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Abstract—We study job assignment in large, heterogeneous resource-sharing clusters of servers with finite buffers. This load
balancing problem arises naturally in today’s communication and big data systems, such as Amazon Web Services, Network Service
Function Chains, and Stream Processing. Arriving jobs are dispatched to a server, following a load balancing policy that optimizes a
performance criterion such as job completion time. Our contribution is a randomized Cost-Based Scheduling (CBS) policy in which the
job assignment is driven by general cost functions of the server queue lengths. Beyond existing schemes, such as the Join the
Shortest Queue (JSQ), the power of d or the SQ(d) and the capacity-weighted JSQ, the notion of CBS yields new application-specific
policies such as hybrid locally uniform JSQ.

As today’s data center clusters have thousands of servers, exact analysis of CBS policies is tedious. In this work, we derive a scaling
limit when the number of servers grows large, facilitating a comparison of various CBS policies with respect to their transient as well as

steady state behavior. A byproduct of our derivations is the relationship between the queue filling proportions and the server buffer
sizes, which cannot be obtained from infinite buffer models. Finally, we provide extensive numerical evaluations and discuss several

applications including multi-stage systems.

Index Terms—Job Scheduling, performance evaluation, mean-field limit.

1 INTRODUCTION

OAD balancing techniques are indispensable for work-

load distribution in data center clusters as they promise
performance boosts such as a decrease in the average job
response times [1]. Prominent examples include cloud scale
load balancing [2], geographical data center load balancing
to reduce energy costs [3] and Equal-cost Multi-path routing
(ECMP). Randomized load balancing techniques based on
the JSQ principle have shown remarkable performance in
terms of average delay without the need to monitor the
queue lengths of all cluster servers [4].

The randomized load balancing' set-up in a standard
supermarket model can be described as follows: There are
M possibly heterogeneous clusters of servers. We consider
a stream of jobs arriving at a dispatcher. The dispatcher
then routes each job to a single server in one of M clusters
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based on measured queue lengths from a randomly selected
sample of servers in each of the M clusters. A simple
example of such a load balancing policy is the randomized
version of the classical JSQ, which instructs the dispatcher to
inspect the queue lengths of a uniformly at random sample
of size d of servers and then dispatch the job to the server
with the shortest queue.

The main limitation of the state-of-the-art models of such
randomized load balancing policies is that they are tied
to the JSQ or variants thereof [5] that are, for example,
weighted by the cluster mean service rate. However, different
application semantics impose different costs that describe the
affinity or preference of the application towards different queue
lengths. For example, a database application, that achieves a
processing speedup by combining multiple jobs, i.e., when
a certain buffer filling is given, is not well modeled through
a plain JSQ [6]. Further, applications that run secondary
servers to absorb peak loads also pose a difficult modeling
task if restricted to a plain JSQ. Note that the term costs
in the second example, although being used in this paper
more generally, can be mapped directly to monetary costs
in distributed computing infrastructures such as Amazon’s
AWS [7].

Our goal in this paper is to provide a model that cap-
tures many classes of Cost-Based Scheduling (CBS) policies.
We provide several examples of CBS policies in Section 3.
Given that today’s cluster systems have tens of thousands
of servers [8] with a steady growth in the number of servers,
we note that standard techniques to calculate performance
metrics based on individual queue lengths are tedious, if not
impractical. Further, we consider the practical case of finite
buffer systems in contrast to recent approaches focusing on
idealized infinite buffer systems such as [5]. It was shown
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in a recent paper [9] that the queue system’s behavior is
fundamentally different when finite buffers are considered.
In a similar vein, we demonstrate that finite buffer lengths
have a non-trivial impact on certain Quality of Service (QoS)
metrics.

Our contributions are as follows: (i) A scaling limit in the
form of Laws of Large Numbers (LLNs) for the queue length
proportions for increasing number of servers (N — 00)
given CBS and heterogeneous clusters. We also describe
extension of our results to the case of batch arrivals with
varying batch sizes. The scaling limit enables the analysis
and comparison of different CBS policies in transient as
well as steady state regimes. (i) We numerically show that
certain QoS metrics decay rapidly with the buffer size; this
behavior indicates that the common assumption of infinite
buffer systems can be inaccurate. (iii)) We provide several
numerical results showing the accuracy of the scaling limit
and comparisons of the queue length distributions for dif-
ferent cost functions. The techniques used in this paper
to prove the scaling limit (weak convergence) of various
Markov processes are well known in the probability theory
literature and are straightaway borrowed from [10]. In fact,
such techniques have been used to derive fluid or mean-
field limits for JSQ-type scheduling strategies in queuing
theory literature as well (see [5], [11], [12]). By virtue of
the novel introduction of an additional cost function in this
paper, we are able to provide a performance evaluation of
a much wider class of load balancing strategies including
ones that are not necessarily of the JSQ paradigm.

The paper is organized as follows: in Section 2, we
discuss the related works. In Section 3, we introduce the
queuing set-up and the CBS policy before presenting our
scaling limit in Section 4. Numerical results are presented in
Section 5. In Section 6, we briefly describe an extension of
our results to the case of variable batch sizes. We conclude
the paper with a short discussion in Section 7. Additional
mathematical derivations are provided in Appendix A and
Appendix B.

2 RELATED WORK

A wide range of randomized strategies including the
schemes 1 and 2 presented in [5] can be viewed as CBS
strategies. The first prominent randomized strategy was the
power of two strategy [4], [13], which was also generalized
to the power of d strategy or the so-called SQ(d) strategy
[14], [15]. A survey of SQ(d)-type load balancing strategies
for large systems is provided in [16]. Mitzenmacher proved
in [4] that the expected time spent in a supermarket model
with IV servers improves exponentially when d, the number
of servers sampled for job assignment, is increased from
1 to 2 in the asymptotic regime, ie.,, when N — oo; the
improvement is only by a constant factor when d increases
from 2 to 3. This asymptotic estimate is remarkable, but it
is not necessarily accurate for a finite number of servers.
In this case, upper and lower bounds on the average delay
are provided in [15]. Additionally, in [17] a bound for the
queue lengths is estimated for the supermarket model under
appropriate arrival rate scaling.

Scaling limits, such as LLNs and Central Limit Theorems
(CLTs) (or their functional counterparts), for large systems

provide a convenient tool for performance evaluation. In
[18], the authors study the stability and convergence of
various moments for a multi-class infinite-buffer queuing
system based on a fluid limit. They provide sufficient condi-
tions for the existence of long-run average queue length. In
a later paper [19], the authors provide a Semi-martingale
Reflecting Brownian Motion (SRBM) limit for a suitably
scaled queue length process in a finite-buffer open queuing
network with deterministic, feedforward routing. The paper
also discusses how the established results can be extended
to derive heavy traffic limit theorems for networks with
finite buffers. Recently, [14] studies the power-of-d (with d
depending on the total number of servers) load balancing
strategy in large-scale identical server systems and provides
fluid and diffusion limits for scaled buffer occupancies as
N — oo. The authors show that the fluid and diffusion
limit of their policy coincide with that of JSQ under certain
assumptions. In [20] the authors consider a bin-packing
problem. Here, the power-of-d routing policy is analyzed
for homogeneous servers with job-type dependent limited
resources. The authors derive an explicit upper bound for
the equilibrium blocking probability using a fluid limit.
Similarly, the authors in [12] focus on the stability of infinite-
buffer queues under randomized JSQ strategy based on
LLN-type mean field limits. They show that the uniform
sampling of servers may reduce the stability region when
the clusters are heterogeneous. In [21] and [22] the authors
consider a parallel single-server queueing system with JSQ
strategy. In their works the stationary distribution of the
occupancy measure for the system is considered, where they
estimate the tail-asymptotics and the bulk behavior.

The usual method of obtaining scaling limits (both
LLN and CLT) in the weak sense is to use Kurtz's ap-
proximation theorems for density-dependent Markov jump
processes [10]. When the service times are allowed to be
non-exponentially distributed, the system loses the Markov
property. However, under certain conditions such as bound-
edness of the hazard function for the service time distribu-
tion, it is still possible to derive fluid limits. For instance, in
[23], the authors consider the SQ(d) load balancing strategy
in a homogeneous parallel queuing system with infinite
buffers and derive a fluid limit in the form of Partial Dif-
ferential Equations (PDEs) as N — oco. Another approach is
to include the age of the jobs in a queue to manufacture
a Markovian descriptor of the system when the service
times are non-exponential. In [24], a measure-valued process
keeping track of the ages of all jobs in service at queues of
various lengths was used as such a Markovian descriptor
in the same queuing set-up as [23] for the SQ(d) strategy.
The dynamics of a scaled version of the descriptor were
further approximated by a hydrodynamic limit in [24] under
boundedness or lower semicontinuity of the hazard function
of the service time distribution. Authors in [25] comes up
with a similar measured valued process state descriptor
which keeps track of residual service times, queue length,
workload and cumulative idle time in a heavily loaded
processor sharing queue. They first show that, under mild
conditions, a fluid model solution exists and is unique in
the critical regime where arrival and service rates are equal.
Further, under mild conditions and for a suitable scaling,
weak convergence of state descriptors to a fluid limit is
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established where the sample paths of the fluid limit are
almost surely fluid model solutions. Similarly, a fluid limit
for the scaled state descriptor a GI/GI/1 processor sharing
queue with reneging customers is presented in [26]. In
[27], authors represent the remaining processing time of
customers in a M/Gl/oo queue using a point-measure val-
ued process and establish weak convergence of the rescaled
process to a fluid limit.

A range of literature in this space discuss about the
maximum load in a multi-server queueing system under
SQ(d) routing. Azar et al. show in [28] that SQ(2) strategy
provides a reasonable trade-off between JSQ and SQ(1)
policy as the load on n servers varies by a O(loglogn)
factor compared to O(logn) in case of SQ(1). In [29], the
authors discuss maximum load under SQ(d) policy in a
balls-and-bins model where balls have independent unit
exponential lifetime. In particular, they consider a system of
n servers with Poisson arrivals with rate An and show that
the system converges quickly to the equilibrium distribution
under which the maximum load is concentrated on two
values with probability that tend to 1 as n — oo. It is
also shown that the maximum deviation of maximum load
from loglogn/logd is constant. A similar result about the
maximum queue length is achieved for the supermarket
model with same parameter setting in [30] where the arrival
parameter \ is restricted to (0, 1) due to stability reasons.

Although infinite-buffer queues are often assumed for
analytical treatment and are meant to approximate large
buffer sizes, the buffer sizes in practice are not always
large. Therefore, one needs dedicated finite-buffer results.
We refer the readers to [31], [32] for a survey of devel-
opments in this direction. There has been many attempts
to derive performance bounds for finite-buffer systems by
suitably approximating infinite-buffer systems. For instance,
the authors in [33] approximate the total loss probability in
a finite-buffer constant rate server and fluid input system
by the tail probability of the queue length distribution in
an infinite-buffer system. In [34], the authors present an
analytic queuing model for finite-buffer systems capturing
the correlations among the queues by means of certain
structural parameters. The SRBM limit mentioned earlier
was obtained for a suitably scaled queue length process in
a finite-buffer open queuing network in [19]. Such limits
can be used to compute the stationary queue length distri-
butions. For instance, the authors of the paper [35] apply a
finite element method to compute the stationary distribution
in a finite buffer queuing network. Another approach has
been to use decomposition methods to evaluate various
performance metrics approximately (see [36], [37]).

3 SCHEDULING IN LARGE RESOURCE-SHARING
POOLS WITH FINITE BUFFERS

In this section, we first describe the queuing set-up and then,
explain the proposed CBS policy. We consider the standard
supermarket model (e.g., see [5]) and propose the following
modifications: (i) we consider finite-buffers instead of infi-
nite buffers; and (ii) we generalize the scheduling algorithm
to allow user-defined cost functions associated with the
queue-lengths of a randomly selected subset of servers. By
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Fig. 1: Schematic description of the CBS policy: There are
M heterogeneous server clusters where cluster ¢ contains NV;
homogeneous servers each with exponential service rate y;.
Upon a job arrival, the local routers in each of the clusters
randomly sample (with replacement) S; servers and return
to the dispatcher the index of the shortest queue among the
sample. The dispatcher then compares the costs associated
with these servers before assigning the job to the server with
the minimum cost. If the assigned buffer is full the job is lost.

virtue of (ii), a wide range of innovative load balancing algo-
rithms can be accommodated into the model and naturally,
the schemes 1 and 2 in [5] are obtained as special cases.
Later in Section 6, we provide an extension to the case of
batch arrivals with varying batch sizes.

3.1 Description of the queuing set-up

We consider an N-server parallel processor sharing queuing
system where the N servers are partitioned into M (< N)
heterogeneous clusters of servers within each of which the
servers are identical (see Figure 1). The service discipline
is First In First Out (FIFO). Let [N] = {1,2,...,N}. We
assume the i-th cluster contains N; identical servers with
exponentially distributed service times with rate ;. Nat-
urally, Ny + Ny + -+ + Nyy = N and M is assumed
fixed throughout. Let I; contain the indices of the servers
in the i-th cluster. Then, | I; |= N; and {[1,I5,...,Ip} is
a partition of [N], i.e., [N] = U;e(a i and I;'s are disjoint.
Let the buffer size of all N servers be K. Extension to the
case of unequal buffer sizes is not difficult. In that case,
we can take K to be the maximum of the different buffer
sizes and modify the definitions of our stochastic processes
and the transition rates of the underlying Markov process
accordingly.

The cluster-structure could arise because of geographic
location or otherwise. Since the servers within each cluster
are assumed to be identical or homogeneous with respect
to service time distributions, the different clusters represent
different types of servers (fast, slow etc). Therefore, the
clustering of servers provides a natural way of extending a
homogeneous server setting to a heterogeneous one, which
is arguably better representative of real-world situations.

Jobs arrive at the system according to a Poisson process
with rate Ay . The inter-arrival times, and the service times
of each job are all assumed to be independent of each other.
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Upon the arrival of each job, the dispatcher assigns the
job to exactly one server following a CBS policy, which we
describe next.

3.2 Cost-Based Scheduling

A local router is placed in each of the clusters. As seen
in Figure 1, at the arrival of each job, the main dispatcher
sends a request to each of the M local routers. The local
router in the i-th cluster samples S; servers uniformly at
random with replacement. Suppose the queue lengths at
the sampled servers at the i-th cluster are Q;,, Qis, - - -, @i,
where [ = S;. The local router returns to the dispatcher the
index and the queue length of the server with the shortest
queue length. That is, the local router computes

argmin  {Q},Vi € [M].
ke{ii,iz, .., it}

L ‘=

In case of a tie within a cluster, we break tie by choosing
one of the tied indices uniformly at random. After receiving
the indices ¢1, t2, . .. .tpr from all M clusters, the dispatcher
assigns a cost to each of the corresponding queue lengths.
Finally, comparing the costs, the dispatcher assigns the job
to the server with the minimum cost. Therefore, the index ¢
of the server to which the job is finally assigned is given by

v = argmin{¢g(Q,,) | k € [M]},

where ¢, is the cost function associated with the k-th
cluster. We assume the cost functions are user-defined and
continuous?. In case of a tie, we break tie by choosing one of
the tied indices uniformly at random. Jobs leave the system
as soon as their services have been provided. We assume
the scheduling task is instantaneous for modeling purposes.
Having described the CBS policy formally, we provide some
concrete examples next.

3.3 Choice of the cost functions

The CBS is a generalized load balancing policy. Setting
M =1,51 = N,¢1(z) = x corresponds to the usual JSQ
policy. Similarly, M = 1,5; = 2, ¢1(x) = x corresponds to
the power of 2 type JSQ, and to SQ(d) policy with S; = d.
Choosing ¢i(x) = x corresponds to the randomized JSQ
policy over clusters. Other variants of JSQ, or a mixture of
them, can be incorporated by choosing the cost functions
appropriately. It is worth noting that any strictly monotoni-
cally increasing ¢, would give rise to a JSQ-type policy (or a
randomized version of it) provided ¢;,’s are identical across
the M clusters. To give one more example, ¢i(z) = z/ux
corresponds to scheme 2 in [5] (see F2 in Figure 2).

In addition to the different variants of JSQ, we can design
a wide range of cost functions to achieve other performance
objectives as depicted in Figure 2. For instance, a constant
¢r(x) = ¢ for all z yields a preference policy or a uniform
load balancing across all clusters for ¢, = c for all k (see F3
in Figure 2). In fact, one can design hybrid policies that are
conceptually similar to adaptive queue management such

2. Note that continuity is vacuously satisfied if we restrict ourselves
to integer-valued queues only, as we do in this work. However, conti-
nuity should be additionally assumed if we generalize the cost function
to other domains.
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Fig. 2: Interpretations of different cost functions: The func-
tion F1 (x — ) corresponds to a JSQ-type policy. On the
contrary, F2 given by « +— x/p (depicted for o > 1) takes
into account the cluster specific service rate. The policy of
F3, given by = +— 5 here, ensures uniform load balancing.
The function F4 yields uniform load balancing when the
queue length is small and a JSQ-type behavior when the
queue length is large. F5 yields a locally uniform hybrid
JSQ policy in that it enforces a uniform load balancing when
the queue lengths being compared are close to each other,
and a JSQ-type behavior when they are far apart. Finally,
F6 reflects a cost structure that exhibits JSQ-type behavior
between two threshold queue lengths and does uniform
load balancing otherwise.

as [38]. The function F4 is a simple policy that ensures
uniform load balancing when the queue length is small; but
changes to JSQ when the queue length grows large. The
policy corresponding to the cost function F5, which can be
seen as a locally uniform hybrid JSQ policy, ensures uniform
load balancing for neighboring queue lengths but ensures a
JSQ-type behavior when the queue lengths are far apart.

In addition, one could use combinations of cost func-
tions to express application semantics on top of the server
clusters. For example, using clusters with cost function F1
in combination with clusters with F3, one can differentiate
primary load-bearing server clusters from secondary peak-
load absorbing ones. Some typical examples in practice for
the cost functions discussed above include: multipath TCP
default scheduler for F2, elastic load balancer in AWS for
F3 and RED algorithm used in active queue management
for F6. The RED algorithm, defined in [39], chooses packet
to drop from incoming queues according to a dropping
probability that varies linearly between two thresholds and
remains constant otherwise. One of the major advantages of
our formulation is that we can choose different cost functions for
different clusters. Therefore, we can design a wide range of
novel mixed and hybrid policies based on the characteristics
of the clusters. With these examples in mind, we proceed to
derive a scaling limit in the next section.

4 A SCALING LIMIT

In this section, we provide a scaling limit of the system as
the number of servers goes to infinity for the CBS policies.
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4.1 Why do we need a scaling limit?

Performance evaluation of CBS policies, e.g., the variants of
JSQ mentioned above, can be done in various ways. The
most straightforward of them is to compute the marginal
probabilities of the Markov chain by solving the Kol-
mogorov forward equations. However, the number of equa-
tions increases exponentially with the number of servers V.
Therefore, this approach is practically infeasible. Alterna-
tively, one can estimate the probabilities using Monte Carlo
simulations. However, Monte Carlo simulations are also
time consuming, especially for large N.

Our approach to performance evaluation of CBS policies
for increasingly large systems is to derive a scaling limit that
essentially captures the limiting mean of the proportions
of servers with specific numbers of unfinished jobs. After
showing the accuracy of this scaling limit, we use it to study
the performance and suitability of different CBS policies.

The scaling limits are particularly beneficial in terms of
computational cost because we only need to solve a system
of (K 4+ 1)M autonomous Ordinary Differential Equations
(ODEs). This is in sharp contrast to a computational cost that
increases with N for the Kolmogorov forward equations
or the Monte Carlo approach. Note that the number of
equations, i.e., (K +1)M, is independent of the total number
of servers N but is only dependent on the buffer size K and
the number of clusters M.

4.2 Technical assumptions

We first define the key stochastic processes in the system.
Since CBS policies belong to the class of Cost-Based Queue-
Aware (CBQA) randomized policies, it is analytically con-
venient to work with stochastic processes that keep track
of the queue lengths at different servers or some suitably
designed summary statistics of those. The latter is often
desirable from a computational perspective. Therefore, in
order to be parsimonious with respect to dimensionality and
computational resources, we shall work with empirical tail
distributions of the queue lengths in different clusters.

We keep track of the proportions of servers (within each
cluster) that have at least a fixed number of unfinished jobs.
Define the stochastic process

Zn(t) = {20 @) i € [Ml,n=0,1,2... K}, (1)

where Zfl{\;) (t) is the fraction of servers at the i-th cluster
having at least n unfinished jobs (the queue length) at time ¢.
That is,

20 ()= 1 30 1@Qu() = m), @

v kel;

where 1(F') is the indicator function taking value 1 if
F is true and zero otherwise. We have deliberately sub-
/superscripted the processes with N to emphasize their
dependence on N. The process Zy is a Markov process
on the state space X;ca1Zi, the Cartesian product of
Zl, ZQ, ceey Z]\,{, where

Zi = {{an}n:0,1,2...,K | ag = lyan Z an+1;Nian, S N}7

foralli € [M]. The symbol N denotes the set of natural num-
bers. Note that the first coordinate Zj ; is the proportion of

servers within the i-th cluster with at least zero unfinished
jobs, and hence, is unity for all ¢ € [M]. Within the i-th
cluster, these proportions are non-increasing in n. The last
condition N;a, € N ensures a,,’s are valid proportions.
Next, we need to make precise how the arrival process
and the number of servers within each cluster scale with N.
Therefore, we make the following technical assumptions.

Al (Arrival rate) We assume the arrival rate grows linearly
with N, i.e.,

. AN

N A E Ry
The rationale behind this assumption is to avoid triv-
ialities. If the limit A is allowed to be infinity, then all
servers will be full all the time. On the other hand, if it
is zero, the servers will remain idle.

A2 (Non-vanishing proportion of servers in each cluster)
Each cluster contains a non-vanishing proportion of the
total pool of servers in the limit. That is, the cluster sizes
grow linearly with IV, i.e.

lim & =V; € (O, 1),

Vi € [M].
N—o0

We make this assumption to ensure all clusters are large.

A3 (Decidability) This allows us to compare different
servers across the clusters in the light of the particular
CBS policy employed. If the policy assigns a job to a
server with n unfinished jobs in the i-th cluster, we
should be able to tell what the minimum of the sampled
queue lengths in different clusters must have been, e.g.,
n in case of a simple randomized JSQ. Therefore, given
the index ¢ (and the corresponding queue length) of the
chosen server in accordance with the CBS procedure
described in Section 3.2, we assume the cost functions
¢;’s allow us to calculate the minimum of sampled
queue lengths across the clusters. Suppose + € I, i.e.,
the chosen server is in the i-th cluster. Define

0;(i, ) = {¢;(y) = ¢i(2)},

arg min

ye{0,1,2,...K}
for all i,j € [M], = € {0,1,2,...,K}. The inter-
pretation is as follows: if the CBS strategy assigns an
incoming job to a server with = unfinished jobs in the
i-th cluster, the minimum of the sampled queue lengths
at the j-th clusters must have been at least 6,(i, ).
Our assumption of decidability amounts to demanding
0;(i,z) # 0O for at least one j # i, for all ¢ € [M] and for
allz > 0.

We emphasize that the assumption A3 is desirable and
not crucial for the mathematical derivations. For instance,
F3 in Figure 2 violates A3. The only purpose behind A3
is to avoid trivialities such as 0;(i,x) = 0 for all z €
{0,1,2,..., K}.

4.3 Main result

Having laid down the technical assumptions, we begin our
investigation of the scaling limit. As the components of the
stochastic process Zy are all proportions, we expect, at least
intuitively, Zx () to converge to a deterministic quantity for
each t as N goes to infinity, by virtue of the LLN. Therefore,
we expect the process Zy to converge to a deterministic
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function as N goes to infinity, again at least intuitively. In
the following, we shall show that our intuition is indeed
right. Let 7 := [0,7] be our time interval of interest, for
some T' > 0.

In this paper, we shall adopt the operator semigroup
approach to prove convergence of the Markov process Z .
Therefore, define a sequence of one-parameter families of
operators {Tn(t) }+e7 as follows

Tn(t)f(z0) = E[f(Zn(t)) | ZNn(0) = 20],

forall t € T,2z0 € X2 and for continuous functions
[+ XiemZi — R. The family {Tn(t)}ic7 defines a
strongly continuous (contraction) semigroup [40], [41] by
the Chapman-Kolmogorov property of Markov processes
[10, Chapter 4].

The idea is to first prove that T (t) converges to some
limiting operator semigroup 1" as N goes to infinity. This can
be achieved by showing convergence of the corresponding
sequence of (infinitesimal) generators Ay of T to the
generator A of 1. Having shown the convergence of the
operator semigroup T to T, the convergence of the Markov
process Z follows immediately in the light of [10, Chapter
4, Theorem 2.11, p. 176]. This is also noted in [5] for the
infinite-buffer case. In essence, we need to carry out three
steps: 1) prove convergence of the generators Ay to A
(Lemma 3 in Appendix A); 2) establish convergence of
Tx to T (Theorem 3 in Appendix A); and then finally
3) establish convergence of Zy to its scaling limit z by
invoking [10, Chapter 4, Theorem 2.11, p. 176]. For the sake
of simplicity, we defer the involved calculations needed to
carry out the above three steps to the Appendix A, and only
state the final convergence result in Theorem 1 below.

Please note that space X ;c[a7)Z; in which Zy lies is finite
for each finite NV (because the proportions can only take
finitely many values). However, as IV goes to infinity, the
proportions can eventually approximate any real value in
[0, 1]. Therefore, define

Z 1:{{071,}71:0,1,...,1( | ap = Lan 2 An+1,0n S [07 1]}

In the limit, we expect Zy to lie in ZM, the (M — 1)-
fold Cartesian product of Z with itself. Now, we state the
convergence result.

Theorem 1 (Convergence of the server cluster proportions).
Iflimy_s 0 Zn(0) = 2o, for some non-random zy € ZM, then

Zy =2 2, as N — oo, @)

where the limiting process z satisfies the integral equation

(1) = 2(0) + [ P(())ds, @

with z(0) = 2o, and the function F(u) = {F,;(u) | i €
[M],n=0,1,2,..., K} is given by

IFOJ(U) = O, Vi € [M],

A
Fri(w) = = ((n-10% = @n)®)  T] (uoy0-05)%

! JE[M\{d}
— g (Un,i - Un+1,7:) y

forie [M],n=1,2,...,K,and u € ZM. Weak convergence
is understood in the sense of [10, Chapter 3, p. 107], [42].

For the sake of completeness, proof of Theorem 1 is
provided in Appendix A. From a practical perspective,
the operator IF(z) can be thought of as the derivative of
the deterministic process z. Note that questions concerning
stability of the queueing system do not arise because the
system is stable regardless of the arrival and service rates by
virtue of finiteness of the buffers. However, the accumulated
loss process is increasing because it has only positive jumps.

4.4 Properties of the limit

Let us now discuss some properties of the proposed limit.
Since the limit is an autonomous system of ODEs, the first
natural question that comes up is regarding the uniqueness
of the solution to (4). As stated in the next lemma, the
solutions are indeed unique.

Lemma 1. For any starting point u € ZM, the solution to the
integral equation (4) is unique on T.

The proof of Lemma 1 is provided in Appendix A. The
next lemma is regarding the smoothness of the solution with
respect to the initial conditions. As the limiting process z(t)
depends on the initial value z(0), we introduce the notation
z(t,u) to denote the solution of the integral equation (4)
with z(0) = u. We require certain smoothness of the solution
z(t,u) and bounded partial derivatives with respect to the
initial point u. Therefore, we have the following lemma.

Lemma 2. The partial derivatives

0 02 0?
z(t,u), 872“,2(75, w), and

z(t,u)

8un_¢ 8un7jun,i

exist for all uw € ZM, and are uniformly bounded above

0
|Wz(t,u)| <exp(at), )

2 2 T
1522l |7aunjuni2(t’U)| <exp(bt), (6)

for some constants a,b € R.

The proof of Lemma 2 is the same as [5, Lemma B.2]
and [11, Lemma 3.2] except for some minor changes in the
constants. However, for the sake of completeness, a brief
sketch is provided in Appendix A. Next, we numerically
evaluate the theoretical results presented in the current
section.

5 NUMERICAL EVALUATIONS

In this section, we seek to gain insights into CBS-driven
systems in terms of its evolution with time, steady state
and also the indicative effect of buffer length on the job
loss. Using Theorem 1, we can circumvent simulating the
cluster system and still derive meaningful results about
its performance such as the queue proportions when the
number of servers in each cluster grows large. To validate
our scaling limit, we compare the simulated system with
the scaling limit. We use the generative model with CBS
scheduling as described in Section 3.1. We consider five
simulation scenarios with growing number of servers and
use 102 Monte Carlo simulations for each setting to finally
perform averaging. If not stated otherwise, the numerical
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Fig. 3: Accuracy of the scaling limit in Theorem 1: Comparison of the time evolution of Zéf\{) from (2) for increasing
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Fig. 4: Time evolution of cluster queue length proportions for

two choices of cost function ¢: ¢i(x) = x /i and ¢ (x) = .

Simulation settings: M =2, K =5, A =1/4, (v1,12) = (0.4,0.6), (u1, pu2) = (1/2,1/4), time horizon = [0, 100). At a fixed
point, z; ; gives proportion of servers with queue length greater than or equal to 7 in cluster j at that instant. The subplot
on the left shows cluster queue length proportions for ¢y (z) = x/uy while the right one is for ¢y (x) = x. As expected, the
former picks servers from the faster cluster (11 = 1/2) more frequently than the latter.

settings for the figures are given by number of clusters
M = 2, buffer size K = 5, arrival rate A = 1/4, proportion
of servers in each cluster (v1,12) = (0.4,0.6), service rates
within the cluster (u1,p2) = (1/2,1/4), and time horizon
= [0,100).

First, we depict the time evolution of the queuing system
in Figure 3. The scaling limit matches the empirical mean of
the Monte Carlo simulations well and the variance of the
simulations reduces as the number of servers N grows. It is
worth noting that the scaling limit can be used to describe
the behavior of the system not only in the steady state, but
also during the transient phase.

Furthermore, the time evolution of the proportions of
servers corresponding to possible queue lengths for each
cluster are shown in Figure 4. Here, the cost functions mirror
randomized JSQ (¢x(x) x) and service-rate-weighted
randomized JSQ (¢« (x) = x/pi) scheduling. In comparison
to randomized JSQ, service-rate-weighted randomized JSQ
takes advantage of the faster server as reflected through the
larger proportions of longer queue lengths.

We further explore the time evolution in heterogeneous
environment in Figure 5 where the cluster service rates
vary. For both clusters, we consider cost functions F1 (ran-
domized JSQ), F3 (uniform load balancing) and F4 (initially
uniform and switching to randomized JSQ beyond a thresh-
old) from Figure 2. We change the simulation settings to
K =8 A =1/8 and (p1,12) = (1,1/16) to underline
heterogeneity. We observe that the cost function F3 and F4

eventually enforces almost all servers in the slower cluster
to be busy whereas, under Fl, few servers remain idle
(left subplot). Further, under F4 certain servers have more
workload as seen in the right subplot of Figure 5. This is
due to the fact that until a certain queue length (3 in case
of Figure 5), there is no preference for servers with lower
workload. Also, compared to F3, F4 has positive proportion
of servers with intermediate queue length.

We also look at the steady-state proportions of queue
lengths for each cluster under different arrival intensities.
This is shown in Figure 6 under high, medium and low arrival
rates, i.e., A € {1/4,1/2,1}, respectively.

Finally, we show in Figure 7 the impact of buffer sizing
on the time averaged proportion of full servers in the whole
system. This QoS metric expresses how full the system is
and it may act as an approximate indicator of job loss.
We fix a long time horizon = [0,400) to calculate the time
averaged proportion. It is seen that the buffer length has a
quickly diminishing impact on this metric, which is a strong
argument for small sized buffers when designing such load-
balanced cluster systems. Note that our result provides this
relationship between the queue proportions and the server
buffer sizes, which cannot be obtained from state-of-the-art
infinite buffer results such as [5].

6 EXTENSION TO BATCH ARRIVALS

In this section, we discuss how the scaling limit can be
extended to the case when the jobs arrive in batches of
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Fig. 5: Queue length proportions at the slower of two heterogeneous clusters. Cost functions chosen are: F1 (randomized
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contrast to F3, F4 has positive proportion of servers with intermediate queue length.
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Fig. 6: Steady state queue length (n) proportions for clus-
ter 1 (left) and cluster 2 (right) for different arrival intensities
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]

—\=1/2
= -\ =1
(0]
€ 0.5
[7p]
o]
<]

£
0 =
400 600

Buffer length K

Fig. 7: Impact of the buffer size on time-averaged proportion
of full servers (QoS metric) in a CBS load-balanced cluster
system for different arrival intensities. The buffer length has

a diminishing impact on the QoS metric.

variable size. We assume the batch sizes follow a probability
distribution =, i.e., the probability that the batch size of
an incoming job is d is 7(d). Since we have a finite-buffer
system, we can assume the probability distribution 7 has
a bounded support. Let D denote the largest batch size.
We also assume the batch sizes of different incoming job-
batches are independently distributed and are independent
of the arrival times. Upon arrival of an incoming batch
of size d, the entire batch is allocated to a single server.
In case there is no server (among the ramdomly sampled
servers at each cluster) that can accommodate the entire
job, ie., if the number of unfinished jobs is larger than
K — d, the part of the incoming batch that could not be
accommodated is dropped and hence lost. The rest of the

scheduling procedure remains the same as before. Jobs leave
the system one by one as they are serviced. That is, even if
a job arrives in a batch of size d, each of the d jobs leaves
separately as soon as it receives service.

We retain the notations and stochastic processes defined
earlier. In particular, we consider the same stochastic process
Zyn(t) defined in (1). For such a queuing system with
variable batch sizes, the scaling limit for Zny as N — oo
can be proved using similar machinery. The statement of
the scaling limit is presented below.

Theorem 2 (Convergence of the server cluster proportions:

batch arrival case). If limy_,oc Zn(0) = zo, for some non-
random zo € ZM, then

ZN :D>z, as N — oo, (7)
where the limiting process z satisfies the integral equation
t
A1) =20 + [ Gla(s)ds, ®
0
with z(0) = zo, and the function G(u) = {Gy(u) | ¢ €
[M],n=0,1,2,..., K} is given by
G07i(u) =0, Vie [M],
min{n,D}
A , :
nilw) = Y w (@) ()™ = (wnmara)™)
d=1 ¢
< I (uoyim—ay)™

Je[MN{i}
— i (Unl - Un+1,i) ,
fori € [M],n = 1,2,....,K,and u € ZM. The batch sizes
follow the probability distribution .
The proof of Theorem 2 follows similar chain of ar-

gument as Theorem 1. For the sake of completeness, a
brief sketch highlighting the main difference is outlined in

Appendix B.

7 DISCUSSION & CONCLUSIONS

In this work, we considered the problem of scheduling in
large resource-sharing heterogeneous clusters with finite-
buffer servers. We introduced the notion of a random-
ized Cost-Based Scheduling policy, where job assignment
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Fig. 8: The multi-stage system. Jobs receive multiple ser-
vices sequentially at different non-interacting service sta-
tions.

is driven by general application-defined cost functions of
the queue lengths rather than the queue lengths themselves
as in JSQ. Traditional randomized scheduling policies, such
as randomized ]JSQ, power of two or SQ(d) policies, are
obtained as special cases of CBS by suitably choosing the
cost functions.

For performance evaluation of CBS policies under a
Markovian set-up, we can either compute exact marginal
probabilities by solving the Kolmogorov equations or esti-
mate them using Monte Carlo simulations. Unfortunately,
both approaches are computationally expensive, and virtu-
ally infeasible when the number of servers is large. To this
end, we proved a scaling limit, an autonomous set of ODEs,
for the proportions of servers at each cluster with at least
a fixed number of unfinished jobs. The scaling limit can be
used in two ways: 1) it provides ready estimates of QoS,
such as bulffer filling proportions, given a CBS policy; and
2) it can be used as a tool to compare different CBS policies.
In Section 5, we showed extensive numerical evaluations.
In particular, we showed how queue length proportions
and full server ratios can be computed from the scaling
limit under different settings. In Section 6, we provided an
extension of our results to the case of variable batch sizes.

One of our assumptions in the main model is that each
of the M clusters contains a non-vanishing proportion of
servers in the limit. We assume that M remains fixed as
the sizes of the clusters grow. In some situations, the cluster
system could be grown by adding new clusters of servers
rather than increasing individual ones. In such a situation,
M — oo as the cluster system grows. We believe the
mathematical tools exploited in this paper (limit theory of
operator semigroups) could be used in a similar fashion for
the purpose of performance evaluation, provided we define
the stochastic processes in an appropriate way. Because we
assume the servers within a cluster are homogeneous, the
number M of clusters can be interpreted as a measure of
the degree of heterogeneity of the N servers. By keeping M
fixed, we are essentially maintaining the overall heterogene-
ity of the cluster system.

We note that our model can be further extended to the
case where the jobs receive multiple services sequentially at
different service stations as depicted in Figure 8. This occurs,
for example, when employing load balancing between dif-
ferent service function chains in a network. There, arriving
jobs are mapped to separate chains of servers carrying out
consecutive tasks. These chains are assumed non-interacting
for the sake of simplicity. From the perspective of an incom-

ing job, the amount of time it spends in the cluster after
it starts getting serviced in the first stage can be thought
of as the service time of a single hypothetical server. This
service time is precisely the difference between time of the
start of service in the first stage and the time of departure
from the cluster after completion of service in the last stage.
Naturally, the probability distribution of the service time of
this single, hypothetical server would not be exponential.
Therefore, even if we draw the analogy between the multi-
stage system and the hypothetical single server system,
our results would not be immediately applicable because
the hypothetical single-server system could be potentially
non-Markovian. However, by approximating the cumula-
tive service times by the closest exponential distribution,
we can turn the system into a Markov system as desired.
Therefore, we can then utilize the derived scaling limit for
the performance evaluation of the system.

A potential limitation of our proposed extension to the
batch system is that if adequate space is not available, a part
of the batch could be lost. An alternative approach could be
to assign the remaining part of the job to another available
server. While this would entail a communication overhead,
it is perhaps more profitable than our proposed strategy.
We, however, do not have any analytic result quantifying
performance boost. Another important subtlety is that we
assume the job scheduling task is instantaneous. However, it
is hardly so in reality. The rationale behind this assumption
is that the delay in scheduling is usually so small compared
to the order of magnitude of the inter-arrival times and the
service times that it can be neglected without sacrificing
much accuracy.

The explicit dependence of the limiting process in The-
orem 1 on the function 6; corresponding to the CBS policy
is worth noting. These dependencies can be exploited in de-
signing application-specific CBS policies. The cost functions
themselves can then be tuned for performance in an optimal
control setting. Thus, the scaling limits could potentially
pave the way for design of near-optimal policies even for
finite V.

APPENDIX A

In order to metrize the space ZY, define the metric

|un i — Un,i
M (u,v) = sup sup —_— 9)
Pz (1,0) ieM]n=0,12,... Kk n+1

for u = (uM,u@ .. WwM) y = (bW @ M) ¢
ZM withu® = (up; |n=0,1,2,...,K)and ) = (v, |
n=0,1,2,...,K) for each i € [M]. Under p, the space ZM
turns complete, separable and compact [5], [11].
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Now, let us define the generator Ay of the Markov
process Zn as

M K
ANf >\N Z Z ( Unp—1 z (un,i)sl)
i=1n=1
X H (u9j(i,n—1),j)Sj
Je[MN\{i}
X <f(u+ Al]le,”) - f(u))
M K
+ Z Z Nipti (Un g — Unt1,:)
i=1n=1
< (fa= e~ @), a0

where [ : XiepZi — R, u = {(u®,u® . u?)) |
U = {upitnefo1,2,... k1 € Zis i € [M]} € Xiean) Zi Tep-
resents a possible state of Zy and e, ; == {(a1,az,...,an)
aj = {1(j = i,k = n)}lreo,1,2,..k}, Vi € [M]} tells us
which component of Zy changes. We set ux41,; = 0 for all
i € [M]. The generator defined in (10) is constructed by con-
sidering all the jumps of Zy. The first part of (10) is due to
admittance of a customer and the second part corresponds
to departure of a customer after service. Consider the
assignment of an arriving job to a server with exactly n — 1
unfinished jobs in the i-th cluster when Zy is in state u €
Xie[M]Zi- This entails a jump from u to the state u+e,, ;/N;.
The term. ((un1.0)% — (un.2) ) TL e qarp oy (0, 4,0-1)5)
gives the probability under CBS of an arriving job to be
assigned to a server with exactly n — 1 unfinished jobs in
the ith-cluster. This happens only when the following two
events take place.

1) At least one of the S; sampled servers in the i-th cluster
has exactly n — 1 unfinished jobs and the others have at
least n unfinished jobs.

2) In the light of A3, the fact that the dispatcher selects a
server from the ith-cluster implies that all the sampled
servers in the j-th cluster must have at least 8;(i,n — 1)
unfinished jobs, for all j # i.

Now, the rate at which customers depart from servers
having exactly n unfinished jobs in the i-th cluster is
Nipi (Un,i — Un+1,4), which explains the second part of (10).

Proof of Lemma 1. The proof follows by Picard’s iterative
technique. Following [5], [11], define the operators

IHOA’Z'(U) =0, Vi€ [M},
H, (u) = Vi (C(Un—l,i)Si — C(Um)s)

K2

< I ¢(uo,im-1).4)% = pi (Cunyi) —

je[MN{z}

where ((z) = max(0, min(z,1)). Consider the solutions of

the integral equation
t
+ / H(w(s))ds
0

Note that the H (u) is defined for u € (R¥)M. The operators
H(u) and IF (u) agree if u € ZM. Therefore, the two systems
(4) and (12) yield identical solutions in Z*. Moreover, if
w(0) = u € ZM, then the solution of the modified system

(11)

C(unt1,i))

(12)

(12) remains within ZM (see [5] for similar arguments).
In order to show uniqueness of solutions to (4) in ZY, it
suffices to show that solutions to (12) are unique in (R¥)M
Therefore, we extend the norm p defined in (9) to (R¥)M
Following the same line of argument as in [5], we can find
constants a, b € Ry such that

prescye (H(u), H(u)) <a,
p(RK)M (H(u), IH(’U)) pr(]RK)ZW (u, U) .

The uniqueness of the solution follows by virtue of the
above, and using Picard’s iterative approximation method,
because the space (R¥)M is complete under the metric
defined in (9) (extended to (R¥)M ). O

Proof of Lemma 2. The proof follows along the same line of
argument as in [5, Lemma B.2] and [11, Lemma 3.2] if we set

20> . S;
a ::M + 2 max p;, (13)
minge(m) Vi i€[M]
bi= Y Si+2a. (14)
i€[M]

Please note that the above bounds can be made tighter, but
for our purposes, they sulffice. O

Finally, we find the limit of the generators.

Lemma 3 (Convergence of the generators). Let C := C(ZM)
denote the space of all real-valued continuous functions defined on
ZM_ Consider the subspace Cp C C of functions for which the
partial derivatives

d 0? 0?
2(t, u), au—%iz(t7 u), and

2(t, u)

8um— 8un7jun,i

exist for all w € Z™ and are uniformly bounded by some
constant. Then, for all f € Cp,

d
lim Axf(u) = ()|

(15)

where z is the solution of the integral equation (4).

The proof of Lemma 3 is similar to the proof of [11,
Theorem 2]. For the sake of completeness, it is provided
here.

Proof of Lemma 3. Let f € Cp. Then, for each i € [M],
o)

8’U,n’i

(et y-eni) = f0)) =
0

(7= o) = F0)) = s,

uniformly inu € Z M Thus, from (10), we have

N;— o0

f(u)7

lim N;

L‘)OC

and

M K
Ay f(u —>Z Z [ ( Up—1,4)°" — (um)57)
1=1n=1 Vi
x I (uoym—1)4)>
Je[M\{i}

— i (Up i — Un+1,z')] u -f(w),
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as N — oo in the light of A1 and A2. The right hand side of

the above equation is identical with & f(z(t,u))| , where

z satisfies the integral equation (4) with 2(0) = u. O

With the convergence of the generators in Lemma 3,
we are now ready to prove convergence of the operator
semigroup T'y.

Theorem 3 (Convergence of the operator semigroup). Under
the CBS policy, for any f € Cp, and t € T, we have the following
convergence of the operator semigroup {Tn (t) }reT,

Tn(8)f(uw) =T () f(u)| =0,

lim sup (16)

N—=o0uex e Zi

where the limiting operator semigroup {T(t)}ieT is defined by
T(t)f(u) == f(2(t,u)), and is generated by the generator

po T+ W) f() = T()f (@)
h—0+ h

Af(u) =

9

which is equivalent to %f(z(t,u))‘ and where z is the

solution of the integral equation (4).

Proof of Theorem 3. First note that the space Cp is dense in
C. Also, both the semigroups {Tn (t) }te7and {T'(t)}:cT are
strongly continuous and contracting [10]. Moreover, Cp is
also a core of A . Therefore, following the same approach as
[11, Theorem 2], [5], and by virtue of Lemma 3, we get the
asserted convergence of the semigroups with the application
of [10, Chapter 1, Theorem 6.1]. O

The proof of Theorem 1 now follows immediately.

Proof of Theorem 1. By virtue of Lemma 2, please note that
continuity of z(t,u) with respect to the initial condition u
is ensured. Therefore, the limiting operator semigroup 7T is
Feller. Now, having shown the convergence of the operator
semigroup {Tn(t)}ie7 to {T'(t) }+e7 in Theorem 3, the con-
vergence of the Markov process Zy follows immediately in
the light of [10, Chapter 4, Theorem 2.11], as also noted in
[5] also for the infinite-buffer case. O

APPENDIX B

We provide a brief sketch of the proof as it follows a similar
line of argument as Theorem 1.

We use the same metric defined in (9) as before. In order
to define the generator of the Markov process Zy, we intro-
duce the following notation: egldz ={(a1,a2,...,am) | a; =
{]].(] = i, k S {TL, n -+ 1, ey + d— 1})}k6 071727”');(}, v'] S
[M]}, for d = 1,2,..., D. The quantity e,, ; is a matrix the
i-th column vector of which contains exactly d ones in rows

n,n + 1 ton + d — 1. All other elements of e'? are zeroes.

Now, let us define the generator By of the Markov process
Z N as

D M K
BNf(u) =AN Z Z Z 7T(d) ((un—l,i)Si - (Un,i)Si)
d=1i=1n=1
< I

Je[M\{s}

< (s et - sw)

M K
+ Z Z Nipi (Uni — Unt1,i)

where, as before, f XiepnZi — R, and u =
{(U(1)7U(2),~-~,U(M)) | u® = {Un,i}ne{o,l,z,...,K} €
Zi, i € [M]} € X,eamZ; represents a possible state of
Zn. As before, we set ug 1, = 0 for all ¢ € [M].

The generator defined in (17) is constructed by
considering all the jumps of Zy. The first part of (17)
is due to admittance of a customer and the second part
corresponds to departure of a customer after service.
Consider the assignment of an arriving job of batch size
d to a server with exactly n — 1 unfinished jobs in the
i-th cluster when Zy is in state u € X 2. This

entails a jump from u to the state u + egfz /N;. The term

((un—1,1)% = (un,i)>) Tl ieqaap gy (W0 in—1),5) > gives the
probability under CBS of an arriving job to be assigned
to a server with exactly m» — 1 unfinished jobs in the
ith-cluster. The 6 functions can be modified to depend
on the batch size to reflect real-life application situations.
Then, following the discussion in Appendix A, the rate of
a transition from wu to uw + 65:2 /N; due to an admittance
of an incoming job of buffer length d to a server with
exactly n — 1 unfinished jobs in the i-th cluster is given by
ANT(d) ((n—1,0)% = (un,i)>) TTie i iy (00, Gn—1).5) -
The transition rates corresponding to departure of jobs
remain the same as before.

Note that the uniqueness of the solution of the limiting
differential equations (8) follows in practically the same way
as before. Also, the solutions of the limiting differential
equations (8) are smooth with respect to the initial condi-
tions. In fact, by slightly modifying the constants, we can
show that the partial derivatives

0 02 02

z(t,u), a7z(t,u), and

(UGJ- (’L,Tl*l))7)S7

17)

z(t,u)

8um- 8un7jum

exist for all u € ZM, and are uniformly bounded above
by exponential bounds in a similar fashion as done in [5,
Lemma B.2] and [11, Lemma 3.2].

We are now ready to give a brief sketch of the proof of
Theorem 2.

Proof of Theorem 2. Similar to the proof of Theorem 1, we
first show convergence of the generator By as N — oo.
To this end, let the subspace Cp C C of functions for which
the partial derivatives

0 02 02
2(t, u), 5‘72@’“)’ and

z(t,u)
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exist for all u € ZM and are uniformly bounded by some
constant. Then, note that, for f € Cp and for each i € [M],

o 1 @y N D
i N (el - fw) = S g
1 B
and N{_igloo N; (f(u — ﬁien’i) - f(u)> = Wmf(u)’

uniformly inu € Z M Thus, from (17), we have

M K [min{n,D} A
Byflu)= > | > w(d)
i=1n=1 d=1 g

X ((unfd,i)Si - (unfdJrl,i)Si)

< 11

Je[MN\{7}

(uo, (i.n-dy.j)

0

— My (un,i - un+1,i):| Tf(u)’

as N — oo in the light of A1 and A2. The right hand
side of the above equation coincides with Bf(u) =
% f(z(t,u))| , where z satisfies the integral equation (8)
with 2(0) = u.

Convergence of the generators By to the limiting gen-
erator B ensures the convergence of the corresponding
operator semigroups T generated by By to the limiting
operator semigroup 1’ generated by B because Cp is a core.
Moreover, the limiting operator semigroup 7' is Feller.

The weak convergence of the corresponding Markov
process Zn to the solution of the system of ODEs follows
from the convergence of the convergence of the corre-
sponding operator semigroups Ty to the limiting operator
semigroup 7' generated by B in the light of [10, Chapter 4,

mn,t

Theorem 2.11]. This completes the proof. O
APPENDIX C

CBQA Cost-Based Queue-Aware

CBS Cost-Based Scheduling

CLT Central Limit Theorem

ECMP Equal-cost Multi-path routing

FIFO First In First Out

JSQ Join the Shortest Queue

LLN Law of Large Numbers

ODE Ordinary Differential Equation

PDE Partial Differential Equation

QoS Quality of Service

SRBM Semi-martingale Reflecting Brownian Motion
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