
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Multi-GPU Design and Performance Evaluation
of Homomorphic Encryption on GPU Clusters

Ahmad Al Badawi, Bharadwaj Veeravalli, Senior Member, IEEE , Jie Lin, Xiao Nan, Kazuaki Matsumura,
and Khin Mi Mi Aung, Senior Member, IEEE

Abstract—We present a multi-GPU design, implementation and performance evaluation of the Halevi-Polyakov-Shoup (HPS) variant
of the Fan-Vercauteren (FV) levelled Fully Homomorphic Encryption (FHE) scheme. Our design follows a data parallelism approach
and uses partitioning methods to distribute the workload in FV primitives evenly across available GPUs. The design is put to address
space and runtime requirements of FHE computations. It is also suitable for distributed-memory architectures, and includes efficient
GPU-to-GPU data exchange protocols. Moreover, it is user-friendly as user intervention is not required for task decomposition,
scheduling or load balancing. We implement and evaluate the performance of our design on 2 homogeneous and heterogeneous
NVIDIA GPU clusters: K80, and a customized P100. We also provide a comparison with a recent shared-memory based multi-core
CPU implementation using two homomorphic circuits as workloads: vector addition and multiplication. Moreover, we use our multi-GPU
Levelled-FHE to implement the inference circuit of two Convolutional Neural Networks (CNNs) to perform homomorphically image
classification on encrypted images from the MNIST and CIFAR-10 datasets. Our implementation provides 1 to 3 orders of magnitude
speedup compared with the CPU implementation on vector operations. In terms of scalability, our design shows reasonable scalability
curves when the GPUs are fully connected.

Index Terms—Homomorphic Encryption, Parallel Algorithms, Multi-GPU Clusters, Performance Evaluation.

F

1 INTRODUCTION

FULLY Homomorphic Encryption (FHE) has drawn con-
siderable attention from privacy-concerned application

developers to design secure solutions that can guarantee
data privacy at rest, motion and computation. FHE facili-
tates the capability to compute directly on encrypted data
without decrypting. This is possible as FHE provides at
least two gates: homomorphic addition (HAdd) and ho-
momorphic multiplication (HMul) which take as operands
encrypted input (x) and produce encrypted output (y =
f(x)) [1]. In this setting, both x and y can only be decrypted
by the secret key owner. On the other hand, the evaluator
can learn nothing about the data other than what can be
learned from a ciphertext such as its length and perhaps the
encryption scheme parameters. To the best of our knowl-
edge, under appropriate circular-security assumptions, FHE
is considered semantically secure as hard as the underlying
mathematical problems used to instantiate it [2].

FHE capabilities come at high computational cost in
terms of space and runtime. This can be attributed to two
main reasons: 1) plaintext data expansion due to encryption,
and 2) the computation model used in FHE applications.
The former is due to the reason that FHE masks the plain-

• A. Al Badawi, J. Lin, X. Nan and K. M. M. Aung are with the Institute
for Infocomm Research (I2R), A*STAR, Singapore 138632 E-mail:
{albadawia, lin-j, xiao nan, mi mi aung}@i2r.a-star.edu.sg

• B. Veeravalli is with the Department of Electrical and Computer Engi-
neering, National University of Singapore, Singapore, 117576
E-mail: elebv@nus.edu.sg

• M. Kazuaki is with the Barcelona Supercomputing Center (BSC),
Barcelona, Spain and was doing an internship at I2R while working on
this project. Email: kazuaki.matsumura@bsc.es

Manuscript revised July 28, 2020.

text with very large algebraic structures such as vectors,
matrices or polynomials. The dimensions of these structures
are typically set to meet both functionality and security re-
quirements. Therefore, arithmetic with such large structures
requires an enormous amount of computation. What makes
the situation even worse is that FHE can only be used if the
desired computation is modelled as an arithmetic circuit. In
such a computation model, loops with private counters have
to be unrolled to the maximum value the counter can take.
Moreover, conditional statements with private predicates
require evaluating both branches and suppressing the false
branch by masking.

To better appreciate the computational complexity of
FHE, an example of a recent FHE application may be useful.
We summarize the complexity of homomorphic inference
on encrypted images by means of Convolutional Neural
Networks (CNNs) proposed by Faster CryptoNets [3]. The
authors used levelled1 FHE to classify several imaging
problems such as MNIST [4], CIFAR-10 [5] and diabetic
retinopathy medical images [6]. To classify a single en-
crypted image (with resolution 3× 32× 32) from the CIFAR-
10 dataset, they had to run their CNN on n1-megamem-
96 Google Cloud Platform which includes 96 Intel Skylake
2.0 GHz vCPUs and 1433.6 GB RAM. Their 8-layer CNN
required 22,372 seconds (or 6.2 hours) to perform the task
using an unencrypted CNN model. Note that if the model
is encrypted, higher computational requirements would be
required.

The preceding use-case demonstrates clearly the com-
putational requirements of basic FHE applications which

1. A levelled FHE is a scheme that can be parameterized to support
circuits of a certain multiplicative depth.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI 10.1109/TPDS.2020.3021238

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

cannot be met by commodity machines. An active research
area in FHE is focused on hardware acceleration using
GPUs [7], [8], [9] and FPGAs [10], [11]. Although these
implementations have succeeded in improving the runtime,
they have not considered the space requirement for FHE
applications. A basic FHE application can require a large
number of large ciphertexts. For instance, in homomorphic
inference for deep learning imaging applications [3], [12],
each pixel is encrypted in one ciphertext. Moreover, the out-
put of each activation is also stored in a separate ciphertext.

Typically, ciphertext size is 2n log q bits, where n is
an integer in the order of several thousand and q is an
integer in the order of several hundred. In order to enable
FHE applications on such memory-limited accelerators, one
solution is to distribute the workload on several devices.
This can be done at the application level by the user or at a
lower level included in the FHE implementation itself. The
latter might be more preferable from the user perspective
and provides higher usability.

1.1 Our Contributions.

To this end, we propose a design for multi-GPU based
FHE engine that leverages the computational power of
multi-GPU clusters. Our design has the following major
characteristics: 1) it is based on a data parallelism approach
to distribute the computational load on available GPUs,
which in turn compute cooperatively FHE primitives, 2) it
includes efficient GPU-to-GPU data exchange protocols, 3)
it is efficient and scales reasonably as the number of GPUs
is increased on fully connected platforms, and 4) it is user-
friendly as the user does not need to do manual parallelisa-
tion, task decomposition, scheduling, or load balancing.

In addition, we provide a set of experiments to evaluate
the performance of our design in evaluating three homo-
morphic circuits (vector addition, vector multiplication and
CNN inference with encrypted images) on 2 homogeneous
and heterogeneous GPU clusters: NVIDIA K80, and a cus-
tomized P100. A comparison with a recent task-parallelism-
based implementation on multi-core CPUs is also provided.
Without loss of generality, we target a particular levelled
FHE scheme proposed originally by Fan and Vercautren
(FV) [13] which was improved further by Halevi, Polyakov
and Shoup [14] by introducing a Residue Number System
(RNS)-based variant known as the Halevi-Polyakov-Shoup
(HPS) scheme. It should be remarked that most second
generation FHE schemes2, in particular those instantiated
from the Ring Learning With Errors (Ring-LWE) problem,
follow the same blueprint in their construction. Therefore,
our design can be applied to other Ring-LWE schemes with
minor adaptations.

Our design provides speedup factors ranging from 1
to 3 orders of magnitude compared to the multi-core CPU
implementation on the vector operations workloads.

Precisely, the main contributions and scope of the paper
can be summarized as follows:

2. We note that FHE schemes are generally categorized into 3 genera-
tions. The first generation refers to Gentry’s first realization of FHE [1].
The second includes a number of schemes such as BGV [15], FV [13],
and CKKS [16]. The third generation includes schemes that are based
on the techniques proposed in the GSW scheme [17] such as TFHE [18].

• We provide a distributed-memory multi-GPU de-
sign and implementation for Ring-LWE based FHE
schemes on CUDA-enabled multi-GPU clusters, with
focus on the HPS RNS variant of the FV levelled FHE
scheme.

• We show how to partition the basic FHE data struc-
tures to distribute the computational load evenly on
the available GPUs.

• We also provide efficient GPU-to-GPU communica-
tion protocols to facilitate data exchange among the
GPUs.

• We provide a thorough performance evaluation of
our implementation using different FHE applications
as benchmarks on 2 homogeneous and heteroge-
neous GPU clusters and compare it with a recent
multi-core CPU FHE implementation.

1.2 Organization of the paper

The rest of the paper is organized as follows: in Section 2,
we review a number of studies that have tried to improve
the performance of FHE. Section 3 introduces briefly the
general CUDA programming paradigm and mathematical
background. In Section 4 we provide full details and lay-
out of our implementation in addition to the optimization
techniques used. Our experiments, benchmarking, and com-
parison results are presented in Section 5. Lastly, Section 6
draws some conclusions and provides guidelines for poten-
tial future work.

2 LITERATURE REVIEW

The literature is rich with studies that have tried to improve
the performance of FHE. A great deal of effort has been
done at the construction level such as proposing new FHE
schemes based on the hardness of different mathematical
problems [13], [15], [19]. Another class of studies proposed
new algorithms to accelerate the arithmetic operations in-
corporated in FHE such as employing the Chinese Re-
mainder Theorem (CRT) [20], Double CRT [21], Number
Theoretic Transform (NTT) [22], [23], [24], [25] and RNS [14],
[26].

In addition to several algorithmic improvements to FHE
theory, a great deal of effort has been dedicated to accel-
erating the performance of available schemes. This can be
done by offloading time-consuming operations to hardware-
accelerators such as FPGAs [10], [11], [27], [28], [29], [30],
[31]. These works targeted several HE schemes and low-
level mathematical operations of FHE such as large num-
ber multiplications, NTT and CRT. Of particular interest
is HEPCloud which provides hardware design and imple-
mentation of the FV FHE scheme on Xilinx Virtex-6 ML605.
HEPCloud shows around 13× speedup against CPU-only
FV implementation [32] for toy parameter settings (n = 212).
However, their design fails to scale well for larger FHE
settings due to off-chip memory access. For instance, HEP-
Cloud computes homomorphic multiplication for (n = 215)
in 26.67 seconds (3.36 seconds spent on the computation
and the rest on the off-chip memory access). This particular
study shows the challenges that face FPGA implementations
of FHE. We note that, to the best of our knowledge, the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

literature lacks any study that shows the effectiveness of
FPGA implementations for any FHE application. Such a
challenge has been set as a target of the DARPA DPRIVE
project for FHE hardware acceleration with FPGAs [33].

More related to this work is FHE acceleration via GPUs.
cuHE [7] is considered the first GPU acceleration of Ring-
LWE based homomorphic encryption schemes. It is written
in CUDA and includes an implementation of the Doröz-Hu-
Sunar (DHS) [34] Somewhat HE (SHE) scheme. It supports
both single- and multi-GPU machines following a task-
parallelism approach. cuHE treats the underlying GPUs as
independent processors and requires the user to distribute
the computational task manually on available GPUs. More-
over, cuHE does not fully exploit the parallelism incorpo-
rated in FHE tasks and uses a large task granularity since
the GPUs do not cooperate in the computational tasks. For
instance, arithmetic on CRT or NTT matrices is handled by
a single GPU, although such arithmetic is embarrassingly
parallel and can be distributed among multiple GPUs for
concurrent execution.

Another work that has tried to accelerate FHE via multi-
core CPUs was proposed by Cingulata [35] (previously
known as Armadillo) which is a compiler toolchain and
runtime environment for running restricted C++ programs
on encrypted data using FHE. The input to Cingulata is
a C++ code that must comply with some predefined re-
strictions. For instance, division or loops with encrypted
counters are not supported yet. Cingulata converts the input
C++ code into a Boolean circuit represented as a Directed
Acyclic Graph (DAG). Moreover, it is shipped with a custom
implementation of the FV levelled FHE scheme [13] that can
be used to run the generated circuit on multi-core CPUs.
Similar to cuHE, Cingulata views the underlying cores as
independent processors as the cores do not cooperate on
computing FHE primitives. It follows a task parallelism ap-
proach to execute independent FHE primitives concurrently
on different cores. The task-processor assignment is per-
formed automatically by a built-in task scheduler making
Cingulata a more usable and user-friendly framework. One
severe limitation of Cingulata is that it can only be used
to generate Boolean circuits in F2. With the current state
of FHE, it is sometimes more efficient to design the target
computation as an arithmetic circuit in Fp, where p is a
prime number.

In this work, we follow a different parallelism approach
and treat the underlying processors as cooperative proces-
sors with a focus on multi-GPU clusters. Our design com-
bines the computational power of all GPUs into one. It aims
at solving the following problems: 1) a GPU card is normally
shipped with a small memory that may not be sufficient
to accommodate for the large ciphertexts incorporated in
FHE applications, and 2) most of FHE primitives are em-
barrassingly parallel and can benefit from a larger number
of processors. In addition, our design is user-friendly as the
user is not involved in task decomposition, scheduling or
load balancing.

3 BACKGROUND

This section introduces the basic notions the paper builds
on. We start by introducing some technical background

on CUDA GPU programming model. Then we provide an
overview of the FV levelled FHE scheme.

3.1 CUDA Programming Model

GPUs are many-core computing platforms that follow the
Single Instruction Multiple Data (SIMD) architecture. An
NVIDIA GPU card consists of an array of Streaming Multi-
processors (SM) that share the GPU global memory. Each
SM can be viewed as a vector processor that consists of
many Scalar Processors (SPs) - a.k.a. cores - that share on-
chip register file and an L1 cache that is known as the Shared
Memory. An SP does the actual computation using the
arithmetic and logical units it includes. Figure 1 illustrates
an NVIDIA Tesla K80 single-node GPU cluster that includes
8 cards connected via PCI-e Gen 3 bus.

PCI-e	Gen	3	(16	GB/s)

GPU	1 GPU	8
Global	Mem	GDDR5	384-bit	-	2505Mhz	-	12GB

SM	1 SM	13

Shared	Memory	(L1	cache)	-	48	KB

SP	1

Register	file

Global	Memory	Bus
							Constant	Memory	Bus

Constant
Memory
(64	KB)

Int
	Unit

FP
	Unit

Logic
	Unit

Branch
	Unit

...

...
SP	192

Int
	Unit

FP
	Unit

Logic
	Unit

Branch
	Unit

Fig. 1. A block diagram of NVIDIA Tesla K80. The figure is inspired by
Figure 3.5 in [36].

In this cluster, GPUs can share data through the host
node (CPU), a.k.a. staging, or communicate directly via PCI-
e interconnection network. Obviously, remote access time is
much longer than local memory access time similar to Non-
Uniform Memory Access (NUMA) architectures.

An important notion in GPU programming is thread or-
ganization. At the highest level, the programmer organizes
a number of threads in two structures before launching a
kernel, which is part of the code that is executed by the
GPU. The first structure is a grid that includes a number
of thread blocks organized along 3 dimensions. The other
structure is a block which is a 3D structure of threads
as shown in Figure 2. The maximum dimensions of these
structures are hardware-dependent. Intra-block and inter-
block communication can be performed through shared
memory and global memory, respectively.

Upon launching a kernel for execution on a particular
device, thread blocks are mapped to the available SMs. A
block cannot be divided and distributed onto several SMs
but an SM can simultaneously execute multiple blocks if
the resources are sufficient. The shared memory on an SM
is divided evenly among the resident blocks. Similarly, the
registers are divided among all the resident threads in the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

GPU

...

Block
(0,y,0)

Block
(x,0,0)

Thread
(0,0,0)

Thread
(0,j,0)

...

... ...

Thread
(i,0,0)

Thread
(i,j,0)

...

...

...

...
Block

Grid
Block
(x,y,0)

Block
(0,0,0)

Fig. 2. CUDA thread organization in 3D grids and blocks.

SM. SM schedules for execution a group of 32 threads,
known as warp, given that their data are available. If a
warp stalls for any reason, the SM schedules another ready
warp for execution to hide the latency. It is hence crucial
for performance to ensure that there is enough number of
active warps on SM. This can be done by minimizing the
usage of shared memory and register files and distributing
the computational task into several kernels or distributing
the computation among multiple GPUs.

Moving from single- to multi-GPU systems is usually
motivated by three main reasons: 1) GPU cards include
small memory that may not be sufficient to fit in the com-
putational problem, 2) one may improve the performance
by distributing the workload onto multiple GPUs, and 3)
amortize the power consumption across the available GPUs
by providing more performance per unit of power con-
sumed. A major challenge facing multi-GPU applications is
the inter-GPU communication overhead. Although current
GPU clusters include high-speed networks for peer-to-peer
communication, it is still much slower than local memory
transfer rates. For instance, the global memory bandwidth
in NVIDIA Tesla K80 is 240 GB/sec [37]. On the other hand,
PCI-e Generation 3 (16× lanes) offers 16 GB/sec in one
direction. Even NVIDIA NVlink technology offers only 80
GB/sec in one direction. Therefore, designing an efficient
inter-GPU communication is crucial to obtain the best per-
formance of multi-GPU systems.

For a complete reference on CUDA programming, the
reader is referred to [38] and the CUDA toolkit documenta-
tion [39].

3.2 FV
In the following paragraphs, we review the FV [13] scheme
as an instance of Ring-LWE-based levelled-FHE schemes.

3.2.1 Background
The FV scheme implemented here employs the polynomial
ring R = Z[X]/(Xn + 1), where n is a power of 2. R can
be viewed as a set of polynomials of degree less than n.
Addition and multiplication inR are done modulo (Xn+1).
In some FV primitives, the polynomials are sampled from
predefined distributions. We use the symbol a U←− S to refer

to uniform sampling of a from the set S , whereas the symbol
a
G←− S is used for sampling from a Gaussian distribution.
The plaintext space in FV is Rt, with t ≥ 2 being

an integer plaintext modulus. The polynomials in Rt are
reduced modulo t and (Xn + 1). A plaintext is normally
a single element in Rt encoding the original plaintext
message. Likewise, the ciphertext space Rq has q � t as
the coefficient modulus. For practical implementations, q is
usually composite s.t. q =

∏k
i=1 pi, where pi is a prime that

fits in the underlying machine word size. A ciphertext ct is
a pair of two elements in Rq , denoted by (ct[0], ct[1]).

3.2.2 The FV Scheme

The textbook FV scheme, described in [13], is a tuple of
5 procedures: key generation, encryption, decryption, ho-
momorphic addition and homomorphic multiplication. It
defines a set of parameters as follows:

• λ: known as the security parameter, which charac-
terizes the computational requirements to break the
scheme using 2λ elementary operations.

• w: a decomposition base used to express a polyno-
mial in Rq in terms of l + 1 polynomials in base
w ∈ Z, where l = blogw qc.

• Xerr: a zero-mean discrete Gaussian distribution
used to sample error polynomials, parameterized by
the standard deviation σ and error bound βerr.

• t ≥ 2: a plaintext modulus integer.
• q � t: a ciphertext modulus integer.

The main five primitives of the scheme are as follows:

• KeyGen(λ,w): The Secret Key (sk) is a ternary poly-
nomial sk U←− R2 with values from {−1, 0, 1}. The
Public Key (pk) is a pair of polynomials (pk0, pk1) =
(−[a · sk + e]q, a), where a U←− Rq and e

G←− Xerr.
The Evaluation Key (evk) is a set of (l + 1) pairs
of polynomials generated as follows: for 0 ≤ i ≤ l,
sample ai

U←− Rq and ei
G←− Xerr. evk[i] = ([wis2 −

(ai · sk+ ei)]q, ai). This procedure outputs the tuple:
(sk, pk, evk).

• Enc(µ, pk): takes a plaintext µ ∈ Rt, and samples
u
U←− R2 and e1, e2

G←− Xerr. It computes the cipher-
text ct = ([∆µ+ pk[0]u+ e1]q, [pk[1]u+ e2]q), where
∆ = bq/tc.

• Dec(ct, sk): computes µ =
[⌊

t
q [ct[0] + ct[1]sk]q

⌉]
t
.

• HAdd(ct0, ct1): homomorphic addition takes two
ciphertexts and produces: ctadd = ([ct0[0] +
ct1[0]]q, [ct0[1] + ct1[1]]q).

• HMul(ct0, ct1, evk): homomorphic multiplication
takes two ciphertexts and computes:
1) Tensoring: compute cτ , with τ ∈ {0, 1, 2}, such
that:

c0 =
[⌊ t
q
ct0[0] · ct1[0]

⌉]
q
,

c1 =
[⌊ t
q
(ct0[0] · ct1[1] + ct0[1] · ct1[0])

⌉]
q
,

c2 =
[⌊ t
q
ct0[1] · ct1[1]

⌉]
q
.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

2) Relinearization:
2.1) decompose c2 in base w as c2 =

∑l
i=0 c

(i)
2 wi.

2.2) return ctmult[j], with j ∈ {0, 1}, such that:

ctmult[j] =
[
cj +

l∑
i=0

evk[i][j]c
(i)
2

]
q
.

Note that the relinearization procedure shown above
is based on the first version of relinearization in the FV
scheme [13]. This version does not require an extended
coefficient modulus and does not affect the security analysis
when selecting FHE parameters.

3.2.3 Polynomial Representations
It can be clearly seen that the basic data structure in FV, and
almost all Ring-LWE schemes, is polynomial. The dimen-
sions of this data structure - given that RNS representation
is employed - are n and k, where n is the number of
coefficients and k is the number of prime factors in q. In
current implementations of Ring-LWE-based cryptography,
polynomials are generally represented in two forms: 1)
coefficient representation in RNS and 2) evaluation repre-
sentation in NTT [8], [9], [32], [40], [41], [42]. Polynomials are
usually generated in the first representation which allows
efficient polynomial addition and subtraction in O(kn). The
evaluation representation can be used for efficient modular
addition, subtraction and multiplications, each in O(kn).
The NTT and its inverse NTT−1 are used to switch between
the two representations with time complexity O(kn log n)
for each operation. We remark that in our implementation,
we use a variant of NTT known as the Discrete Galois Trans-
form (DGT) [43] to compute the nega-cyclic convolution
for efficient modular polynomial multiplication in power-
of-two cyclotomic rings. The key property of DGT is that
it allows computing an n-point convolution using an n

2 -
FFT datapath, at the expense of using Gaussian integers
arithmetic. In a previous study, we showed that the DGT
is suitable for GPU implementations due to halving the
number of twiddle roots and storing them in smaller lookup
tables [8].

Although one can perform addition, subtraction and
multiplication in O(n) in NTT/DGT representation, unfor-
tunately, one cannot stay indefinitely in NTT/DGT as some
operations require switching to RNS. Examples of these
operations are scale and round and base decomposition [14],
[26], both required in decryption and homomorphic multi-
plication for RNS variants of the FV scheme. The switching
is required as they are non-DGT/NTT friendly and require
access to the coefficients of the polynomial. In fact, perform-
ing these operations in DGT/NTT is still an open problem.

3.3 Elementary Operations in RNS FV

We chose the HPS [14] RNS variant of the FV scheme for
our implementation. The use of RNS is to alleviate the
need for multi-precision arithmetic. Moreover, it provides
a substantial amount of parallelism that can be exploited
by parallel implementations. There are at least two RNS
variants of the FV scheme: 1) the Bajard-Eynard-Hasan-
Zucca (BEHZ) scheme [26] and 2) the HPS scheme. The
(BEHZ) scheme is reported to offer 2× to 4× speedup in

homomorphic multiplication compared with the textbook
FV [26]. We target HPS as it has been shown to offer slightly
better performance over the BEHZ variant [9].

The core primitives of the HPS RNS variant of the FV
scheme process the polynomial matrices row-, column- or
point-wise. There are also a set of row-wise operations to
convert one matrix to the other. Table 1 shows the main
operations in RNS FV, matrix they operate on and how it is
processed.

Polynomial arithmetic such as addition, subtraction and
multiplication can be done using point-wise operations on
either the RNS or DGT matrix for addition and subtraction
or the DGT matrix for multiplication. The Fast Base Exten-
sion (FBE) and Scale and Round (SaR) are used for scaling
(division) in RNS. The DGT and its inverse DGT−1 are used
to convert the polynomial matrix from RNS to DGT and vice
versa, respectively. For further details on these operations,
we refer the reader to [9].

TABLE 1
Main operations in RNS variants of the FV scheme, the affected matrix,

and the way it is processed.

Operation Affected matrix Orientation

Polynomial addition RNS or DGT point-wise
Polynomial subtraction RNS or DGT point-wise
Polynomial multiplication DGT point-wise
Fast Base Extension RNS column-wise
Scale and Round RNS column-wise
DGT RNS row-wise
DGT−1 DGT row-wise

4 IMPLEMENTATION LAYOUT

In this section, we provide full details of our implementa-
tion.

4.1 Data Structures
A polynomial, regardless of its representation, is stored in
a matrix of size k × n of (max1≤i≤k log2 pi)-bit integers. As
we shall see later, the FV primitives process these matrices
row-, column- or element-wise. For instance, key generation,
encryption and homomorphic addition require only row-
and point-wise operations in DGT representation. On the
other hand, decryption and homomorphic multiplication
require a combination of row-, column-, and point-wise
operations. Since our design exploits data parallelism, it
requires efficient methods to partition the matrices among
available GPUs. Since we have a mix of access patterns to
the polynomial matrices, this imposes a need for different
matrix partitioning methods. In one layout, the matrices are
partitioned vertically (assigning a set of columns) across the
GPUs, which we refer to as column-partitioning. In the other
layout, the matrices are partitioned horizontally (assigning
a set of rows) across the GPUs, which we refer to hereafter
as row-partitioning.

To this end, we provide methods to partition the matrices
in a row- or column-partitioning depending on the desired
operation. We also need a method to convert the partitioning
layout from row-partitioning to column-partitioning and
vice versa.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Figure 3 shows our partitioning procedures. For column-
partitioning, we allocate a block of size k × (n/m) on each
GPU3. Matrices are then split and copied to the respective
GPU memory. After partitioning, each GPU includes (n/m)
columns. For row-partitioning, we allocate a block of size
(k/m)× n on each GPU. The partitioning results in storing
(k/m) rows in each GPU. Although the figure shows the
original matrix packed, this may not be the case as the
matrix can be created already partitioned across the GPUs.

GPU1 GPU2 GPU�

Column-wise
distribution
across GPUs

Coeff 1
Coeff 2

Coeff �

GPU1

GPU2

GPU�

. . .

Row-wise
distribution
across GPUs

. . .
Original
packed
polynomial
matrix

Residue

Residue

1

�/�

(�/�) + 1

2(�/�)

((� − 1)(�/�)) + 1

�

Residue

Residue

Residue

Residue

�

�

�/�

..

..

..

...

...

...

...

...

...

Fig. 3. Row and column partitioning of polynomial matrix across multiple
GPUs.

To switch the partitioning layout, we provide Algo-
rithms 1 and 2 which convert from column- to row-
partitioning and row- to column-partitioning, respectively.
Both algorithms assume that the input segments are allo-
cated as 1-dimensional linear arrays. This requirement is
actually compatible with the CUDA language. They also
assume that the segments are partitioned evenly on the
GPUs. However, they can be easily generalized to support
non-even partitions by allocating the excessive amount to a
designated GPU. Note that the algorithms switch the parti-
tioning layout directly between the GPUs without referring
back to the CPU.

Algorithm 1 Column to row partitioning
Input: k, n,m number of rows, columns and available GPUs. cvec: a vector
of pointers to the column segments in each GPU

Output: rvec, a vector of pointers to the row segments in each GPU

1: for i : 0 to m− 1 do
2: rvec[i] = Allocate (k/m) rows in GPU i

3: for src : 0 to m− 1 do
4: for dst : 0 to m− 1 do
5: for row : 0 to (k/m)− 1 do
6: from = cvec[src] + (k/m) ∗ (n/m) ∗ dst+ row ∗ n/m
7: to = rvec[dst] + (n/m) ∗ src+ row ∗ n
8: segment size = (n/m)
9: copy(to, from, segment size)

10: Return rvec

Each of Algorithms 1 and 2 requires O(mk) commu-
nication across the GPUs. The amount of data transferred

3. We assume m is a power of 2 and less than n.

Algorithm 2 Row to column partitioning
Input: k, n,m number of rows, columns and available GPUs. rvec: a vector
of pointers to the rows in each GPU

Output: cvec, a vector of pointers to the column segments in each GPU

1: for i : 0 to m− 1 do
2: cvec[i] = Allocate (n/m) columns in GPU i

3: for src : 0 to m− 1 do
4: for row : 0 to (k/m) do
5: for dst : 0 to m− 1 do
6: from = rvec[src] + (n/m) ∗ dst+ row ∗ n
7: to = cvec[dst] + (k/m) ∗ (n/m) ∗ src+ row ∗ (n/m)
8: segment size = (n/m)
9: copy(to, from, segment size)

10: Return cvec

(segment_size) in each GPU-to-GPU transaction is n/m
elements. It is worth noting that in FHE, the polynomial
matrices are usually wide, i.e., n � k. Also, the number
of available GPUs m can be assumed to be much smaller
than n. This suggests that the total number of transfers
in both algorithms may not be very high. We note that
CUDA includes a function to migrate 2D data block -
(cudaMemcpy2D). Although this can lead to simpler al-
gorithms (2 loops instead of 3), this function may not be
supported in other programming models. Therefore, we opt
to describe the general case. An optimization we used here is
to use CUDA multiple streams. On each device, we reserve
m − 1 streams and dispatch the copy on each stream for
maximum parallelization. This way the copies from one
device are broadcast concurrently to all other devices. We
should note that we keep these streams in a pool (initialized
at start up) to eliminate redundant stream allocation and
deallocation overhead.

An alternative and probably simpler solution is to com-
bine the segments in CPU memory and do the partitioning
on CPU. However, this solution requires the CPU involve-
ment in communication which can be slower than inter-
GPU communication.

Another easy solution is to use CUDA unified memory
which provides a single address space that can be accessed
by any processor in the system - CPU or any GPU. In unified
memory, an allocated memory pointer can be used in the
program by any device. CUDA migrates the data automat-
ically when it is requested by any processor in the system.
The problem with this approach is that the programmer
cannot guarantee where the data will be stored and may
not be able to distribute the computation efficiently across
the GPUs.

To evaluate the performance of the aforementioned par-
titioning methods, we implemented each one using CUDA
9.0 on NVIDIA TESLA K80 and NVIDIA TESLA P100 GPU
clusters whose specifications can be found in Table 3. Fig-
ure 4 shows the latency in (milliseconds) of partitioning a
matrix of size 40 × 216 4-byte elements while varying the
number of GPUs. As seen, explicit memory transfer among
GPUs has the best performance among the four approaches
as current GPU clusters are shipped with high-speed com-
munication links. Note that although the communication
bus in both clusters has the same bandwidth, the latency
on P100 is slightly higher as the interconnection topology
is slightly different. As shown in Figure 6, the 4 GPUs in
K80 are fully connected. On the other hand, P100 includes
one isolated GPU which stages exchanged data through the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

CPU.

4.2 Implementing the FV Primitives

4.2.1 Key Generation
This primitive requires three elementary operations: 1) ran-
dom sampling, 2) polynomial addition and 3) polynomial
multiplication, all can be done using point-wise operations
on the RNS/DGT matrices.

First, we ensure that the polynomial structure is in
column-partitioning. Each GPU generates n/m columns of
each random polynomial in RNS representation. Three ran-
dom distributions are required: 1) uniform in Z2, 2) uniform
in Zq and 3) discrete Gaussian from Xerr. We use CUDA cu-
RAND to sample from these distributions. cuRAND already
includes functions to generate uniform integers. To imple-
ment Xerr, we use the Box-Muller algorithm [44] which
transforms a uniformly sampled number into a pair of
independent normally distributed random numbers. Note
that this method provides a rounded continuous Gaussian
distribution instead of true discrete Gaussian distribution. It
is chosen for its simplicity and high-suitability for GPUs as
the coefficients can be generated independently.

Generating the public and evaluation keys requires poly-
nomial multiplication and addition. First, we use algo-
rithm 1 to switch into row partitioning. The DGT procedure
is then performed row-wise simultaneously on each GPU.
Afterwards, polynomial multiplication and addition are per-
formed via point-wise operations simultaneously across all
GPUs. The generated keys are stored in DGT representation
in row-partitioning layout across the available GPUs.

4.2.2 Encryption
The encryption procedure requires the generation of 3 ran-
dom polynomials, u U←− R2 and e1, e2

G←− Xerr. At first,
they are generated across the GPUs in a column-partitioning
layout. Next, the layout is converted to row-partitioning to
perform polynomial arithmetic using point-wise operations
across available GPUs. The generated ciphertext includes
polynomials that are stored in row-partitioning across avail-
able GPUs.

4.2.3 Homomorphic Addition
Homomorphic addition accepts two ciphertexts that are
stored in row/column partitioning. Without layout conver-
sion, the two ciphertexts are point-wise added. The polyno-
mials in the generated ciphertext are also in the same inputs’
partitioning layout.

4.2.4 Decryption
The decryption procedure is calculated in two steps: 1)
evaluating the ciphertext at the secret key, and 2) performing
the SaR function on the result, where the scale quantity
is (t/q). The first step includes polynomial addition and
multiplication that can be done via point-wise operations.

The second step is more involved and requires a conver-
sion of the polynomials to the RNS domain which can be
done via DGT−1 on each row. The next step is computed
using the simple SaR procedure in [14], which requires
access to the columns of the RNS matrix. Therefore, we

change the partitioning into a column-partitioning layout.
For completeness, we briefly describe the simple SaR proce-
dure referring the reader to the original proposal for more
details.

Let x ∈ Zq be in RNS representation (x1, . . . , xk). The
procedure computes y = d tq · xc ∈ Zt. This can be done
using Equation (1).⌊

t

q
[x]q

⌉
=

[⌊(k∑
i=1

xi ·
[(q
qi

)−1]
qi

· t
qi

)⌉]
t

(1)

It is worth noting that the quantity
[(q
qi

)−1]
qi

· t
qi

can be

precomputed and stored in a lookup table.
The output of decryption is a polynomial that is stored

in a column partitioning layout.

4.2.5 Homomorphic Multiplication
Homomorphic multiplication is known to be the most
performance-critical primitive in FHE schemes. Figure 5
shows a simplified flow of an RNS-compatible FV homo-
morphic multiplication. For better visualization, we show
the RNS matrices without partitioning.

The input polynomials are assumed to be in RNS with
column-partitioning layout. The polynomials are extended
from base q = {p1× p2× · · · × pk} to an auxiliary base B =
{pk+1 × pk+2 × · · · × pk+l} using the FBE procedure shown
in Equation (2). The partitioning layout of the polynomials
is converted into row-partitioning for DGT conversion.

FastBaseExtension(x,B,B′) =[(k∑
i=1

[
xi

[(
q

pi

)−1]
pi

]
pi

q

pi

)
− v · [q]p′j

]
p′j∈B′

. (2)

where,

v =

⌊ k∑
i=1

1

pi

[
xi ·

[(
q

pi

)−1]
pi

]
pi

⌉
Next, we calculate the tensor product (Step 1 in HMul)

without SaR. This is mainly a set of polynomial additions
and multiplications that can be done point-wise on the
DGT matrix. In Step 4, the DGT−1 is called to convert the
matrices into the RNS domain to do the SaR procedure
which requires access to the coefficients of the polynomials.
This is followed by switching the partitioning layout to
column-partitioning.

The SaR procedure (Steps 5 and 6) is similar to the simple
SaR procedure used in decryption. We refer the reader to the
original text for a detailed description.

Since SaR is computed on the RNS matrix column-wise,
the partitioning layout is converted to row-partitioning for
DGT conversion which is performed in Step 7. Lastly, the
relinearization procedure is performed using a dot-product-
like operation on the intermediate resultant polynomials
and the evaluation key. This is done via point-wise oper-
ations on the DGT matrices. The output is a ciphertext in
DGT representation with row-wise partitioning. Given that
the input ciphertexts are in RNS, each homomorphic mul-
tiplication requires 3 partitioning layout transforms using
Algorithms 1 and 2.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

0
2
4
6
8

10
12
14
16

2 4

T
im

e
 (

m
s)

Number of GPUs

Column to Row (K80)

UM

CPU

CPU-pinned

Algorithm 1

(a)

0
2
4
6
8

10
12
14
16

2 4

T
im

e
 (

m
s)

Number of GPUs

Row to Column (K80)

UM

CPU

CPU-pinned

Algorithm 2

(b)

0
2
4
6
8

10
12
14
16

2 4

T
im

e
 (

m
s)

Number of GPUs

Column to Row (P100)

UM

CPU

CPU-pinned

Algorithm 1

(c)

0
2
4
6
8

10
12
14
16

2 4

T
im

e
 (

m
s)

Number of GPUs

Row to Column (P100)

UM

CPU

CPU-pinned

Algorithm 2

(d)

Fig. 4. Latency (in ms) of partitioning a matrix of dimensions (k = 40, n = 216) via four different approaches on NVIDIA TESLA K80 and NVIDIA
TESLA P100. UM: unified memory. CPU: partitioning on CPU. CPU-pinned: partitioning on CPU but with pinned memory.

Input	in	RNS

FBE
Column-wise

DGT
Row-wise

Tensor	product
Point-wise

Scale	and
Round

Column-wise

FBE
Column-wise

Relinearization
Point-wise

� [0]�0 � [1]�0 � [0]�1 � [1]�1

� [0]���� � [1]����

0

1

2

3

4

5

6

8

7 DGT
Row-wise

DGT
Row-wise

-1

Fig. 5. RNS-compatible homomorphic multiplication [14].

It is worth noting that during homomorphic multipli-
cation, the ciphertext size expands even further. The FBE
(Step 1 in Figure 5 almost doubles the input ciphertexts
size. Moreover, the tensor product (Step 3) requires an
extra 4 more temporary matrices. All in all, homomorphic
multiplication requires 3× the input ciphertext size.

4.2.6 A Note on the Precomputed Constants

We note that all the precomputed quantities used such as
the set of CRT primes pi’s, and the constants used in FBE,
decryption, and homomorphic multiplication are precom-
puted on CPU and transferred to GPU memory at system
initialization.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our imple-
mentation using two sets of experiments. In the first, we
use two simple FHE workloads: 1) homomorphic vector
addition and 2) homomorphic vector multiplication and
compare the performance with Cingulata [35], a multi-core
CPU FHE compile-chain. Our purpose is to show the per-
formance improvement our implementation can offer com-
pared to shared-memory multi-core CPU implementations.
In the second set, we build 2 CNNs to perform homomor-
phic inference task and classify encrypted images from the
MNIST [45] and CIFAR-10 [5] datasets. The main purpose of
this set of experiments is to show that our implementation
can handle realistic ultra-large FHE computation.

5.1 Methodology

Three homomorphic applications are used to evaluate the
performance of our design and implementation: 1) homo-
morphic vector addition (HVAdd), 2) homomorphic vector
multiplication (HVMul), and the homomorphic inference
circuit of two CNNs (HCNN). In HVAdd and HVMul, we
basically do point-wise addition and multiplication on two
vectors of ciphertexts. The size of these vectors is fixed at
500 for HVAdd and 250 for HVMul. We built both workloads
using our implementation and the Cingulata framework.
The parameters of the FV scheme are fixed to simulate a
heavy FHE computation where we set (log2 n, log2 q, t) =
(15, 600, 2).

HVAdd represents a workload with zero communication
overhead as both Algorithms 1 and 2 are not invoked.
On the other hand, each ciphertext in HVMul requires 3
partitioning layout transforms. The main purpose of this
experiment is to show how our implementation scales in
the best-case scenario (HVAdd) where there is no inter-GPU
communication and the worst-case scenario (HVMul) where
inter-GPU communication is highest.

It should be remarked that Cingulata follows a different
parallelism approach. In contrast to our data parallelism ap-
proach, Cingulata uses a task parallelism approach. It treats
the input circuit as a DAG and assigns independent tasks
to idle processors. In other words, the underlying cores are
treated as autonomous Processing Units (PUs) that process
the assigned tasks without mutual cooperation. Moreover,
Cingulata is designed for shared memory architectures,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

CPU

PCI-e
switch

GPU 2GPU 1

GPU 4GPU 3

PCI-e
switch

GPU 6GPU 5

GPU 8GPU 7

PCI-e Gen 3
 16 GB/sec in one direction

(a) K80

PCI-e Gen 3CPU

PCI-e
Switch

GPU 2GPU 1

GPU 4GPU 3

PCI-e
Switch

(b) P100

Fig. 6. Interconnection topology in a) K80, and b) P100

unlike our approach which supports distributed memory
architectures.

In the HCNN workloads, we aim at showing that our
implementation can handle realistic workloads with ultra
large FHE computations. We implement the two CNNs
(HCNN-5-layer and HCNN-11-layer) in [46] using our multi-
GPU implementation of the FV scheme to perform the
MNIST and CIFAR-10 image classification tasks. The MNIST
dataset consists of 60,000 images (50,000 in training dataset
and 10,000 in testing dataset) of hand-written digits, each
is a 28 × 28 array of values between 0 and 255. CIFAR-
10 [5] consists of 60,000 color images (50,000 in training
dataset and 10,000 in testing dataset) of 10 different classes.
Each image consists of 32 × 32 × 3 pixels of values
between 0 and 255. Note that in these experiments, the
model is not encrypted and assumed to be pre-learned on
non-encrypted data. However, input data that need to be
labelled are encrypted by the data owner and sent to the
evaluator for homomorphic prediction. We followed [46] to
train the CNNs used in our implementation. In terms of
accuracy, HCNN-5-Layer and HCNN-11-Layer provides 99%
and 77.55% on MNIST and CIFAR-10 datasets, respectively.

The FV parameters used for the HCNN workloads are
(log2 n, log2 q, t) = (14, 330, 5522259017729) for HCNN-5-
Layer and (log2 n, log2 q, t) = (13, 300, 2424833, 2654209,
2752513, 3604481, 3735553, 4423681, 4620289, 4816897,
4882433, 5308417) for HCNN-11-Layer. These sets of param-
eters provide security level λ ≥ 80 bits, which is consid-
ered sufficiently secure for current deployment [47]. The
Learning-with-Errors (LWE) estimator is used to measure
the security level of the parameters [2].

To better appreciate the computational load of these
workloads, Table 2 shows the total number of homomorphic
operations in each workload.

5.2 Testbed Environment

Experiments of this section were performed on 2 NVIDIA
multi-GPU clusters: 1) K80, and 2) P100 whose hardware
configurations can be found in Table 3. A top-level view of
the interconnection topology in these clusters is shown in
Figure 6. Note that K80 is a homogeneous cluster compris-
ing 2 groups of 4 fully connected identical K80 GPU cards.
On the other hand P100 is heterogeneous as it consists of 1
isolated V100 and 3 fully connected P100 cards.

5.3 Benchmarks
In this section, we evaluate the performance of our imple-
mentation using the two sets of workloads: 1) encrypted
vector operations and 2) homomorphic inference of CNN
for image classification.

5.3.1 Encrypted Vector Operation
Table 4 shows the latency of running HVAdd and HVMul.
It can be clearly seen that our GPU implementation outper-
forms Cingulata in both workloads regardless of the number
of PUs. Our GPU implementation shows speedup factors
ranging from 173.69× to 936.20× for HVAdd and 13.29×
to 366.74× for HVMul compared with the multi-core CPU
implementation provided by Cingulata. P100 shows the
best performance for HVAdd on 1, 2 and 4 GPUs.

For HVMul, P100 shows in general better performance
up to 2 GPUs. On 4 GPUs, the performance degrades due
to the involvement of CPU in data exchange as the GPUs
are not fully connected in P100 (See Figure 6). This is
not unexpected as this workload contains heavy GPU-to-
GPU communication due to the conversion of polynomials
partitioning layout. The same applies to K80 when the
number of GPUs is 8.

We are also interested in evaluating the scalability of
the GPU and CPU implementations. More concretely, we
study the increase in parallel speedup as the number of
PUs is increased. Figure 7 shows the scalability of each
implementation on different platforms. There are a number
of observations that can be drawn from the scalability plot.
First, our GPU implementations fail to achieve optimal
scalability4 when the number of PUs is greater than 4. In
our distributed memory design, inter-GPU communication
overhead is considered the main reason for degrading the
scalability of the system. On the other hand, Cingulata -
which adopts a shared memory design - includes negligible
communication overhead among the PUs. Moreover, as
the workloads do not include dependent tasks, all tasks
can run concurrently without additional stalls. Therefore,
linear scalability can still be observed when the number of
CPU cores is greater than 4 in Cingulata. However, as the
number of CPU cores is increased further, Cingulata fails to
show significant improvement due to the contention on the
memory subsystem.

Secondly, it can be observed that K80 provides generally
better scalability compared to P100 when the number of
PUs is 4. This is due to the staging through the CPU required
in P100 as the GPUs are not fully connected. Note that when
the number of GPUs is 8, K80 does not scale due to the
amplified communication overhead that is performed via
CPU staging.

Thirdly, in some cases we notice superlinear scalability
on both K80 and P100 when the number of GPUs is 2. The
reason is that distributing the workload on multiple devices
can provide more computational resources for thread blocks
on each GPU. This results in launching larger number of
thread blocks and better utilization of GPU resources.

The results of this experiment demonstrate that our
distributed-memory design shows reasonable scalability for

4. An increase in speedup that is equal to the increase in the number
of PUs

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

TABLE 2
Workload characteristics. C and P denote ciphertext and plaintext, respectively.

Workload # Inputs # Outputs # (C × C) # (C × P) # (C + C) # (C + P)

HVAdd 1000 500 0 0 500 0
HVMul 500 250 250 0 0 0
HCNN-5-Layer 784 10 1520 46,000 46,000 1950
HCNN-11-Layer 3072 10 57344 6952332 6952332 91728

TABLE 3
Hardware configuration of the testbed servers.

Specification K80 P100

Model K80 V100 P100
Compute Capability 3.7 7.0 6.0
of PUs 8 1 3
Cores (total) 8× 2496 5120 3× 3584
Core Frequency 0.82 GHz 1.380 GHz 1.328 GHz
Mem Type 384-bit GDDR5 4096-bit HBM2 4096-bit HBM2
Mem Bandwidth 240 GB/sec 732 GB/sec 900 GB/sec
Mem Capacity 8× 12 GB 16 GB 3× 16 GB
CUDA Version CUDA 9.0 CUDA 9.0

CPU Intel Xeon E5-2620 Intel(R) Xeon(R) Platinum
CPU Frequency 2.40 GHz 2.10 GHz
CPU Mem Capacity 64 GB 191 GB
CPU cores 12 52
OS ArchLinux 4.19.32-1 ArchLinux 5.0.5-arch1-1
Compiler gcc 8.2.1 gcc 8.2.1

PCI-e Bandwidth 16 GB/sec 16 GB/sec

TABLE 4
Latency (in seconds) of HVAdd and HVMul via Cingulata (CPU), and
our implementation on 2 GPU clusters while varying the number of

Processing Units (PUs). Experiments with Cingulata were run on K80
CPU (Intel Xeon E5-2620).

Number of PUs

HW 1 2 4 8 16 20

HVAdd

CPU 12.672 7.970 5.798 4.169 3.28 3.45
K80 0.063 0.031 0.018 0.024 - -
P100 0.024 0.009 0.013 - - -

HVMul

CPU 561.04 289.18 155.37 63.64 65.57 62.81
K80 5.788 2.602 1.997 6.162 - -
P100 2.097 1.091 4.135 - - -

a low number of fully connected GPUs. Nevertheless, one
can still benefit from the extended memory view our design
provides for large computational problems.

To give more insights on power consumption, Figure 8
shows the average power consumption per PU for HVAdd
and HVMul on CPU, K80 and P100. As seen, the CPU
platform has much lower power consumption compared
to GPUs. The percentage difference in the average power
consumption of GPU to CPU for HVAdd (resp. HVMul)
ranges from 14% to 556% (resp. 88% to 492%).

5.3.2 HCNN Workloads
As HCNN-5-Layer is computationally less expensive than
HCNN-11-Layer (See Table 2), we could run it on both GPU
clusters. On the other hand, HCNN-11-Layer requires at least
88 GB memory, therefore we only could run it on K80 with
8 GPUs. Table 5 shows the latency (in seconds) of running
both CNNs on K80, and P100. Note for HCNN-11-Layer, the

plaintext decomposition is used to accommodate the large
plaintext coefficient size (218-bit). We ran the network 10
times, each with different plaintext coefficient t. We show
both the per-prime latency and the total running time. Note
that these instances are completely independent and can be
run concurrently on separate hardware.

It can be noticed that HCNN-5-Layer performance im-
proves slightly as the number of GPUs is increased up to 4
GPUs except for P100 which requires data staging on CPU.
With 8 GPUs, performance degrades on K80 due to CPU in-
volvement in communication. This realistic workload shows
that our design scales reasonably for 2 GPUs, and is still
acceptable for a larger number of GPUs if they are fully
connected.

It is worth noting that our design allowed us to run an
ultra large computational task that requires a few millions
of homomorphic operations and 88 GB memory without
task decomposition, scheduling or load balancing on GPU
clusters. Note that the total time of HCNN-11-Layer is
about 2× faster than Faster CryptoNets [3], which reports
22372 seconds on Google Cloud Platform n1-megamem-96
equipped with 96 Intel Skylake 2.0 GHz vCPUs and 1433.6
GB RAM.

TABLE 5
Latency in seconds of running HCNN-5-Layer and HCNN-11-Layer for
the MNIST and CIFAR-10 image classification tasks. HCNN-11-Layer
requires at least 88 GB RAM, hence results obtained on 8 GPUs only.

of GPUs HCNN-5-Layer HCNN-11-Layer

K80 P100 K80

Per-prime time Total time

1 25.25 14.31 - -
2 15.31 11.77 - -
4 15.84 22.50 - -
8 34.53 - 1120.71 11207.33

6 CONCLUSION

In this work, we presented design, implementation and per-
formance evaluation of the HPS RNS variant of the FV lev-
elled FHE scheme on multi-GPU clusters. We showed how
to exploit further data parallelism within the FV primitives
using data partitioning methods to distribute the workload
across available GPUs. It has been shown that our design
is ideally suitable for distributed memory architectures that
include fast interconnection networks. Moreover, our design
is user-friendly as it does not require the user intervention
in task decomposition, scheduling or load balancing. A set
of experiments have been provided to evaluate the perfor-
mance of our implementation on homogeneous and hetero-
geneous GPU clusters. We also compared its performance

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

0

1

2

3

4

1 2 4 8
Sp

ee
du

p
Number of PUs

CPU K80 P100

(a) HVAdd

0

2

4

6

8

10

1 2 4 8

Sp
ee

du
p

Number of PUs

CPU K80 P100

(b) HVMul

Fig. 7. Speedup factors for encrypted vector addition and multiplication on different platforms.

0

20

40

60

80

100

120

1 2 4 8

Po
w

er
 (W

at
t)

Number of PUs

CPU K80 P100

(a) HVAdd

0

50

100

150

200

1 2 4 8

Po
w

er
 (W

at
t)

Number of PUs

CPU K80 P100

(b) HVMul

Fig. 8. Average power consumption per PU for HVAdd and HVMul workloads on CPU, K80 and P100.

with a shared-memory multi-core CPU implementation of
FV - Cingulata. Our implementation showed significant
improvement in performance and achieved speedup factors
ranging from 1 to almost 3 orders of magnitude compared to
Cingulata. In terms of scalability, we found that neither our
implementation nor Cingulata achieves optimal scalability
with a high number of processing units due to communica-
tion and memory contention.

We also used our implementation to evaluate homomor-
phically the inference phase of two CNNs (HCNN-5-Layer
and HCNN-11-Layer) to classify images from the MNIST
and CIFAR-10 datasets. HCNN-5-Layer scaled slightly as the
number of GPUs is increased up to 4 GPUs. Although our
design was shown not to scale well for 8 GPUs (due to data
staging between disconnected GPUs), running HCNN-11-
Layer on 8 GPUs showed better performance (2×) compared
to a recent CPU implementation (Faster CryptoNets) on
Google Cloud Platform n1-megamem-96.

As future work, we will try to port our design to sup-
port multi-node multi-GPU systems. For these systems, we
believe that a hybrid solution that merges task and data
parallelism approaches may be the best solution. This can be
done by exploiting parallelism at the FHE application level
itself. FHE workloads are circuits that can be represented
as DAGs of homomorphic gates. A scheduler can be used
to partition the DAG into sub-graphs and assign them to
the available nodes. The scheduler may include different
partitioning granularity to control task-parallelism. Each
node in the multi-node multi-GPU system can utilize the
data-parallelism designs presented in this work.

ACKNOWLEDGMENTS

This work is supported by A*STAR under its RIE2020
Advanced Manufacturing and Engineering (AME) Pro-
grammtic Programme (Award A19E3b0099). Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not reflect the
views of the A*STAR.

REFERENCES

[1] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,”
in Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing. ACM, 2009, pp. 169–178.

[2] M. R. Albrecht, R. Player, and S. Scott, “On The Concrete Hardness
of Learning with Errors,” Journal of Mathematical Cryptology, vol. 9,
no. 3, pp. 169–203, 2015.

[3] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-
Fei, “Faster Cryptonets: Leveraging Sparsity for Real-World En-
crypted Inference,” arXiv preprint arXiv:1811.09953, 2018.

[4] Y. LeCun, “The MNIST Database of Handwritten Digits,”
http://yann. lecun. com/exdb/mnist/, 1998.

[5] A. Krizhevsky and G. Hinton, “Learning Multiple Layers of Fea-
tures from Tiny Images,” Citeseer, Tech. Rep., 2009.

[6] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu,
A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams,
J. Cuadros et al., “Development and Validation of a Deep Learning
Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus
Photographs,” Jama, vol. 316, no. 22, pp. 2402–2410, 2016.

[7] W. Dai and B. Sunar, “cuHE: A Homomorphic Encryption Ac-
celerator Library,” in International Conference on Cryptography and
Information Security in the Balkans. Springer, 2015, pp. 169–186.

[8] A. Al Badawi, B. Veeravalli, C. F. Mun, and K. M. M. Aung,
“High-Performance FV somewhat Homomorphic Encryption on
GPUs: An Implementation using CUDA,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2018, no. 2, pp.
70–95, 2018.

[9] A. Q. A. Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and
K. Rohloff, “Implementation and Performance Evaluation of RNS
Variants of the BFV Homomorphic Encryption Scheme,” IEEE
Transactions on Emerging Topics in Computing, 2019.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

[10] A. Cilardo and D. Argenziano, “Securing the Cloud with Recon-
figurable Computing: An FPGA Accelerator for Homomorphic
Encryption,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2016. IEEE, 2016, pp. 1622–1627.

[11] S. Sinha Roy, K. Jarvinen, I. Verbauwhede, F. Vercauteren, and
J. Vliegen, “HEPCloud: An FPGA-based Multicore Processor for
FV Somewhat Homomorphic Function Evaluation,” IEEE Transac-
tions on Computers, 2017.

[12] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying Neural Networks to
Encrypted Data with High Throughput and Accuracy,” in Inter-
national Conference on Machine Learning, 2016, pp. 201–210.

[13] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomor-
phic Encryption.” IACR Cryptology ePrint Archive, vol. 2012, p. 144,
2012.

[14] S. Halevi, Y. Polyakov, and V. Shoup, “An Improved RNS Variant
of the BFV Homomorphic Encryption Scheme,” 2018.

[15] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) Fully
Homomorphic Encryption without Bootstrapping,” ACM Transac-
tions on Computation Theory (TOCT), vol. 6, no. 3, p. 13, 2014.

[16] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security. Springer, 2017, pp. 409–437.

[17] C. Gentry, A. Sahai, and B. Waters, “Homomorphic
Encryption from Learning with Errors: Conceptually-Simpler,
Asymptotically-Faster, Attribute-based,” in Advances in
Cryptology–CRYPTO 2013. Springer, 2013, pp. 75–92.

[18] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe:
fast fully homomorphic encryption over the torus,” Journal of
Cryptology, vol. 33, no. 1, pp. 34–91, 2020.

[19] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices
and Learning with Errors over Rings,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2010, pp. 1–23.

[20] P. Lyubashevsky and Regev, “A Toolkit for Ring-LWE Cryptogra-
phy,” in EUROCRYPT, vol. 7881. Springer, 2013, pp. 35–54.

[21] S. Halevi and V. Shoup, “Design and Implementation of a
Homomorphic-Encryption Library,” IBM Research (Manuscript),
vol. 6, pp. 12–15, 2013.

[22] C. Du, G. Bai, and X. Wu, “High-Speed Polynomial Multiplier
Architecture for Ring-LWE Based Public Key Cryptosystems,” in
Proceedings of the 26th edition on Great Lakes Symposium on VLSI.
ACM, 2016, pp. 9–14.

[23] C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, M.-O. Killi-
jian, and T. Lepoint, “NFLlib: NTT-based Fast Lattice Library,” in
Cryptographers’ Track at the RSA Conference. Springer, 2016, pp.
341–356.

[24] P. Longa and M. Naehrig, “Speeding up the Number Theoretic
Transform for Faster Ideal Lattice-based Cryptography,” in Inter-
national Conference on Cryptology and Network Security. Springer,
2016, pp. 124–139.

[25] A. Al Badawi, B. Veeravalli, and K. M. M. Aung, “Efficient Poly-
nomial Multiplication via Modified Discrete Galois Transform and
Negacyclic Convolution,” in Future of Information and Communica-
tion Conference. Springer, 2018, pp. 666–682.

[26] J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, “A Full
RNS Variant of FV Like Somewhat Homomorphic Encryption
Schemes,” in International Conference on Selected Areas in Cryptogra-
phy. Springer, 2016, pp. 423–442.

[27] T. Pöppelmann, M. Naehrig, A. Putnam, and A. Macias, “Ac-
celerating homomorphic evaluation on reconfigurable hardware,”
in International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2015, pp. 143–163.

[28] X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and N. Hanley, “Ac-
celerating fully homomorphic encryption over the integers with
super-size hardware multiplier and modular reduction.” IACR
Cryptology ePrint Archive, vol. 2013, p. 616, 2013.

[29] Y. Doröz, E. Öztürk, and B. Sunar, “Accelerating fully homomor-
phic encryption in hardware,” IEEE Transactions on Computers,
vol. 64, no. 6, pp. 1509–1521, 2015.

[30] D. B. Cousins, J. Golusky, K. Rohloff, and D. Sumorok, “An
fpga co-processor implementation of homomorphic encryption,”
in High Performance Extreme Computing Conference (HPEC), 2014
IEEE. IEEE, 2014, pp. 1–6.

[31] J. Cathébras, A. Carbon, P. Milder, R. Sirdey, and N. Ventroux,
“Data flow oriented hardware design of rns-based polynomial

multiplication for she acceleration,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pp. 69–88, 2018.

[32] CryptoExperts, “FV-NFLlib: Library Implementing the
Fan-Vercauteren Homomorphic Encryption Scheme,”
https://github.com/CryptoExperts/FV-NFLlib, 2016.

[33] T. Rondeau, “Data protection in virtual environments (dprive),”
2020.

[34] Y. Doröz, A. Shahverdi, T. Eisenbarth, and B. Sunar, “Toward Prac-
tical Homomorphic Evaluation of Block Ciphers using PRINCE,”
in International Conference on Financial Cryptography and Data Secu-
rity. Springer, 2014, pp. 208–220.

[35] S. Carpov, P. Dubrulle, and R. Sirdey, “Armadillo: A Compilation
Chain for Privacy Preserving Applications,” in Proceedings of the
3rd International Workshop on Security in Cloud Computing. ACM,
2015, pp. 13–19.

[36] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Com-
puting with GPUs. Newnes, 2012.

[37] N. corp., “TESLA K80 GPU Accelerator Board Specification,”
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/tesla-product-literature/Tesla-K80-BoardSpec-07317-001-
v05.pdf, 2015, (accessed: 2018-01-19).

[38] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU
Programming. Pearson Education, 2013.

[39] C. Nvidia, “Toolkit Documentation,” NVIDIA CUDA Getting
Started Guide for Linux, 2014.

[40] S. Halevi, “HElib: An Implementation of Homomorphic Encryp-
tion,” https://github.com/shaih/HElib, 2014.

[41] Microsoft, “SEAL: Simple Encrypted Arithmetic Library,”
https://www.microsoft.com/en-us/research/project/simple
encrypted-arithmetic-library/, 2014.

[42] R. G. Rohloff Kurt and P. Yuiry, “PALISADE: Lattice Encryp-
tion Software Library,” https://git.njit.edu/palisade/PALISADE,
2016.

[43] R. E. Crandall, “Integer Convolution via Split-Radix Fast Galois
Transform,” Center for Advanced Computation Reed College, 1999.

[44] G. E. Box, M. E. Muller et al., “A Note on the Generation of
Random Normal Deviates,” The annals of mathematical statistics,
vol. 29, no. 2, pp. 610–611, 1958.

[45] Y. LeCun, C. Cortes, and C. Burges, “MNIST Handwritten
Digit Database,” AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, vol. 2, 2010.

[46] A. A. Badawi, J. Chao, J. Lin, C. F. Mun, S. J. Jie, B. H. M. Tan,
X. Nan, K. M. M. Aung, and V. R. Chandrasekhar, “The AlexNet
Moment for Homomorphic Encryption: HCNN, the First Homo-
morphic CNN on Encrypted Data with GPUs,” arXiv preprint
arXiv:1811.00778, 2018.

[47] E. Barker and Q. Dang, “NIST Special Publication 800–57 Part 1,
Revision 4,” 2016.

Ahmad Al Badawi received his B.Sc degree
in computer engineering, from Al-Balqa’ Ap-
plied University, Jordan, in 2007, the M.Sc de-
gree in computer engineering from JUST, Jor-
dan, in 2010, and the PhD degree in com-
puter engineering from The National University
of Singapore, Singapore, in 2018. He is cur-
rently a research scientist with the Institute of
Infocomm Research, A*STAR, Singapore. His
research interests include but not limited to
modern cryptography, homomorphic encryption,

privacy-preserving technologies, parallel processing, combinatorial op-
timization, evolutionary algorithms and multiprocessor task scheduling.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

Bharadwaj Veeravalli received the BSc degree
in physics, from Madurai-Kamaraj University, In-
dia, in 1987, the master’s degree in electrical
communication engineering from the Indian In-
stitute of Science, Bangalore, India in 1991,
and the PhD degree from the Department of
Aerospace Engineering, Indian Institute of Sci-
ence, Bangalore, India, in 1994. He is currently
with the Department of Electrical and Computer
Engineering at The National University of Singa-
pore, Singapore, as a tenured associate profes-

sor. His main stream research interests include, cloud/grid/cluster com-
puting, scheduling in parallel and distributed systems, bioinformatics
and computational biology, and multimedia computing.

Jie Lin is a research scientist with the Institute
of Infocomm Research, A*STAR, Singapore. He
received his B.S and Ph.D. from the School
of Computer Science and Technology, Beijing
Jiaotong University. His research interests in-
clude deep learning and computer vision. His
work on image feature coding has been rec-
ognized as core contribution to the MPEG-7
Compact Descriptors for Visual Search (CDVS)
standard. He also works on software-hardware
co-optimization for deep learning and build ASIC

accelerators from scratch for applications on edge.

Xiao Nan received a Master degree of Com-
puter Application Technology from University of
Science and Technology Beijing, in 2008. He
is currently a Senior Research Engineer with
A*STAR, Institute for Infocomm Research, Sin-
gapore. His research interests include data and
information security, data centres and high per-
formance computing.

Kazuaki Matsumura received the BE degree
from University of Tsukuba in 2017 and the MSc
degree from Tokyo Institute of Technology in
2019. He is currently affiliated with a doctoral
program at Barcelona Supercomputing Center.
His research interests include program optimiza-
tion and compilers for high-performance comput-
ing.

Khin Mi Mi Aung received a Ph.D. degree of
Computer Engineering from Korea Aerospace
University, in 2006. She is currently a senior
scientist with A*STAR, Institute for Infocomm Re-
search, Singapore. Her research interests in-
clude data and information security, data centre
and network storage technologies.

