

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/168883

Zhu, J.; Li, X.; Ruiz García, R.; Li, W.; Huang, H.; Zomaya, AY. (2020). Scheduling
Periodical Multi-Stage Jobs With Fuzziness to Elastic Cloud Resources. IEEE Transactions
on Parallel and Distributed Systems. 31(12):2819-2833.
https://doi.org/10.1109/TPDS.2020.3004134

https://doi.org/10.1109/TPDS.2020.3004134

Institute of Electrical and Electronics Engineers

© 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertisíng or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

1

Scheduling Periodical multi-stage jobs with
fuzziness to elastic cloud resources

Jie Zhu, Xiaoping Li, Senior Member, IEEE, Rubén Ruiz, Wei Li, Senior Member, IEEE, Haiping Huang,
and Albert Y. Zomaya, Fellow, IEEE

Abstract—We investigate a workflow scheduling problem with stochastic task arrival times and fuzzy task processing times and due
dates. The problem is common in many real-time and workflow-based applications, where tasks with fixed stage number and linearly
dependency are executed on scalable cloud resources with multiple price options. The challenges lie in proposing effective, stable and
robust algorithms under stochastic and fuzzy tasks. A triangle fuzzy number based model is formulated. Two metrics are explored: the
cost and the degree of satisfaction. An iterated heuristic framework is proposed to periodically schedule tasks, which consists of a task
collection and a fuzzy task scheduling phases. Two task collection strategies are presented and two task prioritization strategies are
employed. In order to achieve a high satisfaction degree, deadline constraints are defined at both job and task levels. By designing
delicate experiments and applying sophisticated statistical techniques, experimental results show that the proposed algorithm is more
effective and robust than the two existing methods.

Index Terms—Job scheduling, Fuzzy processing times, Fuzzy deadlines, Cloud computing.

F

1 INTRODUCTION

MULTI-STAGE jobs, a kind of workflow application, are
common in real-time and cloud environments [1], [2].

For example, there are massive speech recognition requests
in many modern health-care centers. For each speech recog-
nition job, the fixed number of linearly dependent compute-
intensive stages (or tasks) are sequentially executed: pre-
emphasis, windowing, Fourier transform, Mel-filter bank,
IDP (interlaced derivative pattern) and classification [3].
Intermediate data is transmitted between these consecutive
stages. All requests arrive stochastically. Processing times
and sizes of immediate data for each request cannot be
precisely given or are uncertain, i.e., they are not fully
characterized before the request is executed. Since it is
difficult to fulfill the massive number of compute-intensive
requests by private data centers, all stages are allocated to
geographically distributed cloud virtual clusters. The same
stages are processed on the same cluster which initially

• Jie Zhu is with the School of Computer Science & Technology, Nanjing
University of Posts & Telecommunications, China, 210023; and also at
the Jiangsu Key Laboratory of Big Data Security & Intelligent Processing,
Nanjing University of Posts and Telecommunications, China, 210023.
E-mail: zhujie@njupt.edu.cn

• Xiaoping Li is with the School of Computer Science and Engineering,
Southeast University, Nanjing, China, 211189; and also at the Key
Laboratory of Computer Network and Information Integration (Southeast
University), Ministry of Education, Nanjing, China, 211189.
E-mail: xpli@seu.edu.cn

• R. Ruiz is with Grupo de Sistemas de Optimización Aplicada, Universitat
Politècnica de València, Camino de Vera s/n, 46022, València, Spain (Tel:
34-96-3877007 ext.74946; Fax: 34-96-3877499).
E-mail: rruiz@eio.upv.es.

• Haiping Huang is with the School of Computer Science & Technology,
Nanjing University of Posts & Telecommunications,China,210048.
E-mail: hhp@njupt.edu.cn

• Wei Li and Albert Y. Zomaya are with Centre of Distributed and High
Performance Computing, School of Computer Science, The University of
Sydney, Australia, 2006.
E-mail: {weiwilson.li, albert.zomaya}@sydney.edu.au

Manuscript received June 15, 2020.

includes only reserved VMs (which are obtained with a
significant discount for long term usage, paid by months
or years). Stochastically arriving requests lead to virtual
clusters being frequently overloaded for which there are
two possible solutions: rejecting requests [4] or renting more
resources. In practice, users expect immediate response to
their requests, i.e., users do not expect to be rejected. It
is necessary to temporarily rent a few more expensive
on-demand VMs (paid by minutes or hours). There are
many other similar scenarios, e.g., NLP (Natural Language
Processing), image processing, MapReduce for big data, etc.

In this paper, we consider a multi-stage job scheduling
problem to both minimize the total rental cost of VMs and
to maximize users’ satisfaction. Jobs arrive at the system
stochastically. Stages of each job are compute-intensive and
linearly dependent. Each job is expected to be finished
before a due date which is determined by a SLA (Service
Level Agreement) [5]. Stage processing time, transmission
time of immediate data and due dates are fuzzy. Stages are
allocated to geographically distributed cloud virtual clusters
and stages are processed by VMs of the same virtual cluster.
Both reserved VMs and on-demand VMs can be provisioned
to every virtual cluster. On-demand VMs are rented only
when no VM is available in the virtual cluster. The pricing
structures of the on-demand and the reserved VMs are
different. The former ones are paid by a short time unit (by
minute or hour) and the latter ones are paid by a long time
term (by month or year).

The problem with fuzzy processing time, transmission
time and due dates is more practical than the problem
in a previous study [6] where all of the three temporal
parameters are crisp. The problem with crisp parameters
is already NP-hard, therefore, it follows that the problem
under study is also NP-hard. Fuzziness results in great chal-
lenges for scheduling massive linearly constrained stages
to geographically distributed VMs: (i) “Butterfly effects”

2

might result by the fuzziness for schedules, i.e., a slightly
later stage in a schedule generates even more uncertainty.
Fuzziness of stages also results in fuzzy available slots on
rented VMs. It is desirable to construct appropriate sched-
ules by transferring all involved fuzziness to crisp values
as early as possible. However, earlier transfer implies more
computation while later transfer means more uncertainty,
i.e., it is important to determine the width of transfer time
windows. (ii) Stochastically arriving tasks might require
more resources than the available ones. Though the total
rental cost might be decreased by flexible due dates and
some tolerable delays, users’ satisfaction might suffer. On
the contrary, users’ satisfaction might be increased by
renting more on-demand VMs with an increase in the total
rental cost. It is difficult to strike a balance between these
two conflicting objectives. (iii) Calculating fuzzy numbers
requires longer processing times when compared to crisp
numbers to evaluate schedules. In addition, geographically
distributed VMs and linearly constrained stages make the
scheduling process complex. It is crucial to develop faster
algorithms for massive stochastic requests.

The paper aims to provide an effective and efficient
method for the dynamic fuzzy task scheduling problem. The
main contributions of this paper are summarized as follows.

(i) Considering workflows with the characteristics of
stochastic and fuzzy tasks, a new fuzzy scheduling
problem model is formulated for scheduling tasks to e-
lastic cloud resources with multiple pricing structures.

(ii) A dynamic and fuzzy scheduling framework is pre-
sented which collects newly arriving tasks, generates
fuzzy schedules of collected tasks, monitors task exe-
cution states and periodically updates VMs availabil-
ity. A re-schedule strategy is applied to improve the
schedules.

(iii) A fuzzy min-heap is employed to prioritize ready
tasks, and two-dimensional orthogonal lists are ap-
plied to maintain the fuzzy idle time slots of VMs,
where the feasible fuzzy time slots can be quickly
found and assigned to tasks.

The rest of the paper is organized as follows. Section
2 gives the review of the related works. The considered
problem is described and modeled in Section 3. Section 4
presents the proposed heuristic framework and its major
components. Thorough experiments are performed to eval-
uate the proposal and to compare algorithms in Section 5,
followed by conclusions and future research in Section 6.

2 RELATED WORK

Several frameworks have been proposed for running work-
flows in clouds [7], [8]. Cloud workflow scheduling prob-
lems have been widely studied in the literature. The com-
monly considered aspects of tasks in workflows are: static
or dynamic tasks, independent or precedence constrained,
deterministic or non-deterministic, among others.

Some classical heuristics, e.g., reinforcement learning [9],
adaptive dispatching [10], max-min cloud algorithm [11]
and affinity scheduling [12] have been applied for dynamic
task scheduling problems. All these algorithms are simple
and fast. They are able to process millions of non-dependent
tasks per minute efficiently and effectively.

Some meta-heuristics have been developed for static
workflow scheduling problems with resource elasticity and
task dependency. Liu et al. [13] presented a PSO-based algo-
rithm with variable neighborhood structures for scheduling
data-intensive workflows with security constraints. Taher-
i et al. [14] proposed a PSO-based method for the bi-
objective workflow scheduling problem in hybrid clouds.
Considering the temporal diversity of energy prices and
execution prices in clouds, Yuan et al. [15] proposed a hybrid
algorithm which integrates SA with PSO for effectively
dispatching arriving tasks to multiple clouds. These meta-
heuristics are effective for static workflow scheduling at the
expense of considerable processing times.

For dynamic workflow scheduling problems, obtaining
a feasible schedule is time-consuming even in the determin-
istic case. Therefore, fast heuristics are desirable. Hetero-
geneous Earliest Finish Time (HEFT), Min-min, Max-min
and Critical-Path-on-a-processor (CPOP) [16] are the most
well-known heuristics for dynamic workflow scheduling
problems. Other heuristics for dynamic workflow schedul-
ing in cloud environments take into account different
characteristics, such as scalability [17], data localization [18],
data transmission delay [19], bandwidth limit [20], trust
[21] and prices [22]. A VND-based heuristic was proposed
for dynamic cloud workflows with scalability, transmission
times and VM utilization in [6].

The above studies investigated scheduling problems
with deterministic task processing times and data trans-
mission times. However, scheduling problems with both
dynamic and fuzziness are more realistic. Existing studies
on fuzzy scheduling are mainly manufacturing industry
oriented. Chanas et al. [23] employed the Lawler’s algorith-
m and represented processing times and due dates as L-R
type fuzzy numbers with power shape functions for single
machine scheduling. Balin et al. [24] proposed a robust
GA for minimizing fuzzy makespan for parallel machine
scheduling problems with fuzzy processing times. Yeh et
al. [25] adopted triangular fuzzy numbers for processing
times and due dates. They proposed a simulated annealing
algorithm and a genetic algorithm for the problem with
learning effects. Huang et al. [26] introduced a fuzzy model
for a time-dependent project scheduling problem with fuzzy
activity duration times. Abdullah et al. [28] reviewed fuzzy
job shop scheduling problems (JSSPs) which were classified
in terms of constraints, objectives and methods. Sakawa
et al. [27] proposed a genetic algorithm for the fuzzy
job shop problem with fuzzy processing times and fuzzy
due dates. The major differences between the considered
problem and these machine scheduling problems lie in: (i)
The former deals with cloud computing resources while the
latter considers manufacturing resources in plants. (ii) The
resources in the considered problem are scalable and flexible
whereas those of fuzzy job shop problems are fixed. (ii)
Tasks of the considered problem arrive stochastically while
those in fuzzy job shops are assumed to arrive at the same
time.

Compared to the previous study [6], the problem studied
in this paper is much more general and realistic. In other
words, the problem studied in [6] is a specific case of the
problem under study. All fuzzy temporal parameters of the
considered problem result in fuzzy schedules and fuzzy

3

idle slots. More in details, the start time and the finish
time of each task are uncertain before it is performed or
they are gradually determined along with its execution.
Therefore, the scheduling framework proposed in [6] is no
longer suitable for the considered problem. It is necessary to
develop fuzzy approaches to deal with uncertainty. To the
best of our knowledge, the considered problem has not been
studied yet and it is challenging as well as realistic.

3 PROBLEM DESCRIPTION

In the considered problem, the fuzzy temporal parameters
are represented by triangular fuzzy numbers. A triangular
fuzzy number (TFN) x̃ is defined as x̃ =(xmin, xmost, xmax)
with xmin ≤ xmost ≤ xmax. xmin is the minimal value, xmost

is the most probable value and xmax is the maximal value.
At the extreme case, a real number x is represented by TFN
x̃ = (x, x, x). The operations to be used in the following are
defined as:

x̃+ ỹ = (xmin + ymin, xmost + ymost, xmax + ymax) (1)

x̃− ỹ = (xmin − ymax, xmost − ymost, xmax − ymin) (2)

x̃× ỹ = (xmin × ymin, xmost × ymost, xmax × ymax) (3)

max{x̃, ỹ} = (max{xmin, ymin},
max{xmost, ymost},max{xmax, ymax}) (4)

C1(x̃) = (xmin + 2× xmost + xmax)/4 (5)

C2(x̃) = xmost (6)

C3(x̃) = xmax − xmin (7)(
∀i ∈ {1, 2, 3}, Ci(x̃) = Ci(ỹ)

)
→ x̃ = ỹ (8)(

∃i ∈ {1, 2, 3}, Ci(x̃) < Ci(ỹ)∧(
∀j < i, j ∈ {1, 2, 3}, Cj(x̃) = Cj(ỹ)

))
→ x̃ < ỹ (9)(

∃i ∈ {1, 2, 3}, Ci(x̃) > Ci(ỹ)∧(
∀j < i, j ∈ {1, 2, 3}, Cj(x̃) = Cj(ỹ)

))
→ x̃ > ỹ (10)

Notations to be used in this paper are given in Table 1.
Jobs arrive at the system stochastically which are sched-

uled time-window by time-window. Each time window is
a scheduling period ε. In terms of [29], jobs arriving in a
scheduling period are regarded as a Job-related Real-time
Event (JRE). Suppose the system starts at time zero and
Q time windows are considered. The JRE arrives during
the time interval [(q − 1) × ε, q × ε] and is denoted as
Eq = {Jj |j = Nq−1 + 1, . . . , Nq−1 + nq} where nq is the
number of jobs in Eq (1 ≤ q ≤ Q). Nq is the total number of
jobs that arrive at system before q× ε, i.e., Nq = Nq−1 + nq .

Different from the traditional nonlinear constrained
workflows which are represented by DAGs (Directed
Acyclic Graph), we consider a special workflow problem
in which tasks are linearly constrained in this paper. Job
Jj is composed of m stages (or tasks) Tj,1, . . ., Tj,m which
are processed sequentially or linearly, i.e., each task Tj,i has
only one immediate predecessor task Tj,i−1 and only one
immediate successor task Tj,i+1 except the first and the
last tasks of job Jj . The task dependency indicates that a
task can start only after its immediate predecessor task is
completed and the data is transmitted from its immediate

TABLE 1
Notations to be used.

Notation Description

ε Scheduling period width
t Current time
Q Number of scheduling periods/events
m Number of stages in a job
Eq qth JRE in the qth scheduling period
Jj jth job
tj Arriving time of Jj
nq Number of jobs in Eq

Tj,i ith task of Jj , i = 1, . . . ,m
p̃j,i Fuzzy processing time of Tj,i

pmin
j,i , pmost

j,i , pmax
j,i Minimal/most probable/maximal value of p̃j,i

pj,i Real processing time of Tj,i
d̃j,i Fuzzy transmission time from Tj,i to Tj,i+1

dmin
j,i ,dmost

j,i , dmax
j,i Minimal/most probable/maximal value of d̃j,i

dj,i Real transmission time from Tj,i to Tj,i+1

b̃j,i Fuzzy start time of Tj,i
bmin
j,i , bmost

j,i , bmax
j,i Minimal/most probable/maximal value of b̃j,i

bj,i Real start time of Tj,i
c̃j,i Fuzzy completion time of Tj,i

cmin
j,i , cmost

j,i , cmax
j,i Minimal/most probable/maximal value of c̃j,i

cj,i Real completion time of Tj,i
D̃j = (D1

j , D
2
j) Fuzzy due date of Jj

V Ci Virtual cluster for processing the ith stage of jobs
ψr
i Unit price for reserved VMs in V Ci

ψo
i Unit price for on-demand VMs in V Ci

u Time unit for charging on-demand VMs
Ri Reserved VM set in V Ci

nr
i Number of reserved VMs in V Ci

Oi On-demand VM set in V Ci

no
i Number of on-demand VMs in V Ci

sj,i(t) Assignments of Tj,i at time t
vj,i VM assigned to Tj,i
F(t) Fuzzy Schedule at time t
N(t) Number of arrived jobs at time t
F fuzzy(t), Set of fuzzy/semi-fuzzy/real

F semi(t),F real(t) assignments at time t

predecessor task. Task interruption or preemption is not
allowed which means that a task is processed continuously
once it starts until its completion. The processing time of
Tj,i is represented by p̃j,i = (pmin

j,i , p
most
j,i , pmax

j,i), i = 1, . . . ,m.
For tasks of the same stage, VMs are provisioned with
the same configuration, i.e., processing times are machine-
independent. The real processing time pj,i of Tj,i is certain
only after Tj,i is completed satisfying pmin

j,i ≤ pj,i ≤ pmax
j,i .

Setup times of tasks are negligible or included in the
processing times. The transmission time of the intermediate
results between Tj,i to Tj,i+1 is not negligible and is denoted
by d̃j,i = (dmin

j,i , d
most
j,i , dmax

j,i). The real transmission time dj,i
is certain only after the data transmission is completed and
satisfies dmin

j,i ≤ dj,i ≤ dmax
j,i . The fuzzy processing time and

the fuzzy transmission time lead to the start time b̃j,i and
the completion time c̃j,i of Tj,i being also fuzzy numbers.
The real start and completion times of Tj,i are denoted as
bj,i and cj,i respectively. bj,i is certain once Tj,i begins to
execute and cj,i is certain only after Tj,i is completed.

How to set the triangle values (the minimum, maximum
and most probable values) for each fuzzy variable is crucial
to the performance of a scheduling algorithm. These values
can be obtained from historical data using statistical tools.

The same stage of all jobs is processed by the same virtu-

4

al cluster which contains a set of VMs. Since virtual clusters
are geographically distributed, all stages are distributed to
VMs. Every stage is allocated to a specific VM and all the
stages on the same VM are queued.

A VM is a light-weight implementation of the execution
environment. VMs in a virtual cluster are homogeneous.
Each VM can process only one task at a time, i.e., multi-
tenant or multi-thread scenarios are not considered. Since
VMs are light-weight, the provisioning and launching time
of a VM is considered to be negligible. V Ci denotes the
virtual cluster where the ith stage (i = 1, 2, . . . ,m) of each
job is processed. Each virtual cluster includes two types of
VMs: reserved VM and on-demand VM. The sets of the
reserved and on-demand VMs in V Ci are denoted as Ri and
Oi respectively. nri and noi are the numbers of VMs in Ri and
Oi, i.e., nri = |Ri| and noi = |Oi|. Reserved VMs are available
for a long period of time which is regarded as a constant. noi
is initialized as 0 and it changes along with the workloads.
An on-demand VM is rented and paid by a short time unit
u (e.g., by hour or a quarter of an hour). On-demand VMs
might be needed at different time points, i.e., there would
be some idle time intervals for renting on-demand VMs.
It is necessary to make full use of every rented u and try
to release time units in idle time intervals to minimize the
total renting cost. Suppose the unit prices of on-demand and
reserved VMs in V Ci are ψo

i and ψr
i respectively. Generally,

ψr
i is much cheaper than ψo

i (e.g., the reserved pricing is
up to 75% cheaper at Amazon compared to the on-demand
pricing).

The assignment of Tj,i changes over time in three states:
fuzzy, semi-fuzzy and real. Figure 1 shows a partial Gantt
chart of a fuzzy schedule at time t. (i) Before the actual task
execution, the start and completion times of Tj,i are fuzzy
due to the fuzzy processing and transmission times. The
assignment with the fuzzy start and completion times is
called the fuzzy assignment. The fuzzy assignment of Tj,i
at current time t is represented by a 3-tuple sj,i(t) =<

b̃j,i, c̃j,i, vj,i > where vj,i ∈ V Ci, bmin
j,i > t and c̃j,i =

b̃j,i + p̃j,i as the gray blocks show in Figure 1. The variable
vj,i represents the VM assigned to Tj,i. (ii) When Tj,i is
being executed, its start time is certain and the completion
time is fuzzy. The assignment with the real start and fuzzy
completion times is called the semi-fuzzy assignment. The
semi-fuzzy assignment of Tj,i is sj,i(t) =< bj,i, c̃j,i, vj,i >,
where bj,i ≤ t < cmax

j,i and c̃j,i = bj,i + p̃j,i as illustrated as
the shaded blocks in Figure 1. (iii) When Tj,i is completed,
its processing and completion times are certain, the real
assignment of Tj,i is sj,i(t) =< bj,i, cj,i, vj,i >where t ≥ cj,i
and cj,i = bj,i + pj,i as demonstrated as the white blocks in
Figure 1.

The assignment of Tj,i at time t is fuzzy if its immediate
predecessor task on vj,i is not completed or the data
transmission from its predecessor task is not completed.
Suppose Tj′,i is the immediate predecessor task of Tj,i on
vj,i. b̃j,i is calculated by

b̃j,i = max{c̃j,i−1 + d̃j,i−1, c̃j′,i}. (11)

The assignment of Tj,i at the current time t is semi-fuzzy
if the data transmission from its predecessor task Tj,i−1 is
completed and its immediate predecessor task Tj′,i on vj,i

is completed. The state of sj,i(t) is changed from fuzzy to
semi-fuzzy immediately at the time when the real start time
can be obtained. Once Tj,i is completed at time t′, sj,i(t)
(t ≥ t′) is real.

The schedule F(t) is the assignment of the set of the
arrived tasks at time t to VMs, i.e., F(t) = {sj,i(t)|1 ≤
j ≤ N(t), i = 1, . . . ,m} where N(t) is the total number of
arrived jobs at time t. F fuzzy(t), F semi(t) and F real(t) are the
subsets of fuzzy, semi-fuzzy, and real task assignments at
time t respectively.

Time

t

VC2

VC3 0 13

2 11 31

28 41

1 12 9 29 36

1 12 15 20 40

0 9 25 30

2 14 10 26 39 33

1 9 19 4031

0 15 21 23 29

2 13 20 24 36

VC1

VM

Time

t

VC2

VC3 0 13

2 11 31

28 41

1 12 9 29 36

1 12 15 20 40

0 9 25 30

2 14 10 26 39 33

1 9 19 4031

0 15 21 23 29

2 13 20 24 36

VC1

VM

 Real assignment (executed)

Semi-fuzzy assignment (being executed)

Fuzzy assignment (to be executed)

Time

t

VC2

VC3 0 13

2 11 31

28 41

1 12 9 29 36

1 12 15 20 40

0 9 25 30

2 14 10 26 39 33

1 9 19 4031

0 15 21 23 29

2 13 20 24 36

VC1

VM

 Real assignment (executed)

Semi-fuzzy assignment (being executed)

Fuzzy assignment (to be executed)

Fig. 1. Gantt chart for a fuzzy schedule at time t

The schedule F(t) is predictive which is actually exe-
cuted according to the task order and the VM assignments.
As time goes, fuzzy assignments are continuously updated
to semi-fuzzy assignments (being executed) or some even
become real assignments (completed).

The objective is to maximize users’ satisfaction and to
minimize the total rental cost. Similar to [30], the due date
of Jj is described by a duple D̃j = (D1

j , D
2
j) (D1

j < D2
j)

which represents the satisfaction degree with respect to the
job completion time cj,m. The real satisfaction degree SDj

of Jj is defined by Equ. (12). Similarly, given a fuzzy job
completion time c̃j,m, a fuzzy satisfaction degree S̃Dj of Jj
is defined by Equ. (13).

SDj =


1, cj,m ≤ D1

j

1− cj,m−D1
j

D2
j−D1

j
, D1

j < cj,m < D2
j

0, cj,m ≥ D2
j .

(12)

S̃Dj = min

{
1,max

{
0, 1−

c̃j,m −D1
j

D2
j −D1

j

}}
(13)

Since the considered problem is bi-objective, we apply a
LWS (Linear Weighted Sum) method to evaluate solutions.
Equ. (14) is the LWS of the total rental cost C(T̃) and the
average satisfaction degree S(T̃).

LWS = w × C(T̃)

C(T̃)
+ (1− w)× S(T̃) (14)

w (w ∈ (0, 1)) is the weight coefficient to control the
tradeoff between cost and the satisfaction. A larger LWS
(LWS ∈ (0, 1]) implies a better solution. T̃ is the total
scheduling time. C(T̃) is the lower bound of C(T̃) for

5

normalizing C(T̃). S(T̃) and C(T̃) is defined by Equ.(15)
and Equ.(16) respectively.

S(T̃) =
1

N(T̃)

N(T̃)∑
j=1

min

{
1,max

{
0, 1−

c̃j,m −D1
j

D2
j −D1

j

}}
(15)

C(T̃) = Cr(T̃) + Co(T̃) (16)

Cr(T̃) =
m∑
i=1

nri ×
⌈ T̃
u

⌉
× ψr

i (17)

Co(T̃) =

m∑
i=1

∑
v∈Oi

⌈N(T̃)
max
j=1
{c̃j,i|vj,i = v} −

N(T̃)

min
j=1
{b̃j,i|vj,i = v}

u

⌉
× ψo

i

(18)

b̃j,i −
N(T̃)
max
j=1

{
c̃j′,i|vj,i = vj′,i ∈ Oi, c̃j′,i < b̃j,i

}
< u (19)

∀j, j′ = 1, . . . N(T̃), i = 1, . . . ,m

C(T̃) is composed of the cost on the reserved VMs
Cr(T̃) and the cost on the on-demand VMs Co(T̃). Cr(T̃)
and Co(T̃) are defined by Equ.(17) and Equ.(18), respec-
tively. Equ.(18) indicates that on-demand VMs are charged
by time units, i.e., a period less than u is still charged
by u. Constraint (19) implies an on-demand VM with an
idle interval between two successive tasks not less than
u might be released. A higher S(T̃) indicates a better
user experience. A lower C(T̃) means higher utilization on
reserved VMs and a less need for on-demand VMs.
F(T̃) is feasible if and only if the constraints (20) and

(21) are satisfied.

max{b̃j,i, b̃j′,i} ≥ min{c̃j,i, c̃j′,i} (20)

b̃j,i ≥ max{tj , b̃j,i−1 + p̃j,i−1 + d̃j,i−1} (21)

Constraint (20) guarantees no overlapping among tasks
on the same VM. Constraint (21) defines the precedence
constraint, i.e., a task cannot start until it receives the
intermediate result from its immediate predecessor. It also
indicates that a job cannot start before its arrival time.

4 PROPOSED ALGORITHMS

The considered dynamic scheduling procedure is complete-
ly reactive as a result of three aspects: (1) arrival time of
jobs is uncertain; (2) transmission times between any two
consecutive tasks are uncertain until the data transmission
is completed; (3) task processing times are uncertain until
tasks are completed. Fuzzy tasks are scheduled event by
event at time t = ε, 2ε, . . . , Q × ε. The Fuzzy Dynamic
Event Scheduling (FDES) framework for scheduling dynam-
ic fuzzy events is detailed in Algorithm 1 (as depicted in Fig.
2).

Clients

Requests

FDES

End users
Mapping to jobs Evaluating processing times &

assigning deadlines
1 2 31 2 3

1 2 31 2 3

1 2 31 2 3

Reserved

Instances

Virtual Cluster 1 Virtual Cluster 2 Virtual Cluster 3

On-demand

instances

On-demand

instances

On-demand

instances

Reserved

Instances

Reserved

Instances

Time

Instances

PaaS

Collecting and packaging tasks

1 2 31 2 3

1 2 3

1 2 31 2 3

Evaluating processing times &

assigning deadlines

Scheduling
Instances

Gantt Chart

Scheduling
Instances

Gantt Chart

Generating fuzzy assignments
VMs

Gantt Chart

Generating fuzzy assignments
VMs

Gantt Chart

Monitoring task states &

instance availability

Gantt Chart

Monitoring task states &

instance availability

Gantt Chart

Monitoring task executions

Gantt Chart

VMs
VM Availability Maintenance

Reserved

VMs

Virtual Cluster 1 Virtual Cluster 2 Virtual Cluster 3

On-demand

VMs

On-demand

VMs

On-demand

VMs

Reserved

VMs

Reserved

VMs

Clients

End users

Fig. 2. Fuzzy Dynamic Event Scheduling (FDES) framework

A feasible fuzzy schedule F(t) is initially empty at time
t = 0 and updated iteratively at time t = ε, 2ε, . . . , Q × ε
(Lines 3-6):

1) The execution progress of task is monitored and the
availability of VMs is updated (Line 3). After some tasks
are completed, their assignments are updated from
semi-fuzzy to real. After some tasks are started, their
assignments are updated from fuzzy to semi-fuzzy.

2) Tasks to be scheduled are collected at time t by TCS
(Task Collection Strategy) (Line 4).

3) Deadlines of collected tasks are computed by TDA
(Task Deadline Assignment) (Line 5).

4) Fuzzy assignments for collected tasks are generated by
FTS (Fuzzy Task Scheduling)(Line 6).

FDES consists in four main components: the VM Avail-
ability Maintenance (VMAM), the Task Collection Strategy
(TCS), the Task Deadline Assignment (TDA), and the Fuzzy
Task Scheduling (FTS). Details are introduced in the follow-
ing sections.

4.1 VM Availability Maintenance (VMAM)
A time slot occupied by Jj on VM v is represented by
< v, Jj , [ã, b̃] >, where [ã, b̃] is a fuzzy time interval.
< v, 0, [ã, b̃] > indicates an idle time slot on v. The initially
fuzzy time slot of v is < v, 0, [(0, 0, 0), (∞,∞,∞)] >. After
some tasks are scheduled, some idle time slots might be
separated on each VM.

A VM availability maintenance method is proposed to
store time slots in each virtual cluster. We use a two-
dimensional orthogonal list to preserve idle and occupied
time slots of each virtual cluster. Each node of the orthog-
onal list represents a time slot and is right-linked to the

6

Algorithm 1: Proposed Fuzzy Dynamic Event Schedul-
ing (FDES) framework

1 for q = 1 to Q do
2 t = q × ε;
3 Monitoring the execution of tasks and updating

the availability of VMs;
4 Collecting tasks to be scheduled in the current time

window [t− ε, t] and packaging them into Eq ;
5 Computing deadlines of tasks in Eq ;
6 Generating fuzzy assignments for tasks in Eq ;

7 Computing S(t) and C(t);
8 return S(t), C(t).

adjacent time slot (either idle or occupied) on the same VM.
For the kth VM in V Ci, the head of the right-linked nodes is
preserved in Li,k. The nodes representing idle time slots in
the same virtual cluster are also down-linked in ascending
order of their start times. Idle fuzzy time slots for reserved
VMs and on-demand VMs are down-linked separately. In
each virtual cluster V Ci (i = 1, . . . ,m), Iri maintains the
head idle time slot of the reserved VMs and Ioi maintains
that of the on-demand ones. Fig. 3 depicts an example of
the orthogonal list for maintaining the fuzzy time slots. For
simplicity, only the time intervals are shown in the nodes of
the orthogonal list.

The length of a fuzzy time slot < v, Jj , [ã, b̃] > is b̃ − ã.
The nodes with a length of less than or equal to zero should
be removed from the lists (it is possible to have a time
interval [ã, b̃] with ã < b̃ but b̃ − ã < 0 due to the fuzzy
operations, e.g., [(3, 4, 5), (2, 4, 6)]). The orthogonal lists are
updated in real time according to the actual execution of
tasks. Any node with a time interval [ã, b̃] less than the
current time t (b̃ ≤ t) is removed from the corresponding
list since these time slots indicate the past assignments with
real states. Only the fuzzy and semi-fuzzy time slots are
needed.

4.2 Task Collection Strategy (TCS)
A general and simple strategy for the task collection consists
of collecting new tasks arriving in the past time window.
This may result in a low-quality solution. Some tasks may
be completed earlier or later than expected which results in
the fuzzy schedule produced in the last time interval to be
invalid.

We propose two TCS candidates to determine tasks to be
scheduled: (1) TCS1 collects only new tasks arriving during
the last scheduling period. (2) TCS2 undoes the fuzzy
assignments of unstarted tasks and combines them with the
newly arrived tasks during the previous time window. The
fuzzy assignments of the undone tasks are removed from
the current F fuzzy(t) and the fuzzy time intervals occupied
by these tasks are returned to the corresponding orthogonal
lists.

Table 2 shows an example of the arrival of new jobs in
five scheduling periods. It also lists the jobs collected by
TCS1 and TCS2 at each period. Fig. 4 and 5 show the Gantt
charts of the fuzzy schedule F(t) (t = 4ε, 5ε) by applying
TCS1 and TCS2 respectively. The fuzzy schedule F(t) is

generated by simply arranging the collected tasks as early
as possible. We can find out that after 5 scheduling periods,
the schedule applying TCS1 need four on-demand VMs in
total, whereas the schedule applying TCS2 needs only two.
In other words, collecting and rescheduling unstarted tasks
in previous events might obtain better solutions.

VC1

t=ε

VC2VC2

VC3VC3

t=2εt=2ε

On-demand On-demand

t=3εt=3ε

On-demand

On-demand

t=4εt=4ε

On-demand

On-demand

On-demand

On-demand

t=5εt=5ε

VC2VC2

VC3VC3

VC1

t=ε t=2ε t=3ε t=4ε t=5ε

On-demand

On-demandOn-demand

VC1

VC2

VC3

VC1

VC2

VC3

Fig. 4. Gantt charts of the fuzzy schedule F(t) (t = 4ε, 5ε) applying
TCS1.

VC1

t=ε

VC2VC2

VC3VC3

t=2εt=2ε

On-demand On-demand

t=3εt=3ε

On-demand

On-demand

t=4εt=4ε

On-demand

On-demand

On-demand

On-demand

t=5εt=5ε

VC2VC2

VC3VC3

VC1

t=ε t=2ε t=3ε t=4ε t=5ε

On-demand

On-demandOn-demand

VC1

VC2

VC3

VC1

VC2

VC3

Fig. 5. Gantt charts of the fuzzy schedule F(t) (t = 4ε, 5ε) applying
TCS2.

4.3 Task Deadline Assignment (TDA)

Although each job has a due date, it is difficult to guar-
antee the hard deadline constraint because of the fuzzy
temporal variables (the task processing times and the
transmission times). In order to obtain solutions with a
high satisfaction degree, all tasks and jobs are assigned
triangular fuzzy deadlines according to Equ.(15). Given the
due date (D1

j , D
2
j), a triangular fuzzy job deadline δ̃j of Jj

is constructed by the difference ∆δ̃j (Equ.(22)) between the
given D2

j and D1
j , as defined by Equ.(23).

∆δ̃j = D2
j −D1

j (22)

δ̃j = (D1
j −∆δ̃j , D

1
j , D

1
j + ∆δ̃j) (23)

The task deadline (TD) is constructed based on the job
deadline. Given the fuzzy job deadline δ̃j , two kinds of task

7

t=51

VM
Idle time slots on on-demand VMs

Idle time slots on reserved VMs

[(58,59,60),(60,64,65)] [(69,74,75),(85,90,93)] [(92,96,101),(∞, ∞,∞)]

[(51,51,51),(54,55,56)] [(61,62,64),(66,71,72)] [(69,74,76),(78,82,85)] [(84,87,92),(∞, ∞,∞)]

(a) The fuzzy idle time slots in a virtual cluster

(b) The fuzzy assigned time slots on each VM

[(56,57,58),(59,61,63)] [(84,87,91),(86,91,93)] [(92,97,101),(∞, ∞,∞)]

[(51,51,51),(57,59,61)] [(100,104,112),(∞, ∞,∞)][(83,87,92),(89,93,98)]

Assigned time slots

t=51

VM

[(51,51,51),(56,57,58)] [(59,61,63),(84,87,91)] [(86,91,93),(92,97,101)]

[(57,59,61),(83,87,92)] [((89,93,98)),(100,104,112)]

[(51,51,51),(58,59,60)] [(60,64,65),(69,74,75)] [(85,90,93),(92,96,101)]

[(54,55,56),(61,62,64)] [(66,71,72),(69,74,76)] [(78,82,85),(84,87,92)]

[(56,57,58),(59,61,63)] [(84,87,91),(86,91,93)] [(92,97,101),(∞, ∞,∞)]

[(51,51,51),(57,59,61)] [(100,104,112),(∞, ∞,∞)][(83,87,92),(89,93,98)][(57,59,61),(83,87,92)] [((89,93,98)),(100,104,112)]

[(51,51,51),(56,57,58)] [(59,61,63),(84,87,91)] [(86,91,93),(92,97,101)]

[(58,59,60),(60,64,65)] [(69,74,75),(85,90,93)] [(92,96,101),(∞, ∞,∞)]

[(51,51,51),(54,55,56)] [(61,62,64),(66,71,72)] [(69,74,76),(78,82,85)] [(84,87,92),(∞, ∞,∞)]

[(51,51,51),(58,59,60)] [(60,64,65),(69,74,75)] [(85,90,93),(92,96,101)]

[(54,55,56),(61,62,64)] [(66,71,72),(69,74,76)] [(78,82,85),(84,87,92)]

VM

Idle time slots on on-demand VMs

Idle time slots on reserved VMs

Assigned time slots

Down Link

Right Link

t=51

Time

Reserved VM On-demand VM

[(56,57,58),(59,61,63)] [(84,87,91),(∞, ∞,∞)]

[(51,51,51),(57,59,61)] [(83,87,92),(∞, ∞,∞)][(57,59,61),(83,87,92)]

[(51,51,51),(56,57,58)] [(59,61,63),(84,87,91)]

[(58,59,60),(60,64,65)] [(69,74,75),(∞, ∞,∞)]

[(51,51,51),(54,55,56)] [(61,62,64),(66,71,72)] [(69,74,76),(∞, ∞,∞)]

[(51,51,51),(58,59,60)] [(60,64,65),(69,74,75)]

[(54,55,56),(61,62,64)] [(66,71,72),(69,74,76)]

Idle time slots on reserved VMs

Idle time slots on on-demand VMs

Occupied time slots

Down Link

Right Link

Fig. 3. An orthogonal list for storing idle and occupied time slots in a virtual cluster

TABLE 2
Examples of TCS candidates at time t = ε, 2ε, 3ε, 4ε, 5ε (jobs with ∗ are old ones of which some tasks are rescheduled).

t Newly arriving jobs Jobs collected by TCS1 Jobs collected by TCS2

ε J0, J1, J2, J3 E1 = {J0, J1, J2, J3} E1 = {J0, J1, J2, J3}
2ε J4, J5, J6, J7 E2 = {J4, J5, J6, J7} E2 = {J4, J5, J6, J7, J∗

1 , J
∗
2 , J

∗
3 }

3ε J8, J9, J10, J11, J12 E3 = {J8, J9, J10, J11, J12} E3 = {J8, J9, J10, J11, J12, J∗
2 , J

∗
4 , J

∗
5 , J

∗
6 }

4ε J13, J14, J15, J16 E4 = {J13, J14, J15, J16} E4 = {J13, J14, J15, J16, J∗
2 , J

∗
4 , J

∗
5 , J

∗
6 , J

∗
7 , J

∗
8 , J

∗
9 , J

∗
10, J

∗
11, J

∗
12}

5ε J17, J18, J19, J20 E5 = {J17, J18, J19, J20} E5 = {J17, J18, J19, J20, J∗
2 , J

∗
4 , J

∗
5 , J

∗
6 , J

∗
8 , J

∗
9 , J

∗
10, J

∗
11, J

∗
12, J

∗
13, J

∗
15, J

∗
16}

deadlines are introduced: RTD (the relaxed task deadline)
and TTD (the tight task deadline). RTD of Tj,i is computed
by Equ. (24) which assigns the deadline of a task as late as
possible. TTD of Tj,i is computed by Equ. (25), where dfj is
the fuzzy deadline factor. TTD assigns the deadline of a task
proportionally to its processing time.

δ̃j,i = δ̃j −
m∑

i′=i+1

p̃j,i′ (24)

δ̃j,i =

{
δ̃j , i = m

δ̃j − bdfj ×
∑m

i′=i+1 p̃j,i′c, 1 ≤ i < m.
(25)

dfj = (
δmin
j − tj∑m
i=1 p

min
j,i

+
δmost
j − tj∑m
i=1 p

most
j,i

+
δmax
j − tj∑m
i=1 p

max
j,i

)/3 (26)

Table 3 shows an example of the task deadline assign-
ment. Generally, TTD is less than RTD, i.e., it is ”tighter”.
Given the job deadline and the task deadline assignment,
the deadline constraint in Equ. (27) should be satisfied to
obtain the solution with the high user satisfaction.

c̃j,i ≤ δ̃j,i (27)

TABLE 3
An example of the TDA with tj = 0.

D̃j δ̃j dfj i p̃j,i δ̃j,i (RTD) δ̃j,i (TTD)

(26,30) (22,26,30) 1.61
1 (5,7,9) (8,16,24) (0,10,21)
2 (4,6,8) (16,22,28) (13,20,27)
3 (2,4,6) (22,26,30) (22,26,30)

4.4 Fuzzy Task Scheduling (FTS)

Scheduling tasks in each event with fuzzy processing time,
transmission time and due dates is a fuzzy event scheduling
problem, which is solved by FTS (Fuzzy Task Scheduling).
The fuzzy event scheduling problem is different from the
traditional Fuzzy Job Shop Scheduling [28] and Stochastic
Multi-Stage Job Scheduling [6] in three fundamental aspects:
(i) The available time intervals of a VM are fuzzy and may
be inconsistent with reality. (ii) Fuzzy transmission times are
considered. (iii) Deadlines of tasks are also fuzzy.

In the fuzzy event scheduling problem, nq × m tasks
in Eq (q = 1, . . . , Q) are scheduled by FTS (as depicted in
Algorithm 2) in the precedence order of the tasks. A task is
ready to be scheduled only after its immediate predecessor
task has been scheduled. A priority queue PQ is used to
keep ready tasks in the correct order. Tasks in PQ are
allocated iteratively until PQ is empty (Lines 2-7):

(i) Ready tasks are prioritized in PQ (Line 3).
(ii) The task with the highest priority (called the root task)

is allocated and removed from PQ (Line 5).
(iii) The immediate successor task of the root task is added

to the appropriate location in PQ (Line 7).
FTS has two major operations: a task prioritizing (Line 3)

operation for computing the priorities of ready tasks, and
a task allocation (Line 5) operation for generating the fuzzy
assignment for a ready task.

4.4.1 Task Prioritizing

The ready tasks in PQ are changing dynamically during
the scheduling procedure. All ready tasks are scheduled
sequentially, i.e., they are scheduled in some order. How
to sort to tasks in PQ is crucial to the performance of the

8

Algorithm 2: Fuzzy Task Scheduling (FTS)

1 Add ready tasks of Eq to PQ;
2 while (PQ! = ∅) do
3 Prioritize and sort ready tasks in PQ;
4 Remove the root task Tj,i of PQ;
5 Allocate Tj,i with a fuzzy assignment ;
6 if i < m then
7 Append the ready task Tj,i+1 to PQ;

8 return obtained fuzzy assignments.

proposed methodology. In this paper, we adopt the min-
heap data structure to obtain the order tasks in PQ. The
task with the highest priority is located at the root node.
If the root task is completed, it is removed from the root
and its immediate successor task is appended. By adjusting
the min-heap, the task with the current highest priority is
placed to the root and the appended task is adjusted to the
appropriate place in the min-heap tree. Therefore, how to
determine the priorities of ready tasks is key to construct the
min-heap. In this paper, we propose three priority strategies
based on the fuzzy temporal parameters of tasks and the
corresponding min-heap is called fuzzy heap.

• Task Priority 1 (TP1): the priority of a ready task
is a duple consisting of two values: the possible
earliest start time (PEST) of the task and the task
deadline. The PEST of a ready task is determined
by the fuzzy completion time of its immediate
predecessor task (which has been arranged in the
previous iterations) and the fuzzy transmission time,
i.e., PEST(Tj,i)=c̃j,i−1 + d̃j,i−1. For a Stage 1 task, its
PEST is its arrival time. The task with the minimum
PEST is considered to have the highest priority. If
some tasks have the same PEST value, the one with
the minimum task deadline has the highest priority.

• Task Priority 2 (TP2): the priority of a ready task is
a duple consisting of two values: the feasible earliest
start time (FEST) of the task and the task deadline.
The FEST is obtained by tentatively searching on
the orthogonal lists for the first idle time slot that is
feasible for the task. The FEST calculating as depicted
by Algorithm 3. An assignment is feasible only if
both the deadline and the precedence constraints are
satisfied. If no feasible assignment can be obtained,
then the FEST is +∞ which indicates that a new
on-demand VM is needed for the task. The task
with the minimum FEST has the highest priority. If
many tasks have the same FEST, the one with the
minimum task deadline has the highest priority. An
extreme case is that the first feasible idle time slots
for some ready tasks might come from the same VM
and they are overlapped. Once one of the tasks is
arranged to its FEST, the other conflicting tasks (with
overlapped FESTs) should be re-computed, and the
min-heap is adjusted correspondingly. Therefore, the
operations (inserting, deleting, adjusting) on fuzzy
min-heaps for TP2 are different from those for TP1
because of the fuzziness of nodes. As shown in Fig.
6, the tasks with the overlapped FESTs are linked.

Once the task with the top priority is removed, its
linked tasks should be reprioritized, i.e., their FEST
are re-computed. After a new ready task is inserted,
all conflicting tasks should be adjusted accordingly.

• Task Priority 3 (TP3): the priority of a ready task
Tj,i depends on its urgency uj,i, which is calculated
by the difference between the feasible earliest com-
pletion time of the task and the task deadline, i.e.,
uj,i = δj,i − (FEST(Tj,i) + p̃j,i). The task with the
minimum uj,i value has the highest priority. Since
FEST is also used for prioritizing, TP3 applies the
similar fuzzy min-heap as TP2 does.

Algorithm 3: FEST(Tj,i)
1 Search right-linked idle time slots from Lr

i to find the
first feasible idle time slot [ã, b̃] with
max{c̃j,i−1 + d̃j,i, ã}+ p̃j,i ≤ min{δ̃j,i, b̃};

2 if [ã, b̃] is found then
3 return max{c̃j,i−1 + d̃j,i, ã};
4 else
5 Search right-linked idle time slots from Lo

i to find
the first feasible idle time slot [ã, b̃] with
max{c̃j,i−1 + d̃j,i, ã}+ p̃j,i ≤ min{δ̃j,i, b̃};

6 if [ã, b̃] is found then
7 return max{c̃j,i−1 + d̃j,i, ã};
8 else
9 return +∞;

Though PEST can be calculated quickly, it may be
infeasible because the availability of VMs is not considered.
FEST is feasible, but it needs more CPU time to obtain
feasible start times.

4.4.2 Task Arranging Operation
Ready tasks are arranged by FARRNGE procedure of
Algorithm 4. Given a ready task Tj,i, it tries to find the
first feasible idle time slot [ã, b̃] on Lr

i satisfying both the
precedence and the deadline constraints, i.e., max{c̃j,i−1 +

d̃j,i, ã}+ p̃j,i ≤ min{δ̃j,i, b̃} (Line 1). If the satisfied time slot
is found, then it is assigned to the ready task. The orthogonal
list of V Ci is updated after the assignment (Lines 2-10). If
the search fails, FARRANGE performs a similar search on
the orthogonal list Lo

i (Line 12). The orthogonal list of V Ci

is updated after the assignment (Lines 13-21). If the search
on both reserved and on-demand VMs fails, a new on-
demand VM is rented to which Tj,i is allocated (Lines 23-24).
The orthogonal list of V Ci is updated after the assignment
(Lines 25-29). The feasible assignment that Tj,i is assigned
to vj,i from the fuzzy time b̃j,i to c̃j,i is returned (Line 30).

4.4.3 Time Complexity Analysis
The time complexity of the task prioritization operation
is determined by the time complexity of computing the
priority for a task and adjusting the priority queue PQ.
Suppose PQ is implemented by a minimum heap. The time
complexity for adjusting the minimum heap is O(log nq).

If TP1 is applied, then time complexity for computing
the priority of a task is O(1). In total, the minimum heap

9

10 10 1010 10 10 50 10 1050 10 10 50 25 1050 25 10 50 25 3050 25 30 25 30 5025 30 50

45 30 5045 30 50 45 40 5045 40 50 45 40 6545 40 65 40 45 6540 45 65

UpdateUpdate

UpdateUpdate

UpdateUpdate UpdateUpdate

ARRANGE()ARRANGE() ARRANGE()ARRANGE() ARRANGE()ARRANGE() UpdateUpdate

ARRANGE()ARRANGE() ARRANGE()ARRANGE() ARRANGE()ARRANGE() UpdateUpdate

ARRANGE()ARRANGE() ARRANGE()ARRANGE()

UpdateUpdate ARRANGE()ARRANGE()

ARRANGE()ARRANGE() ARRANGE()ARRANGE()

…… ……

…… ……

Remove

Update Priorities Insert Adjust Heap

Task with top priority Task to be reprioritized Task to be adjusted Link to conflict tasks

Fig. 6. An example of the fuzzy min-heap in the task prioritizing operation TP2

Algorithm 4: FARRANGE(Tj,i, t)
1 Search Lr

i to find the first feasible idle time slot [ã, b̃]

with max{c̃j,i−1 + d̃j,i, ã}+ p̃j,i ≤ min{δ̃j,i, b̃};
2 if < v,−1, [ã, b̃] > is found then
3 b̃j,i ← max{c̃j,i−1 + d̃j,i, ã}; c̃j,i ← b̃j,i + p̃j,i;
4 Remove < v,−1, [ã, b̃] > from Lr

i ;
5 if b̃j,i > ã then
6 Add < v,−1, [ã, b̃j,i] > to Lr

i ;

7 if c̃j,i < b̃ then
8 Add < v,−1, [c̃j,i, b̃] > to Lr

i ;

9 Add < v, Jj , [̃bj,i, c̃j,i] > to Li,k;/* Suppose v is

the kth VM in V Ci */

10 vj,i ← v;
11 else
12 Search Lo

i to find the first feasible idle time slot
[ã, b̃] with
max{c̃j,i−1 + d̃j,i, ã}+ p̃j,i ≤ min{δ̃j,i, b̃};

13 if < v,−1, [ã, b̃] > is found then
14 b̃j,i ← max{c̃j,i−1 + d̃j,i, ã}; c̃j,i ← b̃j,i + p̃j,i;
15 Remove < v,−1, [ã, b̃] > from Lo

i ;
16 if b̃j,i > ã then
17 Add < v,−1, [ã, b̃j,i] > to Lo

i ;

18 if c̃j,i < b̃ then
19 Add < v,−1, [c̃j,i, b̃] > to Lo

i ;

20 Add < v, Jj , [̃bj,i, c̃j,i] > to Li,k;/* Suppose v

is the kth VM in V Ci */

21 vj,i ← v;
22 else
23 Rent a new VM v;
24 Oi ← Oi

⋃
{v};

25 b̃j,i ← c̃j,i−1 + d̃j,i;
26 Add < v,−1, [t, b̃j,i] > to Lo

i ;
27 Add < v,−1, [c̃j,i,∞] > to Lo

i ;
28 Add < v, Jj , [̃bj,i, c̃j,i] > to Li,k;/* Suppose v

is the kth VM in V Ci */

29 vj,i ← v;

30 return < Tj,i, b̃j,i, c̃j,i, vj,i >;

is adjusted mnq times and mnq priorities are computed.
Therefore, the complexity for the task prioritizing operation
applying TP1 is O(mnq log nq)

The time complexity of TP2 or TP3 is determined by
the time for computing FEST of a task, which is equivalent
to the time of searching for the first feasible time slot on
the orthogonal list and it depends on the number of idle
time slots in a virtual cluster. Suppose nki jobs have been
assigned to the kth VM in V Ci after t which brings at most
nki + 1 idle fuzzy time slots on that VM. In other words,
there are at most

∑nr
i+no

i

k=1 (nki + 1) down-linked nodes (idle
time slots) on the orthogonal list of V Ci.

∑nr
i+no

i

k=1 nki is
actually the total number of unstarted tasks assigned to V Ci

after t. The number of currently scheduled and non-started
tasks in all m clusters is not more than |F fuzzy(t)|, which
means the largest number of the down-linked nodes on the
orthogonal list of one cluster is |F

fuzzy(t)|
m , therefore the worst

time complexity for computing the FEST is O(|F
fuzzy(t)|
m).

Actually, at most m FEST values are computed in each
iteration of FTS, because when the root task is arranged,
the FEST values of the other tasks in PQ (at most m ready
tasks) have to be updated with the new availability of VMs.
In total, the minimum heap is adjustedmnq times andm2nq
FEST values are computed. Therefore, the worst complexity
for the task prioritizing operation in FTS with TP2/TP3 for
EST is O(mnq log nq +mnq|F fuzzy(t)|).

The time complexity of the task arranging operation
is equivalent to the time complexity of finding the first
feasible fuzzy time slot for the task, i.e., O(|F

fuzzy(t)|
m). The

task arranging operation is performedmnq times in FTS and
the total time complexity of the task arranging operation is
O(nq|F fuzzy(t)|).

Therefore, for the FTS with TP1, the time complexity is
O(mnqlognq+nq log |F fuzzy(t)|). For the FTS with TP2/TP3,
the time complexity is O(mnq|F fuzzy(t)|).

5 COMPUTATIONAL EXPERIMENTS

In the proposed FDES framework there are several proposed
variants for some of its components. We first calibrate these
components and select the best combination for solving
the considered problem. Then the calibrated algorithm is
compared with the existing and highly related algorithms
on effectiveness and robustness. All tested algorithms are
coded in Java and run on an Intel Core i7 − 4790 CPU
@3.60GHz with 8 GBytes of RAM. All the evaluation is
performed on the simulated clusters.

10

5.1 Parameter and Component Calibration
Since there are no comprehensive benchmarks available
for the dynamic and fuzzy problem under study, we
generate testing instances based on both existing studies
and the cluster data collected from real cloud environments.
We generate three types of workloads W1, W2 and W3.
Workloads of type W1 and W2 are constructed similarly to
those for deterministic cloud scheduling problems in [6],
[11], [31]. Workloads of type W3 are constructed from the
production data collected by Alibaba clusters 1.

Similar to [6], each test instance of type W1 or W2

includes 3600 JREs (Q = 3600) in an hour or one JRE
per second (ε = 1s). The number of jobs nq in every
JRE of a type W1 instance follows a Poisson distribution
P (λ), λ ∈ {5, 10, . . . , 50}. nq in every JRE of a type
W2 instance follows a Uniform distribution U(0, 50). The
Alibaba Cluster Trace “cluster-trace-v2017” provides a batch
of workloads in 12 hours. Each record in the Trace includes
the create time, the start time and the termination time of
every task as well as its dependency with other tasks. We
construct 12 W3 workloads W3,1, . . . ,W3,12, i.e., W3,i (i =
1, . . . , 12) includes the real workload of the ith hour. Fig.
7 depicts the workload W3,1. Though the average number
of tasks per second is 192, there is no explicit probability
distribution for task arrival.

1000 2000 3000 q

4K

8K

12K

16K

20K

24K

mnq

1000 2000 3000 q

4K

8K

12K

16K

20K

24K

mnq

Fig. 7. One hour workload data from Alibaba Cluster Trace.

The temporal parameters for the fuzzy variables of a
type W1 or W2 task Tj,i are set as follows:

• For fuzzy processing time p̃j,i, the most probable
processing time pmost

j,i is randomly generated in [1, 10]
(seconds), pmin

j,i = pmost
j,i × (1 − e) and pmax

j,i =
pmost
j,i × (1 + e) where e is a deviation factor. The real

processing time pj,i is generated randomly following
a normal distribution N(pmost

j,i , (e× pmost
j,i)2).

• Similarly, the fuzzy transmission time d̃j,i is con-
structed by setting dmost

j,i following a uniform dis-
tribution on a given interval [a, b] based on the
network measurements in [31], dmin

j,i = dmost
j,i × (1− e)

and dmax
j,i = dmost

j,i × (1 + e). The real transmission
time dj,i is generated with a normal distribution
N(dmost

j,i , (e× dmost
j,i)2).

• The fuzzy due date of Jj is constructed by D1
j = tj +

dfj×
∑m

i=1 p
most
j,i andD2

j = tj+dfj×
∑m

i=1 p
max
j,i where

dfj is deadline factor following a normal distribution

1. https://github.com/alibaba/clusterdata

N(dfavg, σ
2). We set σ = 0.1 × dfavg in this paper to

try to avoid extreme due dates.

Different from the type W1 and W2 tasks, the temporal
parameters for the fuzzy variables of a type W3 task is set
as follows: The real processing time pj,i is set as the real
execution time provided in the Trace. The most probable
processing time pmost

j,i is generated randomly with a normal
distribution N(pj,i, (e × pj,i)2). pmin

j,i = pmost
j,i × (1 − e) and

pmax
j,i = pmost

j,i × (1 + e). Since there is no information related
to the transmission time in the Trace, d̃j,i, dj,i and the fuzzy
due date are set the same as the type W1 or W2 case.

The workload in each virtual cluster is the same on
average since the processing times of tasks in different
virtual clusters follows the same uniform distribution.
Therefore, similar to [6], nri is initialized to be the same for
each virtual cluster. Since it is very difficult to predict the
number of reserved VMs nri precisely in advance, we just
try to estimate it reasonably. nri is closely related to the job
arrival rate λ, the number of tasks m in each job and the
deadline factor dfavg . Specifically, nri is proportional to λ
and m while it is inversely proportional to dfavg . Based on
[6], we propose a estimation model for nri as shown in Equ.
(28) where the coefficient θ ∈ {0.5, 1, 1.5}.

nri =
λ×m× θ
dfavg

(28)

For the calibration instances with workload type W1,
there are 8×4×3×3×10×3 = 8640 instance combinations
(m ∈ {3, 4, 5, 6, 7, 8, 9, 10}, dfavg ∈ {1.5, 2, 2.5, 3}, dmost

j,i ∼
U(10ms, 15ms), U(70ms, 80ms) or U(250ms, 280ms), e ∈
{0.1, 0.2, 0.3}, λ ∈ {5, 10, . . . , 50} and θ ∈ {0.5, 1, 1.5}).

For the calibration instances with workload type W2,
there are 8 × 4 × 3 × 3 × 3 = 864 instance combinations
(m ∈ {3, 4, 5, 6, 7, 8, 9, 10}, dfavg ∈ {1.5, 2, 2.5, 3}, dmost

j,i ∼
U(10ms, 15ms), U(70ms, 80ms) or U(250ms, 280ms), e ∈
{0.1, 0.2, 0.3} and θ ∈ {0.5, 1, 1.5}), and 10 instances are
randomly generated for each possible combination.

For the calibration instances with workload type W3,
there are 8 × 4 × 3 × 3 × 3 = 864 instance combinations
(m ∈ {3, 4, 5, 6, 7, 8, 9, 10}, dfavg ∈ {1.5, 2, 2.5, 3}, dmost

j,i ∼
U(10ms, 15ms), U(70ms, 80ms) or U(250ms, 280ms), e ∈
{0.1, 0.2, 0.3}, θ ∈ {0.5, 1, 1.5}), and 12 real one-hour
workload data.

Therefore, the component variants of the proposal are
calibrated on 8640 + 864× 10 + 864× 12 = 27648 instances
in total.

Solutions are evaluated by the LWS, and the lower
bound for normalizing C(T̃) is set to be the the best
obtained valueCBest (29). The cost on a reserved VM and an
on-demand VM is set according to the real price setting at
Amazon Elastic Compute Cloud: ψr

i = 0.25 and ψo
i = 1.

Time unit u for charging on-demand VMs is set to 600
seconds.

LWS = w × CBest

C(T̃)
+ (1− w)× S(T̃) (29)

In the FDES framework, there are two variants for the
task deadline assignment (RTD and TTD), three variants for
the task priority setting (TP1, TP2 and TP3) and two variants

11

for the task collection strategy (TCS1 or TCS2). In other
words, there are 2 × 3 × 2 = 12 component combinations.
Therefore, 12 × 27648 = 331776 experimental results are
obtained.

Experimental results are analyzed by the multi-factor
analysis of variance (ANOVA) technique. First, the three
main hypotheses (normality, homoscedasticity, and inde-
pendence of the residuals) are checked from the residuals of
the experiments. All three hypotheses are acceptable from
this analysis. Since most p-values in the experiments are
close to zero, they are not given in this paper. Greater
F -Ratios imply factors with stronger effects. Interactions
between (or among) any two (or more than two) factors are
not considered because the observed F -Ratios were small in
comparison.

Fig. 8 shows the LWS of component settings with 95.0%
Tukey Honest Significant Difference (HSD) intervals. It
shows a statistically significant difference for the perfor-
mance of different TP and TD settings on the LWS with
w ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. TP3 has better performance
than TP1 and TP2, and TTD performs better than RTD. The
performance of TCS1 and TCS2 is not statistically different.
We make detailed comparison of these components with the
different values of w. Fig. 9 depicts the interactions between
w and the compared components with 95.0% Tukey HSD
intervals. It can be observed that TCS1 outperforms TCS2 if
w is bigger than approximately 0.5, which indicates that in
the optimized objective, if the satisfaction is more important
than the cost, then TCS1 is the better option than TCS2.
Otherwise, TCS2 can perform better than TCS1.

TP1 TP2 TP3

L
in

ea
r

W
ei

g
h

te
d

 S
u

m
 (

L
W

S
)

.76

.79

.82

.85

.88

.91

.94

TCS1 TCS2 RTD TTDTP1 TP2 TP3

L
in

ea
r

W
ei

g
h

te
d

 S
u

m
 (

L
W

S
)

.76

.79

.82

.85

.88

.91

.94

TCS1 TCS2 RTD TTD

.57

.62

.67

.72

.77

.82

.87

.92

.97

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1

TCS1
TCS2
TCS1
TCS2

0 .2 .4 .6 .8 1

RTD
TTD
RTD
TTD

TP1
TP2
TP3

TP1
TP2
TP3

L
in

ea
r

W
ei

g
h

te
d

 S
u

m
 (

L
W

S
)

w

.57

.62

.67

.72

.77

.82

.87

.92

.97

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1

TCS1
TCS2

0 .2 .4 .6 .8 1

RTD
TTD

TP1
TP2
TP3

L
in

ea
r

W
ei

g
h

te
d

 S
u

m
 (

L
W

S
)

w

Fig. 8. The LWS of component settings with 95.0% Tukey HSD intervals
TP1 TP2 TP3

L
in

ea
r

W
ei

g
h

te
d

 S
u

m
 (

L
W

S
)

.76

.79

.82

.85

.88

.91

.94

TCS1 TCS2 RTD TTDTP1 TP2 TP3

L
in

ea
r

W
ei

g
h

te
d

 S
u

m
 (

L
W

S
)

.76

.79

.82

.85

.88

.91

.94

TCS1 TCS2 RTD TTD

.57

.62

.67

.72

.77

.82

.87

.92

.97

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1

TCS1
TCS2
TCS1
TCS2

0 .2 .4 .6 .8 1

RTD
TTD
RTD
TTD

TP1
TP2
TP3

TP1
TP2
TP3

L
in

ea
r

W
ei

g
h

te
d

 S
u

m
 (

L
W

S
)

w

.57

.62

.67

.72

.77

.82

.87

.92

.97

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1

TCS1
TCS2

0 .2 .4 .6 .8 1

RTD
TTD

TP1
TP2
TP3

L
in

ea
r

W
ei

g
h

te
d

 S
u

m
 (

L
W

S
)

w

Fig. 9. The interactions between w and the compared components with
95.0% Tukey HSD intervals

Therefore the best component combination when w <
0.5 is TP3 for TP, TTD for TD and TCS1 for TCS. If w ≥ 0.5,
the best one is TP3 for TP, TTD for TD and TCS2 for TCS.

5.2 Algorithm Comparison

Based on the above calibration, we set TP3 as TP, TTD as
TD, TCS1 for TCS when w < 0.5 and TCS2 for TCS when
w ≥ 0.5 for the proposed FDES. The proposed FDES is
compared with two existing algorithms HEFT [16] and DES
[6] which were developed for the deterministic version of
the considered problem. Both HEFT and DES are modified
for operation on the fuzzy temporal parameters. The com-
putation time of compared algorithms for scheduling one
JRE is limited to 1000ms for a fair comparison.

We test instances with W1, W2 and W3 workload types.
10 and 100 new instances are randomly generated for each
of instance combinations of W1 and W2. For W3 workload
type instances, 12 real one-hour workload data are tested.
Therefore, 8640 × 10 + 864 × 100 + 864 × 12 = 183168
new instances in total are used for comparison. LWSs of all
instance combinations are shown in Tables 4 and 5.

Table 4 illustrates that for the problems with W1 type
workload, FDES obtains the highest LWSs with different w
settings (1.000, 0.973, 0.958, 0.930 and 0.908) except for w =
1.0. Whereas, DES has the lowest LWSs (0.478, 0.502, 0.626,
0.751) for w < 0.8 and the highest LWS (1.000) when w =
1.0. Table 5 illustrates that for the problems with W2 type
workload, FDES gives the highest LWSs with different w
settings (1.000, 0.975, 0.952, 0.930 and 0.909) except for w =
1.0. Whereas, DES has the lowest LWSs (0.372, 0.497, 0.623
and 748) for w < 0.8 and the highest LWS (1.000) when
w = 1.0. Table 6 illustrates that for the problems with W3

type workload, FDES gives the highest LWSs with different
w settings (0.996, 0.981, 0.966,0.952 and 0.940) except forw =
1.0. Whereas, HEFT has the lowest LWSs (0.619, 0.689, 0.760,
0.830 and 0.901) except for w = 1.0, and when w = 1.0 DES
performs the best.

We find out that the local search heuristic DES, which is
effective for the deterministic scheduling problems, does not
perform well on the fuzzy scheduling problems. The reason
may be that the local best fuzzy solutions obtained by a
local search are very compact on the timetable, and there
is little room for adjustments. When the deviation between
the real solutions and the fuzzy solutions occurs, fuzzy and
less compact solutions may gain an advantage. FDES can
perform better than HEFT for most cases. The reasons may
lie in that: (i) FDES adopts the more stringent deadline
control strategy TTD and (ii) tasks may be rescheduled
multiple times for optimizing the cost, while in HEFT each
task is scheduled only once.

Figures 10-12 depict the interactions between instance
parameters and the compared algorithms. From Fig. 10 we
can observe that FDES is less sensitive to the parameter
changes while the observed differences are statistically
significant for DES and HEFT in most cases of the instances
with W1 type workload. m, dfavg , e and θ have a large
influence on the performance of DES and HEFT. Fig. 11
shows similar trends for the instances with W2 type work-
load. The observed differences are statistically significant for
DES and HEFT but not for FDES for most cases. Most of
the parameters have a large influence on the performance
of DES and HEFT. Fig. 12 shows similar trends for the
instances with W3 type workload. The observed differences
are statistically significant for DES and HEFT whereas FDES

12

TABLE 4
Compared results on existing algorithms DES and HEFT and the proposed FDES on instances with W1 type workload.

Parm. Value
w = 0.0 w = 0.2 w = 0.4 w = 0.6 w = 0.8 w = 1.0

DES HEFT FDES DES HEFT FDES DES HEFT FDES DES HEFT FDES DES HEFT FDES DES HEFT FDES

m

3 0.254 0.662 0.995 0.236 0.725 0.987 0.427 0.788 0.980 0.618 0.852 0.973 0.808 0.915 0.967 0.999 0.978 0.965
4 0.208 0.587 0.997 0.285 0.660 0.982 0.389 0.733 0.968 0.592 0.807 0.955 0.796 0.880 0.944 1.000 0.953 0.936
5 0.210 0.541 1.000 0.368 0.617 0.976 0.526 0.693 0.953 0.684 0.768 0.930 0.841 0.844 0.909 0.999 0.920 0.890
6 0.322 0.553 1.000 0.457 0.624 0.970 0.593 0.694 0.940 0.728 0.764 0.911 0.864 0.834 0.883 0.999 0.905 0.857
7 0.513 0.595 1.000 0.610 0.657 0.972 0.707 0.720 0.939 0.804 0.783 0.907 0.902 0.846 0.876 0.999 0.909 0.846
8 0.588 0.649 1.000 0.670 0.703 0.974 0.752 0.757 0.943 0.835 0.810 0.913 0.918 0.864 0.883 1.000 0.918 0.855
9 0.662 0.687 1.000 0.729 0.736 0.984 0.797 0.785 0.955 0.864 0.835 0.925 0.931 0.884 0.897 0.999 0.934 0.869
10 0.700 0.727 1.000 0.760 0.770 0.977 0.820 0.812 0.952 0.880 0.855 0.928 0.940 0.898 0.904 1.000 0.940 0.880

λ

5 0.546 0.708 0.995 0.636 0.752 0.971 0.727 0.797 0.949 0.818 0.842 0.927 0.908 0.886 0.906 0.999 0.931 0.886
10 0.474 0.675 0.999 0.579 0.726 0.975 0.684 0.778 0.951 0.789 0.829 0.929 0.894 0.880 0.907 0.999 0.932 0.886
15 0.427 0.655 1.000 0.541 0.710 0.975 0.656 0.766 0.951 0.770 0.821 0.929 0.885 0.876 0.907 0.999 0.932 0.887
20 0.394 0.636 1.000 0.514 0.696 0.977 0.636 0.755 0.953 0.757 0.814 0.930 0.878 0.873 0.908 0.999 0.933 0.888
25 0.369 0.621 1.000 0.494 0.683 0.977 0.620 0.745 0.953 0.747 0.808 0.930 0.873 0.870 0.908 0.999 0.932 0.888
30 0.348 0.608 1.000 0.478 0.673 0.977 0.608 0.738 0.953 0.738 0.802 0.930 0.869 0.867 0.908 0.999 0.932 0.888
35 0.331 0.599 1.000 0.464 0.665 0.979 0.598 0.732 0.955 0.731 0.799 0.931 0.865 0.866 0.909 0.999 0.933 0.889
40 0.312 0.590 1.000 0.450 0.658 0.980 0.587 0.727 0.956 0.725 0.796 0.932 0.862 0.864 0.909 0.999 0.933 0.889
45 0.296 0.580 1.000 0.437 0.650 0.983 0.578 0.720 0.957 0.719 0.791 0.932 0.859 0.862 0.909 1.000 0.932 0.887
50 0.282 0.579 1.000 0.425 0.650 0.986 0.569 0.721 0.960 0.713 0.791 0.934 0.856 0.862 0.910 1.000 0.933 0.889

dfavg

1.5 0.150 0.740 1.000 0.320 0.778 0.995 0.490 0.816 0.978 0.660 0.855 0.962 0.830 0.894 0.946 1.000 0.932 0.931
2 0.331 0.659 1.000 0.464 0.714 0.980 0.598 0.769 0.958 0.732 0.824 0.938 0.866 0.879 0.918 1.000 0.934 0.901

2.5 0.465 0.576 1.000 0.572 0.647 0.972 0.679 0.718 0.944 0.785 0.789 0.918 0.892 0.860 0.893 0.999 0.934 0.870
3 0.565 0.526 0.999 0.651 0.607 0.966 0.738 0.688 0.934 0.825 0.769 0.904 0.911 0.850 0.875 0.998 0.931 0.848

dmost
j,i

U(10,15) 0.388 0.627 1.000 0.510 0.687 0.979 0.632 0.748 0.954 0.755 0.810 0.931 0.877 0.871 0.908 1.000 0.932 0.887
U(70,80) 0.368 0.628 1.000 0.494 0.689 0.976 0.620 0.750 0.952 0.747 0.811 0.931 0.873 0.872 0.908 1.000 0.933 0.888

U(250,280) 0.378 0.621 1.000 0.502 0.683 0.980 0.626 0.745 0.955 0.750 0.807 0.929 0.875 0.869 0.908 1.000 0.932 0.887

e

0.1 0.487 0.883 1.000 0.589 0.893 0.977 0.692 0.904 0.954 0.794 0.915 0.931 0.897 0.925 0.909 0.999 0.936 0.887
0.2 0.361 0.623 1.000 0.488 0.684 0.978 0.616 0.746 0.954 0.744 0.808 0.931 0.871 0.870 0.908 0.999 0.932 0.887
0.3 0.287 0.369 1.000 0.429 0.481 0.978 0.571 0.539 0.953 0.714 0.705 0.930 0.857 0.817 0.907 0.999 0.929 0.888

θ

0.5 0.219 0.345 0.984 0.215 0.465 0.967 0.411 0.586 0.951 0.607 0.707 0.936 0.802 0.828 0.922 0.998 0.949 0.912
1.0 0.447 0.685 1.000 0.557 0.730 0.973 0.668 0.775 0.940 0.778 0.820 0.909 0.888 0.865 0.879 0.999 0.910 0.850
1.5 0.667 0.845 1.000 0.734 0.863 0.994 0.800 0.882 0.969 0.867 0.900 0.946 0.934 0.919 0.922 1.000 0.937 0.900

Average 0.478 0.625 1.000 0.502 0.686 0.973 0.626 0.748 0.958 0.751 0.809 0.930 0.875 0.871 0.908 1.000 0.932 0.887

have the strongest robustness. Still, most of the parameters
have a large influence on the performance of DES and HEFT.

It can be concluded, based on the above analysis, that
the proposed FDES is the most effective and robust method
among the compared algorithms, which implies that FDES
is suitable for the considered problem.

6 CONCLUSIONS

The dynamic and fuzzy task scheduling problem on scalable
resources in cloud platforms has been considered in this
paper with the objectives of minimizing total rental costs
and maximizing the users’ satisfaction degree. The FDES
framework has been proposed for the problem under study,
which consists of a task collection component (TCS) and
a fuzzy task scheduling component (FTS). TCS collects
stochastic jobs and FTS schedules them periodically. In
TCS, two task collection strategies TCS1 and TCS2 were
presented, where the former schedules each task only once
and the latter may schedule a task multiple times to reduce
the cost. In the FTS, three strategies (TP1-3) were developed
to compute priorities of ready tasks. In order to achieve fast
search of available time slots on VMs, the two-dimensional

orthogonal lists were employed to maintain the fuzzy time
slots, based on which a task arrangement operation was
introduced to generate the fuzzy assignments for a given
task. We also defined the task deadline (TTD and RTD)
strategies to constrain the latest completion times of tasks.
A tight deadline setting (TTD) could lead to solutions with
higher satisfaction degree than that of a relaxed deadline
setting (RTD). By comparing with two existing and related
algorithms (DES and HEFT), we have illustrated that FDES
outperforms the compared algorithms statistically on both
effectiveness and robustness.

ACKNOWLEDGMENTS

This work is supported by the National Key Research
and Development Program of China (No. 2017YFB1400800),
the National Natural Science Foundation of China (Nos.
61672297, 61872077, 61832004), the Natural Science Foun-
dation of the Jiangsu Higher Education Institutions of
China (Grant No. 18KJB520039) and the National Science
Foundation for Post-doctoral Scientists of China (Grant No.
2018M640510). Rubén Ruiz is partially supported by the
Spanish Ministry of Science, Innovation, and Universities,

13

TABLE 5
Compared results on existing algorithms DES and HEFT and the proposed FDES on instances with W2 type workload.

Parm. Value
w = 0.0 w = 0.2 w = 0.4 w = 0.6 w = 0.8 w = 1.0

DES HEFT FDES DES HEFT FDES DES HEFT FDES DES HEFT FDES DES HEFT FDES DES HEFT FDES

m

3 0.048 0.639 0.997 0.238 0.707 0.990 0.428 0.775 0.983 0.619 0.843 0.976 0.809 0.911 0.969 0.999 0.979 0.967
4 0.109 0.565 1.000 0.287 0.642 0.984 0.465 0.719 0.970 0.643 0.796 0.955 0.822 0.873 0.943 1.000 0.951 0.934
5 0.216 0.524 1.000 0.373 0.603 0.975 0.530 0.682 0.952 0.687 0.762 0.929 0.843 0.841 0.909 1.000 0.920 0.890
6 0.333 0.546 1.000 0.466 0.618 0.969 0.600 0.690 0.939 0.733 0.762 0.911 0.867 0.834 0.884 1.000 0.906 0.858
7 0.491 0.573 1.000 0.593 0.640 0.968 0.695 0.708 0.937 0.796 0.775 0.907 0.898 0.843 0.877 1.000 0.911 0.849
8 0.578 0.621 1.000 0.662 0.681 0.969 0.746 0.741 0.940 0.831 0.801 0.911 0.915 0.860 0.883 1.000 0.920 0.856
9 0.648 0.671 1.000 0.718 0.724 0.972 0.789 0.777 0.946 0.859 0.830 0.920 0.929 0.883 0.895 1.000 0.937 0.871
10 0.674 0.700 1.000 0.739 0.749 0.976 0.804 0.799 0.952 0.869 0.849 0.929 0.934 0.898 0.908 0.999 0.948 0.886

dfavg

1.5 0.146 0.718 0.999 0.317 0.760 0.985 0.488 0.802 0.970 0.658 0.845 0.956 0.829 0.887 0.942 1.000 0.930 0.929
2 0.327 0.635 1.000 0.462 0.695 0.978 0.596 0.754 0.957 0.731 0.814 0.937 0.865 0.874 0.919 1.000 0.934 0.903

2.5 0.461 0.547 1.000 0.569 0.624 0.972 0.677 0.701 0.945 0.784 0.779 0.919 0.892 0.856 0.895 1.000 0.933 0.873
3 0.555 0.491 1.000 0.644 0.580 0.967 0.733 0.668 0.936 0.822 0.757 0.906 0.911 0.845 0.878 1.000 0.934 0.851

dmost
j,i

U(10,15) 0.391 0.592 1.000 0.512 0.659 0.975 0.634 0.727 0.950 0.756 0.794 0.927 0.878 0.861 0.905 1.000 0.929 0.884
U(70,80) 0.377 0.608 0.999 0.501 0.673 0.975 0.626 0.738 0.952 0.750 0.804 0.930 0.875 0.869 0.909 1.000 0.934 0.889

U(250,280) 0.333 0.587 1.000 0.466 0.657 0.977 0.599 0.726 0.955 0.733 0.796 0.934 0.866 0.865 0.914 1.000 0.935 0.896

e

0.1 0.467 0.874 1.001 0.573 0.886 0.977 0.680 0.899 0.954 0.787 0.912 0.932 0.893 0.924 0.911 1.000 0.937 0.890
0.2 0.352 0.592 1.000 0.481 0.660 0.976 0.611 0.728 0.953 0.740 0.796 0.930 0.870 0.864 0.909 1.000 0.932 0.890
0.3 0.282 0.321 0.998 0.425 0.443 0.974 0.569 0.564 0.951 0.712 0.686 0.928 0.856 0.808 0.908 1.000 0.929 0.890

θ

0.5 0.215 0.318 0.999 0.212 0.445 0.981 0.409 0.571 0.963 0.606 0.698 0.945 0.803 0.825 0.929 1.000 0.952 0.917
1 0.427 0.654 1.000 0.541 0.706 0.968 0.656 0.758 0.939 0.771 0.810 0.910 0.885 0.861 0.882 1.000 0.913 0.856

1.5 0.682 0.830 1.000 0.746 0.850 0.977 0.809 0.871 0.955 0.872 0.892 0.934 0.936 0.912 0.914 0.999 0.933 0.894
Average 0.372 0.598 1.000 0.497 0.665 0.975 0.623 0.732 0.952 0.748 0.799 0.930 0.874 0.866 0.909 1.000 0.933 0.889

TABLE 6
Compared results on existing algorithms DES and HEFT and the proposed FDES on instances with W3 type workload.

Parm. Value
w = 0.0 w = 0.2 w = 0.4 w = 0.6 w = 0.8 w = 1.0

DES HEFT FDES DES HEFT FDES DES HEFT FDES DES HEFT FDES DES HEFT FDES DES HEFT FDES

m

3 0.583 0.577 0.991 0.666 0.656 0.977 0.748 0.734 0.963 0.831 0.812 0.950 0.913 0.891 0.937 0.996 0.969 0.927
4 0.633 0.558 0.995 0.705 0.640 0.979 0.778 0.722 0.963 0.851 0.804 0.947 0.924 0.887 0.932 0.997 0.969 0.918
5 0.616 0.588 0.998 0.692 0.664 0.982 0.768 0.740 0.966 0.844 0.816 0.950 0.919 0.893 0.935 0.995 0.969 0.922
6 0.694 0.592 0.997 0.754 0.667 0.980 0.814 0.742 0.963 0.874 0.817 0.947 0.934 0.892 0.932 0.994 0.967 0.918
7 0.700 0.616 0.999 0.759 0.687 0.984 0.817 0.759 0.968 0.876 0.830 0.954 0.934 0.902 0.941 0.993 0.973 0.929
8 0.763 0.639 0.998 0.809 0.706 0.983 0.854 0.773 0.969 0.900 0.840 0.955 0.946 0.907 0.943 0.992 0.974 0.931
9 0.756 0.698 1.000 0.803 0.753 0.986 0.851 0.809 0.974 0.898 0.864 0.962 0.945 0.920 0.951 0.993 0.975 0.941
10 0.771 0.687 0.993 0.816 0.745 0.980 0.860 0.803 0.968 0.904 0.861 0.958 0.949 0.920 0.948 0.993 0.978 0.940

dfavg

1.5 0.491 0.724 0.992 0.592 0.776 0.982 0.693 0.828 0.973 0.794 0.880 0.964 0.895 0.932 0.958 0.996 0.984 0.954
2 0.701 0.692 0.997 0.759 0.749 0.983 0.818 0.806 0.969 0.877 0.863 0.956 0.936 0.920 0.944 0.994 0.977 0.933

2.5 0.765 0.588 0.998 0.810 0.664 0.981 0.856 0.740 0.965 0.902 0.816 0.949 0.948 0.892 0.934 0.994 0.968 0.919
3 0.802 0.474 0.998 0.840 0.571 0.979 0.878 0.668 0.961 0.917 0.765 0.942 0.955 0.862 0.924 0.993 0.959 0.907

dmost
j,i

U(10,15) 0.528 0.442 0.995 0.621 0.546 0.980 0.713 0.651 0.964 0.806 0.755 0.950 0.899 0.860 0.936 0.992 0.964 0.924
U(70,80) 0.713 0.633 0.998 0.769 0.701 0.981 0.825 0.768 0.965 0.881 0.835 0.950 0.937 0.903 0.935 0.993 0.970 0.921

U(250,280) 0.827 0.783 0.996 0.861 0.823 0.983 0.896 0.862 0.971 0.930 0.902 0.959 0.964 0.941 0.949 0.998 0.981 0.939

e

0.1 0.694 0.832 0.997 0.754 0.860 0.981 0.813 0.889 0.965 0.873 0.917 0.950 0.933 0.945 0.936 0.993 0.973 0.922
0.2 0.693 0.623 0.997 0.754 0.692 0.982 0.814 0.762 0.968 0.874 0.832 0.953 0.934 0.901 0.940 0.994 0.971 0.928
0.3 0.681 0.403 0.995 0.744 0.517 0.981 0.807 0.630 0.968 0.870 0.744 0.955 0.933 0.858 0.943 0.996 0.971 0.934

θ

0.5 0.583 0.460 0.997 0.665 0.561 0.979 0.747 0.662 0.961 0.830 0.763 0.944 0.912 0.928 0.864 0.994 0.965 0.913
1 0.701 0.646 0.996 0.759 0.711 0.982 0.818 0.777 0.967 0.877 0.842 0.953 0.936 0.941 0.907 0.994 0.972 0.929

1.5 0.785 0.753 0.996 0.827 0.798 0.983 0.868 0.843 0.972 0.910 0.888 0.961 0.952 0.951 0.933 0.994 0.977 0.942
Average 0.689 0.619 0.996 0.750 0.689 0.981 0.811 0.760 0.966 0.872 0.830 0.952 0.933 0.901 0.940 0.994 0.971 0.928

14

Ali

.68

.72

.76

.8

.84

.88

.92

.96

1

Possion

Uniform

DES

FDES

HEFT

DES

FDES

HEFT

1.5 2 2.5 3

m

3 4 5 6 7 8 9 10 .1 .2 .3 U(10,15) U(250,280)U(70,80) .5 1 1.5

.48

.56

.64

.72

.8

.88

.96

1.04

m

3 4 5 6 7 8 9 10

m

3 4 5 6 7 8 9 10

DES

FDES
HEFT

DES

FDES
HEFT

5 10 15 20 25 30 35 40 45 50 1.5 2 2.5 3

.48

.56

.64

.72

.8

.88

.96

1.04

.1 .2 .3 U(10,15) U(70,80) U(250,280) .5 1 1.5

DES

FDES

HEFT

DES

FDES

HEFT

.48

.56

.64

.72

.8

.88

.96

1.04

m

3 4 5 6 7 8 9 10

DES

FDES
HEFT

5 10 15 20 25 30 35 40 45 50 1.5 2 2.5 3

.48

.56

.64

.72

.8

.88

.96

1.04

.1 .2 .3 U(10,15) U(70,80) U(250,280) .5 1 1.5

DES

FDES

HEFT

Fig. 10. Interactions between instance parameters and the compared algorithms with 95.0% Tukey HSD intervals for the instances with W1 type
workload

Ali

.68

.72

.76

.8

.84

.88

.92

.96

1

Possion

Uniform

DES

FDES

HEFT

DES

FDES

HEFT

1.5 2 2.5 3

m

3 4 5 6 7 8 9 10 .1 .2 .3 U(10,15) U(250,280)U(70,80) .5 1 1.5

.48

.56

.64

.72

.8

.88

.96

1.04

m

3 4 5 6 7 8 9 10

m

3 4 5 6 7 8 9 10

DES

FDES
HEFT

DES

FDES
HEFT

5 10 15 20 25 30 35 40 45 50 1.5 2 2.5 3

.48

.56

.64

.72

.8

.88

.96

1.04

.1 .2 .3 U(10,15) U(70,80) U(250,280) .5 1 1.5

DES

FDES

HEFT

DES

FDES

HEFT

.48

.56

.64

.72

.8

.88

.96

1.04

m

3 4 5 6 7 8 9 10

DES

FDES
HEFT

5 10 15 20 25 30 35 40 45 50 1.5 2 2.5 3

.48

.56

.64

.72

.8

.88

.96

1.04

.1 .2 .3 U(10,15) U(70,80) U(250,280) .5 1 1.5

DES

FDES

HEFT

L
in

ea
r

W
e
ig

h
te

d
S

u
m

(L
W

S
)

L
in

ea
r

W
e
ig

h
te

d
S

u
m

(L
W

S
)

L
in

ea
r

W
ei

g
h
te

d
 S

u
m

 (
L

W
S

)

.5

.6

.7

.8

.9

1

DES

FDES

HEFT

DES

FDES

HEFT

1.5 2 2.5 31.5 2 2.5 33 4 5 6 7 8 9 10

m
3 4 5 6 7 8 9 10 .1 .2 .3.1 .2 .3 U(10,15) U(70,80) U(250,280) .5 1 1.5.5 1 1.5

L
in

ea
r

W
e
ig

h
te

d
 S

u
m

 (
L

W
S

)

Fig. 11. Interactions between instance parameters and the compared algorithms with 95.0% Tukey HSD intervals for the instances with W2 type
workload

Ali

.68

.72

.76

.8

.84

.88

.92

.96

1

Possion

Uniform

DES

FDES

HEFT

DES

FDES

HEFT

1.5 2 2.5 3

m

3 4 5 6 7 8 9 10 .1 .2 .3 U(10,15) U(250,280)U(70,80) .5 1 1.5

.48

.56

.64

.72

.8

.88

.96

1.04

m

3 4 5 6 7 8 9 10

m

3 4 5 6 7 8 9 10

DES

FDES
HEFT

DES

FDES
HEFT

5 10 15 20 25 30 35 40 45 50 1.5 2 2.5 3

.48

.56

.64

.72

.8

.88

.96

1.04

.1 .2 .3 U(10,15) U(70,80) U(250,280) .5 1 1.5

DES

FDES

HEFT

DES

FDES

HEFT

.48

.56

.64

.72

.8

.88

.96

1.04

m

3 4 5 6 7 8 9 10

DES

FDES
HEFT

5 10 15 20 25 30 35 40 45 50 1.5 2 2.5 3

.48

.56

.64

.72

.8

.88

.96

1.04

.1 .2 .3 U(10,15) U(70,80) U(250,280) .5 1 1.5

DES

FDES

HEFT

L
in

ea
r

W
e
ig

h
te

d
S

u
m

(L
W

S
)

L
in

ea
r

W
e
ig

h
te

d
S

u
m

(L
W

S
)

L
in

ea
r

W
ei

g
h

te
d

 S
u
m

 (
L

W
S

)

Fig. 12. Interactions between instance parameters and the compared algorithms with 95.0% Tukey HSD intervals for the instances with W3 type
workload

under the project “OPTEP-Port Terminal Operations Opti-
mization” (No. RTI2018-094940-B-I00) financed with FEDER
funds. The authors would like to thank the anonymous
reviewers for their valuable feedback on this work.

REFERENCES

[1] X. Zhang, L. T. Yang, C. Liu, and J. Chen, “A scalable two-phase
top-down specialization approach for data anonymization using
mapreduce on cloud,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 2, pp. 363–373, 2014.

[2] X. Li, T. Jiang, and R. Ruiz, “Heuristics for periodical batch job
scheduling in a Map-Reduce computing framework,” Information
Sciences, vol. 326, pp. 119–133, 2016.

[3] G. Muhammad, “Automatic speech recognition using interlaced
derivative pattern for cloud based healthcare system,” Cluster
Computing, vol. 18, no. 2, pp. 1–8, 2015.

[4] Y. Xia, M. C. Zhou, X. Luo, Q. Zhu, J. Li, and Y. Huang, “Stochastic
modeling and quality evaluation of infrastructure-as-a-service
clouds,” IEEE Transactions on Automation Science & Engineering,
vol. 12, no. 1, pp. 162–170, 2014.

[5] M. D. D. Assuncao, C. H. Cardonha, M. A. S. Netto, and R. L. F.
Cunha, “Impact of user patience on auto-scaling resource capacity
for cloud services,” Future Generation Computer Systems, vol. 55,
pp. 41–50, 2015.

[6] J. Zhu, X. Li, R. Ruiz, and X. Xu, “Scheduling stochastic multi-
stage jobs to elastic hybrid cloud resources,” IEEE Transactions on
Parallel & Distributed Systems, vol. 29, no. 6, pp. 1401–1415, 2018.

[7] M. Kozlovszky, K. Karoczkai, I. Marton, A. Balasko, A. Marosi, and
P. Kacsuk, “Enabling generic distributed computing infrastructure
compatibility for workflow management systems,” Computer

15

Science, vol. 13, no. 3, pp. 61–78, 2012.
[8] J. Wang, P. Korambath, I. Altintas, J. Davis, and D. Crawl,

“Workflow as a service in the cloud: Architecture and scheduling
algorithms” Procedia Computer Science, vol. 29, pp. 546–556, 2014.

[9] E. Gelenbe and S. Timotheou, “Random neural networks with
synchronized interactions.” Neural Computation, vol. 20, no. 9, pp.
2308–24, 2008.

[10] L. Wang and E. Gelenbe, “Adaptive dispatching of tasks in the
cloud,” IEEE Transactions on Cloud Computing, vol. 6, no. 1, pp.
33–45, 2018.

[11] Z. Wang, M. M. Hayat, N. Ghani, and K. B. Shaban, “Optimizing
cloud-service performance: Efficient resource provisioning via
optimal workload allocation,” IEEE Transactions on Parallel &
Distributed Systems, vol. 28, no. 6, pp. 1689–1702, 2017.

[12] I. Al-Azzoni and D. G. Down, “Linear programming-based affinity
scheduling of independent tasks on heterogeneous computing
systems,” IEEE Transactions on Parallel & Distributed Systems,
vol. 19, no. 19, pp. 1671–1682, 2008.

[13] H. Liu, A. Abraham, V. Snasel, and S. Mcloone, “Swarm
scheduling approaches for work-flow applications with security
constraints in distributed data-intensive computing environ-
ments,” Information Sciences, vol. 192, no. 6, pp. 228–243, 2013.

[14] J. Taheri, A. Y. Zomaya, H. J. Siegel, and Z. Tari, “Pareto frontier
for job execution and data transfer time in hybrid clouds,” Future
Generation Computer Systems, vol. 37, no. 7, pp. 321–334, 2014.

[15] H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li, and J. Li, “Ttsa: An
effective scheduling approach for delay bounded tasks in hybrid
clouds,” IEEE Transactions on Cybernetics, vol. 47, no. 11, pp. 3658–
3668, 2017.

[16] H. Topcuouglu, S. Hariri, and M. Y. Wu, “Performance-
effective and low-complexity task scheduling for heterogeneous
computing,” IEEE Transactions on Parallel & Distributed Systems,
vol. 13, no. 3, pp. 260–274, 2002.

[17] E. D. Coninck, T. Verbelen, B. Vankeirsbilck, S. Bohez, P. Simoens,
and B. Dhoedt, “Dynamic auto-scaling and scheduling of deadline
constrained service workloads on iaas clouds,” Journal of Systems
& Software, vol. 118, pp. 101–114, 2016.

[18] R. Duan, R. Prodan, and X. Li, “Multi-objective game theoretic
scheduling of bag-of-tasks workflows on hybrid clouds,” IEEE
Transactions on Cloud Computing, vol. 2, no. 1, pp. 29–42, 2014.

[19] S. Li, Y. Zhou, L. Jiao, X. Yan, X. Wang, and R. T. Lyu,
“Towards operational cost minimization in hybrid clouds for
dynamic resource provisioning with delay-aware optimization,”
IEEE Transactions on Services Computing, vol. 8, no. 3, pp. 398–409,
2015.

[20] L. F. Bittencourt, E. R. M. Madeira, and N. L. S. D. Fonseca,
“Scheduling in hybrid clouds,” Communications Magazine IEEE,
vol. 50, no. 9, pp. 42–47, 2012.

[21] H. Mohammadi Fard, R. Prodan, and T. Fahringer, “A truthful
dynamic workflow scheduling mechanism for commercial multi-
cloud environments,” IEEE Transactions on Parallel & Distributed
Systems, vol. 24, no. 6, pp. 1203–1212, 2013.

[22] P. Lu, Q. Sun, K. Wu, and Z. Zhu, “Distributed online hybrid cloud
management for profit-driven multimedia cloud computing,”
IEEE Transactions on Multimedia, vol. 17, no. 8, pp. 1297–1308, 2015.

[23] S. Chanas and A. Kasperski, “On two single machine scheduling
problems with fuzzy processing times and fuzzy due dates,”
European Journal of Operational Research, vol. 147, no. 2, pp. 281–
296, 2003.

[24] S. Balin, “Parallel machine scheduling with fuzzy processing times
using a robust genetic algorithm and simulation,” Information
Sciences, vol. 181, no. 17, pp. 3551–3569, 2011.

[25] W. C. Yeh, P. J. Lai, W. C. Lee, and M. C. Chuang, “Parallel-machine
scheduling to minimize makespan with fuzzy processing times
and learning effects,” Information Sciences, vol. 269, no. 4, pp. 142–
158, 2014.

[26] W. Huang, S. K. Oh, and W. Pedrycz, “A fuzzy time-dependent
project scheduling problem,” Information Sciences, vol. 246, no. 14,
pp. 100–114, 2013.

[27] M. Sakawa and R. Kubota, “Fuzzy programming for multi-
objective job shop scheduling with fuzzy processing time and
fuzzy duedate through genetic algorithms,” European Journal of
Operational Research, vol. 120, no. 2, pp. 393–407, 2000.

[28] S. Abdullah and M. Abdolrazzagh-Nezhad, “Fuzzy job-shop
scheduling problems: A review,” Information Sciences, vol. 278, pp.
380–407, 2014.

[29] G. E. Vieira, J. W. Herrmann, and E. Lin, “Rescheduling
manufacturing systems: a framework of strategies, policies, and
methods,” Journal of Scheduling, vol. 6, no. 1, pp. 39–62, 2003.

[30] S. Wang, G. L. Aori, G. Liu, and S. Gao, “A hybrid discrete
imperialist competition algorithm for fuzzy job-shop scheduling
problems,” IEEE Access, vol. 4, pp. 9320–9331, 2016.

[31] L. Wang, O. Brun, and E. Gelenbe, “Adaptive workload
distribution for local and remote clouds,” in IEEE International
Conference on Systems, Man, and Cybernetics, 2016, Budapest,
Hungary, pp. 3984–3988.

Jie Zhu received her B.Sc. degree in Computer
Science & Technology from Nanjing University
of Post & Telecommunication, Nanjing, in 2005.
Then she entered the MS and Ph.D integration
program and received Ph.D. degree in Applied
Computer Science from School of Computer
Science and Engineering, Southeast University,
Nanjing, China, in 2011. From November 2008
to November 2009, she was with Department of
Electrical and Computer Engineering, University
of Western Ontario, London, Ontario, Canada

and Centre for Computer-assisted Construction Technologies National
Research Council, London, Ontario, Canada, as a Visiting Student. She
joined Nanjing University of Post & Telecommunication, Nanjing, China,
in 2014, and is currently a lecturer at the School of Computer Science.
She is the author or co-author over more than 20 academic papers,
some of which have been published in international journals such as
IEEE Transactions on Automation Science and Engineering, European
Journal of Operational Research, International Journal of Production
Research. Her research interests include Machine Scheduling, Project
Scheduling, Workflow Optimization and Cloud Computing, among which
Task Scheduling and Resource Provisioning in Clouds are her current
core research areas.

Xiaoping Li (Senior Member, IEEE) received his
B.Sc. and M.Sc. degrees in Applied Computer
Science from the Harbin University of Science
and Technology, Harbin, China, in 1993 and
1999, respectively, and the Ph.D. degree in Ap-
plied Computer Science from the Harbin Institute
of Technology, Harbin, China, in 2002. He is cur-
rently a distinguished professor at the School of
Computer Science and Engineering, Southeast
University, Nanjing, China. He is the author or
co-author over more than 100 academic papers,

some of which have been published in international journals such as
IEEE Transactions on Computers; IEEE Transactions on Parallel and
Distributed Systems; IEEE Transactions on Services Computing; IEEE
Transactions on Cybernetics; IEEE Transactions on Automation Sci-
ence and Engineering; IEEE Transactions on Cloud Computing; IEEE
Transactions on Systems, Man and Cybernetics: Systems; Information
Sciences; Omega and European Journal of Operational Research. His
research interests include Scheduling in Cloud Computing, Scheduling
in Cloud Manufacturing, Service Computing, Big Data and Machine
Learning.

16

Rubén Ruiz is a full professor of Statistics
and Operations Research at the Universitat
Politècnica de València, Spain. He is co-
author of more than 80 papers in International
Journals and has participated in presentations
of more than a hundred papers in national
and international conferences. He is editor
of the Elseviers journal Operations Research
Perspectives (ORP) and co-editor of the JCR-
listed journal European Journal of Industrial
Engineering (EJIE). He is also associate

editor of other important journals like TOP as well as member of the
editorial boards of several journals most notably European Journal
of Operational Research and Computers and Operations Research.
He is the director of the Applied Optimization Systems Group (SOA,
http://soa.iti.es) at the Universitat Politècnica de València where he has
been principal investigator of several public research projects as well
as privately funded projects with industrial companies. His research
interests include scheduling and routing in real life scenarios.

Wei Li (SM’16) received his PhD degree from
School of Information Technologies at The U-
niversity of Sydney. He is currently a research
associate in Centre for Distributed and High
Performance Computing, School of Computer
Science, The University of Sydney. His research
interests include Internet of Things, edge com-
puting, sustainable computing, task scheduling,
energy efficiency and optimization. He is the
recipient of four IEEE or ACM conference best
paper awards. He received the IEEE TCSC

Award for Excellence in Scalable Computing for Early Career Re-
searchers (2018) and the IEEE Outstanding Leadership Award (2018).
He is a senior member of the IEEE Computer Society and the IEEE, and
a member of the ACM.

Haiping Huang (M’07) received the B.Eng. and
M.Eng. degrees in computer science and tech-
nology from the Nanjing University of Posts &
Telecommunications, Nanjing, China, in 2002
and 2005, respectively, and the Ph.D. degree
in computer application technology from Soo-
chow University, Suzhou, China, in 2009. From
May 2013 to November 2013, he was a Visit-
ing Scholar with the School of Electronics and
Computer Science, University of Southampton,
Southampton, U.K. He is currently a Professor

with the School of Computer Science and Technology, Nanjing Uni-
versity of Posts & Telecommunications. His research interests include
information security and privacy protection of wireless sensor networks.

Albert Y. Zomaya (F’04) is the Chair Professor
of high performance computing and networking
with the School of Computer Science, The Uni-
versity of Sydney, Australia, and he also serves
as the Director with the Centre for Distributed
and High Performance Computing. He has au-
thored and coauthored more than 600 scientific
papers and articles and is author, co-author, or
Editor of more than 20 books. He is the Founding
Editor in Chief of the IEEE TRANSACTIONS ON
SUSTAINABLE COMPUTING and serves as an

Associate Editor for more than 20 leading journals. He served as an
Editor-in-Chief for the IEEE TRANSACTIONS ON COMPUTERS (2011-
2014).

Prof. Zomaya was the recipient of the IEEE Technical Committee
on Parallel Processing Outstanding Service Award (2011), the IEEE
Technical Committee on Scalable Computing Medal for Excellence in
Scalable Computing (2011), and the IEEE Computer Society Technical
Achievement Award (2014). He is a Chartered Engineer, a member of
Academia Europaea, a fellow of AAAS, IEEE, and IET. His research
interests include the areas of parallel and distributed computing and
complex systems.

