
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Towards Fair and Privacy-Preserving Federated
Deep Models

Lingjuan Lyu∗, Member, IEEE , Jiangshan Yu, Karthik Nandakumar, Senior Member, IEEE , Yitong Li,
Xingjun Ma, Jiong Jin, Member, IEEE , Han Yu∗, and Kee Siong Ng

Abstract—The current standalone deep learning framework tends to result in overfitting and low utility. This problem can be addressed
by either a centralized framework that deploys a central server to train a global model on the joint data from all parties, or a distributed
framework that leverages a parameter server to aggregate local model updates. Server-based solutions are prone to the problem of a
single-point-of-failure. In this respect, collaborative learning frameworks, such as federated learning (FL), are more robust. Existing
federated learning frameworks overlook an important aspect of participation: fairness. All parties are given the same final model
without regard to their contributions. To address these issues, we propose a decentralized Fair and Privacy-Preserving Deep Learning
(FPPDL) framework to incorporate fairness into federated deep learning models. In particular, we design a local credibility mutual
evaluation mechanism to guarantee fairness, and a three-layer onion-style encryption scheme to guarantee both accuracy and privacy.
Different from existing FL paradigm, under FPPDL, each participant receives a different version of the FL model with performance
commensurate with his contributions. Experiments on benchmark datasets demonstrate that FPPDL balances fairness, privacy and
accuracy. It enables federated learning ecosystems to detect and isolate low-contribution parties, thereby promoting responsible
participation.

Index Terms—Federated Learning, Privacy-Preserving, Deep Learning, Fairness, Encryption.

F

1 INTRODUCTION

D EEP learning has become an important technology
to deal with challenging real-world problems such

as image classification and speech recognition. Empirical
evidence has shown that deep learning models can benefit
significantly from large-scale datasets [1]. However, large-
scale datasets are not always available for a new domain,
due to the significant time and effort required for data col-
lection and annotation [2], [3]. Moreover, training complex
deep networks on large-scale datasets is computationally
expensive and may not be feasible for a single party in
practice. Therefore, there is a high demand to perform deep
learning in a collaborative manner among a group of parties.

This trend is motivated by the fact that the data owned
by a single party may be very homogeneous, resulting in
overfitting which negatively impacts accuracy when the
model is applied to previously unseen data, i.e., poor gener-
alizability. Utilizing data from diverse parties to train deep

• L. Lyu is with The Department of Computer Science, National University
of Singapore. E-mail: lyulj@comp.nus.edu.sg.

• J. Yu is with the Faculty of Information Technology, Monash University,
Clayton, Australia. E-mail:jiangshan.yu@monash.edu.

• K. Nandakumar is with IBM Singapore Lab, 018983. E-
mail:nkarthik@sg.ibm.com.

• Y. Li and X. Ma are with the School of Computing and Information
Systems, The University of Melbourne, Melbourne, Australia, 3010. E-
mail: yitongl4@student.unimelb.edu.au; xingjun.ma@unimelb.edu.au.

• J. Jin is with the School of Software and Electrical Engineering,
Swinburne University of Technology, Melbourne, Australia. E-mail:
jiongjin@swin.edu.au.

• Han Yu is with the School of Computer Science and En-
gineering, Nanyang Technological University, Singapore. E-mail:
han.yu@ntu.edu.sg.

• Kee Siong Ng is with the Software Innovation Institute, Australian
National University, Australia. E-mail: keesiong.ng@anu.edu.au.

∗Corresponding authors.

models can help mitigate this problem. However, collabora-
tive model training may not be viable due to privacy con-
cerns. Federated learning (FL), which incorporates privacy
preservation techniques into collaborative model training,
offers a potential solution to this challenge [4].

In the current federated learning paradigm [5], all par-
ticipants receive the same federated model at the end of
collaborative model training regardless of their contribu-
tions. This makes the paradigm vulnerable to free-riding
participants. For example, several banks may want to work
together to build model to predict the creditworthiness of
small and medium enterprises. However, but larger banks
with more data maybe reluctant to train their local model
based on high quality local data for fear of smaller banks
benefiting from the shared FL model and eroding its market
share [4]. Without the guarantee of privacy and the promise
of collaborative fairness, participants with high quality and
large datasets may be discouraged from joining federated
learning, thereby negatively affect the formation of a healthy
FL ecosystem. Existing research on fairness mostly focuses
on protecting sensitive attributes or reducing the variance
of the prediction distribution across participants [6], [7]. The
problem of treating federated learning participants fairly
remains open [4].

In this paper, we address the problem of treating FL
participants fairly based on their contributions to build a
healthy FL ecosystem. We refer to the proposed frame-
work as the decentralized Fair and Privacy-Preserving Deep
Learning (FPPDL) framework. Unlike existing work such
as [8] which uses monetary rewards to incentivize good
behaviour, our proposed solution fundamentally changes
the current FL paradigm so that participants may not receive
the same FL model in the end. Instead, each of them will

ar
X

iv
:1

90
6.

01
16

7v
3

 [
cs

.C
R

]
 1

9
M

ay
 2

02
0

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

receive a final FL model with performance reflecting their
individual contributions to the federation. FPPDL does not
require participants to trust each other or any third party.
It records all operations, including uploading and down-
loading differentially private artificial samples and encrypted
model updates, as transactions through blockchain technol-
ogy. Through mutual evaluations of local credibility that
considers the relative contribution of each party during both
initial benchmarking and privacy-preserving collaborative
deep learning, FPPDL achieves collaborative fairness. For
privacy preservation, instead of leveraging differential pri-
vacy at the cost of utility, we propose a three-layer onion-
style encryption scheme to guarantee accuracy and privacy.

To the best of our knowledge, this paper is the first to
achieve collaborative fairness in federated learning through
adjusting the level of performance of the version of the
FL model allocated to each participant based on his con-
tribution. Extensive experiments based on two benchmark
datasets under three realistic settings demonstrate that FP-
PDL achieves high fairness, delivers comparable accuracy
to existing centralized and distributed deep learning frame-
works, and outperforms standalone deep learning.

In terms of the threat model, FPPDL adopts an honest-
but-curious setting: each party is assumed to be curious
in inferring sensitive information of other parties; and yet,
it is assumed to be honest in operations. This setting is
reasonable as the main incentive for parties to participant in
the collaborative system is to get better local models com-
pared to their standalone models without any collaboration.
Moreover, in our scenario parties are considered as organ-
isations such as financial or biomedical institutions acting
with responsibilities by laws. However, we also discuss how
our local credibility mutual evaluation mechanism can help
prevent certain malicious behaviours of the insider attacker,
and resist the outsider attacker in Section 7.

The rest of this paper is organized as follows. Section 2
reviews the existing deep learning frameworks, and the
related literatures on privacy-preserving collaborative deep
learning, and fairness in federated learning which are major
problems we aim to tackle. Section 5 presents technical de-
tails of the proposed FPPDL framework. Section 6 evaluates
the performance of FPPDL in terms of accuracy and fairness
for different SGD frameworks under different settings, fol-
lowed by discussions in Section 7. Section 8 concludes the
paper and points out potential future research directions.

2 RELATED WORK

In this section, we review relevant literature on deep learn-
ing frameworks, privacy preservation and fairness in feder-
ated learning to position our research in relation to existing
research.

2.1 Overview of Deep Learning Frameworks

In general, deep learning frameworks fall into the following
categories: Standalone framework; server-based frameworks
including Centralized framework and Distributed framework;
and Decentralized framework. In particular, in distributed
framework and decentralized framework, parties are all
involved in the global or consensus model improvement

process. Hence, we refer to them as collaborative deep
learning frameworks. A comparison among different deep
learning frameworks is provided in Table 1.

Standalone framework: Parties individually train stan-
dalone models on their local training data without any
collaboration (Fig. 1(a)). However, standalone models might
fail to generalise to the unseen data.

Centralized framework: Participants pool their data into
a centralized server to train a global model (Fig. 1(b)). This
centralized framework is very effective, but it violates data
privacy as all participants’ data are exposed to the server.

Distributed framework: Dean et al. [9] first introduced
the concept of distributed deep learning, where parties
collaboratively train a model by sharing local model updates
with a parameter server. Distributed learning had been
extensively studied in [5], [10], [11].

It should be noted that both the centralized framework
and the distributed framework require a central server to
mediate the training process, which makes them susceptible
to the following issues: (1) Party policies: due to privacy con-
cern, parties may not want to cede control to an untrusted
server; (2) Single-point-of-failure: if the central server fails
or is shut down for maintenance, the whole network stops
working.

Decentralized framework: the above issues in the central
server-based frameworks can be addressed by a decen-
tralized framework [12], [13], [14], [15], [16], [17], which
parallelizes the computation among all parties (Fig. 1(d)).
In particular, Kuo et al. [12] first proposed a decentral-
ized machine learning framework: ModelChain, which in-
tegrates Blockchain with privacy-preserving machine learn-
ing. [15], [16] investigated privacy-preserving deep learning
on blockchain. [17] studied the problem of fairness in
load sharing in blockchain-based privacy-preserving learn-
ing, which is different from the collaborative fairness in
our work. Specifically, their decentralized architecture is
developed under a less secure setting, where one site can
access the models of all the other sites. [13], [14] utilized
differential privacy for privacy-preserving machine learn-
ing on blockchain. However, [14] had pointed out that
the proposed algorithms in [13] cannot guarantee privacy-
preserving properties correctly as they did not consider
composition for a repeated additive-noise mechanism.

In summary, existing collaborative frameworks (dis-
tributed or decentralized) focus on how to learn a global
consensus model with higher accuracy than individual stan-
dalone models. In reality, some parties may contribute more
compared with other parties, while others may contribute
nearly nothing or even negatively. The reason is that data
owned by different parties may be of different quality, and
there may exist unpredictable random errors during data
collection and storage. On the other hand, parties may
choose only to use a limited part of its data for collaborative
model training.

2.2 Privacy Preserving Collaborative Learning

As pointed out by Shokri et al. [11], centralized deep
learning commonly comes with many privacy concerns.
Specifically, all the sensitive training data are revealed to
a third party; data owners have no control over the learning

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

DParty1
D1 w1

DParty2
D2 w2

DParty3
D3 w3

DParty4
D4 w4 D

Central
server

Party1 Party2 Party3 Party4

D1 D2 D3 D4

Central
server

Party1 Party2 Party3 Party4

∆w1 ∆w2 ∆w4∆w3

wwww

Party1

Party3

Party2

Party4

∆w1,∆w2

∆w1,∆w3

∆w1,∆w4

∆w3,∆w4

∆w2,∆w4

∆w2,∆w3

Fig. 1: (a): Standalone framework. (b): Centralized framework. (c): Distributed framework. (d): Decentralized framework.

TABLE 1: Comparing different deep learning frameworks.

Frameworks Standalone Centralized [18], [19] Distributed [5],
[10], [11], [20]

Decentralized [12],
[13], [14], [15], [16],
[17]

Decentralized (our
FPPDL)

Architecture Fig. 1(a) Fig. 1(b) Fig. 1(c) Fig. 1(d) Fig. 1(d)
Global model No Yes Yes Depends Depends
Local models Yes No Yes Yes Yes
Collaborative Fairness NA NA No No Yes
Quality control NA No No No Yes

objective; the learned model is not directly available to
data owners. To mitigate these privacy risks, Gilad-Bachrach
et al. [18] developed CryptoNets to run deep learning on
homomorphically encrypted data. However, CryptoNets
assumes that neural network model has been trained be-
forehand, hence their system is mainly used to provide
encrypted outputs to users. In contrast, SecureML [20]
conducts privacy-preserving learning via secure multiparty
computation (SMC), where data owners need to process,
encrypt and/or secret-share their data among two non-
colluding servers in the initial setup phase. SecureML allows
data owners to train various models on their joint data
without revealing any information beyond the outcome.
However, such an approach incurs high computational and
communication costs [21], [22].

The most relevant work is Distributed Selective Stochas-
tic Gradient Descent (DSSGD) [11]. To preserve privacy,
instead of explicitly sharing training data, each party com-
putes and shares (with the PS) its local model gradients
based on local training data, while updating its local model
by downloading the most-updated parameters from the PS.
To further mitigate privacy leakage from the shared model
updates, each party adds noise to local model updates to
ensure per-parameter differential privacy. However, their
system requires a central parameter server to mediate train-
ing process. Therefore, it suffers from the common issues in
the central server-based frameworks.

The disadvantages of having a centralized parameter
server can be summarized as follows:

1) Privacy leakage: As evidenced in [23], local data in-
formation may be leaked to an honest-but-curious PS,
even if only a small portion of local model updates
is released to the PS. In particular, a PS can infer the
true data or label of the participates with non-negligible
probability for the local neural network with only
one neuron. The above observations similarly hold for
general neural networks, with both cross-entropy and
squared-error cost functions. Even for general neural
networks with regularization, the released local gradi-
ents can still reveal the truth value.

2) Vulnerability to active adversaries: Most distributed
learning frameworks assume that all the parties are

honest. In reality, if a party turns out to be malicious, it
can sabotage the learning process by spoofing random
samples to infer information about the victim party’s
private data.

A special case of distributed deep learning is federated
learning [4]. In FL, to preserve privacy of individual model
updates, Bonawitz et al. [24] proposed a practical secure
aggregation protocol, which is proven to be secure under
the honest-but-curious and active adversary settings, even
if an arbitrarily chosen subset of users drop out at any
time. In particular, secure multi-party computation (SMC)
is leveraged to compute sums of model parameter updates
from individual users’ devices in a secure manner, which
comes at the cost of extra computation and communication
overheads. Another more efficient method is to use differ-
ential privacy by enabling the server to add the tailored
noise to the weighted-average user updates to guarantee
user-level privacy [25]. However, the default trusted Google
server is entitled to see all users’ update clearly, aggre-
gate individual updates and add noise to the aggregation.
Thus, their method is not preferred when the server is not
a trusted party. We also remark that when the server is
untrusted, the weighted aggregation becomes unrealistic,
as the server may not know the data size of each party
for weight calculation. Instead, the proposed FPPDL allows
each party to integrate other parties’ updates based on their
local credibility and sharing level.

2.3 Fairness in Federated Learning
Existing approach for promoting collaborative fairness
among federated learning participants is based on incentive
schemes. In general, participants shall receive payoffs that
is commensurate with their contributions. Equal division
is an example of egalitarian profit-sharing [26]. Under this
scheme, the available total payoff at a given round is equally
divided among all participants. Under the Individual profit-
sharing scheme [26], each participant i’s own contribution
to the collective (assuming the collective only contains i) is
used to determine his share of the total payoff.

The Labour Union game [27] profit-sharing scheme de-
termines a participant’s share of the total payoff based on
his marginal contribution to the utility of the collective

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

formed by his predecessors (i.e. each participant’s marginal
contribution is computed based on the same sequence as
they joined the federation). The Fair-value game scheme
[27] is a marginal loss-based scheme. Under this scheme,
a participant’s share of the total payoff is determined by the
sequence following which the participants leave a federa-
tion. The Shapley game profit-sharing scheme [27] is also
a marginal contribution-based scheme. Unlike the Labour
Union game, Shapley game aims to eliminate the effect of
the participants joining the collective in different sequences
in order to more fairly estimate their marginal contributions
to the collective. Thus, it averages the marginal contribution
for each participant under all different permutations of him
joining the collective relative to other participants. This
approach is computationally expensive.

For gradient-based federated learning approaches, the
gradient information can be regarded as a type of data.
However, in these cases, output agreement-based rewards
are hard to apply as mutual information requires a multi-
task setting which is usually not present in such cases.
Thus, among these three categories of schemes, model im-
provement is the most relevant way of designing rewards
for federated learning. There are two emerging federated
learning incentive schemes focused on model improvement.

A scheme which pays for marginal improvements
brought about by model updates was proposed in [28].
The sum of improvements might result in overestimation
of contribution. Thus, the proposed approach also includes
a model for correcting the overestimation issue. This scheme
ensures that payment is proportional to model quality im-
provement, which means the budget for achieving a target
model quality level is predictable. It also ensures that data
owners who submit model updates early receive a higher
reward. This motivates them to participate even in early
stages of the federated model training process.

In addition to the contributions made by participants, [8]
proposed a joint objective optimization-based approach to
take costs and waiting time into account in order to achieve
additional notions of fairness when distributing payoffs
to FL participants. Different from the aforementioned ap-
proaches, the proposed FPPDL framework does not utilize
monetary payoffs to achieve fair treatment of FL partici-
pants. Instead, it allocates each of them a different version
of the FL model with performance commensurate with
his contributions. This represents a alternative paradigm to
existing federated learning in which all participants receive
the same final FL model.

3 PRELIMINARIES

In this section, we introduce key technologies which form
the building blocks of the proposed FPPDL framework, in-
cluding differential privacy, homomorphic encryption, and
blockchain.

3.1 Differential Privacy
Differential privacy 1 [29] trades off privacy and accuracy
by perturbing the data in a way that is (i) computationally
efficient, (ii) does not allow an attacker to recover the
original data, and (iii) does not severely affect utility.

Definition 1. A randomized mechanism M: D → R with
domain D and range R satisfies (ε, δ)-differential privacy if for
all two neighbouring inputs D,D′ ∈ D that differ in one record
and for any measurable subset of outputs S ⊆ R it holds that

Pr{M(D) ∈ S} ≤ exp(ε) · Pr{M(D′) ∈ S}+ δ .

FurthermoreM is said to preserve (pure) ε-differential privacy if
δ = 0.

The formal definition of differential privacy has two
parameters: privacy budget ε measures the privacy leakage;
and δ bounds the probability that the privacy loss exceeds
ε. The values of (ε, δ) are accumulated as the algorithm
repeatedly accesses the private data [30].

3.2 Homomorphic Encryption

Homomorphic encryption is a form of encryption that is
widely used to derive the aggregate in a secure man-
ner. Existing homomorphic encryption techniques include
fully homomorphic encryption, somewhat homomorphic
encryption and partially homomorphic encryption. Fully
homomorphic encryption can support arbitrary computa-
tion on ciphertexts, but is less efficient [31]. On the other
hand, somewhat homomorphic encryption and partially
homomorphic encryption only support a limited number of
operations [32].

However, all these techniques generally result in longer
ciphertext than the plaintext, incurring extra communication
costs. To address this issue in this paper, we take inspirations
from stream ciphers [33] to develop efficient homomorphic-
ciphertext compression, which also allows additive homo-
morphic operation over ciphertexts encrypted under dif-
ferent parties’ key streams. More details are provided in
Section 5.2.1.

3.3 Blockchain

Blockchain is a decentralized (i.e., a peer-to-peer, non-
intermediated) system that is maintained by all the
participants in the system. There are two types of
blockchains, namely permissionless blockchain and permis-
sioned blockchain. With permissionless blockchains, such as
Bitcoin [34], participants can join and leave at anytime and
the number of participants is not pre-defined nor fixed. With
permissioned blockchains (a.k.a. consortium blockchains),
such as IBM’s Hyperledger Fabric, participants require
permissions from the system to join or leave. The set of
participants are normally predefined [35].

For the application with a relatively stable set of partic-
ipants, a permissioned blockchain is preferred. It can serve
as a distributed key-value store, where a fault tolerance
(a.k.a. Byzantine agreement) scheme is required for reaching
consensus on the global state. Blockchain is well known for
its transparency, accountability and robustness – data and
all operations are recorded on the blockchain in an append-
only manner and are accessible by all the participants.
Intuitively, the incremental characteristic of federated deep
learning makes it suitable for leveraging Blockchain. How-
ever, a reasonable approach to integrate Blockchain with
privacy-preserving deep learning needs to be developed.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

4 THE FPPDL FRAMEWORK

This section describes the design of our proposed decentral-
ized Fair and Privacy-Preserving Deep Learning (FPPDL)
framework, and an investigation of Blockchain as the de-
centralized architecture for FPPDL. Tables 2 presents the list
of symbols used in this paper and their meanings for easy
readability.

TABLE 2: List of Symbols.

Symbol Meaning
Di, Mi local training data and local model of party i
SDi µ DPGAN samples randomly chosen by party i
pi, di points and gradients download budget of party i
cji , cji

′
local credibility and updated local credibility of party
j given by party i

ui number of DPGAN samples released by party i
dji number of meaningful gradients of party j released

to party i
λj sharing level of party j

saccj , accj standalone and final model accuracy of party j
∆wj gradient vector of party j
∆w̃i

j masked gradient vector of party j shared with party
i by filling the remaining |∆wi

j |−d
j
i gradients with 0

wi parameter of party i at previous round
wi
′ updated parameter of party i at current round

n number of participating parties
cth lower bound of the credibility threshold
C credible party set with local credibility above cth

agreed by 2/3 parties
mj number of matches between majority labels and party

j’s predicted labels
(sk′i, pk

′
i) party i’s key pair for signing and verification, respec-

tively
ki party i’s keystream used in the first layer of three-

layer onion-style encryption
fsk fresh symmetric encryption key used in the second

layer of three-layer onion-style encryption
(ski, pki) party i’s key pair for decryption and encryption in

the third layer of three-layer onion-style encryption
Enc homomorphic encryption
Senc symmetric key encryption
Aenc public key encryption
E number of local training epochs in each round
B, lr local batch size, local learning rate

4.1 Design Objectives
4.1.1 Privacy Preservation
In FPPDL, we assume parties do not trust each other or
any third party. Hence, parties may not be willing to share
their information when training a joint model without the
promise of privacy protection. Under FPPDL, instead of
sharing the original data or model parameters, each party
leverages Differentially Private GAN (DPGAN) to publish
differentially private local samples for mutual evaluation
during the initial benchmarking phase. Then, they encrypt
the shared gradients using the proposed three-layer onion-
style encryption scheme to preserve privacy during collab-
orative deep model training.

4.1.2 Fairness
Since our focus here is to distribute different variants of the
final FL model to participants based on their contributions,
the notion of fairness most relevant for our purpose is
Fairness through Awareness. Under this notion, individuals
who are similar with respect to a similarity metric defined

for a particular task should receive a similar outcome [36]. A
party with high-contribution should be rewarded more than
a party with low-contribution party. Moreover, we clarify
that the low-contribution parties are not malicious, i.e., they
follow the protocol honestly and aim to benefit from other
parties’ data, but contribute lowly, or even nearly nothing or
negatively. Under the collaborative model training scenario,
we define collaborative fairness as:

Definition 2. Collaborative fairness. In collaborative learning
systems, a high-contribution party is deserved to be rewarded
with a better performing local model than a low-contribution
party. Specially, in IID setting, fairness can be quantified by
the correlation coefficient between the contributions by different
parties and their respective final model accuracies.

Considering these two goals, we design a local credi-
bility mutual evaluation mechanism to enforce fairness in
FPPDL, where participants trade their information in an
”earn-and-pay” way using their ”points”. The local credibil-
ity and points of each participant are initialized through an
initial benchmarking phase, and updated through privacy-
preserving collaborative deep model training.

The basic idea is that participants can earn points by
contributing their information to other participants. Then,
they can use the earned points to trade information with
other participants. Thus, participants are encouraged to
upload more samples or gradients to earn more points
(as long as it is within the limit of their sharing levels),
and use these points to download more gradients from
others. All trades are recorded as immutable transactions
in a blockchain, providing transparency and auditability. In
particular, FPPDL ensures fairness during download and
upload processes as follows:

• Download: Since one party might contribute differ-
ently to different parties, the credibility of this party
might be different from the view of different parties.
Therefore, each party i records a private local cred-
ibility list for all parties sorted in descending order
of their credibility values. The higher the credibility
of party j in party i’s credibility list, the more likely
party i will download gradients from party j, and
consequently, more points will be rewarded to party
j by party i.

• Upload: Once a party receives download request
for its local gradients, it can determine how many
meaningful gradients to send back based on both the
download request from the requester and its own
sharing level.

4.2 Blockchain-based Architecture
To develop a decentralized architecture for FPPDL, we
incorporate the privacy-preserving deep learning algorithm
into a private Blockchain using Blockchain 2.0, which is only
available to the participating parties. Compared with the
current server-based architecture, FPPDL inherits the peer-
to-peer architecture of Blockchain, allowing each party to re-
main modular while interoperating with others. In addition,
instead of ceding control to the central server, each party
keeps full control of its own data. Moreover, Blockchain
provides the native ability to automatically coordinate the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

joining and departure of each party, further facilitating in-
dependence and modularity of the federation. Blockchains,
with no single point of failure, also enhances robustness.
Here, we design two types of blocks in the Blockchain for
FPPDL, namely the init block and the operation block.

An init block initializes benchmarking of the usefulness
of each party’s training data, as a set of init transactions.
An init transaction contains the initial points that the trans-
action creator earned, its contributed DPGAN samples, and
its public key that will be used for authenticating future
transactions. The genesis block (i.e., the first block) of the
Blockchain is an init block, which contains the initial points
and local credibility values to all the participants according
to their relative contributions, as stated in Algorithm 1. If
any party joins or adds new data during later updates, a
new init block will be created and added to the existing
Blockchain.

An operation block contains a set of transactions defin-
ing the UPLOAD operation and/or DOWNLOAD oper-
ation. All UPLOAD and DOWNLOAD transactions are
signed by their creator using the private key associated
with the public key recorded in the init transaction. An UP-
LOAD operation commits that a data owner has uploaded
local model gradients to the party who sent a download
request. A DOWNLOAD operation states that a participant
is committed an order to request some local model updates
from other participants. Upon receiving a DOWNLOAD
transaction, Blockchain miners verify its signature, check
if the requester has enough balance points to download
the number of requested gradients, and record the verified
transactions in an operation block. Once the DOWNLOAD
transaction is recorded in the Blockchain, the requested local
model gradients will be encrypted and uploaded by the
owner to a publicly accessible storage, and re-encrypted
using the recipient’s public key defined in the DOWNLOAD
transaction.

The privacy of local model gradients is protected
through a three-layer onion-style encryption scheme (see
Section 5.2). The first layer encrypts the local model gra-
dients through our proposed symmetric key based homo-
morphic encryption (Algorithm 3), which allows each party
to learn the aggregate of the received gradients without
revealing individual gradients, i.e., party obliviousness. The
second and third layers present a standard hybrid encryp-
tion process: the second layer uses a freshly generated
symmetric key fsk to re-encrypt the first layer ciphertext,
and the third layer encrypts fsk with the requester party
i’s public key pki. In this way, we minimize the required
computational cost incurred by the asymmetric key based
encryption. The commitment of the uploaded encrypted
local model gradients (e.g., hash value of the ciphertext,
as presented in Fig 3) will be included in the UPLOAD
transaction.

In our private Blockchain, only the requester who pays
can read the plaintext. Others can verify that this transac-
tion has happened, but cannot read the plaintext. When
a requester blames a data uploader, the data uploader
reveals the plaintext as evidence. In this case, the requester
will be forced to pay a fine that it deposits when filing a
claim if it is shown to be an dishonest claim. Once an UP-
LOAD transaction is recorded in the Blockchain, the points

will be automatically transferred from the requester to the
uploader. An example of INITIALIZE and DOWNLOAD
transaction stored by the Blockchain are shown in Fig. 2
and Fig. 3, respectively. For our application scenario, we
expect a relatively stable and small set of participants, such
as financial institutions acting with legal liabilities, which
falls under the umbrella of horizontal federated learning
(HFL) involving business participants [37]. This allows us
to adopt a permissioned blockchain.

Init transaction tx_i

initial points: p𝑖
Flag

Initialization
𝑆𝐷$

Genesis block

Consensus	agreement
Merkle	tree	of	transactions

TX	:=	{tx_i}

𝑝𝑘$

Fig. 2: An example structure of the genesis block. It mainly
contains two key components, one is a set of init transactions
organized as leaves of a Merkle tree; and the other one is the
consensus agreement reached by the participants through
the underlying consensus protocol (e.g., PBFT or PoS), which
is specific to the deployed Blockchain. The pk′i in the init
transaction is a signature verification key of party i.

DOWNLOAD transaction

Update points: p𝑖

Flag
DOWNLOAD request(

Operation block

Consensus	agreementMerkle	tree	of	
transactionsPrev_Block_hash

Hash(Senc(Enc(∆𝑤+, 𝑘j), 𝑓𝑠𝑘),Aenc(𝑓𝑠𝑘, 𝑝𝑘())

UPLOAD transaction

DLD_request
Flag

UPLOAD𝑝𝑘(Update points: p𝑗

𝑆𝑖𝑔(𝑆𝑖𝑔+

Fig. 3: An example structure of the operation block. It
mainly contains three key components, namely, the hash
value Prev Block hash of the previous block, a set of UP-
LOAD/DOWNLOAD transactions organized as a Merkle
tree, and the consensus agreement of this block. In par-
ticular, a Prev Block hash links the current block to the
previous one, and the request in the UPLOAD transaction
acts as a reference to the associated DOWNLOAD transac-
tion. pki in the DOWNLOAD transaction is the public key
that will be used in the last layer of our three-layer onion-
style encryption scheme, requesti is a unique request ID of
this transaction and will be referenced in the corresponding
UPLOAD transaction via DLD request, and Sigi is the
signature on this transaction. Enc, Senc, and Aenc refer to
homomorphic encryption, symmetric key encryption, and
public key encryption, respectively.

5 IMPLEMENTATION OF FPPDL
This section details the two-stage implementation of FPPDL
to enforce both fairness and privacy. These include how to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

Algorithm 1 Initial Benchmarking

Input: number of participating parties n, C={1,. . . ,n}
Output: local credibility and points of all parties
1: Pre-train aprior models: Each party i trains standalone
model Mi and local DPGAN based on its local training data.
2: Sharing level initialization: During initialization, party
i randomly selects and releases ui artificial samples gen-
erated by local DPGAN to any party j, sharing level is
autonomously determined as λi = ui/|Di|, where |Di| is
local training data size of party i.
3: Local credibility initialization: Party j labels the received
artificial samples by its local model Mj , then returns the
predicted labels back to party i. Meanwhile, party i also
labels its own DPGAN samples using Mi. Afterwards, party
i applies majority voting to all the predicted labels, then
initializes the local credibility of party j as cji =

mj

ui
, wheremj

is the number of matches between majority labels and party
j’s predicted labels, and ui is the number of DPGAN samples
released by party i. The detailed explanation is elaborated in
Section 5.1.1.
4: Local credibility normalization: cji =

c
j
i∑

j∈C\ic
j
i

if cji < cth then
party i reports party j as a low-contribution party

end if
5: Credible party set: If the majority of parties report party
j as low-contribution, Blockchain removes party j from the
credible party set C and all parties run step 4 again.
6: Points initialization to download gradients: pi = λi ∗
|wi|∗(n− 1).

initialize local credibility values, sharing levels and points
through initial benchmarking, and how to update local cred-
ibility values and points in the privacy-preserving collabo-
rative deep learning phase, followed by the quantification of
fairness. The two-stage implementation is shown in Fig. 4.

5.1 Initial Benchmarking
The proposed initial benchmarking algorithm aims to assess
the quality of local training data of each participant via
mutual evaluation without looking at the raw data before
collaborative model training starts. The algorithm works as
follows: each participant trains a DPGAN based on its local
training data to generate artificial samples. However, these
generated samples will not disclose the true sensitive exam-
ples, as well as the true distribution of data, but only a few
implicit density estimation within a modest privacy budget
used in DPGAN. Each participant publishes individually
generated artificial samples based on its individual sharing
level without releasing labels. All the other participants
produce predictions for the received artificial samples using
their pre-trained standalone models and send the predicted
labels back to the party who generated these samples.

The aim of sharing artificial DPGAN samples is two-fold:
1) To obtain prior information about individual models

before collaborative learning starts. If a participant does
not have a reasonable amount of training data to pro-
duce a decent model, it will perform poorly during the
initial evaluation phase. Therefore, other participants
will be cautious when sharing gradients with it.

2) To obtain a rough estimate of data distribution of
other participants. Two participants can mutually ben-
efit only if their data distributions are different, but

with some degree of overlap. Suppose that two partici-
pants A and B have published almost identical artificial
samples, it means that their training data distributions
are almost identical. In this case, the updates from B
are unlikely to increase the accuracy of model A and
vice versa. Therefore, during the subsequent commu-
nication rounds, A and B should avoid downloading
updates from each other. Other participants can choose
to download updates from either A or B but not both.
On the other hand, suppose that participants A and
B have completely different data distributions, the up-
dates from B are unlikely to increase the accuracy of
model A and vice versa. Thus, during the subsequent
rounds, A and B should also avoid downloading up-
dates from each other. Furthermore, suppose that A’s
data distribution is different from that of all the other
participants, all these participants should try to avoid
A. This automatically takes care of the scenario where a
honest participant publishes some gradients, while all
the other honest participants assign very low credibility
to the publisher. In this case, the data distribution of
the publisher is completely different from that of the
other participants. Hence it is reasonable to reduce the
credibility of the publisher.

We next describe the detailed procedures of initial bench-
marking in Algorithm 1, including: local credibility initial-
ization, and sharing level and points initialization.

5.1.1 Local Credibility Initialization

For local credibility initialization, each party compares the
majority voting of all the combined labels with a particular
party’s predicted labels to evaluate the effect of this party. It
relies on the fact that the majority voting of all the combined
labels reflects the outcome of the majority of parties, while
the predicted labels of party j only reflects the outcome of
party j.

For example, in the case of party i initializing local cred-
ibility list for other parties, party i broadcasts its DPGAN
samples to other parties, who label these samples using their
pre-trained standalone models, and send the corresponding
predicted labels back to party i. Meanwhile, party i also
labels its own artificial samples using its pre-trained stan-
dalone model, then combines all parties’ predicted labels as
a label matrix with total n columns, where each column
corresponds to one party’s predicted labels. Party i then
initializes the local credibility of party j as cji =

mj

ui
, where

mj is the number of matches between the majority labels
and party j’s predicted labels, and ui is the number of
DPGAN samples released by party i. Afterwards, party i
normalizes cji within [0,1].

If the majority of parties report that the local credibility
of one party is lower than the threshold cth, implying a
potentially low-contribution party, it will be banned from
the local credibility lists of all parties. Here, cth is mainly
used to detect and isolate the low-contribution party, and
it should be agreed by the majority of parties. However,
it should not be too small or too large as fairness and
accuracy may be affected. If it is too small, it might allow
low-contribution party to into the collaborative learning
system without being detected and isolated. If it is too

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

Party1
D1, M"

#

∆w1

Party3
D3,M%

#

∆w3

Party2
D2,M&

#

∆w2

Party4
D4,M'

#

∆w4

TE(∆w)"&),SD1

2nd Stage: Privacy-Preserving
Collaborative Deep Learning

Party1
D1, M1

Party3
D3, M3

Party2
D2, M2

Party4
D4, M4

SD1

SD1SD1

DPGAN, SD2DPGAN, SD1

[𝑐"&	, 𝑐"%, 𝑐"'], ∑ 𝑐"
1 = 1'

14&

DPGAN, SD3 DPGAN, SD4

1st Stage: Initial Benchmarking

M2(SD1)

M4(SD1)

M3(SD1)

[M1(SD1) M2(SD1) M3(SD1) M4(SD1)]

∆w)"&:	gradients of Party 1 shared	with Party2
(𝑑"& meaningful gradients are chosen, the
remaining |∆w1- 𝑑"&| gradients are masked with 0)
M"
: local model of Party 1 at current epoch

TE: Three-layer onion-style encryption

SD1: 𝜇 = |SD1| DPGAN samples are
randomly chosen by Party 1 from
the pool of local DPGAN samples
M1: standalone model of Party 1

TE(∆w)"'),SD1	
TE(∆w)"%),SD1	

TE(∆w)&"),M&
(SD1)

TE(∆w)'"),M'
# (SD1)	

TE(∆w)%"),M%
# (SD1)	

w"
= w1+ ∆w1 + ∑ ∆w)1"'

14&

Privacy level 𝜀1 = |SD1|/|D1|
majority
voting

[𝑐"&′	, 𝑐"%′, 𝑐"'′],∑ 𝑐"
1 ′ = 1'

14&

Fig. 4: Two-stage implementation of FPPDL.

large, it might ban most participants from the system. In the
following update process, party i is more likely to download
gradients from more credible participants, while download
less, even ignoring those published by less credible parties.

5.1.2 Sharing Level and Points Initialization

Sharing level is denoted by the the upper bound of the
number of samples or gradients one party can share with
others. Based on the number of artificial samples ui that
party i publishes at the beginning, a suitable sharing level
of party i can be automatically estimated as λi = ui/|Di|,
where Di is the local training data of party i. Points are
initialized as follows:

pi = λi ∗ |wi|∗(n− 1) (1)

where λi is the sharing level of party i (i.e., the higher, the
more data one party would like to share), |wi| is the number
of model parameters, and n is the number of parties. The
points gained from initial benchmarking will be used to
download gradients in the following collaborative learning
process, and the number of gradients i can downloaded
depends on both the local credibility and sharing level of
the party from which it is requesting.

5.1.3 Differentially Private GAN (DPGAN)

During initial benchmarking, although each party only re-
leases a small amount of unlabeled samples, it may still
disclose privacy of local training data. The approach of
generating samples under differential privacy with gener-
ative adversarial network (GAN) offers a solution to this
problem. Under FPPDL, we train a Differentially Private GAN

(DPGAN) by adding tailored noise to the gradients during
DPGAN learning [38] at each party.

In the context of a GAN, the discriminator is the only
component that accesses the private real data. Therefore, we
only need to train the discriminator under differential pri-
vacy. The differential privacy guarantee of the entire GAN
directly follows because the computations of the generator
are simply post-processing from the discriminator. The main
idea follows the post-processing property of differential
privacy [29], as stated in Lemma 1.

To counter the stability and scalability issues of training
DPGAN models, we apply multi-fold optimization strate-
gies, including weight clustering, adaptive clipping and
warm starting, which significantly improve both training
stability and utility [38]. Unlike PATE [39], where privacy
loss is proportional to the amount of data needed to be
labeled in public test data, differentially private generator
can generate infinite number of samples for the intended
analysis, while rigorously guaranteeing (ε, δ)-differential
privacy of training data. Without loss of generality, we
exemplify DPGAN in the context of the improved WGAN
framework [40] and let each party generates a total of 1,000
artificial samples. As demonstrated in [38], DPGAN is able
to synthesize both grey and RGB image with inception
scores fairly close to the real data and samples generated
by regular GANs without any privacy protection.

Lemma 1. Let algorithm A : Rn → R be a randomized
algorithm that is (ε, δ)-differentially private. Let f : R → R

′

be an arbitrary randomized mapping. Then f ◦ A : Rn → R
′

is
(ε, δ)-differentially private.

Meanwhile, it is well-known that larger amount of train-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

Algorithm 2 Privacy-Preserving Collaborative Deep Learning

Input: C, cji , pi, pj , di, λj , wi, ∆wj

Output: updated points p′j , p′i, parameters wi
′, and local credibility cji

′

1: Trade gradients as per download requests, local credibility, and sharing level; Party points update: In each communication
round, party i aims to download total di = pi gradients from all parties in C, while party j ∈ C \ i can at most provide
λj × |∆wj | gradients, one point is consumed/rewarded for each download and upload. Each party i updates local model
parameters based on the gradients of party j ∈ C \ i as follows:
for j ∈ C \ i do

dji = min(cji ∗ di, λj ∗ |∆wj |), p′j = pj + dji , p′i = pi − dji
∆wi

j = ∆wj , party j first chooses dji meaningful gradients from ∆wi
j according to “largest values” criterion: sort gradients

in ∆wi
j and choose dji of them, starting from the largest, then masks the remaining |∆wi

j |−dji gradients with 0 as ∆w̃i
j .

end for
2: Three-layer onion-style encryption: Party j follows Algorithm 3 to encrypt the masked gradients ∆w̃i

j with its keystream
kj as c = Enc(∆w̃i

j , kj), and re-encrypts the encrypted gradients c with a fresh symmetric encryption key fsk as Senc(c, fsk),
the symmetric encryption key of the second layer is encrypted in the third layer by the receiver party i’s public key pki as
Aenc(fsk, pki). Finally, the two-layer encrypted gradients Senc(c, fsk) and the encrypted fresh symmetric encryption key
Aenc(fsk, pki) are sent to party i;
3: Parameter update: party i uses the paired secret key ski to decrypt the received encrypted fresh symmetric encryption key
as fsk, then uses fsk to decrypt the two-layer encrypted gradients as c = Enc(∆w̃i

j , kj), finally decrypts the sum of all the
received gradients using homomorphic property and updates local parameters by integrating all its plain gradients ∆wi as:
wi
′ = wi + ∆wi + Dec(

∑
j∈C\iEnc(∆w̃i

j , kj),−ki) = wi + ∆wi +
∑

j∈C\i∆w̃i
j , where wi is party i’s local parameters at

previous communication round.
4: Local credibility update: party i randomly selects and releases ui artificial samples to any party j for labelling, mutual
evaluation is repeated by following Step 3 of Algorithm 1 to calculate local credibility of party j at current communication
round as cji

′
. Party i updates local credibility of party j by integrating its historical credibility as: cji

′
= 0.2 ∗ cji + 0.8 ∗ cji

′
, where

cji is the local credibility of party j at previous communication round.

5: Local credibility normalization: cji
′

=
c
j
i

′∑
j∈C

c
j
i

′

if cji
′
< cth then

party i reports party j as a low-contribution party
end if
6: Credible party set: If the majority of parties report party j as low-contribution, Blockchain removes party j from credible
party set C and all parties run Step 5 again.

ing data causes less privacy loss, and allows for more
iterations within a moderate privacy budget [30]. Due to the
scarcity of training data of each party, data augmentation
is exploited to expand local data size of each party to 100
times, which allows DPGAN to generate realistic samples
within a moderate privacy budget. In particular, we aug-
ment original data with rotation range of 1 and width shift
range and height shift range of 0.01.

In our study, we use moments accountant described
in [30] to track the spent privacy over the course of training.
Our DPGAN is able to generate realistic MNIST samples
with ε = 4 and δ = 10−5, as shown in Fig. 5. Note that each
party can individually train DPGAN and generate massive
DPGAN samples offline without affecting collaboration.

Fig. 5: Generated DPGAN samples with ε = 4, δ = 10−5

using the augmented 60000 MNIST examples of one party
who owns 600 original MNIST examples.

5.2 Privacy-Preserving Collaborative Deep Learning
Algorithm 2 summarizes the steps for the privacy-
preserving collaborative deep learning in each commu-
nication round, including how to update points as per

upload/download, how to preserve privacy of individual
model updates using three-layer onion-style encryption
followed by parameter and local credibility update, and
credible party set maintenance by the Blockchain system.
In particular, the gradients download budget of party i, i.e.,
di, is closely related with how many points pi party i has in
each communication round. More concretely, di should not
exceed pi, otherwise, party i will not have enough points to
pay for the gradients provided by other parties. Moreover,
di can be dynamically determined based on the existing
points pi in each communication round. For simplicity, we
initialize di = pi in each communication round, but how
many gradients can be downloaded will be dependent on
both the local credibility list of the requester and sharing
levels of the requested parties, which can be referred to
Section 4.1. In the following sections, we will focus on the
most important details for parameter update, three-layer
onion-style encryption, and local credibility update.

5.2.1 Parameter Update with Homomorphic Encryption
Sharing gradients can prevent direct exposure of the local
data, but may indirectly disclose local data information.
To further prevent potential privacy leakage from sharing
gradients and facilitate gradients aggregation during the
collaborative learning process, we use additive homomor-
phic encryption such that each party can only decrypt the
sum of all the received encrypted gradients. Specifically, Ver-
nam cipher or one-time pad (OTP) has been mathematically

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

proved to be completely secure, which cannot be broken
given enough ciphertext and time. Therefore, we use sim-
ple and provably secure OTP for additively homomorphic
encryption that allows efficient aggregation of encrypted
data [41], [42]. The main idea of forming the ciphertext is
to combine the keystream with the plaintext digits. Mean-
while, rather than XOR operation typically found in stream
ciphers, which is unsecured under the frequency analysis
attacks, our encryption scheme uses modular addition (+),
and is hence very efficient [41]. The security relies on two
important features: (1) the keystream changes from one
message to another; and (2) all the operations are performed
modulo a large integer M [41].

The detailed procedure for homomorphic encryption is
presented in Algorithm 3. In practice, if p = max(xi), M
is derived as M = 2dlog2(p×n)e. All computations in the
remainder of this paper are modulo M unless otherwise
stated. However, all the original floating-point values need
to be mapped to the integer domain by using Scaling,
Rounding, Unscaling (SRU) algorithm [42]. A pseudoran-
dom keystream k can be generated by a secure pseudo
random function (PRF) by implementing a secure stream
cipher, such as Trivium [43], keyed with each party’s
keystream ki and a unique message ID. For encryption
purpose, the secret keys are pre-computed through a trusted
setup, which can be performed by a trusted dealer or
through a standard SMC protocol.

For example, a trusted key managing authority can gen-
erate these keystreams in each communication round, but
the generated keystreams cannot be used more than once.
The trusted setup generates non-zero random shares of 0:∑
i∈Cki = 0, such that each participant i ∈ C obtains a

keystream ki. Note that if the Blockchain removes party j
from the credible party set C , a new credible party set C
should be constructed.

Algorithm 3 Homomorphic Encryption Scheme

Setup
1: A trusted dealer randomly generates |C| keystreams:
k1, . . . , k|C| ∈ [0,M − 1], such that

∑
i∈Cki (mod M)= 0,

where M is a large integer.
2: Party i obtains keystream ki.

Enc(m, k)
1: Represent message m as integer m ∈ [0,M − 1].
2: Let k be a randomly generated keystream, where k ∈
[0,M − 1].
3: Compute c = Enc(m, k) = m+ k.

Dec(c, k)
1: Dec(c, k) = c− k.

AggrDec(ki)
1: Let cj = Enc(mj , kj), where j ∈ C \ i.
2: Party i uses −ki =

∑
j∈C\ikj to decrypt the aggrega-

tion of other parties as follows: Dec(
∑
j∈C\icj ,−ki) =∑

j∈C\icj −
∑
j∈C\ikj =

∑
j∈C\imj .

Model parameter of party i is updated as per gradients-
encrypted SGD as follows:

wi
′ = wi + ∆wi +Dec(

∑
j∈C\iEnc(∆w̃i

j , kj),−ki)

= wi + ∆wi +
∑
j∈C\i∆w̃i

j

where Enc and Dec correspond to encryption and decryp-
tion operations in Algorithm 3, wi is the local parameters
of party i at previous round, ∆w̃i

j is the masked gradient
vector of party j shared with party i, where only dji gradi-
ents are meaningful, i.e., dji elements of total |∆w̃i

j | elements
are kept intact, while the remaining |∆w̃i

j |−d
j
i elements are

nullified as 0. The second equality follows the homomorphic
addition property, thus participant i can get the updated
wi
′ correctly after decryption, without having access to

either ∆w̃i
j or ∆wj . FPPDL ensures party obliviousness by

ensuring that each participant knows nothing but the sum
of its received gradients in each communication round, and
cannot infer any information about other participants’ data.

5.2.2 Three-layer Onion-style Encryption
However, as all parties need to store different encrypted
gradients that are meant to be sent to different parties on
Blockchain for commitment, all the encrypted gradients
are also accessible to all parties. Applying public-key en-
cryption on top of homomorphic encryption for authentica-
tion [42] can address this problem. However, as the released
gradient vector is high-dimensional, encrypting gradient
vector is both computation and communication expensive.

Therefore, we propose a three-layer onion-style encryp-
tion scheme. The first layer protects local model gradients
by using symmetric key keystream kj for homomorphic
encryption, as presented in Algorithm 3. The second layer
and the third layer are classic hybrid encryption, as used in
OpenPGP [44] for instance. In particular, in the second layer,
a fresh symmetric encryption key fsk will be generated
and used to re-encrypt the ciphertext of the first layer, and
then the fresh symmetric key is encrypted by using the
receiver’s public key pki in the third layer. In this way, the
encryption of high-dimensional data becomes very effective,
and the receiver could be authenticated as well: only the
receiver who has the corresponding secret key ski paired
with the public key pki can decrypt the two-layer encrypted
gradients committed on the Blockchain.

5.2.3 Local Credibility Update
Instead of using the standalone models as in the local
credibility initialization, during each round of collaborative
learning, each party randomly selects and shares a subset
of DPGAN samples as per individual sharing level, then
calculates the local credibility of other parties based on the
returned labels, which are evaluated by using its updated
local model at current round. The mutual evaluation follows
the same procedure as in Step 3 of Algorithm 1. Finally,
local credibility of each party is updated by integrating its
historical local credibility as per Step 4 of Algorithm 2. In
this way, local credibility of each party can be adaptively up-
dated, reflecting more accurately how one party contributes
to different parties during collaborative learning.

5.3 Quantification of Fairness
In collaborative learning system, collaborative fairness
should be quantified from the point of view of the whole
system. In this work, we quantify collaborative fairness

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

through the correlation coefficient between party contribu-
tions (i.e., standalone model accuracy which characterizes
the learning capability of each party on its own local data,
and sharing level, which characterizes the sharing willing-
ness of each party) and party rewards (i.e., final model
accuracies of different parties).

Specifically, we take party contributions as the X-axis,
which represents the contributions of different parties from
the system view. In particular, in Setting 2, we characterize
different parties’ contributions by their sharing levels and
standalone model accuracies, as the party who is less private
and has local data with better generalization empirically
contributes more. In Setting 1 and Setting 3, we characterize
different parties’ contributions by their standalone model
accuracies, as the party who has local data with better
generalization empirically contributes more. Moreover, in
Setting 3, the party with more local data typically yields
higher standalone model accuracy in IID scenarios. In sum-
mary, the X-axis can be expressed by Equation 2, where λj
and saccj denote the sharing level and standalone model
accuracy of party j respectively:

x =
{ { λ1∑

λj
, · · · , λn∑

λj
}+ { sacc1∑

saccj
, · · · , saccn∑

saccj
}, Setting 2

{sacc1, · · · , saccn}, Setting 1&3
(2)

Similarly, we take party rewards (i.e., final model accu-
racies of different parties) as the Y-axis, as expressed by
Equation 3, where accj denotes the final model accuracy
of party j:

y = {acc1, · · · , accn} (3)

As the Y-axis measures local model performance of
different parties after collaboration, it is expected to be
positively correlated with the X-axis to deliver good fair-
ness. Hence, we formally quantify collaborative fairness in
Equation 4:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy
(4)

where x̄ and ȳ are the sample means of x and y, sx and sy
are the corrected standard deviations. The range of fairness
is within [-1,1], with higher values implying good fairness.
Conversely, negative coefficient implies poor fairness.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
FPPDL framework by comparing it against the state of the
art on real-world datasets.

6.1 Datasets
We implement experiments on two benchmark image
datasets. The first is the MNIST dataset1 for handwritten
digit recognition consisting of 60,000 training examples and
10,000 test examples. Each example is a 32x32 gray-level im-
age [11], with digits locating at the center of the image. The
second is the SVHN dataset2 of house numbers obtained
from Google’s street view images, which contains 600,000
training examples, from which we use 100,000 for training

1. http://yann.lecun.com/exdb/mnist/
2. http://ufldl.stanford.edu/housenumbers/

and 10,000 for testing. Each example is a 32x32 centered im-
age with three channels (RGB). SVHN is more challenging
as most of the images are noisy, and contain distractors at
the sides. The size of the input layer of neural networks
for MNIST and SVHN are 1024 and 3072, respectively. The
objective is to classify the input as one of 10 possible digits
within [“0”-“9”], thus the size of the output layer is 10. We
normalize the training examples by subtracting the average
and dividing by the standard deviation of training exam-
ples. For reproducibility purposes, our code will be made
available here: https://github.com/lingjuanlv/FPPDL.

6.2 Baselines

We demonstrate the effectiveness of our proposed FPPDL
framework by comparison with the following three frame-
works. In all frameworks, stochastic gradient descent (SGD)
is applied to each party.

1) Standalone framework: which assumes parties train
standalone models on local training data without any
collaboration. This framework delivers maximum pri-
vacy, but minimum utility, because each party is sus-
ceptible to falling into local optima when training alone.

2) Centralized framework: which allows a trusted server to
have access to all participants’ data in the clear, and
train a global model on the combined data using stan-
dard SGD. Hence, it is a privacy-violating framework.

3) Distributed framework: which enables parties to train
independently and concurrently, and chooses a frac-
tion of parameters to be uploaded at each iteration.
In particular, as shown in [11], Distributed Selective
SGD (DSSGD) achieves even higher accuracy than the
centralized SGD because updating only a small frac-
tion of parameters at each round acts as a regular-
ization technique to avoid overfitting. Hence, we take
DSSGD for the analysis of the distributed framework.
As DSSGD with round robin parameter exchange pro-
tocol results in the highest accuracy [11] and facilitates
fairness calculation, we follow the round robin protocol
for DSSGD, where participants run SSGD sequentially,
each downloads a fraction of the most updated param-
eters from the server, runs local training, and uploads
selected gradients; the next party follows in the fixed
order. Gradients are uploaded according to the “largest
values” criterion.

6.3 Experiment Setup

For local model architecture, we consider two popular neu-
ral network architectures: multi-layer perceptron (MLP) and
convolutional neural network (CNN), which are the same as
in [11]. For local model training, we set the learning rate
as 0.001, learning rate decay as 1e-7, and mini-batch size as
1. In addition, to reduce the impact of different initializa-
tions and avoid non-convergence, each party is initialized
with the same parameter w0, then local training is run on
individual training data to update local model parameter
wi. To boost fairness, we let each party individually train
10 epochs before collaborative learning starts. For all exper-
iments, we empirically set the local credibility threshold as
cth = 1

|C|−1 ∗
2
3 via grid search, where |C| is the number

http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

of alive parties, i.e., credible parties in the system. Next, we
investigate three realistic IID settings as follows:

Setting 1: Same sharing level, same data size: in the
first case, sharing level of each party is set as 0.1, i.e.,
each party only releases 10% meaningful gradients during
collaboration. For each party, we randomly sample 1% of
the entire database as the local training data of each party,
i.e., 600 examples for MNIST and 1000 examples for SVHN,
this setting is the same as Shokri et al. [11] when the upload
rate of each party equals 0.1;

Setting 2: Different sharing level, same data size: in
the second case, sharing level of each party is randomly
sampled from [0.1, 0.5], and parties release meaningful gra-
dients as per individual sharing level during collaboration.
For each participant, we randomly sample 1% of the entire
database as local training data as above.

Setting 3: Different data size, same sharing level: in
the third case, we simulate the case where different parties
have different data size. In particular, for MNIST dataset,
we randomly partition total {2400, 9000, 18000, 30000}
examples among {4,15,30,50} parties respectively. Similarly,
for SVHN dataset, total {4000, 15000, 30000, 50000} exam-
ples are randomly partitioned among {4,15,30,50} parties
respectively. The sharing level of each party is fixed to 0.1.

Remark. In Setting 1 and Setting 2, the purpose of
allocating 600 MNIST examples or 1000 SVHN examples
for each party is to fairly compare with Shokri et al. [11],
in which each party is allocated with 600 MNIST examples
or 1000 SVHN examples (small number of local examples
to simulate data scarity which necessitates collaboration).
Therefore, for MNIST, we simulate the total examples of
2400 (4 parties) up to 30,000 (50 parties). For larger datasets
like 300,000 examples, it would require 500 parties, im-
posing heavy requirement on real deployment, while de-
livering similar analysis as in Sec. 6.4. We also remark
that our Setting 2 and Setting 3 are relatively conservative,
by increasing the contribution diversity among parties, for
example, sampling sharing level from [0,1] instead of [0,0.5],
partitioning data size among parties in a more imbalanced
way, our FPPDL can definitely results in higher fairness.

6.4 Experimental Results

TABLE 3: Fairness of distributed framework and our FPPDL
over MNIST dataset, with different model architectures,
different party numbers (P-k) and different settings as de-
scribed in Section 6.3.

Setting 2 Setting 3
Distributed FPPDL Distributed FPPDL

CNN MLP CNN MLP CNN MLP CNN MLP
P4 -0.68 0.30 0.89 0.92 -0.97 0.05 0.98 0.96
P15 0.20 -0.15 0.76 0.82 0.03 -0.07 0.90 0.83
P30 -0.02 0.02 0.79 0.85 0.13 0.01 0.75 0.63
P50 -0.16 -0.05 0.75 0.67 0.14 -0.07 0.72 0.60

For collaborative fairness comparison, we only analyze
our FPPDL and the distributed framework using DSSGD,
neglecting centralized framework and standalone frame-
work, because parties cannot get access to the trained global
model in the centralized framework, while parties do not
collaborate in the standalone framework. Table 3 and Table 4

TABLE 4: Fairness of distributed framework and our FPPDL
over SVHN dataset, with different model architectures, dif-
ferent party numbers (P-k) and different settings.

Setting 2 Setting 3
Distributed FPPDL Distributed FPPDL

CNN MLP CNN MLP CNN MLP CNN MLP
P4 0.27 0.26 0.78 0.76 0.28 0.20 0.97 0.93
P15 0.16 0.19 0.77 0.71 -0.13 0.16 0.87 0.88
P30 -0.14 0.12 0.68 0.65 -0.15 -0.27 0.67 0.78
P50 -0.25 -0.37 0.67 0.66 -0.23 0.15 0.65 0.69

list the calculated fairness of the distributed framework and
our FPPDL over MNIST and SVHN datasets, with different
architectures, different party numbers and different settings,
as detailed in Section 6.3. In particular, we omit the results
for setting 1 with the same sharing level and same data size,
as fairness is a less concerned problem in this setting. All the
fairness results for setting 2 and setting 3 are averaged over
five trails to reduce the impact of different initialization in
each trail.

As is evidenced by the high positive values of fairness,
with most of them above 0.5, FPPDL achieves reasonably
good fairness, confirming the intuition behind fairness: the
party who is less private and has more training data delivers
higher accuracy. In contrast, the distributed framework ex-
hibits bad fairness with significantly lower values than that
of FPPDL in all cases, and even negative values in some
cases, manifesting the lack of fairness in the distributed
framework. This is because in the distributed framework,
all the participating parties can derive similarly well models,
no matter how much one party contributes.

System-level Convergence. For accuracy comparison,
following [11], we report the best accuracy when running
the distributed framework using DSSGD and our FPPDL on
MNIST dataset. For DSSGD, we adopted round robin pro-
tocol, and set the upload rate as 0.1 (θu = 0.1) [11], which is
equivalent to our Setting 1, we omit the learning curves of
DSSGD in Setting 2 and Setting 3 as they approximate the
learning curve in Setting 1. Fig. 6 and Fig. 7 present the
accuracy trajectories when running different frameworks
over MNIST with MLP and CNN architectures. The x-axis
corresponds to epochs (communication rounds) (1 round=1
epoch, when the number of local epochs E = 1), and y
axis corresponds to the maximum accuracy achieved by all
parties in each round, hence the curve of our FPPDL is
not necessarily associated with a particular party, but it is
expected that the highest accuracy is achieved by the most
contributive party in our FPPDL, as demonstrated by the
individual convergence in Fig. 9, Fig. 10 and Fig. 11.

Note that the convergences of the standalone framework
in Setting 1 and Setting 2 are the same, as these two
settings share the same data shard. It can be observed that
FPPDL did not change the overall behavior of convergence
in all settings, while achieving comparable accuracy to the
non-private frameworks, and delivering both fairness and
privacy. We notice that our FPPDL achieves slightly slower
convergence rate and more fluctuations (especially in early
stages of convergence) compared to the distributed frame-
work, this is partly attributed to the individual training of 10
epochs before collaborative learning starts, as we found that
collaboration from the state of 10 epochs of local training

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

0 20 40 60 80 100
Epochs (Communication Rounds)

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

MNIST, MLP, n=4

FPPDL(Setting 1)
FPPDL(Setting 2)
FPPDL(Setting 3)
DSSGD(round robin, u=0.1)
Standalone(Setting 1 and 2)
Standalone(Setting 3)
Centralized

0 20 40 60 80 100
Epochs (Communication Rounds)

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

MNIST, MLP, n=15

FPPDL(Setting 1)
FPPDL(Setting 2)
FPPDL(Setting 3)
DSSGD(round robin, u=0.1)
Standalone(Setting 1 and 2)
Standalone(Setting 3)
Centralized

0 20 40 60 80 100
Epochs (Communication Rounds)

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

MNIST, MLP, n=30

FPPDL(Setting 1)
FPPDL(Setting 2)
FPPDL(Setting 3)
DSSGD(round robin, u=0.1)
Standalone(Setting 1 and 2)
Standalone(Setting 3)
Centralized

0 20 40 60 80 100
Epochs (Communication Rounds)

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

MNIST, MLP, n=50

FPPDL(Setting 1)
FPPDL(Setting 2)
FPPDL(Setting 3)
DSSGD(round robin, u=0.1)
Standalone(Setting 1 and 2)
Standalone(Setting 3)
Centralized

Fig. 6: System convergence for MNIST MLP. Collaboration involves different number of parties in {4, 15, 30, 50}.

0 20 40 60 80 100
Epochs (Communication Rounds)

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

MNIST, CNN, n=4

FPPDL(Setting 1)
FPPDL(Setting 2)
FPPDL(Setting 3)
DSSGD(round robin, u=0.1)
Standalone(Setting 1 and 2)
Standalone(Setting 3)
Centralized

0 20 40 60 80 100
Epochs (Communication Rounds)

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy
MNIST, CNN, n=15

FPPDL(Setting 1)
FPPDL(Setting 2)
FPPDL(Setting 3)
DSSGD(round robin, u=0.1)
Standalone(Setting 1 and 2)
Standalone(Setting 3)
Centralized

0 20 40 60 80 100
Epochs (Communication Rounds)

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

MNIST, CNN, n=30

FPPDL(Setting 1)
FPPDL(Setting 2)
FPPDL(Setting 3)
DSSGD(round robin, u=0.1)
Standalone(Setting 1 and 2)
Standalone(Setting 3)
Centralized

0 20 40 60 80 100
Epochs (Communication Rounds)

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

MNIST, CNN, n=50

FPPDL(Setting 1)
FPPDL(Setting 2)
FPPDL(Setting 3)
DSSGD(round robin, u=0.1)
Standalone(Setting 1 and 2)
Standalone(Setting 3)
Centralized

Fig. 7: System convergence for MNIST CNN. Collaboration involves different number of parties in {4, 15, 30, 50}.

results in better fairness than the collaboration from the
beginning.

Another important reason is that to strike a good balance
between computational efficiency, communication cost and
convergence rate, we enforce parties to share their local
model updates after each epoch of local training (E = 1),
where the shared gradients is the average of the gradients
over the whole local training data, rather than a single exam-
ple, a mini-batch or multiple local epochs, which may also
affect convergence. We hypothesise that the convergence
rate is also closely related with our chosen hyperparameters
B = 1, E = 1, lr = 0.001 (E: number of local training
epochs in each communication round;B: local batch size; lr:
local learning rate). Better convergence can be achieved by
varying the amount of local computation per communica-
tion round, local batch size or the learning rate, as indicated
in Fig. 8 and Fig. 11 by using B=10, E=5, lr=0.15.

Individual Convergence. To investigate the impact of
our FPPDL on individual convergence, Fig. 9 and Fig. 10
further depict the accuracy trajectory of each party when
running Standalone framework and our FPPDL with CNN
architecture over MNIST across 100 communication rounds.
For the sake of brevity, we only report experimental re-
sults obtained for the collaboration among 4 parties and
15 parties in Setting 2 and Setting 3. It can be observed
that our FPPDL consistently delivers better accuracy than
any standalone model obtained by any individual party,
at the cost of slower convergence and more fluctuation.
However, most parties can converge within the first 20
rounds, except those with lower standalone accuracy. For
example, in Figure 10 (d), party 4 and party 9 encounter
higher fluctuations compared with the other parties with
higher standalone accuracy. More importantly, these figures
confirm that our FPPDL enforces all parties to converge
to different local models, which are better than their stan-

dalone models without any collaboration, thereby offering
fairness as claimed.

To speed up convergence and alleviate fluctuations, we
further experiment with larger number of local epochs,
larger local batch size, and higher learning rate. As corrob-
orated by Fig. 11, by setting B = 10, E = 5, lr = 0.15, each
party can converge faster, without affecting both accuracy
and fairness. For example, for P15 in Figure 10 (d), it
needs 65 communication rounds for all parties to converge
using B = 1, E = 1, lr = 0.001, while it only needs 50
communication rounds using B = 10, E = 5, lr = 0.15
in Figure 11 (d). However, this faster convergence and less
fluctuations come at the cost of local computation at each
party.

Table 5 provides the accuracy results we obtain
when running different frameworks on MNIST dataset of
{4,15,30,50} parties for different neural network architec-
tures. For all frameworks, we report the best accuracy the
system can achieve across all rounds. In particular, in our
FPPDL, fairness enables each party to get a different local
model after collaborative learning, and we expect that the
most contributive party derives a local model with maxi-
mum accuracy approximating the non-private centralized
and distributed frameworks. Similarly, Table 6 provides the
accuracy on SVHN dataset. For both MNIST and SVHN
datasets using CNN and MLP architectures, we show the
worst accuracy for standalone SGD (minimum utility, max-
imum privacy). In particular, FPPDL obtains comparable
accuracy (less than 2%) to both the centralized framework
and the distributed framework using DSSGD without dif-
ferential privacy, and consistently achieves higher accuracy
than the standalone SGD. For example, as shown in Table 5,
for MNIST dataset of 50 parties with CNN model, our FP-
PDL achieves 98.07%-98.22% test accuracy under different
settings, which is higher than the standalone SGD 94.05%,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

MNIST, MLP, Setting 2

FPPDL(p4)
FPPDL(p15)
FPPDL(p30)
FPPDL(p50)

(a) FPPDL Setting 2 (MLP)

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

MNIST, CNN, Setting 2

FPPDL(p4)
FPPDL(p15)
FPPDL(p30)
FPPDL(p50)

(b) FPPDL Setting 2 (CNN)

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

MNIST, MLP, Setting 3

FPPDL(p4)
FPPDL(p15)
FPPDL(p30)
FPPDL(p50)

(c) FPPDL Setting 3 (MLP)

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

MNIST, CNN, Setting 3

FPPDL(p4)
FPPDL(p15)
FPPDL(p30)
FPPDL(p50)

(d) FPPDL Setting 3 (CNN)

Fig. 8: System convergence for MNIST MLP and CNN using our FPPDL in Setting 2 and Setting 3 (B=10, E=5, lr=0.15).

0 20 40 60 80 100
Epoch

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

A
cc

u
ra

cy

party1
party2
party3
party4

(a) Standalone Setting 2

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

party1
party2
party3
party4

(b) FPPDL Setting 2

0 20 40 60 80 100
Epoch

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

A
cc

u
ra

cy

party1
party2
party3
party4

(c) Standalone Setting 3

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

party1
party2
party3
party4

(d) FPPDL Setting 3

Fig. 9: Individual convergence for MNIST CNN using Standalone framework and our FPPDL (P4, B=1, E=1, lr=0.001).

0 20 40 60 80 100
Epoch

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

A
cc

u
ra

cy

party1
party2
party3
party4
party5
party6
party7
party8
party9
party10
party11
party12
party13
party14
party15

(a) Standalone Setting 2

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

party1
party2
party3
party4
party5
party6
party7
party8
party9
party10
party11
party12
party13
party14
party15

(b) FPPDL Setting 2

0 20 40 60 80 100
Epoch

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

A
cc

u
ra

cy

party1
party2
party3
party4
party5
party6
party7
party8
party9
party10
party11
party12
party13
party14
party15

(c) Standalone Setting 3

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

party1
party2
party3
party4
party5
party6
party7
party8
party9
party10
party11
party12
party13
party14
party15

(d) FPPDL Setting 3

Fig. 10: Individual convergence for MNIST CNN using Standalone framework and our FPPDL (P15, B=1, E=1, lr=0.001).

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

party1
party2
party3
party4

(a) FPPDL Setting 2 (P4)

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

party1
party2
party3
party4

(b) FPPDL Setting 3 (P4)

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

party1
party2
party3
party4
party5
party6
party7
party8
party9
party10
party11
party12
party13
party14
party15

(c) FPPDL Setting 2 (P15)

0 20 40 60 80 100
Communication Rounds

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

T
e
st

 A
cc

u
ra

cy

party1
party2
party3
party4
party5
party6
party7
party8
party9
party10
party11
party12
party13
party14
party15

(d) FPPDL Setting 3 (P15)

Fig. 11: Individual convergence for MNIST CNN using our FPPDL in P4 and P15 (B=10, E=5, lr=0.15).

and comparable to 98.83% of the distributed framework
using DSSGD without differential privacy, and 98.58% of
the centralized framework.

The above fairness results in Table 3 and Table 4, and
accuracy results in Table 5 and Table 6 demonstrate that our

proposed framework FPPDL achieves reasonable fairness,
at the expense of a tiny decrease in model utility.

Moreover, to investigate how fairness and accuracy
change with the local credibility threshold cth, we imple-
ment a four-party scenario (P4) under both normal settings

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

TABLE 5: MNIST accuracy [%] after 100 communication rounds, achieved by Centralized, Standalone, Distributed (DSSGD
without DP, round robin, θu = 10%) and FPPDL (three settings as described in Section 6.3) frameworks using MLP and
CNN architectures. P-k indicates there are k parties in the experiments.

Framework MLP CNN
P4 P15 P30 P50 P4 P15 P30 P50

Centralized 91.68 95.17 96.28 96.85 96.58 98.19 98.52 98.58
Distributed 91.67 95.17 96.33 97.35 96.25 98.04 98.63 98.83
Standalone (Setting 1&2) 87.39 88.06 88.64 88.80 93.81 93.46 94.04 94.05
Standalone (Setting 3) 89.61 88.83 89.57 89.52 94.42 95.44 95.11 95.45
FPPDL (Setting 1) 90.13 94.42 94.88 95.57 95.93 97.19 97.62 98.07
FPPDL (Setting 2) 91.92 95.70 95.94 96.23 95.50 97.34 97.84 98.14
FPPDL (Setting 3) 90.75 94.37 94.75 95.21 95.23 97.50 97.82 98.22

TABLE 6: SVHN accuracy [%] after 100 communication rounds, achieved by Centralized, Standalone, Distributed (DSSGD
without DP, round robin, θu = 10%) and FPPDL (three settings as described in Section 6.3) frameworks using MLP and
CNN architectures.

Framework MLP CNN
P4 P15 P30 P50 P4 P15 P30 P50

Centralized 75.40 83.08 85.77 87.15 90.50 91.88 93.42 95.44
Distributed 78.34 85.49 87.64 89.21 91.78 93.03 95.75 96.19
Standalone (Setting 1&2) 57.85 58.77 57.90 59.18 80.24 80.74 81.29 81.60
Standalone (Setting 3) 59.05 59.13 60.09 60.22 81.57 81.92 82.06 82.31
FPPDL (Setting 1) 73.74 82.55 84.86 86.51 90.07 91.18 92.74 94.83
FPPDL (Setting 2) 74.16 82.67 85.25 86.57 89.91 91.15 92.59 95.18
FPPDL (Setting 3) 74.57 82.95 85.37 86.34 89.53 91.03 93.13 94.89

(Setting 2 and Setting 3 in Section 6.3) and malicious setting
(1 malicious party as indicated in Section 7). As shown in
Fig. 12, both fairness and accuracy can keep relatively high
values when cth is within [13 ∗

1
|C|−1 ,

2
3 ∗

1
|C|−1]. In contrast,

too small cth < 1
3 ∗

1
|C|−1 allows even the malicious party

to sneak into the collaborative learning system without
being detected and isolated, resulting in lower fairness, as
manifested by the last figure of Fig. 12. On the contrary,
too large cth might isolate most participants in the system.
For example, cth = 1

|C|−1 will terminate the system within
the first 5 rounds during the second stage of collaborative
learning, resulting in both lower fairness and accuracy; and
cth = min{ 2

|C|−1 , 1} will terminate the system after the first
stage, and second stage of collaborative learning will never
start, thus there is no collaborative fairness. These results
validate our hypothesis in Section 5.1.1 and provide empir-
ical support on our chosen cth = 1

|C|−1 ∗
2
3 in Section 6.3.

Complexity Analysis. The main communication cost
occurs when each party sends its encrypted gradients to the
other (n − 1) parties, resulting in (n − 1) ∗ L ciphertexts,
where n and L are the number of parties and the size of
the released gradients (the encrypted symmetric key size is
negligible compared with the encrypted gradients). There-
fore, our framework is applicable to practical applications to
businesses [37], such as biomedical or financial institutions
where the number of parties is limited. On the other hand,
the main computation cost occurs at each party who needs
to train a local DPGAN during initial benchmarking, com-
pute local gradients, and conduct three-layer onion-style
encryption during collaborative deep learning. However, all
parties can individually train their DPGAN models offline
before collaborative deep learning starts, and all parties
can individually train local models in parallel, hence deep
learning computation cost is not an obstacle for those parties
with enough computational power. Moreover, our encryp-
tion scheme using stream ciphers and hybrid encryption is

relatively efficient, because encrypting a short plaintext (i.e.,
the symmetric key) requires only one asymmetric opera-
tion, while encrypting a longer message (released gradients)
would in theory require many asymmetric operations.

7 DISCUSSIONS

Data Augmentation and Collaboration. To facilitate credi-
bility initialization, we apply data augmentation to expand
local data size to help DPGAN generate reliable samples
within a moderate privacy budget. However, data aug-
mentation is intended to increase the amount of training
data using information inherent in local training data, and
thus improve the generalizability of local model, while not
helpful for generalizing to unseen data. In other words, it
cannot represent global distribution, and this explains why
parties still need collaboration for better utility even after
data augmentation. By using DPGAN, it not only preserves
privacy of the original data, but also preserves privacy of
the augmented data that are similar to the original data.

Fairness and Privacy. With three-layer onion-style en-
cryption, privacy is better preserved without compromising
utility. We ensure fairness from two ways: (i) during initial
benchmarking, parties generate DPGAN samples based on
their local training data, which are then evaluated by other
parties’ standalone models to mutually initialize the local
credibilities of other parties; and (ii) during collaborative
learning process, each party randomly selects and shares
a subset of DPGAN samples as per individual sharing
level at each round of communication, then updates the
local credibility values for other parties who evaluate the
received DPGAN samples using their local models at cur-
rent round. Therefore, local credibility of each party keeps
changing, reflecting more accurate relative contribution and
thus possessing better fairness. Differentially private train-
ing of deep models provides another alternative solution
by releasing gradients after each epoch or several epochs of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 16

system terminates
within first 5 epochs
at 2nd stage system terminates at

the 1st stage, 2nd
stage will not start!

system terminates at
the 1st stage, 2nd
stage will not start!

Fig. 12: How cth affects fairness and accuracy in normal and malicious settings. First two figures correspond to setting 2
with sharing level of [0.01, 0.1, 0.25, 0.35] and [0.1, 0.2, 0.3, 0.4], and setting 3 with data shard of [437, 980, 150, 833] among
four honest parties. The last figure simulates setting 3 with data shard of [437, 980, 150, 833]) among four honest parties
and one more malicious party indicated in Section 7.

.

local training, thus enabling each party to verify the claims
of other parties and update their local credibility values
as per the received gradients during collaborative learning
process. One obstacle is that differentially private models
may significantly reduce utility for small ε values.

Attacker Prevention. Although the capability of detect-
ing and isolating malicious parties is not the main focus of
this paper, we next discuss how our design can help prevent
certain behaviours of inside attacker, and resist the outside
attacker as a by-product of FPPDL.

For an inside attacker who is a participant in the decen-
tralized system, we specially consider an interesting case:
a free-rider without any data, and we remark that this free-
rider belongs to the category of low-contribution party. Dur-
ing initialization, this free-rider may choose to send the fake
information to other parties. For example, it may randomly
sample from 10 classes as predicted labels for the received
DPGAN samples, then release them to the corresponding
party who publishes these DPGAN samples and requests
labels. When the publisher receives the returned random
labels from the free-rider and detects that most of them
are not aligned with the majority voting, i.e., mj

ui
� cth,

then the free-rider will be reported as a “low-contribution”
party. If the majority of parties report the free-rider as “low-
contribution”, then the Blockchain rules out the free-rider
from the credible party set, and all parties would terminate
the collaboration with the free-rider. In this way, such a
malicious party is isolated from the beginning, while the col-
laboration among the remaining parties will not be affected.
Even though the free-rider might succeed in initialization
somehow, its local credibility would be significantly lower
compared with the other honest parties.

To further detect and isolate this malicious party dur-
ing the collaborative learning process, we repeat mutual
evaluation at each round of collaborative learning by using
samples generated at the initialization phase, i.e., each party
randomly selects and shares a subset of DPGAN samples as
per individual sharing level in each round of collaborative
learning, then updates the local credibility values of other
parties by comparing the majority labels with the received
labels output by the local models of other parties in current
round of training. Hence, the chance of the survival of the

malicious party is significantly reduced, thus it will not
dominate the whole system. Note that the lower bound
of the acceptable credibility threshold can be agreed by
the system requirement. For the outsider attacker like the
eavesdropper who aims to steal the exchanged information
by eavesdropping on the communication channels among
parties, differential privacy used in the first stage and three-
layer onion-style encryption applied in the second stage
inherently prevent the success of this attack.

We recognize that our current design may not be resis-
tant to all the malicious parties who can arbitrarily deviate
from the protocol, sending incorrect and/or arbitrarily cho-
sen messages to honest parties, aborting, omitting messages,
and sharing their entire view of the protocol with each other.
For example, a malicious party who aims to compromise
other parties’ local model integrity (prevent other parties
from learning reasonable models) may adaptively or alter-
natively adjust its behaviour by behaving normally during
releasing DPGAN samples to avoid being detected and
kicked out, while poisoning the second stage by sending
random local gradients or local gradients with the embed-
ded backdoor behavior to the requester. However, in this
case, this malicious party is unlikely to obtain a reasonable
local model or steal any party’s personal information.

Moreover, to prevent the success of the poisoning at-
tack, one potential solution is to let each party repeat local
prediction process on its hold-out validation set by using
individually aggregated gradients. Each party will release a
signal to indicate whether its aggregated gradients can give
a reasonable accuracy result, or help improve prediction on
local validation set, if majority party report local validation
accuracy lower than a threshold, or negative gain on local
validation accuracy, then the system terminates to avoid
being further poisoned. We leave this open problem to
our future work, and our current design is mainly for the
business applications, where parties act with legal liabilities.

8 CONCLUSIONS AND FUTURE WORK

This paper proposes FPPDL, a decentralized privacy-
preserving deep learning framework with fairness consid-
erations. Our enhanced framework shows the following

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 17

properties: (1) it inherently resolves the relevant issues in the
server-based frameworks, and investigates Blockchain for
decentralization; (2) it makes the first investigation on the
research problem of collaborative fairness in deep learning,
by introducing a notion of local credibility and transac-
tion points, which are initialized by initial benchmarking,
and updated during privacy-preserving collaborative deep
learning; (3) it combines Differentially Private GAN (DPGAN)
and a three-layer onion-style encryption scheme to guar-
antee both accuracy and privacy; (4) it provides a viable
solution to detect and reduce the impact of low-contribution
parties in the system. The experimental results demonstrate
that our FPPDL achieves comparable accuracy to both the
centralized and distributed selective SGD framework with-
out differential privacy, and always delivers better results
than the standalone framework, confirming the applicability
of our proposed framework.

A number of avenues for further work are attractive.
In particular, we would like to study how to quantify
fairness in Non-IID setting, and investigate more malicious
behaviours and byzantine or sybil adversary in the decen-
tralized system. We also expect to deploy our system into a
wide spectrum of real-world applications.

ACKNOWLEDGMENTS

This work is supported, in part, by IBM PhD Fellowship;
ANU Translational Fellowship; Nanyang Assistant Profes-
sorship (NAP); and NTU-WeBank JRI (NWJ-2019-007). The
authors would like to thank Prof. Benjamin Rubinstein, Dr.
Kumar Bhaskaran, and Prof. Marimuthu Palaniswami for
their insightful discussions. This research was undertaken
using the LIEF HPC-GPGPU Facility hosted at the Univer-
sity of Melbourne. This Facility was established with the
assistance of LIEF Grant LE170100200.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems, 2012, pp. 1097–1105.

[2] Y. Wang, W. Liu, X. Ma, J. Bailey, H. Zha, L. Song, and S.-T.
Xia, “Iterative learning with open-set noisy labels,” arXiv preprint
arXiv:1804.00092, 2018.

[3] X. Ma, Y. Wang, M. E. Houle, S. Zhou, S. M. Erfani, S.-T. Xia,
S. Wijewickrema, and J. Bailey, “Dimensionality-driven learning
with noisy labels,” arXiv preprint arXiv:1806.02612, 2018.

[4] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Federated
Learning. Morgan & Claypool Publishers, 2019.

[5] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Fed-
erated learning of deep networks using model averaging,” arXiv
preprint arXiv:1602.05629, 2016.

[6] R. Cummings, V. Gupta, D. Kimpara, and J. Morgenstern, “On the
compatibility of privacy and fairness,” 2019.

[7] M. Jagielski, M. Kearns, J. Mao, A. Oprea, A. Roth, S. Sharifi-
Malvajerdi, and J. Ullman, “Differentially private fair learning,”
arXiv preprint arXiv:1812.02696, 2018.

[8] H. Yu, Z. Liu, Y. Liu, T. Chen, M. Cong, X. Weng, D. Niyato,
and Q. Yang, “A fairness-aware incentive scheme for federated
learning,” in Proceedings of the 3rd AAAI/ACM Conference on AI,
Ethics, and Society (AIES-20), 2020, pp. 393–399.

[9] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed
deep networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1223–1231.

[10] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized
stochastic gradient descent,” in Advances in neural information
processing systems, 2010, pp. 2595–2603.

[11] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1310–1321.

[12] L.-M. T-T Kuo, C-N Hsu, “Modelchain: Decentralized privacy-
preserving healthcare predictive modeling framework on private
blockchain networks,” in ONC/NIST Blockchain in Healthcare and
Research Workshop, Gaithersburg, MD, September 26-7, 2016.

[13] X. Chen, J. Ji, C. Luo, W. Liao, and P. Li, “When machine learning
meets blockchain: A decentralized, privacy-preserving and secure
design,” in 2018 IEEE International Conference on Big Data (Big
Data). IEEE, 2018, pp. 1178–1187.

[14] H. Kim, S.-H. Kim, J. Y. Hwang, and C. Seo, “Efficient privacy-
preserving machine learning for blockchain network,” IEEE Ac-
cess, vol. 7, pp. 136 481–136 495, 2019.

[15] X. Zhu, H. Li, and Y. Yu, “Blockchain-based privacy preserving
deep learning,” in International Conference on Information Security
and Cryptology. Springer, 2018, pp. 370–383.

[16] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo,
“Deepchain: Auditable and privacy-preserving deep learning with
blockchain-based incentive,” IEEE Transactions on Dependable and
Secure Computing, 2019.

[17] T.-T. Kuo, R. A. Gabriel, and L. Ohno-Machado, “Fair compute
loads enabled by blockchain: sharing models by alternating client
and server roles,” Journal of the American Medical Informatics Asso-
ciation, vol. 26, no. 5, pp. 392–403, 2019.

[18] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying neural networks to en-
crypted data with high throughput and accuracy,” in International
Conference on Machine Learning, 2016, pp. 201–210.

[19] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learn-
ing on trusted processors.” in USENIX Security Symposium, 2016,
pp. 619–636.

[20] P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in Security and Privacy (SP),
2017 IEEE Symposium on. IEEE, 2017, pp. 19–38.

[21] L. Lyu, X. He, Y. W. Law, and M. Palaniswami, “Privacy-
preserving collaborative deep learning with application to human
activity recognition,” in Proceedings of the 2017 ACM Conference on
Information and Knowledge Management. ACM, 2017, pp. 1219–
1228.

[22] L. Lyu, J. C. Bezdek, X. He, and J. Jin, “Fog-embedded deep
learning for the internet of things,” IEEE Transactions on Industrial
Informatics, 2019.

[23] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving
deep learning via additively homomorphic encryption,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 5, pp.
1333–1345, 2018.

[24] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggre-
gation for privacy-preserving machine learning,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 1175–1191.

[25] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private recurrent language models,” arXiv preprint
arXiv:1710.06963, 2018.

[26] S. Yang, F. Wu, S. Tang, X. Gao, B. Yang, and G. Chen, “On
designing data quality-aware truth estimation and surplus sharing
method for mobile crowdsensing,” IEEE Journal on Selected Areas
in Communications, vol. 35, no. 4, pp. 832–847, 2017.

[27] S. Gollapudi, K. Kollias, D. Panigrahi, and V. Pliatsika, “Profit
sharing and efficiency in utility games,” in ESA, 2017, pp. 1–16.

[28] A. Richardson, A. Filos-Ratsikas, and B. Faltings, “Rewarding
high-quality data via influence functions,” in CoRR, 2019, p.
arXiv:1908.11598.

[29] C. Dwork and A. Roth, “The algorithmic foundations of differ-
ential privacy,” Foundations and Trends R© in Theoretical Computer
Science, vol. 9, no. 3–4, pp. 211–407, 2014.

[30] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 308–318.

[31] C. Gentry and D. Boneh, A fully homomorphic encryption scheme.
Stanford University Stanford, 2009, vol. 20, no. 09.

[32] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in Annual
Cryptology Conference. Springer, 2012, pp. 643–662.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 18

[33] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-
Plasencia, P. Paillier, and R. Sirdey, “Stream ciphers: A practical
solution for efficient homomorphic-ciphertext compression,” Jour-
nal of Cryptology, vol. 31, no. 3, pp. 885–916, 2018.

[34] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[35] C. Natoli, J. Yu, V. Gramoli, and P. J. E. Verı́ssimo, “Deconstructing
blockchains: A comprehensive survey on consensus, membership
and structure,” CoRR, vol. abs/1908.08316, 2019.

[36] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan,
“A survey on bias and fairness in machine learning,” in CoRR,
2019, p. arXiv:1908.09635.

[37] L. Lyu, H. Yu, and Q. Yang, “Threats to federated learning: A
survey,” arXiv preprint arXiv:2003.02133, 2020.

[38] X. Zhang, S. Ji, and T. Wang, “Differentially private releasing via
deep generative model,” arXiv preprint arXiv:1801.01594, 2018.

[39] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Tal-
war, “Semi-supervised knowledge transfer for deep learning from
private training data,” arXiv preprint arXiv:1610.05755, 2016.

[40] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[41] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation
of encrypted data in wireless sensor networks,” in Second Annual
International Conference on Mobile and Ubiquitous Systems: Network-
ing and Services, 2005. IEEE, 2005, pp. 109–117.

[42] L. Lyu, K. Nandakumar, B. Rubinstein, J. Jin, J. Bedo, and
M. Palaniswami, “PPFA: Privacy preserving fog-enabled aggre-
gation in smart grid,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 8, pp. 3733–3744, 2018.

[43] C. De Canniere and B. Preneel, “Trivium,” in New Stream Cipher
Designs. Springer, 2008, pp. 244–266.

[44] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer,
“Openpgp message format,” Tech. Rep., 2007.

Lingjuan Lyu (IEEE M’18) is currently a Re-
search Fellow with The Department of Computer
Science, National University of Singapore. She
received Ph.D. degree from the University of
Melbourne. Her current research interests span
machine learning, privacy, fairness, and edge
intelligence. Her work was supported by an IBM
Ph.D. Fellowship.

Jiangshan Yu received the Ph.D. degree from
the University of Birmingham (UK) in 2016.
He is currently Associate Director (Research)
at Monash Blockchain Technology Centre at
Monash University, Australia. Previously, he was
a research associate at SnT, University of
Luxembourg (LU). The focus of his research
has been on design and analysis of crypto-
graphic protocols, cryptographic key manage-
ment, blockchain consensus, and ledger-based
applications. In particular, Jiangshan’s recent re-

search challenges the soundness of the foundational security mod-
els and design principles of existing blockchain systems, where the
blockchain ecosystem of hundreds of billions of dollars is based upon.
He won numerous prestigious awards, including Dean’s Research Im-
pact Award (2019) and the Chinese Government Award for Outstanding
Scholar Abroad (1% worldwide, 2016).

Karthik Nandakumar (IEEE SM’02) is a Re-
search Staff Member at IBM Research, Sin-
gapore. Prior to joining IBM in 2014, he was
a Scientist at Institute for Infocomm Research,
A*STAR, Singapore for more than six years. He
received his B.E. degree (2002) from Anna Uni-
versity, Chennai, India, M.S. degrees in Com-
puter Science (2005) and Statistics (2007), and
Ph.D. degree in Computer Science (2008) from
Michigan State University, and M.Sc. degree in
Management of Technology (2012) from Na-

tional University of Singapore. His research interests include computer
vision, statistical pattern recognition, biometric authentication, image
processing, machine learning and blockchain.

Yitong Li is currently a Ph.D student in School
of Computing and Information Systems, the Uni-
versity of Melbourne. He received B.S. degree
from Shanghai Jiao Tong University. His re-
search interests cover privacy and adversarial
learning with NLP applications. He has publica-
tions in ACL, EMNLP, NAACL, etc.

Xingjun Ma is currently a Research Fellow of the
University of Melbourne. He received Ph.D. de-
gree from the University of Melbourne, and M.E.
degree from Tsinghua University. His research
interests cover adversarial machine learning and
robust supervised/weakly-supervised learning.
He has publications in ICML, ICLR, CVPR, IJ-
CAI, AAAI, ICCV, etc.

Jiong Jin (IEEE M’11) received the B.E. de-
gree with First Class Honours in Computer Engi-
neering from Nanyang Technological University,
Singapore, in 2006, and the Ph.D. degree in
Electrical and Electronic Engineering (EEE) from
the University of Melbourne, Australia, in 2011.
From 2011 to 2013, he was a Research Fellow in
the Department of EEE at the University of Mel-
bourne. He is currently a Senior Lecturer in the
School of Software and Electrical Engineering,
Faculty of Science, Engineering and Technology,

Swinburne University of Technology, Melbourne, Australia. His research
interests include network design and optimization, edge computing
and distributed systems, robotics and automation, and cyber-physical
systems and Internet of Things as well as their applications in smart
manufacturing, smart transportation and smart cities.

Han Yu received his B.Eng. (Hons) degree and
Ph.D. degree from the School of Computer
Science and Engineering (SCSE), Nanyang
Technological University (NTU), Singapore in
2007 and 2014, respectively. He is currently a
Nanyang Assistant Professor (NAP) at SCSE,
NTU. From 2015 to 2018, he held the prestigious
Lee Kuan Yew Post-Doctoral Fellowship (LKY
PDF) at the Joint NTU-UBC Research Centre of
Excellence in Active Living for the Elderly (LILY).
His research focuses on the ethics of artificial

intelligence and federated learning. He co-authored the book “Federated
Learning” - the first monograph on the topic of federated learning.

Kee Siong Ng is an Associate Professor in
the newly formed Software Innovation Institute
at the Australian National University (ANU),
and one of the first two Translational Fellows
appointed through ANU’s Entrepreneurial Aca-
demic Scheme. He received his PhD degree
from the ANU and has more than 15 years of
experience in industry and government.

	1 Introduction
	2 Related Work
	2.1 Overview of Deep Learning Frameworks
	2.2 Privacy Preserving Collaborative Learning
	2.3 Fairness in Federated Learning

	3 Preliminaries
	3.1 Differential Privacy
	3.2 Homomorphic Encryption
	3.3 Blockchain

	4 The FPPDL Framework
	4.1 Design Objectives
	4.1.1 Privacy Preservation
	4.1.2 Fairness

	4.2 Blockchain-based Architecture

	5 Implementation of FPPDL
	5.1 Initial Benchmarking
	5.1.1 Local Credibility Initialization
	5.1.2 Sharing Level and Points Initialization
	5.1.3 Differentially Private GAN (DPGAN)

	5.2 Privacy-Preserving Collaborative Deep Learning
	5.2.1 Parameter Update with Homomorphic Encryption
	5.2.2 Three-layer Onion-style Encryption
	5.2.3 Local Credibility Update

	5.3 Quantification of Fairness

	6 Experimental Evaluation
	6.1 Datasets
	6.2 Baselines
	6.3 Experiment Setup
	6.4 Experimental Results

	7 Discussions
	8 Conclusions and Future Work
	References
	Biographies
	Lingjuan Lyu
	Jiangshan Yu
	Karthik Nandakumar
	Yitong Li
	Xingjun Ma
	Jiong Jin
	Han Yu
	Kee Siong Ng

