. These algorithms use search to
implicitly enumerate all possible solutions to the problem,
thereby both finding an optimal solution and proving that
it is optimal [3]. They differ from a brute force, exhaustive
search approach in that bounds are used to remove large
subsets of similar solutions from consideration. A search
tree is constructed in which the nodes, usually referred to
as states, represent partial solutions to the problem. A set
of operations is defined which transforms a given partial
solution s into a number of new partial solutions which are
closer to a complete solution. This process of defining the
child states of s is known as branching. The rules for branch-
ing, along with an initial state, define the state-space to be
searched. Upon discovery, each state swill be bounded. This
means it will be evaluated using a cost-function f , which
gives a lower bound on the cost of any complete solution
which could be reached from s. The bound given by f(s)
is usually known as the state’s f -value. These bounds allow
many states to be ignored by the search, by proving that they
cannot lead to better solutions than those found elsewhere.

2.4 Allocation-Ordering Model
Allocation-Ordering is a state-space model for task schedul-
ing which contains two distinct phases within its search tree:
first allocation, and then ordering . In the allocation phase,
each task is assigned to a processor[12]. Once a complete
allocation has been found, the ordering phase begins, and
the tasks allocated to each processor are arranged into a
specific sequence. With each task allocated to a processor,
and the order of the tasks on each processor decided, a
complete schedule can be uniquely derived. This simply
involves placing each task onto its assigned processor at the
earliest start time allowed by its ordering. It is important to
understand that the allocation and ordering phases do not

represent separate search processes; they belong seamlessly
to a single state-space, and search algorithms may move
back and forth between them as needed. The AO model has
been shown to allow superior performance when compared
with an earlier state-space model, due to its lack of duplicate
states.

In the allocation phase, states represent a partial alloca-
tion of tasks to processors. A complete allocation is repre-
sented by a partition of the set of tasks, V . A partition of a
set X is a set of mutually exclusive subsets (or “parts”), the
union of which is equal to the original set X . Each allocation
state, therefore, is a “partial partition” of V . We start with a
list of the tasks n ∈ V , arranged in some topological order.
At each step, we take the next task ni from the head of
the list and add it to our partial partition, inserting it into
a part. This means that we will either insert it into one of
the existing parts, or use it to begin a new part. The full
range of options here gives the set of children of each state.
The number of parts allowed in a partition is limited to the
number of processors in P . This process allows all possible
groupings of tasks to be considered.

For a state in the allocation phase representing a partial
partition A, bounding is performed using two different
metrics. The first is the maximum total computational load
among any of the parts a ∈ A. The second is the critical path
through the task graph given the known allocations. This
latter metric uses the concept of allocated levels for tasks:
the allocated top level, tlA(n), and the allocated bottom
level, blA(n). These closely resemble the normal top and
bottom level concepts, but incorporate known information
about the allocation of tasks to processors. For homogeneous
processors, this means adding communication costs that we
now know must be incurred to the lengths of the paths. If
proc(ni) 6= proc(nj), then the communication required by
edge eij must now occur, and so the weight of the edge
is included in any relevant allocated node levels. The two
cost functions for the allocation phase are as follows, with
the final f -value being the maximum of the two for a given
state.

fload(s) = max
a∈A

{∑
n∈a

w(n)

}
(1)

facp(s) = max
n∈V
{tlA(n) + blA(n)} (2)

For states which represent a complete allocation, their
sole child is the beginning of a new ordering phase. With a
complete partition A, it is trivial to map each part a ∈ A to a
processor p ∈ P , such that for all n ∈ V we can now define
proc(n). Given that allocation, things proceed in a manner
similar to a list scheduling algorithm, but on a per-processor
basis. For each processor, a “ready list” is maintained of
tasks which have had all their dependencies satisfied. At
each step, a single task n is chosen from among those in the
ready list of a processor and placed next in sequence on that
processor. The task n is then considered to be “ordered”.
A task ni allocated to pi is considered to not be ready if
there is an unordered task nj also allocated to pi which is
an ancestor of ni in the graph G. Otherwise, ni is ready.
The decision of which processor to order a task on next is
essentially arbitrary, but must be made according to some
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deterministic scheme such that the processor selected can
be determined while knowing nothing about the new state
but its depth. A simple round-robin method is used in our
implementation. This process continues until all tasks have
been ordered, at which point a complete schedule has been
constructed.

Finding lower bounds in the ordering phase is somewhat
more complicated. It relies heavily on the concept of an
estimated earliest start time for each task, eest(n), this being
the minimum value which ts(n) could eventually take given
the allocation and ordering decisions made so far. For any
task which is unordered, eest(n) = tlA(n), its allocated
top level. For ordered tasks, we first define prev(n) as the
task which is ordered directly before n on the processor
proc(n). We also define the estimated data ready time
edrt(nj) = maxni∈pred(nj) {eest(ni) + w(ni) + c(eij)}. If
prev(n) does not exist, eest(n) = edrt(n). If it does ex-
ist, eest(n) = max(eest(prev(n)) + w(prev(n)), edrt(n)).
Again, we use two metrics for bounding in this phase. The
first is known as the partially scheduled critical path, being
the maximum among all tasks of their estimated earliest
start time plus their allocated bottom level. The second is
the latest estimated finish time of any processor plus the
total computational weight of the tasks not yet ordered on
that processor.

fscp(s) = max
n∈V
{eest(n) + bla(n)} (3)

fordered−load(s) = max
p∈P

tf(p) + ∑
n∈p∩unordered(s)

w(n)


(4)

3 RELATED WORK

Duplication is often incorporated in heuristic algorithms for
task scheduling [7], [9]. This includes algorithms based on
list-scheduling [22], [8] and clustering[6], [14] approaches,
as well as methods such as genetic algorithms [24].The
general approach to duplication in list scheduling is to
attempt duplication of ancestor tasks when a new task
is scheduled. Some set of possible ancestor tasks will be
enumerated and duplicated on the processor of the newly
scheduled task, and the duplicates will then be removed
if they do not improve the new task’s start time [1]. Some
algorithms give no regard to redundancies in duplication,
while others attempt to minimise duplicated tasks [17].In
clustering algorithms, duplication can be introduced by
allowing clusters to overlap; that is, if adding a particular
task is determined to be beneficial to a cluster, that task
may be included even if it already belongs to a different
cluster [6]. In general, the use of duplication allows these
algorithms to produce schedules of a lower makespan, at the
cost of some increase in computational complexity. Some of
these algorithms produce optimal schedules when applied
to a subset of task graphs meeting certain conditions [13],
[6].

An approach to optimal task scheduling which is sub-
stantially different from branch-and-bound is the use of
integer linear programming (ILP). This involves formu-
lating the problem as a linear program, and attempting

the best possible solution among those where the variable
are constrained to integer values. This is also an NP-hard
combinatorial optimisation method, and in fact ILP solvers
usually use highly optimised branch-and-bound search as
part of the solution process. Several ILP formulations of
the P |prec, cij |Cmax task scheduling problem have been
proposed[5], [10]. While they have shown similarly promis-
ing results as the pure branch-and-bound approach, neither
method has been shown to have significantly better perfor-
mance than the other.

Some ILP formulations with duplication have been pro-
posed [18], [23], [19]. In [23], duplication of tasks was used
in order to increase the reliability of schedules, but its use
in reducing schedule lengths was not considered. In [2],
duplication for the purpose of schedule length reduction
is performed. All tasks were considered for duplication on
all processors, making the complexity very high. This was
built on by [19] with a restricted duplication formulation
(RESDMILP). This approach restricts the number of copies
of each task according to a given parameter, reducing the
complexity of the ILP but sacrificing the optimality of the
solution. Only small task graphs were able to be solved
optimally with duplication.[18].

4 AO WITH DUPLICATION

In this section, we propose changes to the AO state-space
model which allow the representation of schedules with
duplicated tasks. This allows branch-and-bound search to
find the optimal solution to a task scheduling problem in
which duplication is allowed. This is achieved primarily
through modification of the allocation phase, as this is when
we decide which tasks are executed by which processors.
Some smaller changes are required in the ordering phase,
and the definitions of some properties used for bounding
are changed throughout the algorithm.

4.1 Allocation
The purpose of the allocation phase of AO is to determine
which tasks will be executed by which processor. More
precisely, it is to produce a number of subsets of the set of
tasks V , such that the members of each will all be executed
by a specific processor in the final schedule. The possible
outputs of the original allocation phase are the set of all
partitions of V , ensuring that each task ends up on only one
processor. When duplication is allowed, a naive formulation
of the allocation phase might have an output space in which
each processor could be assigned any subset of V , so long
as the union of all subsets was equal to V . This would be an
enormous increase in the size of the state space, and most of
the possible duplications of tasks under this scheme would
have no chance of improving the schedule length. Table
1 gives some examples which demonstrate the difference
in the number of possible allocations considered between
the AO model without duplication, this naive method of
duplication, and the method we will propose. The notation{
|V |
k

}
indicates the number of possible partitions of V

of size k (Sterling number of the second kind) [12]. The
notation duplicable(V ) indicates the set of tasks for which
duplication is not proven to be non-beneficial (see Section
4.1.1).
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Problem Instance Number of Procs No Duplication Naive Duplication Proposed (Upper Bound)
Figure 2 2 4 27 8
Figure 4 2 8 81 32
Figure 5 3 3,281 40,353,607 209,984

General |P|
∑|P |

k=1

{
|V |
k

}
(2|P | − 1)|V |

(
(2|P |−1)|duplicable(V )|)(∑|P |

k=1

{
|V |
k

})
Table 1

Examples of number of possible allocations considered.

4.1.1 Potentially Beneficial Duplication

Processors

When considering duplicating a task n, we can divide the
set of processors into two mutually exclusive subsets: PC(n)
is the set of all processors to which at least one child of n
is allocated, and PC(n) is the set of processors to which no
children are allocated. It is only useful for n to be allocated to
at most one processor in PC(n). Communicated output data
from such an instance will become available to all children
at the same time, and so if there are two such instances
one must be redundant. On the other hand, it is potentially
useful for n to be duplicated on any combination of the
processors in PC(n). It is important to note that even if
instances of n are placed on every processor in PC(n), it is
still necessary to consider an additional duplication on the
processors in PC(n) due to the “duplication anomaly”.

The term “duplication anomaly” [20] refers to the pos-
sibility that a valid schedule with duplication may benefit
from having a child of ni executed before ni itself, on the
same processor. It is not required that a task ni enables
any child tasks which are allocated to the same processor as
itself. Instead, an optimal schedule may involve an instance
nji enabling some of its children on the same processor,
while an instance nki on a different processor enables the
rest. Figure 3 demonstrates how this arrangement might
occur, with a task graph and corresponding optimal sched-
ule which relies on the duplication anomaly. Here the
“anomaly” manifests as task C being executed before its
parent taskB. The anomaly can occur when the difference in
communication costs between two child tasks is sufficiently
large, as is the case with tasks C and E. Here we see task C
being enabled by B2 (the instance of its parent not sharing
the same processor), allowing it to begin execution earlier
than if it was enabled by B1 - this will in turn allow its child
F to begin earlier. Subsequently, task E is enabled by B1,
allowing its very high communication cost to be partially
avoided - it is able to begin two time units earlier than if it
was enabled by B2, thus justifying the duplication of task
B.

Tasks

It is not useful to consider every task for duplication, as
the duplication of some tasks can never be beneficial to
the schedule length. Duplication is only potentially useful
when an additional instance of a task allows a child (or
in turn a descendant) of that task to begin execution at
an earlier time. Since children may also be duplicated, this
includes allowing any duplicated instance of a child task to
be executed earlier. We start with the following definition.
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Figure 3. An example of the duplication anomaly.
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Definition 4.1. Duplicable
For a task n ∈ V , we define duplicable(n) such that
if duplicable(n) is false, there exists no valid schedule
in which n is allowed to be duplicated with a smaller
makespan than an optimal schedule in which n is not
allowed to be duplicated.

Based on this definition, we can formulate the following
lemma, which states which tasks of a given task graph can-
not be worth duplicating - and inversely, which tasks may
be beneficial to duplicate . As such it provides a necessary,
but not a sufficient condition for a task to be worthwhile
duplicating.

Lemma 4.2. Duplication-Worthy Tasks
Given is a task graph G = {V,E,w, c}. For any task n ∈ V ,
duplicable(n) = false if n has out-degree deg+(n) ≤ 1,
and there is no task d ∈ descendants(n) which has out-degree
deg+(d) > 1.

Proof: We demonstrate the correctness by induction.
As the base case, we take a “sink” task nΩ, with an
out-degree of zero. Since nΩ has no children, there is no
way in which duplicating it could be beneficial. Therefore,
deg+(nΩ) = 0 =⇒ duplicable(nΩ) = false. Now consider
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a parent ni of nΩ for which deg+(ni) = 1. The single
instance of nΩ is all that ni will be required to enable.
Assume that ni were duplicated, so that we have instances
n1
i and n2

i . One of these must allow nΩ to begin execu-
tion at the earliest time, and so the other is not required
to enable any other task. This means it can be removed
from the schedule without harming the schedule length.
Therefore, duplication cannot be beneficial in this case, and
duplicable(ni) = false. To complete the proof, this step is
repeated until we reach a source task or a task which has
deg+(ni) > 1 (each of such a task’s ancestors by definition
have a a descendant d with deg+(d) > 1).

This lemma gives a static analysis as to which tasks are
useful to consider for duplication. For example in Figure 5
we can observe that only three tasks, 1, 2 and 4, may be
worth duplicating in principle. The lemma, however, does
not make a statement about when it is useful to consider
duplication for the other tasks, given a particular partial
schedule. To help with this, we introduce the concept of
allocated out-degree.

Definition 4.3. Allocated Out-Degree
Given a task n and a partial partition A, the allocated
out-degree deg+

α (n,A) is the total number of child task
instances which instances of n will be required to enable
in a valid schedule. For any task ni ∈ V we define |ni|A
as the number of instances of task ni that exist in partial
allocation A, with |ni|A = 1 if ni has not yet been al-
located in A. The allocated out-degree is then defined as
deg+

α (n,A) =
∑
nc∈succ(n)(|nc|A). This value is greater or

equal to the static out-degree deg+(n), which is simply the
number of children of n.

It can only be useful to duplicate a task n if there
are multiple child tasks (or instances) dependent on it.
This obviously includes all tasks with a static out-degree
deg+(n) > 1. However, since children of ni may also be
duplicated, the allocated out-degree deg+

α (n,A) may be-
come higher than the static out-degree. Duplication should
be considered if deg+

α (n,A) > 1. As shown in Figure 5,
this means that a task n will only ever be considered for
duplication if it has deg+(n) > 1, or is the ancestor of such
a task.

Using all of this, we define the complete set of allocations
which we intend to allow to exist in our state-space.

Definition 4.4. Valid Allocation Allowing Potentially Bene-
ficial Task Duplication

A valid allocation allowing potentially beneficial task
duplication is an allocation AD which meets the following
constraints for each task n ∈ |V |:

1) Task n is assigned to at least one processor.
2) If deg+

α (n,AD) = 1, task n is assigned to exactly one
processor.

3) If deg+
α (n,AD) > 1, task n is assigned to zero

or more processors in PC(n), in any combination.
Additionally, n is assigned to zero or one processors
in PC(n).

4.1.2 Allocation Algorithm with Duplication
To define a state space which allows the creation of all valid
allocations allowing potentially beneficial task duplication,

2
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Figure 5. Example graph showing tasks eligible for duplication.

we propose a branching scheme which closely resembles
the one used in the original allocation phase, but with some
additional possibilities at each step. Without duplication,
branching in the allocation phase proceeds by selecting tasks
for allocation one at a time in some arbitrary fixed order.
With duplication, an arbitrary order will no longer suffice:
the tasks must be considered in a reverse topological order,
such that no task will be selected until all its children have
already been allocated. When task n is selected to be allo-
cated, we check its allocated out-degree. If deg+

α (n,A) ≤ 1,
we do not consider duplication, and allocation is performed
as normal. Otherwise, we proceed through two steps:

1) Task n may be allocated to zero or more parts to
which children of n have already been assigned.
This means that task n could be placed in any
combination of groupings which already contain
one of its children. This set of possibilities is the
power set P(PC(n)), that is the set of all subsets of
PC(n).

2) Task nmay be allocated to at most one part to which
none of its children were assigned. If n was not
allocated to any parts in step 1, it must be allocated
to one part now. The task is placed in a grouping just
as it would be in the original allocation phase, either
in an existing grouping or as the first task of a new
grouping, but with the restriction that it cannot be
placed in the same grouping as any of its children,
as case 1 already covers this possibility.

These rules define all possible child states in the new allo-
cation phase with duplication. Algorithm 1 gives the corre-
sponding pseudocode demonstrating the process required
to create the child states of a given allocation state. The outer
loop in line 7 ensures that all possibilities from the power set
of PC(n) in step one are allowed. Lines 13 and 17 deal with
the possibilities from PC(n) in step two, paired with the
possibilities in step one. Line 11 ensures that it is possible for
child states to be created with task n allocated to either no
processors in PC(n), or no processors in PC(n), but never
to no processors at all.

4.2 Ordering
The introduction of duplication requires a change to the
definition of the local ready lists in the ordering phase. If
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Algorithm 1 Defining child states of an allocation state with
task duplication.

Input: A, a partial partition of V
Output: childStatesA, set of partial partitions more

complete than A

1 unallocated← list of all tasks v ∈ V not in A;
2 Sort unallocated into reverse topological order;
3 nextTask ← first task in unallocated;
4 childStatesA ← ∅;
5 AC(n)← all parts a ∈ A containing a child task of
nextTask;

6 AC(n)← A \AC(n);
7 for all x ∈ P(AC(n)) do
8 childStateα ← A;
9 for all a ∈ x do

10 Insert nextTask into part in childStateα

equal to a;

11 if x 6= ∅ then
12 childStatesA ← childStatesA ∪ childStateα;

13 for all y ∈ AC(n) do
14 childStateβ ← childStateα;
15 Insert nextTask into part in childStateβ

equal to y;
16 childStatesA ← childStatesA ∪ childStateβ ;

17 if |A| < |P | then
18 childStateβ ← childStateα ∪ {nextTask};
19 childStatesA ← childStatesA ∪ childStateβ ;

20 return childStatesA;

a task has a parent which is duplicated, we cannot know a
priori which copy of the parent will be able to provide the
necessary input data first, even if one of the copies is on
the same processor. Therefore, if a task is allocated to more
than one processor, it cannot prevent any descendants also
allocated to one of those processors from being considered
ready. With our new definition, a task ni allocated to pi
is considered to not be ready if there is an unordered and
unduplicated task nj also allocated to pi which is an ancestor
of ni in the graph G. Otherwise, ni is ready.

5 LOWER BOUNDS WITH DUPLICATION

The guarantee of optimality in branch-and-bound search
depends on the calculation of lower bounds on the quality
of complete solutions that can be reached from a given
partial solution. A heuristic function is said to be admissable
if it will never provide an overestimate, i.e. it is truly a
lower bound. Given a state s, we require an admissable
heuristic function f such that f(s) ≤ f∗(s), where f∗(s)
is the actual lowest cost of any complete solution in the
sub-tree rooted at s. The introduction of duplication means
that the lower bounds previously used with AO are no
longer admissable, as they do not take into account the
possible reductions in schedule length which duplication
allows. However, the necessary changes to these bounds
can be isolated to the definition of some values that are

common between them: the allocated top and bottom levels
of tasks, tlA(n) and blA(n). When statically analyzing a task
graph, the top level of a task tl(n) gives a lower bound
on the time between the beginning of the schedule and the
beginning of n’s execution. The bottom level bl(n) gives
a lower bound on the time between the beginning of n’s
execution and the end of the schedule. When combined,
these values can give us a lower bound for the total length
of the schedule. The allocated levels are dynamic properties
dependent on a specific partial or complete allocation, A.
As tasks are allocated, we gain information about which
communication costs will be incurred, and our bounds can
be made tighter. Since duplication complicates the rules as
to which communications are necessary, these values must
be redefined. Importantly, when a task n is duplicated, each
instance of n in the allocation can now be considered to have
a distinct allocated top and bottom level. The jth instance of
task ni will be denoted by nji . We will define and use both
specific levels for each duplicated instance, tlA(n

j
i ), and

collective levels for the set of duplicates of a task, tlA(ni).

5.1 Collective and Specific Levels
Allocated top levels are usually found with a recursive
procedure. To find tlA(ni), we simply iterate over the par-
ents of ni and find the maximum value for the sum of
their allocated top level, their computational weight, and
the necessary communication cost. This is expressed by the
following formulas:

tlA(ni) = max
np∈pred(ni)

{tlA(np) + w(np) + cA(np, ni)} (5)

cA(np, ni) =

{
c(epi), ni, np ∈ A ∧ proc(ni) 6= proc(np)

0, otherwise
(6)

With duplication, however, the parents of ni may be
duplicated. Since only one of those duplicate parents needs
to supply input data to ni, duplication introduces options.
Previously, we could define the top level of ni as the longest
path in the task graph ending at ni. Duplication introduces
new paths through the task graph, but not all of them
are required to be taken. We need only consider the best
possible option of parent instance to enable our task.

Definition 5.1. Specific Allocated Top Level
The specific allocated top level of nji is the longest path

through the task graph ending with nji which we are forced
to take. This is expressed by the formula:

tlA(n
j
i ) = max

np∈pred(ni)

{
min

nk
p∈dups(np)

{
tlA(n

k
p)

+w(np) + cA(n
k
p, n

j
i )

}} (7)

Say that nji has a parent np, which may be duplicated.
Among the set of instances of np, there is one which can
provide data for nji at the earliest time. For the allocated top
level tlA(n

j
i ), we need only consider the path through the

task graph which includes this instance of np.



8

We also wish to define a collective allocated top level for
ni.

Definition 5.2. Collective Allocated Top Level
The collective allocated top level for ni is the earliest

time that any instance of ni ∈ dups(ni) could start. This
gives us the following formula:

tlA(ni) = minnj
i∈dups(ni)

{
tlA(n

j
i )
}

(8)

Duplication has similar, but not symmetric, implications
for the allocated bottom level. Previously, blA(ni) could
be determined recursively in the same way as tlA(ni), but
considering the bottom levels of ni’s children rather than
the top levels of its parents. The duplication of children
does not have an effect on how allocated bottom level is
calculated, as all instances of ni’s children must always be
supplied with input data. However, if ni itself is duplicated,
we need to find an allocated bottom level for nji . It is not
clear that any given instance of ni’s children will need to
be enabled by nji , as only a single instance of ni needs to
perform that role. It is possible that a duplicate instance nji
may not be required to enable any of the instances of its
children. In this case, nji could be executed arbitrarily late in
the schedule. In practice, if this scenario occurred, it would
mean that this duplication is providing no benefit to the
schedule. However, this cannot be decided before ordering
is performed: we can only say that it is a possibility.

Definition 5.3. Specific Allocated Bottom Level
The specific allocated bottom level for an instance of a

duplicated task nji gives a lower bound on the time between
the start of execution of nji and the end of the schedule. This
is equal to its computational weight, blA(n

j
i ) = w(ni), as

any instance of a duplicated task could be placed at the end
of a valid schedule.

It is this fact which motivates the definition of both
specific and collective levels, as the specific allocated bottom
level in this instance is not a very useful bound.

Definition 5.4. Collective Allocated Bottom Level
The collective allocated bottom level blA(ni) gives a

lower bound on the time between when the earliest instance
of ni starts execution and the end of the schedule. We
know that some instance of ni must enable each of the
children of ni. To find blA(ni), we iterate over all children
nc ∈ succ(ni). For each child nc, we iterate over the
instances nkc ∈ dups(nc). For each instance nkc , we iterate
over the instances of ni and find the minimum necessary
communication cost, then add the collective allocated bot-
tom level of the child. This represents the outgoing path
from the best possible enabling instance for that child. The
allocated bottom level blA(ni) is then the maximum such
outgoing path found, plus the computation cost w(ni). This
is described by the following formula:

blA(ni) = w(ni) + max
nc∈succ(ni)

{
blA(nc)+

min
nk
c∈dups(nc)

{
min

nj
i∈dups(ni)

{
cA(n

j
i , n

k
c )
}}} (9)

When producing a bound for the length of the entire
schedule, it is important to pair the specific and collective
levels carefully. For a given task instance nji , the sum of the
specific levels tlA(n

j
i ) + blA(n

j
i ) gives an admissable lower

bound. For a given task ni, the sum of the collective levels
tlA(ni) + blA(ni) gives an admissable lower bound.

Lemma 5.5. tlA(n
j
i ) + blA(n

j
i ) is a lower bound for the length

of a schedule.

Proof: If tlA(n
j
i ) is a lower bound for the start time

of instance nji , and blA(n
j
i ) is a lower bound for the time

from the start of nji till the end of the schedule, the overall
schedule must be at least as long as their sum.

• For a task instance nji with no parents, tlA(n
j
i ) = 0.

A task instance nji with parents must be enabled by
some instance nkp of each np ∈ parents(ni). For each
np, there is some nkp which gives the minimum value
for tlA(nkp) + w(np) + cA(n

k
p, n

j
i ) if it enables nji . By

the precedence constraint, the start time of nji must
be at least the maximum of these values among the
enabling instances. By induction, tlA(n

j
i ) is a lower

bound for the start time of instance nji .
• blA(n

j
i ) is equal to w(ni), and is therefore trivially a

lower bound for the time from the start of nji till the
end of the schedule.

For a given task ni, the sum of the collective levels
tlA(ni) + blA(ni) gives an admissable lower bound.

Lemma 5.6. tlA(ni) + blA(ni) is a lower bound for the length
of a schedule.

Proof: If tlA(ni) is a lower bound for the start time
of any instance of ni, and blA(ni) is a lower bound for the
time from the earliest start of any instance of ni till the end
of the schedule, the overall schedule must be at least as long
as their sum.

• tlA(ni) is trivially a lower bound for the start time of
any instance of ni because it is the minimum of the
specific allocated top levels tlA(n

j
i ) among all nji .

• For a task ni with no children, blA(ni) = w(ni). For
a task with children, each child instance nkc must be
enabled by some instance nji . For each nc, there is
some instance nji which gives the minimum value
for cA(n

j
i , n

k
c ) if it enables some instance nkc . By the

precedence constraint, some nji must start at least
this much time, plus its own weight w(ni), before the
earliest starting instance of nc, bounded by blA(nc).
By induction, blA(ni) is a lower bound for the time
from the earliest start of any instance of ni till the
end of the schedule.

In general, it is preferable to use specific allocated top
levels and collective allocated bottom levels, as these tend
to provide tighter bounds than their alternatives. However,
combining a specific allocated top level with a collective
allocated bottom level may produce an overestimate for
the length of the optimal schedule. When applying these
bounds to the AO model, both types of level are used in each
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phase. In the allocation phase, the allocated critical path
heuristic uses the collective allocated top and bottom levels.
In the ordering phase, the specific allocated top levels are
used to determine estimated earliest start times for specific
task instances. The specific allocated bottom levels are then
added to these to obtain a bound. However, if a task instance
nji , has the lowest estimated earliest start time among all
instances of ni, the collective allocated bottom level is added
instead. This is permissible because the estimated earliest
start time for nji in this case is a lower bound for the start
time of any instance of ni, just like tlA(ni).

6 EVALUATION

6.1 Setup and workload

To determine empirically the effect of duplication on the
difficulty of solving task scheduling problems with the AO
model, we performed searches on a large set of task graphs
using a variety of different target systems. Task graphs of
sizes 16 and 21 tasks were used, with 270 of each being se-
lected, hence 540 different graphs in total. An additional set
of larger graphs with 30 tasks were also selected - these will
be discussed in Section 6.3.The graphs used are the same
as those used to evaluate the AO model in previous work
- a large and diverse data set of generated task graphs [12]
differing by the following attributes: graph structure, the
number of tasks, and the communication-to-computation
ratio (CCR). This set of task graphs is available for use
in GXL and DOT formats1. The graphs were a mix of the
following DAG structure types: Fork, Fork-Join, Out-Tree,
Pipeline, Random, Series-Parallel, and Stencil. DAG struc-
tures can be divided into three categories: structures which
never benefit from duplication, structures where duplicating
certain tasks can never be harmful, and the rest for which
the impact of duplication is uncertain. The first category
includes Join and In-Tree graphs, and for this reason they
were excluded from our data set. The second category
includes Fork and Fork-Join graphs, where duplicating the
entry task can never be harmful (this is also the only task
for which duplication is meaningful). The experiments with
these fork-based graph structures will therefore be analysed
separately from the general graph structures in the remain-
der of the data set. The graphs in the data set also vary by
communication-to-computation ratio (CCR), evenly divided
into three categories: low (close to 0.1), medium (close to 1)
and high (close to 10).

A mature implementation of parallel depth-first branch-
and-bound and the AO model in Java [11] was extended
and enhanced to allow duplication. This implementation
was used for the evaluation. For each task graph, we at-
tempted to find an optimal schedule for each target system
with and without duplication, with 2, 4, and 6 processors,
and a time limit of one minute allowed for each search
to complete. There were a total of 3240 trials. Each trial
was run on a Linux machine with 4 Intel Xeon E7-4830 v3
@2.1GHz processors. To remove the possibility of previous
trials affecting subsequent ones due to garbage collection or
JIT compilation, a new JVM instance was started each time.

1. http://parallel.auckland.ac.nz/OptimalTaskScheduling/
BenchmarkSet.zip
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Figure 6. Performance with and without duplication for general graph
structures.

6.2 Results
6.2.1 Solving difficulty
A summary of results from these trials for general graph
structures (i.e. excluding fork-like structures) is shown in
Figure 6 as performance profiles: the x-axis shows time
elapsed, while the y-axis shows the cumulative percentage
of problem instances which were successfully solved by
this time. Almost all problem instances were able to be
solved optimally within the one minute time limit when
duplication was not used, with 99% solved in the 16 task
group and 86% solved in the 21 task group. However,
allowing duplication led to a significant decrease in the pro-
portion of task graphs able to be solved. Not only were less
problem instances solved with duplication, but the decrease
in performance between the 16 and 21 task groups is much
more significant, dropping from 50% to only 27%. This
is expected, given the additional complexity and therefore
much larger state-space associated with duplication.

In Table 2, we have compiled a comparison of ILP
formulations in the literature, and their reported success
in optimal solving of task scheduling problems with some
form of duplication. None of these formulations is directly
comparable to the problem addressed in this work, having
significant differences in objective function, environment,
etc. The most comparable is Bender, as this is the only
one which attempts to find a fully optimal duplication
(while not limiting duplication to potentially beneficial
tasks/processors). While bearing in mind these complica-
tions in comparison, it is clear that the size of problem
instances solved by these formulations is very similar to
that used in this work - even the largest graph solved is
of a similar order of magnitude. This shows that despite the
general advantages of ILP solvers in speed, the branch-and-
bound approach is still very competitive.

6.2.2 Duplication benefit
This naturally leads to the question of whether it is generally
worthwhile to attempt to find a solution which includes
duplication, given the added difficulty. One factor in making
this decision would be the likelihood that allowing dupli-
cation will cause a reduction in the length of the optimal
schedule for a given task graph.

6.2.2.1 Communication to Computation Ratio: In
Figure 7 we see cumulative distribution plots for the im-
provement in schedules gained by duplication for general
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Source Difference in Scheduling Model Duplication Details Max Problem Size Solved Solving Times
Bender 1996 [2] Unrelated heterogeneous processors Any task on any processor 8-12 tasks Up to 9374 secs
Tosun 2012 [23] Energy and reliability, no communication costs For reliability only 2-16 tasks, 2-8 procs Up to 400 secs
Singh 2012 [19] Unrelated heterogeneous processors Restricted Up to 20 tasks 1000 sec limit
Tang 2016 [21] Allocation predetermined Predetermined 14-48 tasks 10 min limit

Table 2
Comparison of reported successful optimal solving between ILP formulations with duplication.
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Figure 7. Improvement from duplication by CCR.
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Figure 8. Improvement from duplication by number of processors.

graph structures. We calculate an improvement ratio by
dividing the makespan of each schedule found without
duplication by the makespan of the corresponding sched-
ule with duplication. Problem instances are therefore only
included in this analysis if they were successfully solved
in both cases. The results are broken down by CCR. It is
clear that CCR has a very large effect on the usefulness
of duplication. With low CCR, only 20% of schedules see
any improvement, and at most they are improved by a few
percent. With medium CCR we see half of the schedules
improved, with the improvement ratio reaching 1.3. For
high CCR, almost all schedules are improved by duplica-
tion, and the maximum improvement ratio is 2.5, almost
twice that of the medium CCR group. Since the advantage
of duplication is achieved by trading communication costs
for additional computation, it is natural that graphs with
a higher CCR would have a larger potential benefit, and
these results confirm this. Remember that the best possible
improvement is limited by the best possible speedup, and
the schedules created were on 2, 4 and 6 processors. A
task graph having high CCR indicates some combination
of two factors in a real-world scheduling situation it may
serve as an abstraction of: either large amounts of data need
to be transmitted while relatively simple computations are
performed with it, or the communication links of the parallel
system are relatively slow compared to the speed of the
processing units (as may be true in a distributed system),
or both.
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Figure 9. Improvement from duplication by graph structure.
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Figure 10. Improvement from duplication for fork-based graph struc-
tures.

6.2.2.2 Number of Processors: Figure 8 shows plots
for the improvement in schedules, grouped by the number
of processors allowed for scheduling. Compared to CCR,
there are much smaller differences between these groups.
We do see, however, that as the number of processors
increases there is a small decrease in the proportion of
schedules which are improved. At the same time, the range
of improvement expands significantly, although the major-
ity of instances in all groups have an improvement ratio
of less than 1.5. This range expansion is expected as the
maximal possible improvement grows with the number of
processors, i.e. with the possible speedup.

6.2.2.3 Graph Structures: We plot the improvement
in schedules grouped by graph structure in Figure 9. We
can see that duplication has the largest effect with Out-
Tree and Series-Parallel graphs, with a large majority of
these schedules being significantly improved. These struc-
tures are most likely to resemble fork-like structures, where
scheduling cannot be harmed by duplication. In particular,
we can say that Out-Tree schedules cannot be harmed by
duplicating the source task, in just the same manner as Fork
graphs. The duplication of later tasks will have uncertain
results, though.

Let us now look at graphs where duplicating certain
tasks can never be harmful, namely fork and fork-join
graphs. How much do they benefit from duplication? Figure
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Figure 11. Improvement from duplication vs. number of extra tasks.

10 shows cumulative distribution plots for the improvement
in schedules gained by duplication for fork-based graph
structures. In contrast to the general graph structures, many
more problem instances benefit from duplication and their
maximal benefit is also higher, which is of course an ex-
pected result.

6.2.2.4 Amount of Duplication: It was considered
that some insight may be gained by analysing the extent
of the duplication occuring in schedules which benefit from
it. Figure 11 shows scatter plots comparing the number of
extra tasks found in optimal schedules against the improve-
ment ratio from duplication. The number of extra tasks is
calculated as the difference between the original number of
tasks in the task graph and the number of tasks planned for
execution in the discovered optimal schedule. A limitation
of this analysis is that the search method used does not
find optimal schedules with minimal duplication - in many
cases, extra tasks are redundant, and neither benefit nor
harm the length of the schedule. This can be easily observed
in the scatter plots from the existence of data points with a
range of extra tasks along the baseline of the improvement
axis. Bearing this limitation in mind, no particular trend
is evident in the data here. However, the possibility of
conducting such an analysis may still be interesting for other
data sets, particularly if the method is modified to produce
schedules with minimal duplication.

6.3 Larger Graphs

We wished to evaluate the performance of the AO model
with duplication on larger task graphs, to see how it would
scale. A set of task graphs with 30 tasks was selected, having
been used to evaluate the base AO model in previous work.
From this set the graphs with Out-Tree, Pipeline, Random,
Series-Parallel, and Stencil were chosen, giving a total of 210
graphs for this evaluation. The experimental protocol was
identical to the previous evaluation, with the exception that
the time limit was raised to ten minutes. Figure 12 shows
performance profiles for AO with and without duplication
on this larger dataset. Without duplication, about 37% of
problem instances were able to be solved. With duplication,
only 9% of instances were solved within the time limit.
Within these instances solved successfully with duplication,
however, there were no optimal schedules produced in
which duplication was beneficial.

A possible explanation for this is that problem instances
where duplication can be beneficial tend to be inherently
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Figure 12. Performance with and without duplication for 30-task graphs.
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Figure 13. Improvement from duplication by time taken to solve.

more difficult to solve than those where it cannot be benefi-
cial. To investigate this possibility, additional analysis of the
16 and 21 task data sets was performed. Figure 13 shows
the successfully solved instances from those sets divided
into three groups based on the time taken to solve them.
They are divided approximately evenly into the third of
results which took the least time (< 275 ms), the third of
results which took the most time (> 2230 ms), and the third
in between. These can be considered as a grouping into the
easiest solvable problem instances, the hardest, and those
of median difficulty. It is clear that far fewer of the optimal
schedules from the easiest third use duplication beneficially.
This provides some support for this explanation.

7 CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a state-space model for
optimal task scheduling with duplication, based on the
AO model. Allowing tasks to be duplicated and executed
multiple times within a schedule can lead to reductions in
overall schedule length, and the modified AO model can
determine the best such scheme for duplication in a given
instance. We have also redefined the concepts of allocated
top and bottom levels for the context of scheduling with
duplication.

The complexity added when allowing duplication makes
finding optimal solutions significantly more difficult, with
an empirical evaluation showing a large drop in the number
of task graphs solved within one minute. This suggests
that allowing duplication represents a significant additional
resource investment when deciding how to optimally sched-
ule a task graph. Our evaluation also showed that a large
proportion of task graphs can have their optimal schedules
improved by the use of duplication, and many significantly.
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This is particularly true for graphs with a fork-like structure,
and for those with a medium to high CCR.

Modifying this method to produce schedules with min-
imal duplication would be useful in further analysing the
benefit of duplication. Another natural next step from this
work would be to further extend the AO model such that
optimal schedules including duplication could be found for
parallel systems with heterogeneous processors. It could
also be adapted to work with more complex and real-
istic task scheduling models, such as one that considers
contention in communication. In addition, the concepts
proposed in this work could be used to develop an ILP
formulation which attempts optimal task scheduling with
duplication in the same manner.
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