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Abstract—The power consumption of supercomputers is a major chal-
lenge for system owners, users, and society. It limits the capacity of
system installations, it requires large cooling infrastructures, and it is the
cause of a large carbon footprint. Reducing power during application
execution without changing the application source code or increasing
time-to-completion is highly desirable in real-life high-performance com-
puting scenarios.

The power management run-time frameworks proposed in the last
decade are based on the assumption that the duration of communication
and application phases in an MPI application can be predicted and used
at run-time to trade-off communication slack with power consumption.
In this manuscript, we first show that this assumption is too general and
leads to mispredictions, slowing down applications, thereby jeopardizing
the claimed benefits. We then propose a new approach based on (i) the
separation of communication phases and slack during MPI calls and
(ii) a timeout algorithm to cope with the hardware power management
latency, which jointly makes it possible to achieve performance-neutral
power saving in MPI applications without requiring labor-intensive and
risky application source code modifications. We validate our approach
in a tier-1 production environment with widely adopted scientific appli-
cations. Our approach has a time-to-completion overhead lower than
1%, while it successfully exploits slack in communication phases to
achieve an average energy saving of 10%. If we focus on a large-
scale application runs, the proposed approach achieves 22% energy
saving with an overhead of only 0.4%. With respect to state-of-the-art
approaches, COUNTDOWN Slack is the only that always leads to an
energy saving with negligible overhead (< 3%).

Index Terms—HPC, MPI, DVFS, power management, reactive policy.
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1 INTRODUCTION

With the end of Dennard’s scaling [1], [2], the last decade has
seen a progressive increase of the power density required
to operate each new processor generation at its maximum
performance. Supercomputing installations have suffered
from this power density increase, which over the years
has pushed up the energy provisioning and cooling costs.
While more efficient cooling techniques have been adopted
to reduce the energy wasted at the infrastructure level, e.g.
hot-water and free cooling [3], [4], [5], and more special-
ized computing elements with a higher ratio of vector and
SIMD units with respect to general-purpose processors have
emerged [6], [7], but a lot remains to be done in practice to
reduce the energy wasted during computation.

Processor designers have addressed this aspect by em-
bedding in their products finer and smarter power man-
agement support to automatically trade off performance
for power consumption [8], [9]. By mission and design,
the high-performance and scientific computing sectors aim
at maximizing the peak performance of the computing
systems, hence these techniques are seen as detrimental to
the time-to-solution and time-to-science, and often disabled
[10].

Indeed, low power design strategies enable computing
resources to trade-off their performance for power con-
sumption by means of low-power modes of operation.
These power states are obtained by Dynamic and Voltage
Frequency Scaling (DVFS) (also known as performance
states or P-states [11]), clock gating or throttling states (T-
states), and idle states which switch off unused resources
(C-states [11]). While the built-in hardware and operating
system (OS) policies are application-agnostic, in recent years
several approaches have been proposed to let the final
user control them in userspace [12], [13], [14], [15] and at
execution time [16], [17].

The first family of approaches intends to trade-off power
consumption and performance to gain energy efficiency
[13], [14], [18], [19]. These techniques explore the use of HW
power management knobs and application parameters to
study the execution time (Time-to-Solution, TtS), average
power, and energy (energy-to-solution, EtS) dependency
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with respect to these knobs and parameters. While these
approaches can be used in combination with autotuners
and resource management frameworks to explore the EtS-
TtS Pareto curve, they have a limited potential in the cur-
rent supercomputing scenario: slowing down applications
is almost always detrimental to the total cost of ownership
(TCO) due to the large contribution related to the deprecia-
tion cost of the IT equipment [20].

The second family of approaches focuses on improving
application performance under a power cap [15], [21], [22].
These approaches target power limited systems, computing
nodes, and processing elements. They rely on the runtime
capability of tracking the critical task in the application;
then, the power budget of the node/socket/core running
the critical task is dynamically relaxed while tightening
the power budget of the non-critical resources. This not
only involves software approaches [21], but also HW power
management solutions, like Intel Turbo mode, and RAPL
[23]. These methods are tailored to power capped super-
computing systems that still belong to a niche [24].

The third and last family of approaches aim at cutting
the IT energy waste by reducing the performance of the
processing elements when the application is in a phase with
communication slack available [16], [22], [25], [26], [27], [28],
[29], [30], [31]. These approaches try to isolate at runtime
regions of the application execution flow which can be
executed at a reduced P-state without impacting the applica-
tion performance. While the hardware power management
logic in today’s processing elements is effective in reducing
the power consumption of idle resources, in large-scale
MPI parallel applications that fully utilize all the assigned
processing elements workload unbalance, synchronization,
and communication slack can be exploited to save energy.
Several works have been proposed to address this challenge.
However, also for these approaches slowing down the appli-
cation is detrimental for the TCO thus making performance-
neutral approaches more appealing.

The power management run-time frameworks which
have been proposed in the latter family are based on the
assumption that the duration of communication and com-
putation phases in an MPI application can be predicted at
execution time. In this manuscript, we first show that this
assumption is too optimistic and leads to mispredictions,
slowing down the application execution time, which jeopar-
dizes their benefits. We then propose COUNTDOWN Slack1

a new approach based on (i) the separation of communica-
tion phases and slack during MPI calls and (ii) a timeout
algorithm to cope with the hardware power management
latency, which jointly allows us to achieve performance-
neutral power saving in MPI applications. We validate our
approach in a tier-1 production environment with a widely
adopted scientific benchmark suite [32], and a two-times
ACM Gordon Bell Prize finalist application [33], [34]. We
also compared COUNTDOWN Slack with the main state-of-
the-art approaches. In average COUNTDOWN Slack reduces
the energy consumption of 9.96% with an average overhead
of 0.79%. When compared with the state of the art, COUNT-
DOWN Slack is capable of achieving similar energy saving
but with negligible impact on the application performance.

1. Github Repository: https://github.com/EEESlab/countdown

If we consider the worst-case performance degradation,
COUNTDOWN Slack has a minimal impact on performance,
just 3.02% overhead, while the worst-case overhead for
state-of-the-art approaches is between 8.92% and 144.75%.
If we consider that only a negligible overhead (below 5%) is
acceptable, COUNTDOWN Slack is the only approach that
never exceeds this value for all the applications while at
the same time always leading to an energy saving. In con-
trast, state-of-the-art approaches can cause non-negligible
overheads or severe energy losses. Worst-case energy saving
for COUNTDOWN Slack is 1%, while for the state-of-the-art
approaches it ranges from 0.05% to −24.69%.

The paper is organized as follows. Section 2, presents
the state of the art in power and energy management ap-
proaches for HPC computing systems. Section 3 introduces
a background of power-saving in MPI-based applications.
Section 4 describes the implementation of our COUNT-
DOWN Slack runtime. Section 5 explains our implementa-
tion of the state of the art of the energy-aware runtime that
we use to compare with COUNTDOWN Slack. In Section
6, we report an analysis of our benchmarks in term of
predictability of computation and communication region of
the application. Moreover, we report experimental results in
terms of overhead, energy and power saving for production
applications in a tier-1 supercomputer.

2 RELATED WORK

Energy Efficiency is a hot topic in supercomputing. In the
last decade, several works were proposed to reduce the
energy waste of large scale MPI applications.

Kappiah et al. [22] show that in an MPI parallel appli-
cation it is possible to use the PMPI profiling interface [35]
to intercept MPI calls and isolate the time spent by each
rank during an application iteration in communication and
computation. The authors show that in collective MPI prim-
itives the amount of synchronization slack can be converted
into power (and energy) reduction by slowing down the
computation (lowering the processor’s P-state) to absorb
the available slack. This operation can be done under the
assumption that the communication and computation time
of the upcoming application iteration can be known upfront.
The authors of the paper propose to use an error signal
(desired vs measured slack) computed on the previous
iteration to drive the P-state reduction. Iterations need to
be marked by the user.

Lim et at. [26] show that during the communication time
(time spent in the MPI library) of an MPI parallel applica-
tion the cores’ P-state can be significantly reduced without
causing severe overheads; thus they propose to execute the
communication phases at a reduced P-state and computing
phases at the default one. Due to the latency of P-state
transitions, it is not feasible to target all the communication
phases singularly, but the authors propose to group them
based on a proximity index and allow a P-state reduction
only in regions of the code with higher communication
density. Regions of the code are constructed and marked at
execution time by leveraging the hash of the call stack when
MPI primitives are encountered. The proposed algorithm
uses the last value prediction to determine the beginning
and the end of a given region or the P-state to be applied

https://github.com/EEESlab/countdown
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for the upcoming region. The P-state is selected based on
the measured IPS (instructions per second) on the previous
region and a pre-characterization of the optimal P-state for
a given IPS level.

Sundriyal et al. [36], [37], [38] focus on the All-to-
All [37], send/receive [36], and AllGather communications
[38]. They analyze the impact of fine-grain power man-
agement strategies in MVAPICH2 communication prim-
itives (considered singularly) and their results suggest
that different regions in the MPI primitives have different
power/performance trade-offs.

Rountree et al. [25] propose to separate the communi-
cation time into the slack and copy time. The slack time
is caused by waiting for the critical task to enter the MPI
primitive, and the data transfer causes the copy time. The
authors define the task as the region of code between two
MPI communication calls and define an optimization prob-
lem to minimize the slack time and save power (and energy)
by reducing the P-state of the core during computation time.
In [16] the same authors propose three online algorithms
(Fermata, Andante, and Adagio) that use, similarly to [26],
the hash of the call stack at the entrance of an MPI call as
a TaskId to identify similar tasks. The Andante algorithm
uses the last value prediction on previously executed tasks
that have the same TaskId of the upcoming task to estimate
the communication, slack time and IPS and select for the
upcoming task the P-state which minimizes its predicted
slack. Due to the finite numbers of P-state available, it is not
always possible to nullify the slack time. For this reason,
the Fermata algorithm uses the last value prediction to
estimate the remaining slack time of the upcoming task,
and if it is expected to be twice larger than an empirical
switching time threshold (100ms) the region is considered
for slack reclamation. Only, in this case, a timer is set to
expire after the switching time threshold, and in the call
back the minimum P-state is applied. If the task (MPI call)
terminates before the timer expires, the callback is canceled.
Adagio combines Andante and Fermata. It must be noted
that Fermata will potentially lower the P-state also during
copy time and similarly to Andante can lead to mispredic-
tion and costly performance overhead or loss of energy-
saving opportunities, which can become severe in irregular
applications [27].

Bhalachandra et al. [28], as in [16], [25], focus on saving
power by entering a low power state for processes which
are not in the critical path. The authors propose an algo-
rithm to save energy by reducing application unbalance.
This is based on measuring the start and end time of each
MPI barrier and MPI Allreduce primitives to compute the
duration of application and MPI code. Based on that, the
authors propose a feedback loop to lower the P-state and
T-state if in previous computation and MPI regions the
overhead was below a given threshold. This algorithm is
based on the assumption that the duration of the current
application and MPI phases will be the same as the previous
ones.

Venkatesh et al. [29] show that the approaches based
on temporal execution patterns for predicting slack (such
as last value prediction) [16], [25], [26], [39] can lead to
significant misprediction errors. The authors propose to use
a combination of empirical observation and communication

models specialized for the different classes of communi-
cation primitives for estimating the duration of the MPI
phases. If this estimation is long enough, they will decide
to reduce the P-state.

Cesarini et al. [30], [31] tries to overcome mispredictions
by leveraging a timeout policy (namely COUNTDOWN)
which sets a timer at the entrance of any MPI calls (Fermata
was doing it only in the one predicted to be long enough)
to discard communication times shorter than the hardware
power controller latency, which is measured to be 500µs,
in line with the findings of Hackenberg et al. [8]. If the
communication time of the MPI primitive is longer than
500µs when the timer callback is triggered the lowest P-state
is selected, otherwise the timer is canceled. This timeout-
based policy has been in-depth analyzed in the power
management literature and has been shown to be effective
in mitigating the issues related to prediction inaccuracy
and predictive model overfitting [40]. It must be noted
that similarly to Fermata, the COUNTDOWN approach does
not distinguish between slack and copy time and execute
both of them at the minimum P-state, causing additional
overheads.

Hence, in this work, we propose COUNTDOWN Slack,
a novel technique that, while inspired by the methodology
proposed in [30], [31], differently from state-of-the-art ap-
proaches induces negligible overhead (in the worst case less
than 3%) in applications running on real production HPC
machines. COUNTDOWN Slack implements purely reactive
mechanisms, thus it is robust to miss-prediction errors and
capable of isolating slack time with a new reactive approach
based on artificial barriers insertion. We will discuss these
aspects in Sections 3 and 4.

3 BACKGROUND

The proposed manuscript shares some common assump-
tions with approaches in the state of the art. We list in
this Section common definitions, as well as a taxonomy to
compare our solution with previous works in this field.

3.1 Definitions and Assumptions

We target typical HPC scientific applications, which are usu-
ally composed of parallel processes (from tens to thousands)
running on a cluster of compute nodes interconnected with
a high-bandwidth low-latency network. Each application
process is statically bound to a compute element for its
entire life duration. Processes can exchange data through the
network interconnection using a message-passing interface
(MPI) library that can send explicit messages. Multiple
processes can share the same compute node since modern
HPC machines are equipped with multi- and many-core
high-end processors. MPI library abstracts the locality of
computing resources by taking care of the communication
inter and intra nodes. HPC applications can ignore the
locality of the processes because MPI represents the com-
putation resources as a large set of single-core nodes. HPC
users can choose the binding configuration of the processes
to optimize communication. Non-uniform memory access
(NUMA) plays an essential role in terms of communication
latency and bandwidth in MPI communication primitives.
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Tcomp Tcopy

TcopyTcomp Tslack

Ttask = Tcomp + Tcomm

Tcomm = (Tslack) + (Tcopy)
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P1

Wait

TcopyTcomp TslackP3

Wait
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Fig. 1: Execution model and taxonomy. A task is shown for
each process.

In this work, we do not consider heterogeneous compute
nodes such as GPU- and MIC-based architectures, leaving
them to future extensions of this work. We recall that today
(Nov.18 Top500 list [6]) 73% (364/500) of worldwide super-
computers systems are homogeneous x86 based clusters.

Figure 1 shows our execution model and taxonomy,
which is the same of Rountree et Al. [16]. At the base
of the execution model, there is the task; each process is
composed of a set of tasks that sequentially enter in the
execution flow. Each process starts with the MPI primitive
MPI Init, which begins the first task of the process, and
ends with the MPI Finalize, which concludes the last task.
Each task comprises (i) a computation time Tcomp, which
identifies the time spent in the application code, and (ii) a
communication time Tcomm, which is the time spent in the
MPI library. In turn, Tcomm is composed of (i) a slack time
Tslack and (ii) a copy time Tcopy. The slack time is the period
spent in the MPI library while waiting for the last process
that encounters the MPI primitive. This time is purely busy
waiting and is equal to zero for the last process. When the
last process enters in the primitive, it unlocks all the others.
When Tslack is concluded, processes can start sending and
receiving data – we call this period copy time. The MPI
specification also implements pure synchronization primi-
tives (such as MPI Barrier, MPI Wait, etc.) which have zero
copy time but cause slack time. In this work, we do not
target non-blocking and no-synchronization MPI primitives
since they do not produce busy waiting wasted cycles in the
application. We define the critical process as the last process
that enters the MPI primitive; this process plays a critical
role as it blocks all the others. A critical path is a list of critical
processes in successive blocking MPI primitives.

3.2 Power Management Basics

Today’s generation of high-end CPUs is composed of many
processing elements that can work at different voltage and
frequency. In particular, Intel technology started to integrate
per-core fully-integrated voltage regulators from Haswell
architecture [41], which allow the DVFS mechanism to
trade-off performance and energy. While DVFS control is

available in most modern high-end processors for HPC
system, our approach explicitly targets Intel architectures for
two reasons: i) our target machine is an Intel-based system
and ii) most of HPC system in the Top500 list (73% in Nov
2018 [6]) are based on Intel CPUs.

The power control unit (PCU) of Intel architectures is the
HW component that controls the power management knobs
and exposes model-specific registers (MSR) concerning the
DVFS control knobs. While the internal logic of Intel PCUs
is not publicly available, Hackenberg et al. [8] analyzed
the behavior of the DVFS control registers of the PCU in
Haswell architectures. Their experimental results show that
frequency changes occur at regular intervals of about 500µs.
As pointed out by Cesarini et al. [30], [31] this interval
creates uncertainties in P-state transitions for code regions
shorter than 500µs.

It is possible to interact with the DVFS mechanism using
the MSRs. MSRs are not only used to interact with the HW
power manager, but also with the performance counters, de-
bugging, and trace controls. COUNTDOWN Slack requires
read and write access to these registers. Intel provides
two specific assembly instructions to read and write MSRs,
named respectively rdmsr and wrmsr. Both instructions are
executed in ring 0 (kernel mode), so only the operating
system (OS) can execute them. The Linux OS allows user-
space access through a kernel driver called MSR driver. The
drawback of the MSR driver is that only the root user can
access to this driver because exposing all MSRs to a generic
user can lead to security issues.

The MSR SAFE driver [42] overcome the restricted priv-
ilege issue and security risks, by supporting a registers
white-list. In COUNTDOWN Slack we white-listed a limited
subset of control registers in [42] to let standard HPC users
interact with the HW power manager and performance
counters.

3.3 Power Management Modelling

The majority of HPC power management policies fall into
two categories, proactive and reactive policies. Both policies
aim at scaling down the P-state in regions of code which are
less susceptible (or even not sensitive at all) to frequency
scaling. We now report the most common implementation
concepts for both categories.

3.3.1 Proactive Policies
Training strategies are often at the base of proactive policies.
A typical train strategy initially starts by identifying the
portion of the code that can be targeted for frequency re-
duction. The runtime always executes a newly encountered
code region at the highest available P-state to measure the
performance of that region. At the end of the code portion,
the runtime stops the performance monitor and gathers
the performance parameters; these will be used by the
algorithm to compute a new P-state for the next time the
code region is encountered. The most frequently used pa-
rameters are the execution time of the code region at a given
frequency and the number of retired instructions. The next
time the execution flow encounters a previously recorded
code region, the policy tries to scale the P-state, by applying
the earlier computed P-state. A code region can be any part
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of the execution flow of the program, such as application
code [16] or communication runtime [26]. The algorithms
used to identify the optimal frequency can be a simple last-
value prediction [16] or many complex predictors, like an
auto-regressive moving average. A typical implementation
of this policy is done through a history table used by the al-
gorithm to predict the next P-state to be assigned. The code
regions can be uniquely identified using different strategies:
(i) source code instrumentation [22], (ii) compilers automatic
insertion [43] or (iii) identified at execution time via a stack
trace mechanism [16], [26]. The advantage of using source
code tagging is the low overhead and precise code pinpoint
that developers can optimize. However, this methodology
requires to modify the application source code which is not
always tolerated. On the contrary, compiler tagging does not
require programmer intervention. The drawback is the need
to re-compile the source code. Conversely, the stack trace
mechanism is completely application-agnostic, and it does
not require source code modification nor re-compilation,
but extra cycles of computation in the application. As we
will see in the experimental results when this is done syn-
chronously to the MPI calls its overhead can be neglected.

3.3.2 Reactive Policies
Differently from the previous ones, reactive policies are im-
plemented as event-based strategies. When specific events
occur, the runtime triggers well-defined actions. Cesarini et
al. [30], [31] developed COUNTDOWN, which implements a
reactive policy based on a timeout to filter out code portions
which have too short to cause a P-state transition, this de-
pends on the HW PCU delay of Intel architectures. Contrary
to proactive ones, reactive policies do not need to uniquely
identify regions of code, since they do not maintain a history
of the execution traces. However, similarly to the proactive
ones, the runtime requires to intercept events related to
the beginning and end of each region. This can be done
by leveraging the profiling extensions of communication
libraries such as PMPI or debug symbols [44].

While proactive policies can modify their behavior to
adapt to different code regions and minimize overhead,
reactive policies always apply the same operation, since they
are unaware of the different sensitivities to the frequency
scaling of different code portions. Similarly to COUNT-
DOWN, COUNTDOWN Slack applies a reactive policy to
code regions without considering their sensitivity to fre-
quency scaling.

4 COUNTDOWN SLACK - A LOW-OVERHEAD,
REACTIVE, SLACK-AWARE PM RUNTIME

In this Section we present the implementation of COUNT-
DOWN Slack.

4.1 Runtime
COUNTDOWN Slack is a simple shared library written in
C language. It can instrument standard MPI-based applica-
tions that load COUNTDOWN Slack in their LD PRELOAD
environment variable before the execution of the program.
Using this technique, every MPI call is intercepted by
COUNTDOWN Slack which executes between the applica-
tion and the MPI library. It implements a PMPI interface to

wrap all the MPI primitives defined in the MPI specification
v3. The library has been designed to have the lowest pos-
sible overhead and to interact with the hardware through
the MSR SAFE kernel driver as discussed in Section 3.2.
COUNTDOWN Slack also provides a static link version,
which can be used when dynamic linking is not possible, to
inject COUNTDOWN Slack in the application binary at com-
pilation time. If dynamic linking is allowed, COUNTDOWN
Slack does not require any modifications of the source code
nor toolchain, nor re-compilation steps. It is completely
transparent to the user. In the experimental results of this
paper, we instrument all the target HPC benchmarks using
dynamic linking.

COUNTDOWN Slack is based on a simple but effective
strategy to reduce energy consumption in production HPC
systems without performance penalties. The key idea is to
scale down the P-state in slack times of the application re-
ducing the frequency but leaving unaltered the performance
for both computation and data copy regions.

Since COUNTDOWN Slack targets performance-neutral
energy savings, our goal is to avoid performance penalties
for a large set of MPI-based applications, thus COUNT-
DOWN Slack focuses on saving energy only when this has
no effects on performance skipping potential energy saving
if they could induce non-negligible performance overhead.
As side effect, COUNTDOWN Slack shows slightly lower
energy saving respect to the state-of-the-art approaches but
guarantees better performance which is the first goal in HPC
applications. To accomplish this task, COUNTDOWN Slack
employs a purely reactive policy for both slack isolation and
short region filtering since predictive algorithms can induce
performance penalties in case of mispredictions [27].

As shown in [8], modern Intel architectures allow core
frequency changes only every 500us. Thus, we implement a
timeout policy as presented in [30], [31], but we apply it only
to slack times, without varying the cores’ frequency during
the copy, as shown in Figure 2.

4.2 Reactive Slack Isolation

The slack time of an MPI call is usually included in the
primitives. Differently from previous works that use pre-
characterization or non-causal models to separate slack and
copy time from the communication time [16], [25], [26], in
COUNTDOWN Slack we propose a novel reactive approach
based on the insertion of artificial/instrumental barriers.
This mechanism is agnostic to the MPI implementation,
and it is built on top of standard MPI primitives. It can
be used with every MPI library. We applied this mechanism
on blocking MPI primitives leaving unaltered non-blocking,
one-sided, file and support MPI primitives. We also account
for collective and P2P (Point-to-Point) primitives since the
time spent in other primitives are negligible for the consid-
ered benchmarks. We implement two different mechanisms
to isolate the slack time, one for collective and one for P2P
primitives.

4.2.1 Collective Barrier
We designed a straightforward mechanism to separate slack
and copy time in collective primitives. Every time the ap-
plication calls a collective primitive, COUNTDOWN Slack
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Fig. 2: Timer strategy utilized in COUNTDOWN to filter-out short slack times.

intercepts the call, forces a MPI Barrier on the same commu-
nicator, and reduces the P-state to the minimum available
one if the MPI Barrier is long enough (Reactive Short Phase
Filter). When all processes reach the collective primitive,
the barrier inserted by COUNTDOWN Slack terminates and
the execution flow returns to COUNTDOWN Slack. After
that, COUNTDOWN Slack profiles the slack time, restores
the maximum frequency and calls the first collecting prim-
itive of the application. We call this mechanism Collective
COUNTDOWN Slack barrier.

4.2.2 Point-to-Point Barrier
The mechanism for collective barriers is straightforward
since all the ranks in the communicator are involved in
the barrier. Unfortunately, the P2P primitives are called
only from the processes involved in the communication.
We cannot insert a MPI Barrier because it would cause
a deadlock on the processes involved in the P2P com-
munication. To overcome this limitation, we implemented
a waiting mechanism based on non-blocking primitives.
Before a MPI Send primitive COUNTDOWN Slack adds
an artificial MPI Isend followed by a MPI Wait. Similarly
before a MPI Recv primitive COUNTDOWN Slack adds an
artificial MPI Irecv followed by a MPI Wait. Differently, be-
fore a MPI Isend primitive COUNTDOWN Slack adds only
an artificial MPI Isend, and before a MPI Irecv primitive
COUNTDOWN Slack adds only an artificial MPI Irecv.

The non-blocking P2P primitive returns back a request
object that COUNTDOWN Slack uses in the following
MPI Wait primitive. The MPI Wait is a blocking primitive
used to wait for the completion of a request object. When
the application enters in the artificially MPI Wait, COUNT-
DOWN Slack reduces the frequency if the MPI Wait is
long enough (Reactive Short Phase Filter). This mechanism
allows COUNTDOWN Slack to obtain a P2P barrier just
between the processes involved in the P2P communication
and to isolate its slack to copy time. We call this mechanism
P2P COUNTDOWN Slack barrier. When all processes reach
the P2P primitive, the artificial barrier terminates and the
execution flow returns to COUNTDOWN Slack. After that,

the library restores the maximum frequency and calls the
original P2P primitive of the application.

COUNTDOWN Slack instrument blocking P2P primi-
tives with correspondent non-blocking ones but the appli-
cation can use mixed blocking and non-blocking P2P primi-
tives and this can create a mismatch of P2P COUNTDOWN
Slack barrier. To avoid it, we added non-blocking P2P prim-
itives in-front-of every non-blocking P2P primitives called
from the application to balance the number of non-blocking
P2P primitives.

To measure the overhead for both collective and P2P
COUNTDOWN Slack barrier, we run all our benchmarks
with and without the barrier mechanism and we compare
the execution times. The experimental results show a negli-
gible overhead for all our benchmarks.

4.3 Reactive Short Phase Filter
As we showed in 3.2, it is not possible to ensure P-state tran-
sitions in code regions shorter than 500µs. To filter out slack
regions shorter than this value, we implemented a timeout
policy in COUNTDOWN Slack as the one proposed in [30],
[31]. The timeout strategy of COUNTDOWN Slack relies on
the standard timer APIs of Linux systems. Linux provides
the kernel calls setitimer() and getitimer() to manipulate
Linux timers. The timer allows users to register a callback
function; when the timer expires, a system signal interrupts
the “normal” execution, and the callback is executed. The
callback sets the lowest P-state and return. At the end of
the slack region, COUNTDOWN Slack restores the highest
P-state. This mechanism is shown in Fig. 2.

4.4 Profiler
COUNTDOWN Slack is endowed with a profiler module
that allows a detailed analysis of the application; the profiler
is split into two components.

i) The event profiler monitors the HW performance coun-
ters using the RDPMC instruction, reading the performance
monitoring units of Intel’s processors. RDPMC is a low-
overhead user-space assembly instruction that can be used
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to keep track of micro-architectural events at a very high
frequency with negligible overhead. This instruction reads
the fix performance counters which counts the number of
clock cycles at the nominal frequency, at the current P-
state, and the instructions retired. Furthermore, it can read
a limited subset of configurable HW performance counters
used to monitor user-specific micro-architectural metrics.
This profiler is also able to extract MPI information from
the parameters passed to the MPI primitives.

ii) The time-based profiler collects a broad set of HW per-
formance counters every second. This profile is time-based,
and it leverages a timer to sample the entire node. Every sec-
ond, the MPI processes on the same node alternately sample
all the core and uncore performance registers in a round-
robin fashion. This strategy is used to distribute the profiling
overhead among all processes. The profiler maintains the
tracing information in a memory area shared among all
the processes. The profiler exploits the MSR SAFE kernel
driver to access the performance registers using the batch
mode [45] to reduce the overhead. Moreover, it uses Intel
Running Average Power Limit (RAPL) registers to monitor
the energy/power consumed by the CPU and DRAM. The
energy measurements presented in the rest of this work
always refer to both package and DRAM consumption.

The profiler does not save all the events and time-based
traces, but it summarizes them in a hierarchical report. This
report comprises a summary file with information about
the entire application run, an MPI report with information
about MPI primitives, and a set of reports organized for
nodes, sockets, and cores. These reports contain the same
information of the summary report (plus specific metrics)
but organized, respectively, for nodes, sockets, and cores.
The hierarchical organization improves the readability of
the reports and their long term compression. The overhead
of the hierarchical report is entirely negligible, while the
overhead of the event and time-based profilers are strictly
related to the performance of the storage. In our target
architecture with a small set of computing nodes (29), both
event and time-based tracing overhead are negligible. The
memory footprint of the profiler is constant due to the fixed
number of performance counters. It is in the order of few
megabytes per MPI process. We recall that the different pro-
filer modalities can be easily configured and deactivated.

5 STATE-OF-THE-ART ENERGY-AWARE RUNTIMES

In this Section, we discuss the energy-aware runtimes that
we have implemented as part of COUNTDOWN Slack for
comparisons with the state of the art. In Section 6, we
compare COUNTDOWN Slack with the following described
algorithms.

5.1 Fermata

The first runtime we introduce for comparison with
COUNTDOWN Slack is Fermata [16], [46]. Fermata imple-
ments a simple algorithm to reduce the cores’ P-state in
communication regions (Tcomm). Fermata uses a prediction
algorithm to decide when scaling down the P-state; the
prediction is determined by the amount of time spent in
communication during the previous call. If the duration

is greater than or equal to twice the switching threshold,
Fermata sets a timeout to expire at the threshold time.
The threshold time is empirically set to 100ms. Calls are
identified as specific MPI primitives in the application code
through the hash of the pointer that makes up the stack
trace. The hash is generated when the application encoun-
ters an MPI primitive; hence, each MPI primitive in the code
is uniquely identified. The information about the last call is
stored in a look-up table used to choose if to set the timer in
the next call.

In COUNTDOWN Slack we implemented two versions of
the Fermata policy, one with the original empirical switch-
ing threshold value of 100ms [16], and one with an empirical
switching threshold tuned for the target system of 500µs [8].

5.2 Andante
Differently from Fermata, Andante [16] focuses on slowing
down the computation region (Tcomp) to reduce the slack
time (Tslack). This approach is based on the assumption that
Tcomp, Tslack, and the number of instructions retired for a
given task will be the same as the previous one for the same
task. Andante computes the highest P-state for Tslack (aiming
at reducing it) by exploiting the instructions per second (IPS)
estimated based on measurements the previous time the
same task was encountered (last-value prediction). Andante
logic in [16] uses a pre-characterization of the message-
transfer time of the MPI library to estimate the Tcopy. Tslack
is calculated as the difference between Tcomm and Tcopy.
Similarly to Fermata, Andante distinguishes tasks using the
stack trace at the end of each collective MPI primitive. The
information regarding the last executed task is kept in a
look-up table containing the IPS for each discrete P-state of
the system and the next P-state to assign.

COUNTDOWN Slack implements the same logic of An-
dante, but is uses the Collective and P2P COUNTDOWN Slack
barrier to compute Tslack as the [16] pre-characterization step
cannot be ported as it is in NUMA compute node.

5.3 Adagio
The idea behind Adagio [16] is to merge Fermata and Andante
in a single energy-aware runtime. Andante slows down the
computation regions, while Fermata handles the communi-
cation phases.

In COUNTDOWN Slack we implemented the same logic
of Adagio by combining Andante and Fermata. We used in this
case only Fermata configured with the empirical switching
threshold at 500µs and applied only to the slack regions
isolated with the Collective and P2P Countdown Slack barrier
logic.

5.4 COUNTDOWN
COUNTDOWN [31] is a runtime library to identify and
automatically reduce the power consumption of the com-
puting elements during the communication phases. It uses
a timeout strategy to filter-out short communication regions
(those too fast for the DFVS control knob to react, i.e.,
shorter than 500µs). COUNTDOWN differs from COUNT-
DOWN Slack as it considers the communication phase,
while COUNTDOWN Slack focuses only on the slack time.
However, the timeout implementation is similar.
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Application Without Previous Info With Previous Info
Tcomp Tslack Tcopy Tcomp Tslack Tcopy

nas bt.E.1024 57.0 17.6 52.5 6.2 12.4 12.4
nas cg.E.1024 21.9 7.1 25.3 16.2 5.5 11.0
nas ep.E.128 9.1 8.4 23.8 9.7 7.3 24.6
nas ft.E.1024 1.2 5.4 9.7 0.3 1.2 3.9
nas is.D.128 10.7 15.2 8.2 5.3 8.0 2.4
nas lu.E.1024 0.9 19.8 0.5 0.7 13.5 0.4
nas mg.E.128 5.1 4.8 13.0 4.1 5.3 13.1
nas sp.E.1024 46.5 11.8 46.9 4.1 10.2 7.3
omen 1056p 1.0 57.3 75.8 2.8 55.4 64.6

Average 17.0 16.4 28.4 5.5 13.2 15.5

TABLE 1: Prediction error [%] for all test applications
(SMAPE)

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup
6.1.1 Target Architecture
For all the experiments we use a Tier-1 HPC system based
on an IBM NeXtScale cluster which is currently ranked in
the Top500 supercomputer list [6]. The compute nodes of
the HPC system, are equipped with 2 Intel Broadwell E5-
2697 v4 CPUs, with 18 cores at 2.3 GHz nominal clock
frequency and 145W TDP and 128 GB of DDR4. Each node
runs the Centos 7 OS and Linux kernel 3.10.0, nodes are
interconnected with an Intel QDR (40Gb/s) Infiniband high-
performance network. We compile all our benchmarks using
GCC/GFortran 6.2 as our toolchain, coupled with OpenMPI
3.2 as the communication library.

The default configuration for the power management in
the target system is with the Linux cpufreq driver at the
maximum P-state with turbo mode enabled. This is the
baseline for our experimental results and we refer to this
configuration lately as Baseline.

6.1.2 NAS Parallel Benchmark
The NAS Parallel Benchmark suite (NPB) is a set of pop-
ular HPC benchmarks developed by the NASA Advanced
Supercomputing division. The NPB consist of 8 benchmarks
and kernel namely BT, CG, FT, LU, SP, EP, MG and IS, which
are widely used in different scientific areas such as spectral
transform, fast Fourier transform, partial differential equa-
tions, fluid dynamics, and so on. We used NPB version 3.3.1
and tested different configurations to balance the duration
of all benchmarks at around 10 minutes of execution time.
For BT, CG, FT, LU, and SP we ran on 29 nodes using 1024
cores with data set E while for EP and MG we used the
same dataset but on four nodes and 128 cores. Instead, for
IS we use dataset D, which is the largest available one for
that benchmark.

6.1.3 OMEN
OMEN is an atomistic quantum transport simulator that can
compute the I-V characteristics of all kinds of nano-devices
at the ab initio level (from first principles) [47], [48]. The
code has been optimized to run on the largest available
supercomputers, reaching two times the ACM Gordon Bell
Prize final [33], [34]. Here, a transistor with a 2-D crystal as
channel material serves as a benchmark.

We tested two configurations for OMEN, the above-
mentioned called OMEN.1056p, which it runs on 29 nodes

Fig. 3: Relative importance of each feature (including in-
formation about previous phases); the colors identify the
prediction targets

using 1056 cores and the OMEN.60p which runs on a couple
of nodes with a scale-down dataset.

6.2 Regions Predictability
In this subsection, we report an analysis carried out on the
test applications to highlight the degree of predictability of
Tcomp, Tslack, and Tcopy, based on features available before
a given region is encountered. As depicted in Section 3
most of the state-of-the-art energy-management runtimes
use a predictor to estimate the duration of the regions
of an application for optimization purposes. To assess the
predictability of the region duration, we employ a standard
Machine Learning (ML) technique, namely Random Forest
(RF) [49] models2. For each test application, we build and
train three RF models, one for each target region duration
(Tcomp, Tslack, and Tcopy); we then evaluate the quality of the
prediction by measuring the difference between the real re-
gion duration and the estimates (over a test set of examples
not seen during the training phase). All the experiments on
the predictability were performed using the scikit-learn [50],
a widespread ML library for python.

For this purpose we extracted with COUNTDOWN Slack
Event Profiler a set of traces for the NPB and OMEN
benchmarks in the default configuration (Baseline). For each
benchmark (8 NPB + OMEN) we obtain a trace with a row
for each code region and a column for each feature analyzed.
The rows are ordered first on the rank id, then on the task
id, and finally on the progression of time.

We consider two types of approach, namely a first one
taking into consideration only the features relative to the
MPI call whose region duration we want to predict, and
a second one that exploits also information about the last
MPI call of the same type and rank. We now describe the
first approach. Each data set is composed of the following
features: 1) rank id of the process that makes the MPI call;
2) type of the MPI call; 3) size (byte) of the received data; 4)
size of the sent data (byte); 5) number of processes involved
in the MPI call; 6) locality, a number between 0 and 1
that specifies the amount of local (to the node) or remote
processes involved in the call (0 means that all processes are
remote, 1 all local processes); 7) task id, the hash of the stack

2. Random Forests are ensembles of decision trees
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(identify MPI calls made at the same points of code). Each
RF model aims at predicting one of the three targets, Tcomp,
Tslack, and Tcopy (expressed in microseconds). We limit our
analysis to processes with a duration longer than 500ms, we
are less interested in extremely short MPI calls since they
offer lower potential in terms of power management. There
is a distinct data set for each test application, with sizes of
varying dimensions, ranging from 1k elements to 1 million
examples. We recall that the first approach is motivated by
the state-of-the-art works and uses pre-characterization of
the copy time to estimate at execution time the slack time.
Indeed the Tcopy model can be seen as a generalization of
the pre-characterization steps.

The second approach is motivated by state-of-the-art
methods that exploit information regarding previous MPI
calls to estimate the phase duration (last value prediction).
More precisely, in this case, each example in the data set
possesses the set of aforementioned features plus three more
fields: the Tcomp, Tslack, and Tcopy values of the last MPI
call with the same type, task, and rank. In both approaches
(with or without previous MPI call information), each data
set is split in a training set (70% of the whole set) used
to train the RF models, and a test set used to evaluate the
quality of the predictions. After a preliminary analysis, we
discovered that the RF model accuracy increased if we used
the natural logarithm of the target during the training phase,
rather than directly using the duration in microseconds;
probably, this happens because the logarithm flattens the
peaks caused by extremely long or short duration (with
respect to the average phase duration for the training set).
The accuracy results reported later (test phase) are instead
computed on the actual values, by applying the exponential
function to the predictions made by the RF models.

In Table 1 we see the results of the predictability ex-
periments. The prediction error is computed as percentage,
in particular using the SMAPE metric (Symmetric Mean
Absolute Percentage Error), preferred to the standard mean
absolute percentage error since the former places smaller
emphasis on regions with shorter duration3. Each row
corresponds to a different test application (identified by
the first column); the final one reports the average over
all applications. Columns 2-4 show the error obtained if
we train ML model without providing information about
the duration of previous regions; columns 5-7 report the
results obtained with previous region information. The pairs
of three columns Tcomp, Tslack, and Tcopy correspond to
the three region-targets – one triplet for each approach
(with/without previous information).

Table 1 reveals that it is not straightforward to predict
the target phase duration with the collected information. If
we consider the case without previous MPI call information
and we look at the average values computed over all ap-
plications, the error for predicting both Tcomp and Tslack is
around 16-17%, while for Tcopy the accuracy is even lower
(28% error). As one could have expected, things improve
if we feed the ML models with additional information

3. For a single prediction it is computed as: SMAPE = 100 ·
abs(pred−actual)

pred+actual
, where pred is the predicted region duration and

actual is the real value. If we use only the actual value at the numerator,
as in the standard mean average percentage error, examples with very
short duration would significantly skew the overall error

regarding the last MPI calls of the same rank, task, and type;
this is especially true for Tcomp (error decreased at around
5%) and Tcopy, while the improvement for Tslack is less
significant. Generally speaking, considering previous infor-
mation improves the prediction accuracy on most test appli-
cations (even drastically: see for example nas bt.E.1024 and
nas sp.E.1024). However, this is not true for all applications
and in some cases (for instance omen 1056p) the additional
information can lead to a marginal decrease in prediction
accuracy, probably due to an increase in noise that confuses
the RF models (however, the effect is marginal).

Another aspect that deserves more analysis is under-
standing the factors that the RF models focus on in order
to make their estimates. We can gain some insight into
this matter by inspecting the importance of each feature. In
scikit-learn the feature importance is computed as mean de-
crease in impurity, described in [51]; this method is known
to be prone to bias (see [52]), thus we opted to compute the
feature importance via a permutation-based approach [53],
[54], where each feature importance is computed by looking
at how random re-shuffling (which preserves the feature
distribution) influences the model accuracy. We normalized
the important values in the [0,1] range; zero indicates that
a feature has no importance for the regression RF model,
while values closer to 1 indicate relatively more important
features.

Figure 3 shows the importance of all features when
we include information about previous MPI calls. The plot
refers to the average feature importance computed overall
test applications. The height of each bar corresponds to the
average feature importance and the black vertical line rep-
resents the standard deviation – longer black lines indicate
that the feature importance varies significantly for different
applications. Each target is highlighted by a different color,
blue for Tcomp, red for Tslack, green for Tcopy. Each group of
three bars represent a feature; the three right-most groups
report the influence of the previous MPI call (same type)
regions duration, respectively (from left to right), last MPI
call Tcomp, Tslack, and Tcopy.

The first thing that we can notice is that the standard
deviations tend to be quite large, revealing a high variability.
This high variability suggests that predicting the region
duration of MPI calls in HPC application is indeed a difficult
task since there is no subset of trustworthy features that can
be robustly employed for accurate estimation. Secondly, the
number of processes, the locality, and the task id have very
little influence on the RF prediction. We recall, that the task
id was one of the foremost important feature in state-of-the-
art approaches [16], [26].

To summarize, the features with greater importance are
the size of the outgoing transmitted data (especially for the
Tcomp) and the type of the MPI call. The size of the incoming
data is more relevant for Tslack and Tcopy. Additionally, the
importance of the information about the previous MPI call
with the same type cannot be discounted, as highlighted by
the right-most three groups of columns. In particular, the
length of Tcomp and Tcopy phases of the last MPI call is an
important factor for the models that predict Tcomp.

As we mentioned in Section 4, COUNTDOWN Slack
employs only reactive mechanisms to isolate slack and filter
out too short slack regions to avoid miss-prediction errors.
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Application Tcomm Tslack Fermata
100ms

Fermata
500µs CNTD CNTD

Slack
AVG MPI

Time Duration

nas bt.E.1024 0.12 0.07 0.00 0.00 0.12 0.07 1.831
nas cg.E.1024 34.84 0.07 0.39 32.68 32.96 0.01 2.068
nas ep.E.128 7.56 7.56 0.00 0.00 7.56 7.56 24384.882
nas ft.E.1024 65.10 12.28 55.88 57.80 65.09 12.28 2374.646
nas is.D.128 62.73 27.42 31.14 40.98 62.65 27.41 277.003
nas lu.E.1024 51.01 45.51 9.91 21.93 22.42 21.79 0.099
nas mg.E.128 8.94 0.09 0.01 7.95 8.48 0.06 1.134
nas sp.E.1024 0.05 0.02 0.00 0.00 0.05 0.02 1.447
omen 60p 59.69 56.00 43.87 48.86 59.60 55.99 59.853
omen 1056p 62.96 56.42 50.85 60.18 62.83 56.41 58.193

TABLE 2: Slack Isolation Potential [%] and average MPI time
duration [ms].

6.3 Slack Isolation Policy Performance
As discussed in the previous subsection, it is difficult to ob-
tain accurate predictions for Tcomp, Tslack, Tcopy, and Tcomm.
Moreover, the energy savings and performance neutrality
depend on the capability of the given algorithm to (i) isolate
the slack time from the copy time in MPI primitives, and (ii)
avoid P-state transitions for a time shorter than 500µs [8],
[31].

In this subsection, we analyze the capability of COUNT-
DOWN Slack in comparisons with state-of-the-art ap-
proaches in taking advantage of slack time to reduce the
energy consumption and limiting the application overhead
while discarding shorter slack regions and copy time re-
gions. We conducted this analysis on the application traces
recorded by COUNTDOWN Slack Event Profiler during the
execution of the test applications with default node power
management settings (Baseline configuration). These traces
are the same as used in Subsection 6.2. On these traces
we have implemented the Fermata and COUNTDOWN, as
described in Section 5, as well as the COUNTDOWN Slack
isolation and timeout policy. For the Fermata algorithm we
report both versions with the empirical switching threshold
set at 100ms (as described in [16]) and at 500µs (adapted to
the characteristics of the target architecture [8], [31]).

Table 2 show the results of this test. Each row corre-
sponds to a different application, and the column reports
the total Tcomm and Tslack time, as well as for each power
management runtime analyzed the total time in which the
algorithm is capable of reducing the power consumption.
Values in each column are reported in percentage with
respect to the execution time of the application. The column
AVG MPI Time Duration reports the average time duration
of the MPI primitives in milliseconds.

From Table 2, we first notice that for the different appli-
cations (rows) the Tslack time is a sub set of the Tcomm time.
For some applications (BT, GC, MG, SP, and FT of the NPB)
the Tslack time is small fraction of the Tcomm timed, while
for others (IS, LU and the OMEN benchmark) the Tslack time
is significant.

As expected, we note that Fermata 500µs outperforms
Fermata 100ms for all benchmarks as the 100ms empirical
switching threshold was extracted by the authors of [16] on
an older system with different power management charac-
teristics than the one used in this study. We also highlight
that in moving from 100ms to 500µs the potential energy
saving increases drastically for the NPB, but less for the
OMEN production runs. When comparing Fermata 500µs
with COUNTDOWN we observe that the reactive timeout
policy of COUNTDOWN is always more effective than the

proactive timeout policy of Fermata, leading to remarkable
additional energy savings up to 11% more for OMEN.60p
and 22% more for the is.D.128 case. It must be emphasized
that both Fermata and COUNTDOWN are slack agnostic and
thus cannot prevent the policy to slow down also Tcopy
regions. Differently, the slack isolation policy proposed in
COUNTDOWN Slack can separate the Tslack regions from
the Tcopy ones. This is visible in Table 2 as COUNTDOWN
Slack obtains in general lower coverage of the Tcomm and
focuses only in the Tslack. We also note that for real applica-
tion production run as OMEN.60p COUNTDOWN Slack is
capable of capturing more power saving opportunities than
Fermata 500µs even if COUNTDOWN Slack targets the slack
time only. It is also interesting to underline that lu.E.1024,
differently from the other applications is characterized by a
large fraction of Tcomm (> 50%), which is almost entirely
Tslack (45%), but the application spends half of this time in
Tcomp regions which are shorter than 500µs (visible from
the column AVG MPI Time Duration). This can be seen by
Fermata, COUNTDOWN, and COUNTDOWN Slack which
cannot exploit all the Tcomm time.

The next subsection quantifies the energy saving and the
overhead mitigation of COUNTDOWN Slack with respect to
state-of-the-art approaches.

6.4 COUNTDOWN Slack Run-time Results

In this subsection we report the performance penalty (if
any), power and energy saving of the proposed COUNT-
DOWN Slack power management runtime with respect to
state-of-the-art approaches presented in Section 5 when
applied to the different benchmarks.

We use as a baseline of our characterization the Base-
line case, we also take into exam the case where all the
nodes were configured to operate statically at the minimum
available P-state (Min Freq). This is an important scenario
as it allows to put in perspective the impact of policies that
change the P-state in the computation regions, like Adagio
and Andante. We report for each configuration the execution
time overhead (Ex.Time Overhead), the power saving, and
the energy saving with respect to the Baseline case.

By looking at the Min Freq we notice that almost
all benchmarks (excluded nas ep.E.128, OMEN 60p, and
OMEN 1056p) are memory bound as executing them at
the minimum P-state always leads to an energy saving.
Moreover, the Min Freq case shows, as expected, the highest
power saving. This is not true for the energy saving as Min
Freq causes, in general, a non-negligible overhead in the
execution time.

If we first focus on the row of the table named average,
which shows the average results for all the benchmarks, we
can make the following observations:

(1) Min Freq induces the highest overheads in the appli-
cation execution time. This is expected for Min Freq because
the entire application is executed at the minimum P-state
available.

(2) Andante and Adagio algorithms reduce the frequency
on the Tcomp regions of the application, achieve the max-
imum power saving but lead to significant performance
penalty, respectively in average 38.65% and 42.87%. This
shows that the predictive logic of Andante is not capable of
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Application
Ex.Time Overhead Energy Saving Power Saving

Min Freq Fermata Andante Adagio CNTD CNTD
Slack Min Freq Fermata Andante Adagio CNTD CNTD

Slack Min Freq Fermata Andante Adagio CNTD CNTD
Slack

nas bt.E.1024 72.18 1.95 77.72 68.94 8.92 0.75 3.39 2.07 0.11 3.35 5.96 7.97 43.89 3.95 43.79 42.79 13.66 8.65
nas cg.E.1024 21.73 3.86 8.18 14.35 4.23 1.08 21.59 18.89 24.72 22.69 22.58 9.57 35.59 21.91 30.41 32.39 25.72 10.54
nas ep.E.128 136.04 -0.31 -0.15 1.30 0.80 -0.60 -15.00 0.62 0.10 -1.35 0.05 1.04 51.28 0.31 -0.05 -0.05 0.84 0.44
nas ft.E.1024 34.54 2.57 24.32 30.22 3.50 0.26 20.89 23.59 18.25 17.76 25.92 6.25 41.20 25.51 34.24 36.85 28.42 6.50
nas is.D.128 29.95 3.13 3.86 4.23 3.21 1.85 19.42 17.89 17.63 17.82 22.65 11.32 37.99 20.38 20.70 21.16 25.05 12.93
nas lu.E.1024 77.56 12.79 115.86 144.75 7.65 3.02 3.82 -9.96 -15.62 -24.69 4.30 4.16 45.83 2.51 46.44 49.05 11.10 6.97
nas mg.E.128 4.15 0.52 4.09 4.29 -0.14 0.03 22.58 6.41 7.83 13.71 10.68 1.57 25.82 7.09 11.64 17.43 10.74 1.81
nas sp.E.1024 12.44 -0.07 5.41 5.16 -0.01 0.34 22.28 15.12 23.71 24.11 18.62 18.44 30.88 15.06 27.62 27.83 18.61 18.72
omen 60p 120.65 5.01 108.65 114.44 8.81 0.77 -9.72 15.12 -20.19 -14.59 17.33 17.14 50.27 19.18 42.40 46.56 24.03 17.77
omen 1056p 42.12 2.45 38.59 41.04 3.22 0.38 -3.67 20.99 -2.09 -4.26 24.72 22.11 0.71 26.63 0.99 1.33 34.28 22.92

AVG 55.14 3.19 38.65 42.87 4.02 0.79 8.56 11.07 5.45 5.46 15.28 9.96 36.35 14.25 25.82 27.53 19.24 10.73

WORST 136.04 12.79 115.86 144.75 8.92 3.02 -15.00 -9.96 -20.19 -24.69 0.05 1.04 0.71 0.31 -0.05 -0.05 0.84 0.44

TABLE 3: Comparison of execution overhead, energy, and power saving using different approaches [%]. We highlighted in
bold and red Ex.Time Overhead not negligible (> 5%) and energy losses.

effectively estimating in advance the slack of the application
regions and their instruction per second in today’s real
production HPC systems.

(3) The two approaches Fermata and COUNTDOWN,
which are not aware of the Tslack but use a timeout based
policy, have a performance overhead of 3.19% and 4.02%
respectively. While these two approaches have similar time
to completion, the energy and power saving is lower on
average and COUNTDOWN achieves an additional 4.21%
of energy saving. Instead, COUNTDOWN Slack achieves a
negligible performance overhead (< 1%) with respect to
Fermata and COUNTDOWN with a significant energy saving
of 9.96%.

If we focus on the worst-case results, we can observe:
(1) Min Freq does not induce the highest overheads in the

application execution time. This because Andante and Adagio
algorithms can induce a non-negligible overhead caused by
the hash of the call stack in very short MPI communications
(as instance in nas lu.E.1024).

(2) The overhead of Fermata and COUNTDOWN ap-
proaches can be very significant, respectively 12.79% and
8.92%. It must be noted that Fermata is worse than COUNT-
DOWN for the time needed for computing the hash of the
stack used by its prediction algorithm. As effect of this
Fermata induces an energy penalty of 9.96%. While COUNT-
DOWN Slack is always able to maintain a tolerable overhead
for HPC applications, even in the worst case (≤ 3%).

(3) COUNTDOWN Slack never induces energy penalty,
while all the other approaches induce between 9.96% and
24.69% of energy penalty except COUNTDOWN.

If we now look at the individual benchmarks, we observe
particular features that better describe the benefits of the
proposed COUNTDOWN Slack algorithm with respect to the
state-of-the-art approaches and Baseline case.

From the nas lu.E.1024, we can see that the Andante algo-
rithm induces a severe slowdown, which is even worse than
the Min Freq case, this counter-intuitive result is originated
by the overhead related to the task prediction algorithms,
which requires to compute the hash of the call stack. This
becomes critical in applications with a high density of MPI
calls as shown in Table 2.

We conclude, as also suggested by the previous analysis
of the predictability of the region duration, that proactive
approaches are not suitable for performance-neutral energy-
saving scenarios of supercomputers. On the contrary, the
proposed algorithm COUNTDOWN Slack is effective in iso-
lating the slack and filtering out short Tcomp regions leading

to significant energy saving (up to 22.11% for large-scale
production runs) with negligible overhead (always below
3%). This proves the effectiveness of the slack insertion logic
combined with the timeout policy, making COUNTDOWN
Slackperformance-neutral.

7 CONCLUSION

In this paper, we present COUNTDOWN Slack, a new
power management runtime for scientific computing sys-
tems. COUNTDOWN Slack combines a novel artificial slack
insertion logic with a timeout policy for performance-
neutral energy reduction in MPI-based applications. We
tested COUNTDOWN Slack in a large set of HPC bench-
marks extracted from the NAS parallel benchmark suite and
with production runs of the two-times ACM Gordon Bell
finalist, OMEN, a quantum-transport application. We com-
pared the proposed approach with reactive and proactive
power management libraries presented in the state of the
art, showing that COUNTDOWN Slack can preserve the ap-
plication execution time even in worst cases while reducing
the energy consumed by the compute units on average by
9.96%. COUNTDOWN Slack allows discovering the commu-
nication slacks automatically, reducing the core’s frequency,
and saving energy. From our findings COUNTDOWN Slack
is the only runtime that at the same always leads to an
energy saving (proportional to the communication slacks)
with negligible execution time overheads (< 3%).
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