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Congestion-balanced and Welfare-enabled Charging
Strategies for Electric Vehicles

Qiang Tang, Kezhi Wang, Kun Yang, Senior Member, IEEE,, Yuan-sheng Luo

Abstract—With the increase of the number of electric vehicles
(EVs), it is of vital importance to develop the efficient and
effective charging scheduling schemes for all the EVs. In this
paper, we aim to maximize the social welfare of all the EVs,
charging stations (CSs) and power plant (PP), by taking into
account the changing demand of each EV, the changing price,
the capacity and the congestion balance between different CSs.
To this end, two efficient scheduling algorithms, i.e., Centralized
Charging Strategy (CCS) and Distributed Charging Strategy
(DCS) are proposed. CCS has a slightly better performance
than the DCS, as it takes all the information and make the
decision in the central control unit. On the other hand, DCS
dose not require the private information from EVs and can
make decentralized decision. Extensive simulation are conducted
to verify the effectiveness of the proposed algorithms, in terms of
the performance, congestion balance and computing complexity.

Index Terms—Social Welfare Maximization, Congestion Bal-
ance, Charging Strategy, Electric Vehicle.

I. INTRODUCTION

With the increase of greenhouse effect, many countries have
set policies and developed several projects to improve the
penetration of EVs in their daily lives. In the past ten years,
the global stock of battery electric vehicles (BEVs) has passed
more than 5 million, with the growth rate 63% from the previ-
ous year [1]. It is foreseen that the number of EVs will break
through 200 million in 2030. It is therefore of vital importance
to design the effective and efficient scheduling algorithm for
EVs to find the suitable charging station, meanwhile increase
their satisfaction and reduce the congestion.

Let us first consider the charging scenario in Fig. 1, where
several EVs need to be charged at the same time, but there are
only 4 charging stations (CSs) available. We assume there are
a central unit (CU) to make the scheduling decision and one
power plant (PP) to generate electricity for all the charging
stations. One can see that if the charging decision is not made
properly, congestion will happen between different CSs and
result in the following situations:
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Fig. 1. Unbalanced charging problem.

• Unbalanced service time of charging stations: In general,
the CSs with the heavy charging load cost more time for
charging all the queued EVs compared to the CSs with
less charging load.

• Wasting of resources: Unbalanced service time causes
some CSs overloaded and others underutilized in the long
term, which wastes the charging resources for all the EVs.

• Additional investment: Unbalanced charging load among
CSs may result in the administrative department to build
more CSs or expand the capacity of existing CSs to avoid
congestion.

Recently, although direct current (DC) fast charging technol-
ogy can help complete the charging demand in 30 minutes
[3], which decreases charging time for the EVs, it cannot
address the unbalanced charging congestions among the CSs.
It is therefore of great importance to design the effective
changing strategy to balance charging demand and maximize
the overall utility function of EVs, CSs and PP, by taking into
consideration the changing demand of each EV, the charging
price, the capacity and congestion balance between different
CSs. The main contributions of this paper are:
• We first define the congestion equation for each CS, and

then give the utility functions of all the EVs, CSs and
PP. Next, the social welfare maximization are proposed,
by taking into consideration of changing demand of
each EV, the price, the capacity and congestion balance
between different CSs. Then, we present the centralized
charging strategy (CCS) and the distributed charging
strategy (DCS) to address the proposed problem.

• In CCS, the optimization problem is divided into two
parts. In the first part, EVs are distributed to the CSs
in a centralized way, which can balance the congestions
among different CSs and meanwhile minimize the driving
cost between each EV and CS. In the second part, all the
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charging capacities and power supply are optimized in
closed-form by using Lagrangian dual method.

• In DCS, two stages are proposed. In the first stage, Each
EV obtains the updated information from the CSs in real-
time, and then selects the best CS, which can not only
balance congestions among the CSs, but also minimize
the driving distance. In the second stage, a distributed
method is proposed to optimize the charging demands,
charging capacities and power supply from PP.

• We compare our proposed solutions with the benchmark
schemes, including exhaustive search strategy, cross en-
tropy method and multi-agent game solution. We show
the advantages of our proposed CCS and DCS from
several aspects, i.e., performance, congestion balance and
execution time.

The remaining of this paper is organized as follows. Related
work is reviewed in Section II. In Section III, system model
and optimization problem are introduced. In Section IV, the
centralized strategy, i.e., CCS is presented. In Section V, the
distributed strategy, i.e., DCS is proposed. Section VI shows
the performance evaluation, followed by Section VII, where
we summarize the whole work.

II. RELATED WORK

For EV charging scheme, some research applied charging
load to adjust the operation status of power grid, where several
indexes of power grid can be optimized, such as smooth load
curve [4], power grid frequency, power grid voltage as well as
improving uncertainty of power grid operation [5]. However,
the above work mainly focused on the time dimension for
scheduling EVs, instead of the spatial dimension. From the
perspective of EVs, it is important for them to decide and
choose the best CSs to charge. There are some other research
which studied the scheduling problem in spatial dimension.

In [6], a mechanism was proposed by Bayram et al. to
schedule the charging behaviours of EVs to avoid the con-
gested CSs. The Stackelberg game was applied to balance
the charging requirements. In [7], an intention-aware routing
system was presented by Weerdt et al. to predict the queuing
time in order to reduce the expected journey time for the
EVs. In [8], a dynamic pricing strategy was proposed by
Xu et al. to reduce the queuing delay of EVs at the CSs,
but no specific optimization model was put forwarded in
this paper. In [9], a strategy was introduced by Malik et al.
to minimize the queuing time of EVs at the CS, but the
congestion balance among different CSs were not considered.
In [10], Moghaddam et al. presented a smart charging strategy
for multiple options for the EV to minimize the charging time,
travel time and charging cost. Cao et al. in [11] predicted
the charging availability of CSs, and EVs’ charging requests
can be reserved at the specific CS recommended by the
controller. Laha et al. proposed a game theory method for
EVs to select the CSs with the consideration of locations [12],
and by selecting the CS with appropriate price and distance,
the charging cost of EVs can be minimized. Liu et al. in
[13] studied a deep reinforcement learning based solution to
scheduling the charging behaviours of EVs. The total overhead

of EVs including time and charging fares was optimized. In
[14], a smart energy management framework was proposed by
Zhou et al. to reduce the charging cost and improve the quality
of service of EV charging. In [15], Tang et al. proposed a smart
charging strategy to minimize the average charging time of
CSs with the assistance of discharging some EVs. Ammous
et al. in [16] proposed a charging route optimization scheme,
which jointly minimized the transit time and charging cost
of the EVs. Li et al. in [17] proposed a charging navigation
routing strategy based on V2V. By optimizing the route and
staying position of charge and discharge EVs, the pairing of
charge and discharge EVs can be formed.

In addition to optimizing the utility function for EVs,
researchers also proposed to optimize the activities for CSs.
In [18], stochastic queuing models were employed by Wong
et al. for the network of public CSs, and with the introduction
of some appropriate charging fees, the charging network can
achieve the socially optimal congestion balance. Mohsenian-
Rad et al. in [19] formulated the stochastic optimization prob-
lem of time-of-use pricing to study how uncertain departure
time can affect the charging schedule of EVs. Lee et al. in
[20] studied a price competition problem among the CSs with
renewable power generators by using the game theory. Zhang
et al. in [21] proposed a dynamic programming framework to
obtain an optimal charging strategy for the EVs at the parking-
lots with consideration of the stochastic arrival and departure
time of the EVs. In order to maximize the utility of CSs,
an online and model-free reinforcement learning method was
proposed by Wang et al. in [22], which makes the profit of CSs
achieve 138% higher than the benchmark algorithms. In [23],
to maximize the CSs’ profit, a tandem queuing network model
was proposed by Wang et al. to optimize EVs’ admission
control, pricing and charging scheduling for CSs. In [24],
Faridimehr et al. proposed a two-stage stochastic programming
model to optimize the charging network of CSs, and also a
sample average approximation method was adopted to solve
this problem for large-scale instances. In [25], an optimal
pricing scheme was studied by Zhang et al. to minimize
the dropping rate of the charging service, where the CSs
were modelled as queuing network with multiple servers and
heterogeneous service rates.

Some researchers also studied the optimization of the social
utility (also known as social welfare), which focused on
maximizing the utility of all the participating entities. In [26],
Tucker et al. proposed an online pricing mechanism to reserve
park and charge spot for the EVs. Alinia et al. in [27] studied
the charging scenario with limited charging capacity of the
CSs and uncertainty of the arrivals of the EVs. The social
welfare maximization problem was formulated and solved
approximately. In [28], Wang et al. researched a four-stage
charging game of EVs in a smart community and all the parties
in the energy network can obtain their optimal strategies.
In [29], the charging network consisting of public CSs with
different service options were proposed by Moradipari et al.
By assigning EVs to the best CSs, the social welfare objective
function was optimized.

There are also other related issues were considered, such as
safety and V2G (vehicle to grid) networks, etc. In [30], Zhou
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TABLE I
NOTATIONS

Symbol Description

N,M the number of EVs and CSs, respectively.
SN , SM the sets of {1, 2, ..., N} and {1, 2, ...,M}, respec-

tively.
ri the charging satisfaction weight of EVi.
m the parameter of congestion weight of CS.
β average energy consumption β kWh for 1 km.
plast last charging price.
xi the charging demand of EVi.
sij the decision variable of EVi selecting CSj .
dij Manhattan distance from EVi to CSj .
Lpp power generation capacity of PP.
ppp electricity price of PP for 1 kWh.
a, b, c parameters of electricity generation cost.
Lcsj the charging load capacity of CSj .
pcsj the charging price of CSj for 1 kWh.
Npile
j the number of charging piles of CSj .

Nj the number of EVs selecting CSj .
Lcs the vector of

{
Lcsj |j ∈ SM

}
.

x the vector of {xi|i ∈ SN}.
s the M ×N matrix contains all the variables sij .
pcs the vector of

{
pcsj |j ∈ SM

}
.

et al. proposed a secure V2G energy trading framework, and
based on which, the EVs’ charging scheme was implemented.
In [31], Zhou et al. researched the demand response mech-
anism for EVs’ networks, where the energy trading among
EVs was kept safe by a consortium blockchain. Additionally,
in [32], Yu et al. studied the energy network of EVs, which
used V2G technology to supply power to multiple districts
and showed that the mobility of the symmetrical EVs’ energy
network can balance the power demand of different districts.

By analysing the above research work, we did not find the
studies that considered the social warfare utility of all the
EVs, CSs as well as PP, and meanwhile taking the congestion
between CSs into account, to design the scheduling schemes
for all the EVs. Next, we will show the proposed problem and
the solutions.

III. SYSTEM MODEL

In this section, we introduce the system model. We first
summarize the main notations in TABLE I.

A. Congestion Definition

We assume one charging pile can only charge one EV at a
time. Then, the congestion rate of the charging station for the
j-th CS can be defined as:

conj =
Nj −Npile

j

Nj
(1)

where the above equation can be explained as: 1) when Nj ≥
Npile
j , the conj is the probability of congestion, and 2) when

Nj < Npile
j , the conj is a value that indicating the degree of

no queuing chance. One can also see that conj ∈ (−∞,+1)
with Nj varying from 0 to +∞.

Since the congestion or queuing affects the waiting time of
EVs, we can define the weighting coefficient ρj as follows:

ρj =
2

1 +
N∑M

j=1N
pile
j

(1− conj)
− 1 (2)

where N∑M
j=1N

pile
j

is a constant and shows the average number
of EVs on each charging pile. According to (1), one can have
1 > conj ≥ −∞, then one can also have ρj ∈ (−1,+1).
After some manipulation, one can further obtain:

ρj =

∑N
i=1 sij

Npile
j

− N∑M
j=1N

pile
j∑N

i=1 sij

Npile
j

+
N∑M

j=1N
pile
j

(3)

where
∑N
i=1 sij is the number of EVs that is charged on the

j-th charging station.

B. Utility Functions

The utility function of PP can be defined as:

Upp = ppp
M∑
j=1

Lcsj −
(
a(Lpp)2 + bLpp + c

)
(4)

where ppp
∑M
j=1 L

cs
j is the revenue from selling

∑M
j=1 L

cs
j

kWh electricity at the price ppp; a(Lpp)
2

+ bLpp + c is the
cost function of power generation, which is widely used in
the literatures [33],[34].

Then, the utility function of j-th CS can be defined as:

U csj = pcsj

N∑
i=1

sijxi − pppLcsj (5)

where pcsj
∑N
i=1 sijxi is the revenue from charging∑N

i=1 sijxi kWh at the charge rate of pcsj ; pppLcsj is
the cost of purchasing Lcsj kWh from the power plant at the
price ppp.

Then, the utility function of i-th EV can be defined as:

Uevi =
M∑
j=1

(
sij
(
(m− ρj) ri lnxi − pcsj xi − plastdijβ

))
(6)

The above Uevi includes three parts, which can be explained
as follows:

Part 1: (m− ρj) ri lnxi is a weighted charging satisfac-
tion function. The term lnxi has been widely used in the
literatures[5], [35]. Although it is different from some lit-
erature like [33], lnxi satisfies the two properties in [33]:
1) utility function is non-decreasing; 2) marginal profit is
non-increasing. Also, ri represents the weight of each user
regarding the charging satisfaction. Different users may have
different weights because they have different views on charg-
ing. In addition, (m− ρj) represents the congestion weight
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of the j-th charging station. Larger conj also leads to bigger
ρj , and then result in the smaller congestion weight as well
as the lower charging satisfaction. One can see that the above
definition is also consistent with the real situation. This is
because if the number of EVs in the charging station is larger,
the waiting time for charging is longer, thus may decrease
the charging satisfaction. Also, parameter m represents the
congestion weight dilution factor. The larger m may lead to
smaller difference of charging satisfaction caused by conges-
tion.

Part 2: pcsj xi is the cost of charging xikWh at price pcsj .
Part 3: plastdijβ is the cost of driving distance of dij ; β

is the power consumption per distance unit and plast is the
charging price of last time, which is set fixed for all the EVs
for simplicity.

C. Problem Formulation
We formulate the social welfare maximization problem as

follows:

P1 max
Lpp,ppp,Lcs,s,x,pcs

Upp +
M∑
j=1

U csj +
N∑
i=1

Uevi

s.t. C1 : Lpp ≥
M∑
j=1

Lcsj ,

C2 : Lcsj ≥
N∑
i=1

sijxi, j ∈ SM

C3 :
M∑
j=1

sij = 1, i ∈ SN

C4 : sij ∈ {0, 1} , j ∈ SM ; i ∈ SN
C5 : xmaxi ≥ xi ≥ xmini , i ∈ SN
C6 : pcsj ≥ 0, ppp ≥ 0, j ∈ SM

where C1 means the total capacity of power plant Lpp should
be larger than the total requirement of all the CSs; C2 denotes
that the total charging capacity of the j-th charging station of
Lcsj should be larger than all the charging demands of EVs
choosing this charging station; C3 means that each EV selects
only one CS for charging; C4 shows that the charging decision
variable sij is the binary variable; C5 is the constraint for
charging demand of each EV; C6 means that the charging
price pcsj and the electricity price ppp should be non-negative.

By applying (4), (5) and (6) into P1, one can have:

P2 min
Lpp,s,x

(
a(Lpp)2 + bLpp + c

)
−

N∑
i=1

(
M∑
j=1

(sij ((m− ρj) ri lnxi − plastdijβ))

)
s.t. C3, C4, C5, C7

where the constraint C6 is removed. As the variable Lcsj is not
shown in the objective function, one can apply constraint C7
according to C1 and C2 as follows:

Lpp ≥
M∑
j=1

N∑
i=1

sijxi (7)

One can see that P2 is a MINLP and is difficult to tackle
in general. Although some literatures have proposed standard
methods [36], such as branch and bound method, these algo-
rithms have very high complexity, especially in the large-scale

scenario. Next, we will introduce centralized solution, i.e, CCS
as well as decentralized solutions, i.e., DCS.

IV. CENTRALIZED CHARGING STRATEGY

A. Charging Station Selection

In this subsection, we first tackle the integer variables
{sij |i ∈ SN , j ∈ SM} in P2. We define two functions to
express the objective of P2 as follows:

f1(sij) =
N∑
i=1

M∑
j=1

(sij (m− ρj) ri lnxi) (8)

and

f2(sij) = −
N∑
i=1

M∑
j=1

(sijplastdijβ) (9)

Next, we introduce methods to maximize f1(sij) and f2(sij)
respectively. Note that we use f1 and f2 to denote f1(sij) and
f2(sij) for simplicity, respectively.

1) Maximization of f1: We first analyse the properties of
f1 as follows.

Lemma 1 In order to maximize f1, every EV should select
the CS which can maximize contribution to the increase of f1.

Proof It is obvious that EVi should select the CS, which can
produce an maximal increment ∆f

(i)
1 of f1. Then, one can

have the maximum value of f1 as fmax1 =
∑N
i=1 max∆f

(i)
1 .

�

Lemma 2 In order to maximize the ∆f
(i)
1 , the EVi should

select the CS with the minimal Nj/N
pile
j .

Proof Assume the i-th EV selects the j-th CS, where it already
has Nj EVs here. Then the parameter ρj can be given as:

ρj =

1−
2N∑M

j=1N
pile
j

Nj

Npile
j

+ N∑M
j=1N

pile
j

 (10)

According to (8), the i-th EV should select the CS with the
minimal ρj to maximize ∆f

(i)
1 . Then, one can see that we

can select CS with the minimal Nj/N
pile
j to get the maximal

∆f
(i)
1 . �

Lemma 3 In the CS selection process, the difference between
the maximum and minimum value of

{
Nj/N

pile
j |j ∈ SM

}
should be less than 1/Npile

jmin, where Npile
jmin is the minimal

number of charging piles among all the CSs.

Proof Without loss of generality, we sort the numbers of
charging piles as Npile

1 ≤ Npile
2 ≤ ... ≤ Npile

M . Then we
have Npile

jmin = Npile
1 .

If the first EV selects the CS, it will select the M -th CS
according to Lemma 2. Then we have the order as:

0

Npile
1

≤ 0

Npile
2

≤ ... ≤ 1

Npile
M

(11)

One can find
1

Npile
M

− 0

Npile
1

≤ 1

Npile
jmin

(12)
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If the second EV selects the CS, one can get the same
conclusion as above.

Assume that the k-th EV selects the CS and then we have
the order as:

N1

Npile
1

≤ N2

Npile
2

≤ ... ≤ NM

Npile
M

(13)

and we also have
NM

Npile
M

− N1

Npile
1

≤ 1

Npile
jmin

(14)

Then if the (k + 1)-th EV selects the CS, there exist two
situations:

(a) if the condition:

N1

Npile
1

+
1

Npile
1

>
NM

Npile
M

(15)

is satisfied, the sorting is changed and one can have:

N1

Npile
1

+
1

Npile
1

− N2

Npile
2

<
1

Npile
jmin

(16)

(b) if the condition:

N1

Npile
1

+
1

Npile
1

≤ NM

Npile
M

(17)

is satisfied, one can also have:

NM

Npile
M

− N2

Npile
2

<
1

Npile
jmin

(18)

Therefore, the Lemma 3 is proved. �

Theorem 1 If {sij |i ∈ SN , j ∈ SM} is determined, the val-
ues of

{
Nj/N

pile
j |j ∈ SM

}
is bounded by:

T =

[
N∑M

j=1N
pile
j

− 1

Npile
jmin

,
N∑M

j=1N
pile
j

+
1

Npile
jmin

]
(19)

and the optimal value of Nj/N
pile
j is close to

N∑M
j=1N

pile
j

.

Proof Without loss of generality, we assume the order of
Nj/N

pile
j as:

N1

Npile
1

≤ N2

Npile
2

≤ ... ≤ NM

Npile
M

(20)

according to which, one can also get the following inequality:

N1

Npile
1

≤

M∑
j=1

Nj

M∑
j=1

Npile
j

≤ NM

Npile
M

. (21)

In the Lemma 3, we have:
N1

Npile
1

− NM

Npile
M

≤ 1

Npile
jmin

(22)

then one can further get:

N∑M
j=1N

pile
j

− 1

Npile
jmin

≤ N1

Npile
1

(23)

and
N∑M

j=1N
pile
j

+
1

Npile
jmin

≥ NM

Npile
M

(24)

where N =
∑M
j=1Nj . Then we can prove that Nj/N

pile
j is

bounded by (19). In addition, when Npile
jmin and the number of

EVs N is large, one can have:(
N∑M

j=1N
pile
j

− 1

Npile
jmin

)
≈

(
N∑M

j=1N
pile
j

+
1

Npile
jmin

)
(25)

which means the values of
{
Nj/N

pile
j |j ∈ SM

}
equal to each

other, and is close to N∑M
j=1N

pile
j

for all the CSs. In this case,

it is also found that the congestion conj between each CS
can be also balanced, which is consistent to the real-world
scenario. �

2) Maximization of f2: To maximize f2, one can see that all
the EVs should select the nearest CSs to reduce the travelling
distance to the CSs. However, if all the EVs select the nearest
CSs, the maximal value of f1 is affected. In order to maximize
both f1 and f2, the following heuristic algorithm is proposed.

3) Heuristic Algorithm: To maximize the f1 and f2, the
values of

{
Nj/N

pile
j |j ∈ SM

}
should comply with the The-

orem 1, and the sum of all the travelling distances for all the
EVs should also be minimized. Then, the heuristic algorithm
is presented in Algorithm 1.

In line 1 of Algorithm 1, all the distances are sorted by
ascending order, and the value of N/

∑M
j=1N

pile
j is calculat-

ed. From line 2 to line 8, according to the order of distance,
each EV is assigned to a suitable CS. For each CS, its Nj
should be less than the Nearest integer(Ave ·Npile

j ), where
the Nearestinteger(z) is a function to get the nearest integer
of z. From line 9 to line 21, for the EVs which do not select
any CS will be assigned to the suitable CSs in the end.

B. Optimal Charging Demand

When the integer variable s is determined, P2 becomes the
convex problem w.r.t Lpp and xi as

P3 min
Lpp,x

(
a(Lpp)2 + bLpp + c

)
−

N∑
i=1

(
M∑
j=1

(sij ((m− ρj) ri lnxi − plastdijβ))

)
s.t. C5,C7

P3 can be solved by applying the interior point method with
the help of CVX toolbox [37]. However, the complexity of the
above method may be high. Next, we obtain the closed-form
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Algorithm 1: CS Selection Algorithm

Input: DIS = {dij |i ∈ SN , j ∈ SM},
{
Npile
j |j ∈ SM

}
Output: s

1 sort DIS by ascending and let Ave← N/
∑M
j=1N

pile
j ;

2 for k = 1 to N ·M do
3 get EV id i and CS id j of DIS(k);
4 if

∑N
i=1 sij <Nearest integer(Ave ·Npile

j ) then
5 sij ← 1, sip ← 0,∀p ∈ SM , p 6= j;
6 break;
7 end
8 end
9 if

∑M
j=1

∑N
i=1 sij < N then

10 for i = 1 to N do
11 if

∑M
j=1 sij = 0 then

12 for k = 1 to N ·M do
13 get EV id u and CS id v of DIS(k);
14 if u = i and

∑N
i=1 siv < Ave ·Npile

v then
15 siv ← 1, sip ← 0,∀p ∈ SM , p 6= v;
16 break;
17 end
18 end
19 end
20 end
21 end
22 return s.

solution by applying the Lagrangian method as follows

L (Lpp, xi, λ)
xmin
i ≤xi≤xmax

i

=
(
a(Lpp)

2
+ bLpp + c

)
−

N∑
i=1

(
M∑
j=1

(sij ((m− ρj) ri lnxi − plastdijβ))

)
+

λ

(
M∑
j=1

N∑
i=1

sijxi − Lpp
) (26)

One can see that solving P3 is equivalent to minimizing
L (Lpp, xi, λ). By taking the first derivative with respect to
Lpp and xi, and equate the results to zero, one can get

Lpp∗ =
λ− b

2a
(27)

and

x∗i =


xmini , if

(m− ρj) ri
λ

< xmini

(m− ρj) ri
λ

, if
(m− ρj) ri

λ
∈
[
xmini , xmaxi

]
xmaxi , if

(m− ρj) ri
λ

> xmaxi

(28)

We put the EVs whose charging demands are the boundary
values such as xmini or xmaxi into the set SN ′ . Then, we
further put (27) and (28) into (26), and the dual function of

L (Lpp, xi, λ) can be obtained as

g (λ) =

(
−λ2 + 2λb− b2

4a
+ c

)
−

N∑
i=1,i/∈SN′

(
M∑
j=1

(
sij

(
u ln

u

λ
− plastdijβ

)))
−

N∑
i=1,i∈SN′

(
M∑
j=1

(sij (u lnxi − plastdijβ))

)
+(

λ
M∑
j=1

N∑
i=1,i∈SN′

sijxi +
M∑
j=1

N∑
i=1,i/∈SN′

siju

)
(29)

where u = (m− ρj) ri and g(λ) is a concave function. By
taking the first derivative of the above equation and equate the
result to zero, one can get

∂g (λ)

∂λ
= λ2 − λb− 2λa

(
M∑
j=1

N∑
i=1,i∈SN′

sijxi

)
−2a

N∑
i=1,i/∈SN′

M∑
j=1

(sij (m− ρj) ri) = 0

(30)

Then, we have:

λ∗ =
−h±

√
h2 − 4k

2
(31)

where h is:

h = −b− 2a

 M∑
j=1

N∑
i=1,i∈SN′

sijxi

 (32)

and k is

k = −2a
N∑

i=1,i/∈SN′

 M∑
j=1

(sij (m− ρj) ri)

 (33)

According to the function ∂g(λ)
∂λ , one can see that if λ = 0,

∂g(λ)
∂λ ≤ 0, which means the optimal value of λ is non-positive.

This violates the range constraint of Lagrange multipliers.
Then the optimal value of λ can be obtained as

λ∗ =
−h+

√
h2 − 4k

2
(34)

Based on the above analysis, we propose the algorithm to
solve P3 as Algorithm 2.

Algorithm 2: Optimal Charging Demand and Capacity

Input: s, a, b, c,m, ri, plast, dij , β, xmaxi , xmini

Output: Lpp∗, x∗i
1 Initialize all Lpp, xi;
2 repeat
3 calculate optimal Lpp by calling (27);
4 calculate optimal xi by calling (28);
5 calculate optimal λ by calling (34);
6 calculate L (Lpp, xi, λ);
7 until all charging demand xi are not changed;
8 return Lpp∗, x∗i .

Then, the overall algorithm of CCS is as Algorithm 3.
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Algorithm 3: Overall Algorithm for CCS

Input: a, b, c,m, ri, plast, dij , β, xmaxi , xmini , DIS =

{dij |i ∈ SN , j ∈ SM},
{
Npile
j |j ∈ SM

}
Output: s, Lpp∗, x∗i

1 calling Algorithm 1 to get the optimal s;
2 calling Algorithm 2 to get the optimal Lpp and xi;
3 return s, Lpp∗, x∗i .

It is worth noting that some variables in P1 are not ad-
dressed, such as Lcsj , pcsj and ppp. These variables are not
included in the objective function of P2, and we can define
their values arbitrarily in their value ranges. For example,
we can make Lcs∗j =

∑N
i=1 sijxi, which does not effect the

optimal value of P1.
In CCS, one can see that all the parameters of EV and

CS should be sent and known by central control centre.
But in real life, some private information is not provided
such as the charging satisfaction weight ri for the privacy
concerns. Therefore, next, we will introduce a distributed
charging strategy, i.e., DCS.

V. DISTRIBUTED CHARGING STRATEGY

For the DCS, two stages are introduced. In the first stage
(i.e., Stage-I), the EVs select the suitable charging stations
separately according to Theorem 1, in order to determine
{sij |i ∈ SN , j ∈ SM}. In the second stage (i.e., Stage-II),
other continuous variables are addressed.

A. Stage-I of DCS

According to Theorem 1, each EV selects charging station
based on that the value Nj/N

pile
j of each CS, which approx-

imately equals to N∑M
j=1N

pile
j

. We propose two algorithms for

EV and CS in Algorithm 4 and Algorithm 5, respectively.
In Algorithm 4, there are mainly two parts. The first part

(from line 3 to line 9) is similar to the part from line 2 to line
8 in Algorithm 1. The second part (from line 10 to line 18)
is similar to the part from line 9 to line 21 in Algorithm 1.

Also, in Algorithm 5, the CSs wait the selection decision
from each EV, and then update the number of EVs as Nj .

B. Stage-II of DCS

After we decide the variable {sij |i ∈ SN , j ∈ SM}, the rest
of the problem is given as

P4 min
Lpp,Lcs,x

(
a(Lpp)

2
+ bLpp + c

)
−

N∑
i=1

(
M∑
j=1

(sij ((m− ρj) ri lnxi − plastdijβ))

)
s.t. C1,C2,C5

Algorithm 4: CS Selection Algorithm (EV Part)

Input: {ρj |j ∈ SM}, Ave← N/
∑M
j=1N

pile
j ,{

Npile
j |j ∈ SM

}
, DISi = {dij |j ∈ SM}

Output: {sij |j ∈ SM}
1 receive the updated Nj in real time;
2 sort DISi in ascending order;
3 for k = 1 to M do
4 get DISi(k), store CS id into j;
5 if Nj < Nearest integer(Ave ·Npile

j ) then
6 sij ← 1, sip ← 0,∀p ∈ SM , p 6= j;
7 break;
8 end
9 end

10 if
∑M
u=1 siu = 0 then

11 for k = 1 to M do
12 get DISi(k), store CS id into j;
13 if Nj < Ave ·Npile

j then
14 sij ← 1, sip ← 0,∀p ∈ SM , p 6= j;
15 break;
16 end
17 end
18 end
19 send CS selection {sij |j ∈ SM} to CSs;
20 return {sij |j ∈ SM}.

Algorithm 5: CS Selection Algorithm (CS Part)

Input: Ave← N/
∑M
j=1N

pile
j , synchronized timer

Output: Nj ,ρj
1 initialize the ρj and Npile

j ;
2 repeat
3 receive the {sij |j ∈ SM} from EVi;
4 update and broadcast the number of EVs currently

select this CS Nj ;
5 until synchronized timer expires;
6 calculate the ρj ;
7 return Nj ,ρj .

As the price parameters pcsj and ppp are not in the constraints,
they can be removed. Then, to solve P4, we firstly write the
Lagrange function as

L (Lpp,Lcs,x, λ1, λ2) =
(
a(Lpp)

2
+ bLpp + c

)
−

N∑
i=1

(
M∑
j=1

(sij ((m− ρj) ri lnxi − plastdijβ))

)

+λ1

(
M∑
j=1

Lcsj − Lpp
)

+
M∑
j=1

(
λ2j

(
N∑
i=1

sijxi − Lcsj
))

(35)

where λ2 = {λ2j |j ∈ SM}, Lcs =
{
Lcsj |j ∈ SM

}
, x =

{xi|i ∈ SN}, and xmaxi ≥ xi ≥ xmini , ∀i ∈ SN .
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Then, the dual function is as

D (λ1, λ2) = min
Lpp,Lcs,x

L (Lpp,Lcs,x, λ1, λ2)

= P (λ1) +
M∑
j=1

Cj (λ1, λ2j) +
N∑
i=1

Ei (λ2j)
(36)

where

P (λ1) = min
Lpp

(
a(Lpp)

2
+ bLpp + c

)
− λ1Lpp (37)

Cj (λ1, λ2j) = min
Lcs

λ1L
cs
j − λ2jLcsj , j ∈ SM (38)

Ei (λ2j) = min
x

M∑
j=1

(sij (plastdijβ + λ2jxi))

−
M∑
j=1

(sij ((m− ρj) ri lnxi)), i ∈ SN
(39)

According to P (λ1), one can get the optimal solution of
Lpp as

Lpp∗ =
λ1 − b

2a
(40)

Then, the optimal solution of xi can be obtained according
to (39) as

x∗i =



xmax
i , if

(m− ρj) ri
λ2j

> xmax
i

(m− ρj) ri
λ2j

, if
(m− ρj) ri

λ2j
∈
[
xmin
i , xmax

i

]
xmin
i , if

(m− ρj) ri
λ2j

< xmin
i

(41)
The optimal Lagrange multipliers can be obtained by max-

imizing the dual problem as

P5 max
λ1≥0,λ2≥0

D (λ1, λ2)

In order to solve P5, firstly we put (40) into D (λ1, λ2j),
and let ∂D(λ1,λ2j)

∂λ1
= 0, then the optimal value of λ1 is given

as

λ∗1 = 2a

M∑
j=1

Lcsj + b (42)

We can also find the optimal solution of λ2j in the same
way. However, as the optimal value of λ2j requires the private
information from EVs like ri, we employ the gradient descent
method to get the optimal value of λ2j as

λ
(t+1)
2j =

[
λ
(t)
2j − γ

(
N∑
i=1

sijxi − Lcsj

)]+
, ∀j ∈ SM (43)

where
∑N
i=1 sijxi is charging demand from EVs that select

the j-th CS and Lcsj is the charging capacity distributed from
PP according to the following equation

Lcsj = Lpp∗
(∑N

i=1
sijxi/

∑M

j=1

∑N

i=1
sijxi

)
(44)

where (44) guarantees Lpp =
∑M
j=1 L

cs
j . This can be seen

as one of the necessary conditions for P4 to minimize its
objective function.

1
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1: receive the charging price
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CS(Stage-II)

1: receive all the charging demands from EVs
2: receive the charging capacity     from PP
3: update the charging prices according to (43)

PP(Stage-II)

1: receive all the charging demands from CSs
2: calculate the generation capacity using (40)
3: update the electricity price according to (42)
4: distribute the charging capacity by (44)

csL

Fig. 2. The flow chart of DCS

One can also see that the expressions of (37), (38) and (39)
are similar to that of (4), (5) and (6). Then, the Lagrange mul-
tipliers λ1 and λ2j can be the prices ppp and pcsj respectively.
Therefore, the price variables are solved.

We also present the flow chart of DCS in Fig. 2.
The process of DCS can be explained as follows.
Step 1: DCS starts the first stage with a timer T1. Each EV

calls Algorithm 4 to select the CS independently. Each CS
calls Algorithm 5 in response to EV’s selection.

Step 2: When T1 expires or all the EVs complete the CS
selection, they can enter into stage 2. Then, all the EVs, CSs
and PP initialize their variables.

Step 3: Each EV receives the charging price from the CSs
and calculate its charging demands according to (41), and then
sends their demands to the CS which they select.

Step 4: All the CSs receive the demands from EVs, and
then forward them to PP.

Step 5: PP receives all the charging demands from CSs
and then checks that if all the demands converge. If so, it can
end and exit. Otherwise, PP calculates the optimal generation
capacity using (40) and then updates the electricity price
according to (42) and distributes the generation capacity to
each CS according to (44). Finally, PP sends the updated
charging capacities to all the CSs.

Step 6: CSs receive the charging capacities from the PP, and
then update the charging prices according to (43) and send the
prices to all the EVs. After that, it can go to Step 2.

VI. PERFORMANCE EVALUATION

A. Parameters Setting

Assume there are N EVs and M CSs randomly distributed
in a 50km× 50km square area, and 1 PP supplies electricity
to all the CSs. Also assume there are 5 types of EVs with the
battery capacities cap and shown in TABLE II [39].
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TABLE II
PARAMETERS FOR EV MODELS

EV Model Battery Capaci-
ty (kWh)

Assumed Mar-
ket Share

Tesla Model X 90 35%
Nissan Leaf 30 25%
BMW i3 33 15%
Chevy Bolt 60 15%
Kia Soul EV 27 10%

The maximal charging demand xmaxi is randomly generated
in the interval [0.8 × cap, cap], and the minimum charging
demand xmini is randomly generated from [0.1 × cap, 0.3 ×
cap]. Similar to [40], we set the number of charging piles in
each CS randomly from [3, 8].

Also, the distance from i-th EV to j-th CS is denoted by the
Manhattan distance as

∣∣xevi − xcsj ∣∣+∣∣yevi − ycsj ∣∣ , i ∈ SN ; j ∈
SM , where xevi , x

cs
j are the horizontal coordinates, and yevi , y

cs
j

are the vertical coordinates.

TABLE III
SIMULATION PARAMETERS SETTING

Parameter Value Parameter Value

plast 1.0$/kWh β 0.2kWh/km
a 10−5$/kW2h b 0.1$/kWh
c 10$ m 1.0
ri [10, 50] γ 10−7

λ
(0)
1 1.0$/kWh λ

(0)
2j , j ∈ SM 1.0$/kWh

In TABLE III, we set the initial value of λ1 as λ(0)1 ; and set
the initial value of λ2j as λ(0)2j , j ∈ SM . In addition, β is set
according to [41]. The value of a and b are set according to
[42]. For the range of a, b and c, we analyse them as follows.
In order to ensure that a(Lpp)

2
+ bLpp + c always increase

to the positive axis, b should be no less than 0. Also, the
parameter c represents the fixed costs such as maintenance
and therefore we set c > 0. a is also given as a > 0.

Normally the charging cost of the EV is larger than the
distance cost, i.e., pcsj xi � plastdijβ,∀i ∈ SN . In the
simulation, we set the charging cost 10 times the same as the
distance cost. We also obtain an upper bound for plast: plast <∑N
i=1

∑M
j=1 sijp

cs
j xi/(10β

∑N
i=1

∑M
j=1 sijdij), where pcsj is

close to 1 in the optimization process. we also set the upper
bound of plast as 1.0. Also, after several tests, we can
determine the appropriate plast value according to the above
inequality.

The simulation is performed on MATLAB R2016b installed
in the computer equipped with Intel Core i5-7500 3.4GHz
processor with 4 cores and 8GB memory.

B. Comparison Strategies

1) Nearest Distance Charging Strategy: In the Nearest
Distance Charging Strategy (NDCS), each EV selects its
nearest CS. Then other continuous variables are solved by
applying DCS.

2) Random Selection Charging Strategy: In the Random S-
election Charging Strategy (RSCS), each EV randomly selects
the CS, and other continuous variables are solved by applying
DCS.

3) Exhaustive Strategy: In the Exhaustive Strategy (ES),
all the possible combinations of the selection variables of s
are checked. After the decision is determined, P3 is solved by
using the method in CCS.

4) Cross Entropy Method Strategy: The Cross Entropy
Method Strategy (CEMS) is an intelligent optimization algo-
rithm, which has the state transition probability matrix storing
the probabilities of selection decisions. The parameters are
set according to [43], where the rarity parameter is 0.03; the
smoothing parameter is 0.9; the stopping constant is 10 and
the number of samples per iteration is 100. In each iteration,
the EVs select the CSs according to the transition probability
matrix firstly, and then the other variables are optimized by
using the method in CCS.

5) Multi-Agent Game Strategy: Here, we further put for-
ward the game theory based strategy i.e., Multi-Agent Game
Strategy (MAGS), where all the EVs, CSs and PP are denoted
as agents. We optimize their variables independently and then
exchange the information among them until convergence. For
i-th EV which selects the j-th CS, its optimal charging demand
is as

x∗i = max
{

min
{

(m− ρj) ri/pcsj , xmax
i

}
, xmin
i

}
(45)

Also, the charging price pcsj is updated by:

p
cs,(t+1)
j = p

cs,(t)
j − γ

[
Lcsj −

∑N

i=1
sijxi

]
(46)

The capacity of PP is:

Lpp∗ = (ppp − b) / (2a) (47)

and its price is:

ppp∗ = 2a
∑M

j=1

∑N

i=1
sijxi + b (48)

Also, charging capacity of CS is distributed by:

Lcsj = Lpp∗
(∑N

i=1
sijxi/

∑M

j=1

∑N

i=1
sijxi

)
(49)

A flow chart of MAGS is proposed in Fig. 3, which has the
similar execution process as the stage-II in DCS.

The convergence condition is set to:

CF =

∣∣∣∑N
i=1 xi − Lpp

∣∣∣
Lpp

≤ σ (50)

where the parameter σ is set to 0.001.

C. Convergence Performance
In this simulation, the number of CSs M is set to 50, and

the number of EVs N is set as 1000. The convergence curve
is shown in Fig. 4, where one can see that the iterations of
DCS, RSCS and NDCS are the same, as they adopt the same
process to optimize their continuous variables. Although the
iterations of MAGS is 3, its running time is much higher than
that of DCS, which can be found in Fig. 5.
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Fig. 3. The flow chart of MAGS
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Fig. 5. The performance of running time
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Fig. 7. The congestion balance indexes CEI in small scale

In Fig. 5, one can see that the running time of MAGS is
the highest among the compared algorithms. The reason for
this is that MAGS needs to dynamically exchange information
between EV and CS. In addition, when EV selects the CS,
it changes the parameter ρ, which may lead to instability of
MAGS and then affect the convergence of MAGS.

D. Performance in Small Scale Scenario

Considering the high complexity of ES, we only check it in
a small scale. Firstly, we define the CS congestion equilibrium
(i.e., balance) indexes (CEI) as:

CEI =
∑M

j=1

∣∣∣∣∣conj −
∑M
j=1 conj

M

∣∣∣∣∣ (51)

Here, the number of CSs M is set to 3, and we randomly
generate the number of charging piles for each CS from [1,3].
The number of EVs increases from 10 to 15. The convergence
factor σ of DCS is set to 0.000001. Other parameters are the
same as before.

In Fig. 6, one can see that the performance of CCS and
DCS are quite similar to ES. The difference between ES and
CCS is less than 1.5%, when the number of EV equals to 15.

In Fig. 7, we further present the CEI indexes of the three
algorithms. One can see that the CEIs of CCS and DCS are
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Fig. 8. The optimality of social welfare in large scale
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Fig. 9. The congestion balance indexes CEI in large scale

smaller than those of ES in most cases. When the number of
EVs is above 14, the CEIs of CCS and DCS are close to 0,
which indicates that the congestion degree of all the CSs is
nearly the same.

E. Performance in Large Scale Scenario

In this section, the performance of CCS and DCS is
examined, with the comparison to intelligent optimization
algorithm, i.e., CEMS. The number of CSs M is set to 50, and
the number of EVs increases from 1000 to 2000, with a step
of 200. The number of charging piles at the CS is randomly
selected from [3, 8]. Convergence parameter σ of DCS is set
to 0.000001.

As shown in Fig. 8, the performance of CEMS is worse than
that of CCS and DCS. This is because CEMS is based on the
transfer probability matrix when choosing charging stations
and by storing better optimization results, the selection of CS
may reach to the better results. Also, CEMS may fall into the
local optimization due to the parameter setting.

In Fig. 9, one sees that the congestion balance of CEMS is
not as good as CCS and DCS, which may lead to insufficient
utilization of resources of the charging station.
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Fig. 10. The maximal social welfare vs the number of EVs
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F. Influence of the Number of EVs and CSs

In this section, we set the number of CSs to 20, and the
number of EVs increasing from 1000 to 4000 in a step of
200. The convergence parameter of σ is set to 0.001. Other
parameters are shown in Table III.

According to Fig. 10, one can see the performance of CCS is
the best among all the compared algorithms. When the number
of EVs increases, the performance gap increases as well. The
performance of RSCS and NDCS is worse than that of other
algorithms.

From Fig. 11, one sees that the CEI indexes of NDCS and
RSCS are much larger than those of the other three algorithms
in the above sub-figure, which shows the poor congestion
balance of NDCS and RSCS. In the below sub-figure of Fig.
11, one can see that the CEI index of MAGS is larger than
that of CCS and DCS. In addition, we find that the CEI of
MAGS is more than ten times as that of CCS and DCS.

Moreover, it can be seen from the Fig. 12 that the time
consumed by MAGS is much longer than that of other
compared algorithms. The reason why the running time of
MAGS dose not increase linearly is that the charging range of
all the EVs and the number of charging piles of CSs are ran-
domly generated, and therefore result in different convergence
performance.
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Fig. 13. The social welfare and running time vs the number of CSs

It is also worth noting that the execution time of CCS
is the same as that of DCS, both of which are very small.
This is because CCS is not solved by the internal point
method or other iterative methods, but based on the closed-
form solutions.

To study the influence of the changing number of CSs,
we set the number of EVs as 2000, with the number of CSs
increases from 10 to 50 and step size setting as 2.

It can be seen from Fig. 13 that when the number of CSs
changes, the performance of CCS and DCS is close to that
of MAGS, and much better than that of NDCS and RSCS.
However, when we compare the running time, MAGS is much
longer than other four compared algorithms.

In Fig. 14, with the increase of the number of CSs, the CEI
values of the five comparison algorithms increase as well. The
CEI value of NDCS is the largest, followed by that of RSCS.
The CEI values of the above two algorithms are much higher
than those of the other three comparison algorithms, i.e., CCS,
DCS and MAGS.

By further comparing the CEI values of CCS, DCS and
MAGS, we find that the CEI of MAGS is higher than those of
CCS and DCS, which illustrates the considerable performance
of CCS and DCS in terms of the congestion balance.
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G. The Influence of Parameters m and ri
In this part, the number of EVs is set to 2000 and the number

of CSs is set to 20. Also, m is increased from 1.0 to 4.8 in
a step of 0.2. As ri is set as a random parameter, we set its
upper bound increasing from 10 to 90 with the step size of 4.

In Fig. 15, one can see that the performance of the five
compared algorithms increases linearly with the increase of
m, and the performance of CCS, MAGS and DCS is slightly
higher than that of NDCS and RSCS.

Also, as the CEI indexes of NDCS and RSCS are not as
good and therefore we do not put their CEI indexes in Fig. 15.
It can be seen from Fig. 15 that the CEI index of MAGS is
much larger than that of CCS and DCS. Also, with the increase
of m, CCS and DCS still have considerable performance in
terms of congestion balance.

In Fig. 16, one can see that the CCS, DCS and MAGS
perform better than NDCS and RSCS. In addition, one sees
that the CEI index of MAGS decreases with the increase of
the upper bound of ri, but it is still has larger value than that
of CCS and DCS.

VII. CONCLUSION

In this paper, we have proposed the smart charging schedul-
ing model for electric vehicles considering social welfare max-
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imization and congestion balance between different charging
stations. We first presented the utility functions of power plant,
charging stations and electric vehicles, and then proposed the
social welfare maximization problem, which turns to be a
MINLP and difficult to address. We proposed the centralized
algorithm, i.e., CCS as well as the distributed algorithm, i.e.,
DCS to tackle the problem successfully. CCS has better per-
formance than DCS but requires the private information from
the EVs, whereas DCS can run decentralized and therefore,
users do not upload their personal information to the control
centre for resource allocation. We verified both algorithms via
simulation in terms of social welfare, congestion balance of
charging station and executing time.

For the future work, we aim to further study the charging
scheduling algorithm integrated with renewable energy. Addi-
tionally, we plan to integrate the computing requirement in the
charging algorithm, with the help of the popular mobile edge
computing technologies.

ACKNOWLEDGEMENT

This work was supported in part by the National Natural
Science Foundation of China (Grant No. 61772087), in part by
the Outstanding Youth Project of Hunan Province Education
Department (Grant No. 18B162), and in part by the Double
First-class International Cooperation and Development Scien-
tific Research Project of Changsha University of Science and
Technology (Grant No. 2018IC23).

REFERENCES

[1] IEA (2019), ”Global EV Outlook 2019”, IEA, Paris
https://www.iea.org/reports/global-ev-outlook-2019

[2] E. S. Rigas, S. D. Ramchurn and N. Bassiliades, Managing Electric
Vehicles in the Smart Grid Using Artificial Intelligence: A Survey. IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 4, pp.
1619-1635, 2015.

[3] A. Ahmad, M. S. Alam and R. Chabaan, A Comprehensive Review of
Wireless Charging Technologies for Electric Vehicles. IEEE Transactions
on Transportation Electrification, vol. 4, no. 1, pp. 38-63, 2018.

[4] Q. Tang, K. Yang, D. Zhou, Y. Luo and F. Yu, A Real-Time Dynamic
Pricing Algorithm for Smart Grid With Unstable Energy Providers and
Malicious Users. IEEE Internet of Things Journal, vol. 3, no. 4, pp. 554-
562, 2016.

[5] Q. Wang, X. Liu, J. Du and F. Kong, ”Smart Charging for Elec-
tric Vehicles: A Survey From the Algorithmic Perspective,” in IEEE
Communications Surveys and Tutorials, vol. 18, no. 2, pp. 1500-1517,
Secondquarter 2016.

[6] I. S. Bayram, G. Michailidis and M. Devetsikiotis, Unsplittable Load
Balancing in a Network of Charging Stations Under QoS Guarantees.
IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1292-1302, 2015.

[7] M. M. de Weerdt, S. Stein, E. H. Gerding, V. Robu and N. R. Jennings,
Intention-Aware Routing of Electric Vehicles. IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 5, pp. 1472-1482, 2016.

[8] P. Xu, J. Li, X. Sun, W. Zheng and H. Liu, Dynamic Pricing at Electric
Vehicle Charging Stations for Queueing Delay Reduction. 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
Atlanta, GA, 2017, pp. 2565-2566.

[9] F. H. Malik and M. Lehtonen, Minimization of queuing time of electric
vehicles at a fast charging station. 2017 IEEE PES Innovative Smart Grid
Technologies Conference Europe (ISGT-Europe), Torino, 2017, pp. 1-6.

[10] Z. Moghaddam, I. Ahmad, D. Habibi and Q. V. Phung, ”Smart Charging
Strategy for Electric Vehicle Charging Stations,” in IEEE Transactions on
Transportation Electrification, vol. 4, no. 1, pp. 76-88, March 2018.

[11] Y. Cao, O. Kaiwartya, C. Han, K. Wang, H. Song and N. Aslam,
”Toward Distributed Battery Switch Based Electro-Mobility Using Pub-
lish/Subscribe System,” in IEEE Transactions on Vehicular Technology,
vol. 67, no. 11, pp. 10204-10217, Nov. 2018.

[12] A. Laha, B. Yin, Y. Cheng, L. X. Cai and Y. Wang, ”Game Theory
Based Charging Solution for Networked Electric Vehicles: A Location-
Aware Approach,” in IEEE Transactions on Vehicular Technology, vol.
68, no. 7, pp. 6352-6364, July 2019.

[13] J. Liu, H. Guo, J. Xiong, N. Kato, J. Zhang and Y. Zhang, ”Smart
and Resilient EV Charging in SDN-Enhanced Vehicular Edge Computing
Networks,” in IEEE Journal on Selected Areas in Communications. Doi:
10.1109/JSAC.2019.2951966

[14] Z. Zhou, J. Gong, Y. He and Y. Zhang, ”Software Defined Machine-
to-Machine Communication for Smart Energy Management,” in IEEE
Communications Magazine, vol. 55, no. 10, pp. 52-60, Oct. 2017.

[15] Q. Tang, K. Wang, Y. Song, F. Li and J. H. Park, ”Waiting Time
Minimized Charging and Discharging Strategy Based on Mobile Edge
Computing Supported by Software Defined Network,” in IEEE Internet
of Things Journal. Doi: 10.1109/JIOT.2019.2957124

[16] M. Ammous, S. Belakaria, S. Sorour and A. Abdel-Rahim, ”Joint
Delay and Cost Optimization of In-Route Charging for On-Demand
Electric Vehicles,” in IEEE Transactions on Intelligent Vehicles. Doi:
10.1109/TIV.2019.2955374

[17] G. Li, Q. Sun, L. Boukhatem, J. Wu and J. Yang, ”Intelligent Vehicle-
to-Vehicle Charging Navigation for Mobile Electric Vehicles via VANET-
Based Communication,” in IEEE Access, vol. 7, pp. 170888-170906,
2019.

[18] P. Wong and M. Alizadeh, Congestion control and pricing in a network
of electric vehicle public charging stations. 2017 55th Annual Allerton
Conference on Communication, Control, and Computing (Allerton), Mon-
ticello, IL, 2017, pp. 762-769.

[19] H. Mohsenian-Rad and M. ghamkhari, ”Optimal Charging of Electric
Vehicles With Uncertain Departure Times: A Closed-Form Solution,” in
IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 940-942, March 2015.

[20] W. Lee, L. Xiang, R. Schober and V. W. S. Wong, ”Electric Vehicle
Charging Stations With Renewable Power Generators: A Game Theoret-
ical Analysis,” in IEEE Transactions on Smart Grid, vol. 6, no. 2, pp.
608-617, March 2015.

[21] L. Zhang and Y. Li, ”Optimal Management for Parking-Lot Electric
Vehicle Charging by Two-Stage Approximate Dynamic Programming,”
in IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1722-1730, July
2017.

[22] S. Wang, S. Bi and Y. J. Angela Zhang, ”Reinforcement Learning
for Real-time Pricing and Scheduling Control in EV Charging Station-
s,” in IEEE Transactions on Industrial Informatics. Doi: 10.1109/TI-
I.2019.2950809

[23] S. Wang, S. Bi, Y. A. Zhang and J. Huang, ”Electrical Vehicle Charging
Station Profit Maximization: Admission, Pricing, and Online Scheduling,”
in IEEE Transactions on Sustainable Energy, vol. 9, no. 4, pp. 1722-1731,
Oct. 2018.

[24] S. Faridimehr, S. Venkatachalam and R. B. Chinnam, ”A Stochastic
Programming Approach for Electric Vehicle Charging Network Design,”
in IEEE Transactions on Intelligent Transportation Systems, vol. 20, no.
5, pp. 1870-1882, May 2019.

[25] Y. Zhang, P. You and L. Cai, ”Optimal Charging Scheduling by
Pricing for EV Charging Station With Dual Charging Modes,” in IEEE

Authorized licensed use limited to: Northumbria University Library. Downloaded on June 27,2020 at 22:47:29 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3003270, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2018 14

Transactions on Intelligent Transportation Systems, vol. 20, no. 9, pp.
3386-3396, Sept. 2019.

[26] N. Tucker and M. Alizadeh, ”An Online Admission Control Mechanism
for Electric Vehicles at Public Parking Infrastructures,” in IEEE Transac-
tions on Smart Grid, vol. 11, no. 1, pp. 161-170, Jan. 2020.

[27] B. Alinia, M. H. Hajiesmaili and N. Crespi, ”Online EV Charging
Scheduling With On-Arrival Commitment,” in IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 12, pp. 4524-4537, Dec.
2019.

[28] Y. Wang, Z. Su, Q. Xu, T. Yang and N. Zhang, ”A Novel Charging
Scheme for Electric Vehicles With Smart Communities in Vehicular
Networks,” in IEEE Transactions on Vehicular Technology, vol. 68, no.
9, pp. 8487-8501, Sept. 2019.

[29] A. Moradipari and M. Alizadeh, ”Pricing and Routing Mechanisms
for Differentiated Services in an Electric Vehicle Public Charging Sta-
tion Network,” in IEEE Transactions on Smart Grid. Doi: 10.1109/TS-
G.2019.2938960

[30] Z. Zhou, B. Wang, M. Dong and K. Ota, ”Secure and Efficient
Vehicle-to-Grid Energy Trading in Cyber Physical Systems: Integration
of Blockchain and Edge Computing,” in IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 50, no. 1, pp. 43-57, Jan. 2020.

[31] Z. Zhou, B. Wang, Y. Guo and Y. Zhang, ”Blockchain and Computa-
tional Intelligence Inspired Incentive-Compatible Demand Response in
Internet of Electric Vehicles,” in IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 3, no. 3, pp. 205-216, June 2019.

[32] R. Yu, W. Zhong, S. Xie, C. Yuen, S. Gjessing and Y. Zhang, Balancing
Power Demand Through EV Mobility in Vehicle-to-Grid Mobile Energy
Networks. IEEE Transactions on Industrial Informatics, vol. 12, no. 1,
pp. 79-90, 2016.

[33] P. Samadi, A. H. Mohsenian-Rad, R. Schober, V. W. S. Wong and
J. Jatskevich, Optimal Real-Time Pricing Algorithm Based on Utility
Maximization for Smart Grid, 2010 First IEEE International Conference
on Smart Grid Communications, Gaithersburg, MD, 2010, pp. 415-420.

[34] T. V. Theodoropoulos, I. G. Damousis and A. J. Amditis, ”Demand-
Side Management ICT for Dynamic Wireless EV Charging,” in IEEE
Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6623-6630,
Oct. 2016.

[35] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang and E. Hossain, ”En-
abling Localized Peer-to-Peer Electricity Trading Among Plug-in Hybrid
Electric Vehicles Using Consortium Blockchains,” in IEEE Transactions
on Industrial Informatics, vol. 13, no. 6, pp. 3154-3164, Dec. 2017.

[36] C. D’Ambrosio, A. Lodi, Mixed integer nonlinear programming tools:
an updated practical overview. Annals of Operations Research, 204(2013),
pp. 301-320.

[37] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex
programming, version 2.0 beta. http://cvxr.com/cvx, September 2013.

[38] Q. Tang, K. Wang, Y. s. Luo and K. Yang, Congestion Balanced Green
Charging Networks for Electric Vehicles in Smart Grid, GLOBECOM
2017 - 2017 IEEE Global Communications Conference, Singapore, 2017,
pp. 1-6.

[39] E. Bulut, M. C. Kisacikoglu and K. Akkaya, ”Spatio-Temporal Non-
Intrusive Direct V2V Charge Sharing Coordination,” in IEEE Transactions
on Vehicular Technology, vol. 68, no. 10, pp. 9385-9398, Oct. 2019.

[40] J. Liu, H. Guo, J. Xiong, N. Kato, J. Zhang and Y. Zhang, ”Smart
and Resilient EV Charging in SDN-Enhanced Vehicular Edge Computing
Networks,” in IEEE Journal on Selected Areas in Communications. Doi:
10.1109/JSAC.2019.2951966

[41] J. C. Mukherjee and A. Gupta, ”A Review of Charge Scheduling of
Electric Vehicles in Smart Grid”, IEEE Systems Journal, vol. 9, no. 4,
pp. 1541-1553, 2015.

[42] S. Chen, Z. Guo, Z. Yang, Y. Xu and R. S. Cheng, ”A Game
Theoretic Approach to Phase Balancing by Plug-in Electric Vehicles
in the Smart Grid,” in IEEE Transactions on Power Systems. Doi:
10.1109/TPWRS.2019.2946178

[43] D. Boer, P.T., Kroese, D.P., Mannor, S. and Rubinstein, R.Y., 2005.
A tutorial on the cross-entropy method. Annals of operations research,
134(1), pp.19-67.

Qiang Tang received the B.E., M.S., and Ph.D.
degrees in control science and engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2005, 2007, and 2010, respective-
ly. He is an academic visitor sponsored by CSC in
University of Essex during 2016-2017. He is cur-
rently a Lecturer with the School of Computer and
Communication Engineering, Changsha University
of Science and Technology, Changsha, China. His
research interests include wireless networks, mobile
edge computing, and smart grid.

Kezhi Wang received his B.E. and M.E. degrees
in School of Automation from Chongqing Universi-
ty, P.R.China, in 2008 and 2011, respectively. He
received his Ph.D. degree from the University of
Warwick, U.K. in 2015. He was a senior research
officer in University of Essex, U.K during 2015-
2017. He is currently a Senior Lecturer with the
Department of Computer and Information Sciences,
Northumbria University, U.K. His research interests
include machine learning, wireless communication
and mobile cloud computing.

Kun Yang received his PhD from the Department
of Electronic & Electrical Engineering of University
College London (UCL), UK. He is currently a Chair
Professor in the School of Computer Science &
Electronic Engineering, University of Essex, leading
the Network Convergence Laboratory (NCL), UK.
Before joining in the University of Essex at 2003,
he worked at UCL on several European Union (EU)
research projects for several years. His main research
interests include wireless networks and communica-
tions, IoT networking, data and energy integrated

networks, mobile edge computing. He manages research projects funded by
various sources such as UK EPSRC, EU FP7/H2020 and industries. He has
published 150+ journal papers and filed 10 patents. He serves on the editorial
boards of both IEEE and non-IEEE journals. He is a Senior Member of IEEE
(since 2008) and a Fellow of IET (since 2009).

Yuan-sheng Luo received the B.Sc. and
M.Sc.degrees from Hunan University, Changsha,
China,in 2002 and 2005 respectively. He received
the Ph.D. degree in computer science and
technology from Xian Jiaotong University,
Xi’an, China in 2010. He is an academic visitor
sponsored by CSC in University of Essex during
2016-2017. He is currently a Lecturer with the
Changsha University of Science and Technology,
Changsha, China. His current research interests
include IoTedge computing, computation and

communication cooperation, wireless networks, mobile computing, service
computing, service composition, and data science.

Authorized licensed use limited to: Northumbria University Library. Downloaded on June 27,2020 at 22:47:29 UTC from IEEE Xplore.  Restrictions apply. 


