
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Multi-Hop Multi-Task Partial Computation
Offloading in Collaborative Edge Computing

Yuvraj Sahni, Jiannong Cao, Fellow, IEEE, Lei Yang, and Yusheng Ji, Senior Member, IEEE

Abstract—Collaborative edge computing (CEC) is a recent popular paradigm where different edge devices collaborate by sharing data
and computation resources. One of the fundamental issues in CEC is to make task offloading decision. However, it is a challenging
problem to solve as tasks can be offloaded to a device at multi-hop distance leading to conflicting network flows due to limited
bandwidth constraint. There are some works on multi-hop computation offloading problem in the literature. However, existing works
have not jointly considered multi-hop partial computation offloading and network flow scheduling that can cause network congestion
and inefficient performance in terms of completion time. This paper formulates the joint multi-task partial computation offloading and
network flow scheduling problem to minimize the average completion time of all tasks. The formulated problem optimizes several
dependent decision variables including partial offloading ratio, remote offloading device, start time of tasks, routing path and start time
of network flows. The problem is formulated as an MINLP optimization problem and shown to be NP-hard. We propose a joint partial
offloading and flow scheduling heuristic (JPOFH) that decides partial offloading ratio by considering both waiting times at the devices
and start time of network flows. We also do the relaxation of formulated MINLP problem to an LP problem using McCormick envelope
to give a lower bound solution. Performance comparison done using simulation shows that JPOFH leads to up to 32% improvement in
average completion time compared to benchmark solutions which do not make a joint decision.

Index Terms—Scheduling and task partitioning, Network flow scheduling, Collaborative Edge Computing, Internet of Things.

F

1 INTRODUCTION

The proliferation of IoT devices with improved computa-
tion, communication, and storage capacities has lead to the
development of applications such as Industry IoT, multi-
robot systems, autonomous cars, etc [1] [2]. These applica-
tions have critical requirements such as real-time processing,
mobility, context awareness, etc. which cannot be supported
by centralized cloud computing. Edge computing aims to
meet the needs of such applications by pushing computa-
tion within the network close to data sources. However, as
applications evolve, there is need to support collaboration
among different types of devices so that different applica-
tions and stakeholders can coexist. Therefore, the concept of
collaborative edge computing has been introduced recently
to support applications which have such requirements.

We have defined collaborative edge computing as a
computing paradigm where multiple stakeholders (IoT de-
vices, edge devices, or cloud) collaborate with each other
by sharing data and computation resources to satisfy indi-
vidual and/or global goals. This definition includes both

• This work was supported in part by the Research Grant Council (RGC)
General Research Fund under Grant PolyU 15217919, and in part by the
RGC Research Impact Fund (RIF) under Grant R5034-18.

• Yuvraj Sahni and Jiannong Cao are with the Department of Com-
puting, The Hong Kong Polytechnic University, Hong Kong. (E-mail:
{csysahni,csjcao}@comp.polyu.edu.hk)

• Lei Yang is with the School of Software Engineering, South China
University of Technology, Guangzhou, China. (E-mail: sely@scut.edu.cn).

• Yusheng Ji is with the Information Systems Architecture Research Divi-
sion, National Institute of Informatics, Tokyo, Japan and also with the
Department of Informatics, SOKENDAI (The Graduate University for
Advanced Studies), Tokyo, Japan. (E-mail: kei@nii.ac.jp).

• Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

vertical collaboration where different layers such as device
layer, edge computing layer, and cloud layer collaborate
with each other and horizontal collaboration where different
edge devices in edge computing layer collaborate with each
other [2]. There are many major challenges in collaborative
edge computing including collaboration space formation,
social trust-based incentive policies, cooperation policies,
inter-domain cooperation, intra-domain cooperation, smart
collaborative networking, and mobility management [2].

There are many existing works such as [3], [4], [5], [6],
[7] etc. which are based on the principle of collaborative
edge computing. The work in [5] proposes CVEC to support
large-scale vehicular services by using both horizontal and
vertical collaboration. The work in [7] proposes collabora-
tive edge computing among small-cell base stations (SBSs)
by forming SBS coalitions to share computation resources
with each other. We have also proposed Edge Mesh [8]
where decision-making is done inside the network by shar-
ing data and computation tasks among mesh network of
edge devices instead of sending all the data to a centralized
server. One of the fundamental issues in collaborative edge
computing is distributing tasks among heterogeneous edge
devices. This includes deciding on whether, when, and
where to offload the tasks and how to optimally utilize
the bandwidth and computation resources of the underlying
network.

This paper studies the problem of multi-hop multi-
task partial computation offloading in collaborative edge
computing with the objective of minimizing the average
completion of all tasks. The problem jointly considers partial
offloading of independent tasks generated at different edge
devices to any other edge device at a multi-hop distance and
network flow scheduling. The partial offloading of a task

This is the Pre-Published Version.

The following publication Sahni, Y., Cao, J., Yang, L., & Ji, Y. (2020). Multi-hop multi-task partial computation offloading in collaborative edge computing.
IEEE Transactions on Parallel and Distributed Systems, 32(5), 1133-1145 is available at https://doi.org/10.1109/TPDS.2020.3042224.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

implies that a task is partitioned into two components where
one component is locally executed and other is offloaded
to a remote device. Network flow scheduling includes not
only making a decision on routing path but also start time
of input data flows. The decision of partial offloading is
interdependent on network flow scheduling.

Existing works in literature usually solve the task of-
floading problem for single-hop network. Few recent works
such as [9], [10], [11], [12], etc. have studied multi-hop
computation offloading problem. Multi-hop offloading has
an advantage over single-hop by enabling the use of un-
derutilized resources in a mesh network of devices. Multi-
hop offloading is useful for application scenarios such as
unmanned aerial vehicle (UAV) robot swarms, autonomous
vehicles, etc. that have few ground stations or road-side
units which can be connected through a multi-hop net-
work with the other devices. Partial offloading problem
has also been studied in previous works such as [13] and
[14]. However, these works do not consider both partial
offloading in a network with multiple remote edge devices
and network flow scheduling, which leads to an increase
in the number of decision variables and makes the problem
more challenging. Another main challenging issue is that
data transmission cost is no longer constant and difficult
to estimate as it depends on the partial offloading decision.
The partial offloading decision can affect the start time of
input data flows which is included in data transmission cost.
This problem is useful for applications such as large-scale
multi-camera video analytics where video and image data
from multiple cameras is used for generating situational
awareness. Another application scenario is optical character
recognition (OCR) images which can be arbitrarily divided
as assumed in this work [15].

The main contribution made in this paper are:
1) We have mathematically formulated the joint multi-hop

multi-task partial computation offloading and network
flow scheduling problem in collaborative edge com-
puting with the objective of minimizing the average
completion time of independent tasks. We consider the
heterogeneity in independent tasks where each task
has different computation load, input data, and release
time. We also consider heterogeneity in device process-
ing speed and link bandwidth.

2) We show the problem is NP-hard and therefore, pro-
pose a joint partial offloading and flow scheduling
heuristic (JPOFH) which creates a priority of tasks
considering release time and computation load and
calculates the partial offloading ratio considering the
waiting time at the devices and start time of input data
flows. We also relaxed the formulated MINLP problem
to an LP problem using McCormick envelope and solve
it using Mosek solver in CVX to give a lower bound
solution.

3) We have conducted simulation experiments to evaluate
and compare the performance, in terms of average
completion time of tasks and running time, of JPOFH
against benchmark solutions. The benchmark solutions
consider different possibilities, including local execu-
tion, remote execution, and separate partial offloading
and flow scheduling solution. We make a comprehen-
sive performance comparison by changing the values

of different input parameters, including the number of
tasks, number of devices, number of routing paths, and
amount of input data. The performance comparison
shows that JPOFH leads to up to 32% improvement in
completion time compared to benchmark solutions.

The rest of the paper is as follows. In Section 2, we
discuss some related works. In Section 3, we give the
system model and problem formulation. In Section 4, we
discuss relaxation of formulated problem and the proposed
solution, JPOFH, for the multi-hop multi-task partial com-
putation offloading problem. In Section 5, we have done the
performance evaluation. Finally, we give the conclusion in
Section 6.

2 RELATED WORKS

Computation offloading problem in edge computing has
been well-studied. Some works such as [20] have also given
performance guaranteed solution for computation offload-
ing using an optimization framework. Most existing works
study the computation offloading problem for single-hop.
However, there are few recent works such as [9], [10],
[11], [12], etc. that have studied multi-hop computation
offloading problem. The work in [9] gave a distributed
solution to make full task offloading decision to minimize
the energy consumption. The work in [10] proposes an
iterative algorithm for task assignment to devices in a multi-
hop cooperative network. However, the work in [10] makes
many assumptions in deriving the routing cost and does
not consider partial offloading. The work in [11] jointly
formulates the computation offloading and routing decision
problem and solves using a game-theoretic approach by
showing the existence of Nash equilibrium. The problem
in [11] is solved for both unsliceable and sliceable tasks.
The work in [12] also proposes a game-theoretic solution
for multi-hop computation offloading problem; however, it
considers local, edge, and cloud computing for the execution
of tasks. Compared to these existing works which usually
assume offloading of tasks to a single remote edge or
cloud device, our work considers partial offloading to all
available edge devices. Our work also considers network
flow scheduling where we make decisions not only on the
routing path but also start time of input data flows.

There are some works such as [21] and [16] which
have also considered task allocation problem for multi-hop
wireless sensor networks (WSN). However, these works do
not consider partial offloading and network flow scheduling
done in our work. The partial offloading problem has been
addressed for single-hop in many works such as [13] and
[14]. The work in [13] studied multi-user partial computa-
tion offloading problem considering both edge and cloud.
They also design iterative heuristic algorithm to make the
offloading decision dynamically. The work in [14] studied
the partial computation offloading problem where mobile
devices can partially offload the tasks to both single or
multiple cloud servers with the objective of optimizing
the energy consumption and latency of the application.
There are some works such as [22], which also solve the
computation peer offloading problem between small-cell
base stations. Some works such as [17], [23], [24], [25], etc.
have considered network condition while scheduling tasks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1: Comparison of existing works

Existing works Multiple tasks Partial Offload-
ing

Bandwidth-
aware

Joint network
flow decision

[16] (2011) Yes No Yes Yes
[17] (2016) Yes No Yes No
[14] (2016) Yes Yes No No
[18] (2018) Yes No No No
[19] (2018) Yes No Yes Yes
[13] (2018) Yes Yes No No
[10] (2019) Yes No Yes No
[11] (2019) Yes Yes Yes No

This paper Yes Yes Yes Yes

The work in [17] proposes a task scheduling framework
that utilizes the underlying network scheduler to make
task placement decisions. Another work [23] solves the
joint reducer placement and coflow bandwidth scheduling
problem. Both works in [24] and [25] considered network
bandwidth to make the task scheduling decision.

The different related works in literature solve some com-
bination of partial computation offloading, peer offloading,
multi-server offloading, or network flow scheduling prob-
lem.Table 1 shows the comparison of existing works. To the
best of our knowledge, there is no related work which has
addressed all the concerns. The work in this paper jointly
formulates the partial computation offloading and network
flow scheduling problem for multi-hop collaborative edge
computing. Our previous work also studied data-aware
task allocation problem in collaborative edge computing
[19] where dependent tasks with input data at different
devices are placed in a multi-hop mesh network. The data-
aware task allocation problem can be mapped to a multi-hop
full computation offloading for dependent tasks. However,
compared to this work, data-aware task allocation did not
consider partial offloading of tasks, the release time of tasks,
and decision on the routing path. We also consider addi-
tional constraints for network flow scheduling, including
no flows can pass through a link at the same time, whereas
the work in [19] just considered the limited link bandwidth
constraint.

The formulation methodology used in this work is sim-
ilar to that in [18], where the authors study the problem
of offloading dependent task and give a lower bound so-
lution. However, compared to the work in [18], we study
the multi-hop multi-task partial offloading computation for
independent tasks.

3 SYSTEM MODEL AND PROBLEM FORMULATION

This section first describes the system model including
network and application model and then the problem for-
mulation.

3.1 System Model
Fig 1 shows the system architecture of Edge Mesh based on
collaborative edge computing paradigm where the intelli-
gence is distributed and pushed within the network by shar-
ing computation resources and data between mesh network
of edge devices [8]. Edge devices is such an architecture
can be heterogeneous in computation capacity and can also

serve as routers, as shown in Fig 1. The computation tasks
are generated at different edge devices and can be offloaded
to other edge devices, even at a multi-hop distance.

The decision to partition and offload the tasks is made
at a centralized SDN controller which is assumed to have
global knowledge by collecting network and task-related
information from all the edge devices and routers. The
SDN controller includes different functional components,
resource discovery and traffic rules registry, that are re-
sponsible for collecting information. This information is
utilized by the functional components, task scheduler and
flow scheduler in the controller, to make the offloading
decisions. In practice, multiple SDN controllers could be
used to enable scalability and fault tolerance. We have not
considered the communication overhead to collect network
knowledge in this model. SDN controller has been used
in some previous works such as [26], [27], etc. to make
scheduling decisions in wireless networks. The work in [28]
proposed meSDN to extend the control of SDN to mobile
devices. Another work [29] implemented a prototype for
the algorithm proposed in [27].

Although the system model assumes that edge devices
are connected using a wireless network, we have not fully
considered all the issues due to dynamics in a wireless
network such as spatial and temporal variation of wireless
channel conditions, interference of wireless transmission
among neighbouring devices [19]. Nevertheless, these issues
in a wireless network should be considered as part of future
work. The problem formulation in this work has been done
assuming a static network condition.

The objective of the problem is to minimize the average
completion time of all the tasks. We have included both
communication and computation cost to make task offload-
ing and network flow scheduling decisions. The compu-
tation cost includes both waiting time at the devices and
time to execute the task. The communication cost includes
waiting time to start the data transmission, and data trans-
mission cost. We do not include propagation time in com-
munication cost as it is usually very small. Further, we also
ignore the switching cost for routing between subsequent
links in the multi-hop path. In practice, these costs would
influence the total cost; however, we ignore these costs to
simplify the system model. Other works such as [18], [11],
[30] etc. have used similar assumptions to calculate the total
cost.

The network and application model used in formulating
the problem is:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Cloud

Edge

Devices

End Devices

Edge Mesh

End Devices

Cloud

Edge

Devices

End Devices

Edge Mesh

End Devices

SDN Controller

Resource discovery Traffic rules registry

Task scheduler Flow scheduler

Message broker

Resource discovery Traffic rules registry

Task scheduler Flow scheduler

Message broker

Receive network and

 task information

Send scheduling

decisions

Fig. 1: System Architecture

Network model: The communication network is a mesh
network of edge devices, shown to Edge Mesh circle in
Fig 1, connected to each other using a multi-hop path. The
communication network is modelled as a connected graph
G = (V, E), where V is the set of devices, V = {j|1 ≤ j ≤M},
and E is the set of links connecting different devices, E =
{ejv|j, v ∈ V }. Here, M is the total number of devices. In
the problem description, we sometimes neglect the subscript
and denote the link as e. The weight of each device is PSj ,
which represents the processing speed of each device j. The
devices can be heterogeneous in terms of processing speed.
Each device is assumed to have a queue with positions equal
to the number of tasks, i.e. N.

Any two devices are assumed to have maximum K avail-
able routing paths between them. A binary parameter Wjvk

(1 for yes, 0 for no) is used to represents whether there is a
kth routing path between devices j and v. Another binary
parameter Ykejv (1 for yes, 0 for no) is used to represent if an
edge e lies on kth routing path between device j to device v.
The number of hops and bandwidth of the kthrouting path
between devices j and v is represented by Hjvk and Rjvk

respectively.
Application model: An application is composed of a set

of independent tasks, A = {i|1 ≤ i ≤ N}, where N is
the total number of tasks. Each task i is associated with
a computation load of CLi and an amount of input data
equal to Di. Each task i is assumed to be generated at
an edge device zi|zi ∈ V at release time Treli. When a
task i is partially offloaded to a device j, the input data
corresponding to task i is also sent to device j. This transfer
of input data is referred to as an input data flow.

Some of the assumptions made in the problem formula-
tion are:

1) The local and offloaded component of a task can be
executed independently.

2) The bandwidth for each flow is assumed to be given
and equal to the minimum bandwidth of a link in the
routing path.

3) The problem is solved for a static condition where the
values of different parameters are known beforehand
and there is no device or network failure during task
execution.

TABLE 2: Notations used in the Paper

G = (V, E) network model, where V is the set of devices and
E is the set of edges

ejv link connecting device j and v

PSj processing speed of device j

Wjvk binary parameter to represent if there is a kth

routing path between devices j and v

Ykejv binary parameter to represent if an edge e lies on kth

routing path between device j to device v

Hjvk number of hops in the kthrouting path between
devices j and v

Rjvk bandwidth of the kthrouting path between
devices j and v

A set of tasks
CLi computation load of task i

Di amount of input data of task i

zi device where task i is generated
Treli release time of task i

M number of devices
N number of tasks
K number of routing paths
Xijr variable to represent ratio of task i executed on

device j at position r

Fijk binary variable to represent if kth routing path is used
for input data flow of task i to device j

Sijk variable to represent start time of input data flow of
task i offloaded to device j using kth routing path

Ftijr variable to represent finish time of component of task i

executed on device j at position r

Tfti variable to represent total finish time of task i

Tijkloc
local execution time for task i partially offloaded to
device j using kth routing path

Tijkloc
offloaded execution time for task i partially offloaded
to device j using kth routing path

xijk ratio of task i offloaded at device j using
kth routing path

Tbusyj waiting time at device j

ranki rank of task i in the priority list
i, u index used to represent task i and u

j, v index used to represent device j and v

k, w index used to represent kth and wth routing path
r, s index used to represent rth and sth position

on the queue of device

4) Each device can execute one task at a time, while other
tasks wait in the queue at the device.

5) Preemptive scheduling of tasks is not allowed.
6) No two flows are allowed to pass through a link at the

same time to consider the interference among simulta-
neous wireless transmissions.

3.2 Problem Formulation
This section describes the constraints and formulates the
problem as an optimization problem. Table 2 summarizes
the notations used in the paper.

3.2.1 Constraints
There are several constraints in the problem related to
task offloading and flow scheduling decision. Equation (1)-
(4) represent constraints corresponding to task offloading
decision. The problem considers that each task is offloaded
only to a single remote device as represented by equation
(1).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

N∑
r=1

Xijr ∗
N∑
s=1

Xivs = 0,

∀i ∈ A, j ∈ V \{zi}, v ∈ V \{zi, j}
(1)

Each task consisting of local and offloaded component is
placed only once as represented by equation (2).

M∑
j=1

N∑
r=1

Xijr = 1, ∀i ∈ A (2)

Since the number of positions at the queue on each
device is equal to the number of tasks, each task can occupy
only one position on each device. This is represented by
equation (3).

Xijr ∗Xijs = 0, ∀i ∈ A, j ∈ V,

r = 1, ...N, s = 1, ...r − 1, r + 1, ...N
(3)

Furthermore, each queue position on each device can be
occupied by only one task as represented by equation (4).

Xijr ∗Xujr = 0,

∀i ∈ A, u ∈ A\{i}, j ∈ V, r = 1, ...N
(4)

The constraints corresponding to flow scheduling deci-
sion are represented by equation (5)-(8). There is an input
data flow corresponding to offloading the task to a remote
device as represented by equation (5).

N∑
r=1

Xijr ∗ (
K∑

k=1

Fijk − 1) = 0, ∀i ∈ A j ∈ V (5)

The input data flow can start only after the task has been
released as represented by equation (6).

Sijk ≥ Treli, ∀i ∈ A, j ∈ V, k = 1, ...K (6)

The problem assumes that a single routing path is used
to transmit each input data flow as represented by equation
(7).

K∑
k=1

Fijk ≤ 1, ∀i ∈ A, j ∈ V (7)

As mentioned earlier, it is assumed that no two flows are
allowed to pass through a link at the same time. Therefore, if
there are two flows passing through a link, one of the flows
is delayed until the other one is finished as represented by
equation (8).

|Ykezij ∗ Fijk − Ywezuv ∗ Fuvw| ∗ L +

(Sijk − Suvw − (Hzuvw ∗
Du

Rzuvw
∗

N∑
s=1

Xuvs ∗ Fuvw))∗

(Sijk + (Hzijk ∗
Di

Rzijk
∗

N∑
r=1

Xijr ∗ Fijk)− Suvw) >= 0

∀i, u ∈ A, j, v ∈ V, k, w = 1, ...K,

∀e ∈ E, r, s = 1, ...N
(8)

where, L represents a large number.

There are also some constraints on the finish time of the
task. Equation (9) represents that finish time of component
of task i executed on device j at position r is greater
than the start time of input data flow of task i component
offloaded to device j through kth routing path by the sum of
computation time of component task i executed at device j
and time to send the input data to execute tasks i component
at device j.

Ftijr − Sijk ≥ Xijr ∗ CTij+

Wzijk ∗Hzijk ∗
Di

Rzijk
∗

N∑
r=1

Xijr ∗ Fijk

∀i ∈ A, j ∈ V, k = 1, ...K, r = 1, ...N

(9)

The finish time of a successive task executed on a device
is at least equal to the sum of the finish time of preceding
task executed on that device at a previous position and
computation time of the task. This constraint is represented
by equation (10).

Ftijr >= Ftuj(r−1) +Xijr ∗ CTij

∀i, u ∈ A, j ∈ V, r = 1, ...N
(10)

The total finish time of task is greater than the finish time
of any component of a task as represented by equation (11).

Tfti >= Ftijr

∀i ∈ A, j ∈ V, r = 1, ...N
(11)

Equation (12) - (16) represent the range of each decision
variable.

0 ≤ Xijr ≤ 1, ∀i ∈ A, j ∈ V, r = 1, ...N (12)
Fijk = {0, 1}, ∀i ∈ A, j ∈ V, k = 1, ...K (13)
Sijk ≥ 0, ∀i ∈ A, j ∈ V, k = 1, ...K (14)
Ftijr ≥ 0, ∀i ∈ A, j ∈ V, r = 1, ...N (15)
Tfti ≥ 0, ∀i ∈ A (16)

3.2.2 Optimization Problem
The objective function of the problem is to minimize the
average completion time of all tasks. The objective function
considers the time instance at which each task is finished
(Tfti) rather than the time period (Tfti−Treli) to complete
the task. As Treli is a constant value, it is equivalent to
minimizing the time period to complete the task. The multi-
hop multi-task partial computation offloading problem, P1,
can be formulated as:

minimize
Xijr,Fijk,Sijk,F tijr,Tfti

∑N
i=1 Tfti
N

, (17)

subject to (1) - (16)
∀i ∈ A, j ∈ V, k = 1, ...K, r = 1, ...N

This problem is NP-hard since it includes the Gener-
alized Assignment Problem (GAP) as a special case (for a
fully connected network). Since we cannot find an optimal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

solution in polynomial time. Therefore, we have proposed a
heuristic solution JPOFH (joint partial offloading and flow
scheduling heuristic).

4 JOINT PARTIAL OFFLOADING AND FLOW
SCHEDULING HEURISTIC (JPOFH)
This section first gives detail about the proposed JPOFH
algorithm and then gives a lower bound solution by relaxing
the formulated problem.

4.1 JPOFH Algorithm
JPOFH determines the execution schedule specifying the
selected device, finish time, the partial offloading ratio for
each task, and the start time and selected path of each input
data flow. JPOFH is developed considering three principles:

1) Using a priority list of task to determine the execution
schedule.

2) Scheduling each task for execution only after the previ-
ous task in the priority list is executed.

3) Determining the partial offloading ratio considering
both the waiting time at the device and start time of
the input data flow.

Each task in JPOFH is scheduled with the objective of
minimizing the finish time, which is defined in equation
(18). The terms Tijkloc

and Tijkoff
represent the local execu-

tion time and offloaded execution time for task i partially
offloaded to device j using kth routing path. Tijkloc

is de-
fined in equation (19) as the sum of computation time at the
local device and waiting time to execute the task at the local
device. The waiting time at the local device is represented
by Tbusyzi where zi stands for the local device for task i.
Tijkoff

is defined in equation (20) as the sum of computation
time at the offloaded device, and maximum of time to send
the input data to the offloaded device and waiting time to
execute the task at offloaded device. The waiting time at the
offloaded device is represented by Tbusyj where j stands
for device j where task i is offloaded.

Tfti = min
j∈V,k=1,...K

max{Tijkloc
, Tijkoff

}, ∀i ∈ A (18)

Tijkloc
= (1− xijk) ∗ CTizi +max{Tbusyzi , T reli},

∀i ∈ A, j ∈ V, k = 1, ...K
(19)

Tijkoff
= xijk ∗ CTij +

max{Tbusyj , T reli, Sijk + xijk ∗Hzijk ∗
Di

Rzijk
}

∀i ∈ A, j ∈ V, k = 1, ...K

(20)

The equation (22) determines the partial offloading ratio,
xijk, for task i to be offloaded at device j using kth routing
path. The value of xijk is determined by setting local execu-
tion time equal to the upper bound of offloaded execution
time defined in equations (19) and (21) respectively. The
work in [31] used a similar idea to derive the optimal so-
lution for computation offloading using Nash equilibrium.
However, [31] did not consider network flow scheduling
required for multi-hop partial offloading.

Tijkoff
≤ xijk ∗ CTij + xijk ∗Hzijk ∗

Di

Rzijk
+

max{Tbusyj , T reli, Sijk}
∀i ∈ A, j ∈ V, k = 1, ...K

(21)

xijk =

CTizi +max{Tbusyzi , T reli} −max{Tbusyj , Sijk, T reli}
CTizi + CTij +Hzijk ∗ Di

Rzijk

∀i ∈ A, j ∈ V, k = 1, ...K
(22)

Both offloaded execution time and partial offloading
ratio require the value of Sijk. We calculate Sijk using
equation (23) which is based on the assumption that no
two flows can pass through the same link at the same time.
Equation (23) represents that if the input data flow for task
i passes through the same link in the routing path of any
other input data, then it can start only after previous tasks
have finished their flow.

Sijk = max
u=1,...i,p∈Pijk

(Treli,

Ykpzij ∗ Ywpzuv ∗ (Suvw + xuvw ∗Hzuvw ∗
Di

Rzuvw
))

∀i ∈ A\{1}, j ∈ V, k = 1, ...K
(23)

where, Pijk denotes the edges in the kth routing path for an
input data flow of task i offloaded to device j and v, w are
the offloaded device and routing path selected for task u.

The details of JPOFH are given in Algorithm 1. Before
starting the algorithm, JPOFH initializes the value of Sijk to
be equal to Treli (line 2). JPOFH starts by creating a priority
list of tasks based on increasing order of rank metric defined
in equation (24). The rank metric considers both the release
time and computation load of a task.

ranki = Treli +
CLi

PS
∀i ∈ A, j ∈ V, k = 1, ...K

(24)

where, PS is the average value of PS.
Starting with the first task in the priority list, JPOFH

calculates the value of Sijk (line 9). Then, JPOFH calculates
the value of xijk, Tijkloc

, and Tijkoff
(line 10 -11). The

selected device for offloading, j∗i , and routing path, k∗i ,
each task i is determined based on the minj∈M,k∈K{Tijkloc

}
value (line 18), which is also equal to finish time of the task i
(line 19). The algorithm returns the selected device j∗i , finish
time Tfti, partial offloading ratio xij∗i k

∗
i

, start time of input
data flow Sij∗i k

∗
i

, and selected routing path k∗i for each task
i (line 23).

The computation complexity of JPOFH is O(N2 ∗M2 ∗
K). The computation complexity is calculated by consider-
ing the most complex operation in JPOFH algorithm, which
is the calculation of Sijk in line 9. There are three for loops
for calculating Sijk one loop each corresponding to the
number of tasks (N), number of devices (M), and number of
routing paths (K). The calculation of Sijk in equation (23)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 1: Joint Partial Offloading and Flow
Scheduling Heuristic (JPOFH)

Input: The set of N tasks, the network of M edge
devices, and k routing paths between all device
pairs

Output: The execution schedule specifying the
selected device, finish time, offloading ratio
for each task, and the start time and selected
routing path of each input data flow

1 Sijk ← Treli,∀i ∈ A, j ∈ V, k = 1, ...K;
2 Create an index I of tasks in increasing order of rank

metric;
3 for t← 1 to N do
4 i← I(t);
5 for j ← 1 to M do
6 for k ← 1 to K do
7 if Wijk 6= 0 then
8 if t ≥ 2 then
9 Calculate Sijk using equation (23);

10 Calculate xijk using equation (22);
11 Calculate Tijkloc

and Tijkoff
using

equations (19) and (20) respectively;
12 else
13 xijk ← 0;
14 Tijkloc

← CTizi +max{Tbusyzi , T reli};
15 Tijkoff

← Inf ;
16 end
17 end
18 Find j∗i and k∗i based on minj∈M,k∈K{Tijkloc

} ;
19 Tfti ← minj∈M,k∈K{Tijkloc

} ;
20 Tbusyi ← Tfti ;
21 Tbusyj∗i ← Tfti ;
22 return j∗i , Tfti, xij∗i k

∗
i

, Sij∗i k
∗
i

, k∗i ;
23 end

also requires maximum operation over different values of
previous tasks in the priority list, i.e. N−1 in the worst case,
and all the edges in the routing path, i.e. M − 1 in the worst
case. Hence, the complexity of JPOFH is O(N2 ∗M2 ∗K).

4.2 Lower Bound Solution
We have also proposed a lower bound solution by relaxing
the formulated MINLP problem. The problem is non-convex
due to the following three issues:

1) Bilinear terms such as Fijk. ∗
∑N

r=1 Xijr, Xijr ∗ Xujr,∑N
r=1 Xijr ∗

∑N
s=1 Xivs, and Xijr ∗ Xijs, which make

the problem non-convex.
2) Equation (8) is non-convex as it is of the form quadratic

expression ≥ constant
3) Binary decision variable, Fijk

The three issues in P1 can be addressed by relaxing the
problem in three stages.

In first stage, we can relax bilinear terms in P1 into linear
terms. The bilinear term Fijk.∗

∑N
r=1 Xijr can be relaxed by

using McCormick envelope. The bilinear term is replaced by
a new decision variable Zijk,∀i ∈ A, j ∈ V, k = 1, ...K and
by adding four additional constraints. The equations (5) and
(9) can be changed to equations (25), and (26) respectively:

K∑
k=1

Zijk =
N∑
r=1

Xijr, ∀i ∈ A, j ∈ V (25)

Ftijr − Sijk ≥ Xijr ∗ CTij +Wzijk ∗Hzijk ∗
Di

Rzijk
∗ Zijk

∀i ∈ A, j ∈ V, k = 1, ...K, r = 1, ...N
(26)

The four additional constraints to replace bilinear term
Fijk. ∗

∑N
r=1 Xijr are:

Zijk ≥ 0,∀i ∈ A, j ∈ V, k = 1, ...K (27)

Zijk ≥ Fijk +
N∑
r=1

Xijr − 1,

∀i ∈ A, j ∈ V, k = 1, ...K

(28)

Zijk ≤ Fijk, ∀i ∈ A, j ∈ V, k = 1, ...K (29)

Zijk ≤
N∑
r=1

Xijr, ∀i ∈ A, j ∈ V (30)

Same relaxation method can be applied to other bilinear
terms. The details about the relaxation of all bilinear terms
are shown in Appendix A.

In the second stage, we can relax the non-convex con-
straint in equation (8). We first expand and change the
equation (13) to equation (31) by considering the relaxation
done previously. The absolute function in equation (8) is also
relaxed to a bilinear term in equation (31).

(Ykezij ∗ Fijk ∗ Ywezuv ∗ Fuvw) ∗ L+ Sijk ∗ Sijk+

Hzijk ∗
Di

Rzijk
∗ Zijk ∗ Sijk − 2 ∗ Sijk ∗ Suvw−

Hzijk ∗
Di

Rzijk
∗ Zijk ∗ Suvw + Suvw ∗ Suvw − (Hzuvw∗

Du

Rzuvw
∗ Zuvw ∗ Sijk)− (Hzuvw ∗

Du

Rzuvw
∗ Zuvw ∗Hzijk∗

Di

Rzijk
∗ Zijk) +Hzuvw ∗

Du

Rzuvw
∗ Zuvw ∗ Suvw >= 0

∀i, u ∈ A, j, v ∈ V, k, w = 1, ...K,

∀e ∈ E, r, s = 1, ...N
(31)

Equation (31) has many bilinear terms that can be re-
laxed to linear decision variables by using McCormick en-
velope. The details about the relaxation of all bilinear terms
are shown in Appendix A.

In the third stage, we relax the binary decision variable,
Fijk, to a continuous variable. The range of continuous
decision variable Fijk can be set as:

0 ≤ Fijk ≤ 1, ∀i ∈ A, j ∈ V, k = 1, ...K (32)

The new relaxed problem, P2, can be defined with the
same objective function and replacing the constraints having
bilinear terms with relaxed constraints. See the details in
Appendix A. The relaxed problem, P2, is a convex linear

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

programming (LP) problem that has been solved using
CVX [32] to give a lower bound solution. However, this
lower bound solution is not feasible as many constraints
are violated. The lower bound solution can still serve as a
benchmark solution for performance evaluation.

5 EVALUATION

We have done simulation to evaluate and compare the
performance of JPOFH with other benchmark solutions.
The simulation experiments have been done on a MacBook
Pro with 2.7 GHz Dual-Core Intel Core i5 processor. The
performance evaluation has been done for two performance
metrics: average completion time and running time of the
algorithm. The parameters used for simulation are in similar
range to the one used previously in [18] and [33].

5.1 Simulation Setting
Parameters for Network Model: We generate a network of
edge devices where devices are deployed randomly using
a uniform distribution. The size of the area is selected to
be M × M square units, and any two devices less than
2∗M/5 units apart are connected to each other. The distance
between devices is set to be in a similar range as done in
previous works such as [33] and [19]. However, compared to
the fixed-size area used in these works, a variable area size
makes it easier to create connected mesh network topology
even with a low number of devices. Besides, maintaining
a similar network density using variable area size helps
in avoiding network topology with too little or too much
network links. All the devices are connected to each other
using a multi-hop path to form a connected graph. Each
vertex in the graph represents a device and its weight repre-
sents the processing power of the device. The weight of the
link (edge) connecting two devices (vertices) represents the
bandwidth capacity of the link (edge). The devices are het-
erogeneous in terms of processing power which is selected
from a normal distribution with mean 50MCPS (Million
Cycles Per Second) and variance 30%. The bandwidth of
each link is selected from a normal distribution with mean
20Mbps and variance 30%.
Parameters for Application Model: The N tasks in the applica-
tion model are generated at a device selected randomly. The
computation load of each task is selected from a normal
distribution with mean 300KCC (Kilo Clock Cycles) and
variance 30% and the input data for each task transferred
is selected from a normal distribution with mean 50 Kb and
variance 30%. The release time of each task is selected from
a normal distribution with mean 6 ms and variance 30%.
The value of mean release time is calculated as the ratio of
mean computation load of tasks to mean processing speed
of devices.

5.2 Benchmark solutions
We have compared the performance the JPOFH algorithm
with four benchmark solutions.

1) Lower Bound (LB): LB is the solution described in
section 4 for the relaxed problem. Compared to JPOFH,
LB is obtained after relaxing many constraints includ-
ing offloading each task to only one remote device,

executing no more than one task at each device, and
not allowing any two flows to pass through a link at
the same time. Due to these relaxations, LB gives an
infeasible solution; however, it provides a loose lower
bound for performance comparison.

2) Local execution (LE): LE is obtained by executing all the
tasks at the local devices where the tasks are generated.
LE is easy to obtain as it does not require consideration
of flow scheduling. The finish time and waiting time
for local execution are defined according to equation
(33) and (34) respectively.

Tfti = CTizi +max{Tbusyzi , T reli} (33)
Tbusyzi = Tfti, ∀i ∈ A, j ∈ V, k = 1, ...K

(34)

3) Remote execution (RE): RE is obtained by executing the
tasks at a remote device. Compared to JPOFH, RE only
considers full offloading of tasks where the offloading
is done using a greedy heuristic based on the priority
list used in JPOFH. The flow scheduling in RE is done
based on the priority order of tasks similar to JPOFH
algorithm.

4) Separate offloading and flow scheduling (SOFS): SOFS
is obtained by separating the partial task offloading
and flow scheduling problem. Compared to JPOFH,
where the tasks are executed on devices based on
priority order, SOFS follows the first-come-first-serve in
executing the tasks. Besides, the partial offloading ratio
for SOFS, shown in equation (35), does not consider
the start time of input data flows and waiting time
at the devices. The flow scheduling is done in SOFS
based on the priority order of the earliest deadline
first (EDF) approach, used in flow scheduling algorithm
PDQ [34]. Here, the deadline of the flow is based on
the priority order of the tasks. Compared to JPOFH,
flow scheduling in SOFS only requires calculation for
the selected device and routing path for offloading the
task.

xijk =

CTizi

CTizi + CTij +Hzijk ∗ Di

Rzijk

∀i ∈ A, j ∈ V, k = 1, ...K

(35)

5.3 Simulation Results
The default parameters used for the performance compar-
ison are number of tasks as 5, number of devices as 10,
number of routing paths between any source-destination
pair as 3, and the amount of input data selected from a
normal distribution with mean 50 Kb and variance 30%.
The evaluation has been done under two different settings
of selecting the device where each task is generated: fixed
device and random device. In the fixed device setting, each
task is generated on a separate device. In the simulation, we
assume task i is generated on device j, where i = j. On the
other hand, in the random device setting, the tasks can be
generated randomly at any device. This implies that each
device may have more than one task being generated in the
random device setting. Table 3 and 4 show the performance

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 3: Performance Comparison for default parameters (fixed device)

Metric LB LE RE SOFS JPOFH
Completion time (sec) 0.0079 ± 0.0003 0.0138 ± 0.0008 0.0128 ± 0.0005 0.0115 ± 0.0008 0.0103 ± 0.0003
Running time (sec) 9479.8 ± 199.13 8.70E-05 ± 6.80E-05 0.0087 ± 0.0018 0.0021± 0.0018 0.0101 ± 0.0024

TABLE 4: Performance Comparison for default parameters (random device)

Metric LB LE RE SOFS JPOFH
Completion time (sec) 0.0076 ± 0.0002 0.0139 ± 0.0008 0.0124 ± 0.0004 0.0109 ± 0.0006 0.0100 ± 0.0004
Running time (sec) 9907.8 ± 162.22 1.51E-04 ± 0.0001 0.0099 ±0.0023 0.0025 ± 0.0023 0.011 ±0.0027

comparison between JPOFH and benchmark solutions for
fixed device and random device setting respectively. The re-
sults in both tables have been averaged for 30 iterations and
the error margin is calculated for 95% confidence interval.
The input values for the application and network model in
each iteration are different and generated randomly.

It can be observed from both Table 3 and 4 that JPOFH
performs better than the three benchmark solutions (LE, RE,
and SOFS) in terms of average completion time. JPOFH is
around 8% to 26% better in terms of average completion
time depending on benchmark solution for both fixed and
random device setting. The error margin for completion is
less than 5% for 95% confidence interval. The running time
of JPOFH is higher than the three benchmark solutions;
however, it is still within the same range as other solutions.
The value of running time changes depending on the system
being used for simulation and the algorithm implementa-
tion. However, we can make some observations based on the
trend in the values. The value of running time also shows
large variation as we consider values from all iterations,
even including outlier values. It should be noted that we
have shown LB in the table for comparison; however, as
mentioned previously, LB gives an infeasible solution due
to relaxations of various constraints. We used Mosek solver
in CVX to find the LB solution.

The rest of this section gives a detailed performance
comparison by changing the values of the number of tasks,
the number of devices, the number of routing paths, and
the amount of input data. These parameters were chosen
because the number of tasks, the number of devices, and
the number of routing paths directly impact the algorithm
complexity whereas varying the amount of input data helps
in considering the change in communication cost. Similar
to the results shown in Table 3 and 4, the following results
have been averaged for 30 iterations and the error margin is
calculated for 95% confidence interval. In order to provide
better insight, we have used the fixed device setting for
further evaluation unless specified otherwise. By fixing the
device where each task is generated, we can study the trend
in the values of average completion time and running time
for a specific parameter.

5.3.1 Effect of number of tasks

We evaluate the effect of the number of tasks by changing
the tasks from 2 to 20 as shown in Fig 2. We use the fixed
device setting when the number of tasks is less than 10
and the random device setting after the tenth task. The

average completion time increases with the number of tasks
as both the waiting time at the devices and start time of
network flows are increased. The difference in completion
time between JPOFH and LE decreases with an increase in
the number of tasks from 27.9% at 2 tasks to 16.6% at 20
tasks. This decrease in the gap can be explained as LE does
not require to include waiting time at the devices and the
start time of network flows which are both considered in
JPOFH. However, as we increase the number of tasks to
be more than the number of devices, there is some waiting
time involved which slightly increases the performance
difference between LE and JPOFH. RE shows a similar per-
formance trend as LE, where the difference in the average
completion time of JPOFH decreases from 20.7% at 2 tasks to
4% at 20 tasks. RE fully offloads the tasks while considering
the waiting time at devices and start time of flows which
leads to better performance than LE for a high number of
tasks. JPOFH shows a continuous increase in performance
difference with SOFS from 2% at 2 tasks to 25.5% at 20 tasks.
This is because the cost of waiting time at devices and start
time of network flows, which are considered separately in
SOFS, is not significant when the number of devices is large
compared to the number of tasks. However, as the number
of tasks starts to become more than the number of devices,
SOFS performs worse than JPOFH. This shows that joint
decision making of partial offloading and flow scheduling,
as done in JPOFH, leads to better performance in terms of
average completion time compared to different benchmark
solutions.

The effect of the number of tasks on running time of the
algorithm is shown in Fig 3. We have shown the comparison
in running time on Log10 scale as there is a huge difference
in values of running between LE and LB. The running time
of JPOFH is more than LE, RE, and SOFS. The running time
of both RE and JPOFH increases with the number of tasks as
they are similar in implementation except for the calculation
of partial offloading ratio in JPOFH. LE does not show much
variation in running time on increasing the number of tasks
as there is no significant calculation involved. The increase
in running time of SOFS is less compared to JPOFH as SOFS
requires to calculate the start time of input data flow only
for the selected device and routing path which decreases the
running time cost significantly. The running time of LB is
significantly higher than other algorithms as it includes not
only the time of solving the convex optimization problem
but also specifying all the possible constraint equations.
Although this time can be decreased by using a different

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

2 5 10 15 20

Number of tasks

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
A

ve
ra

ge
 c

om
pl

et
io

n
tim

e
in

 s
ec

on
ds LB LE RE SOFS JPOFH

Fig. 2: Effect of number of
tasks on completion time

2 5 10 15 20

Number of tasks

10-6

10-4

10-2

100

102

104

106

108

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

 (
lo

g1
0

sc
al

e) LB LE RE SOFS JPOFH

Fig. 3: Effect of number of
tasks on running time

3 5 10 15 20 25

Number of devices

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

A
ve

ra
ge

 c
om

pl
et

io
n

tim
e

in
 s

ec
on

ds LB LE RE SOFS JPOFH

Fig. 4: Effect of number of
devices on completion time

3 5 10 15 20 25

Number of devices

10-6

10-4

10-2

100

102

104

106

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

 (
lo

g1
0

sc
al

e)

LB LE RE SOFS JPOFH

Fig. 5: Effect of number of
devices on running time

1 2 3 4 5

Number of routing paths

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

A
ve

ra
ge

 c
om

pl
et

io
n

tim
e

in
 s

ec
on

ds LB LE RE SOFS JPOFH

Fig. 6: Effect of number of
routing paths on completion
time

1 2 3 4 5

Number of routing paths

10-5

100

105

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

 (
lo

g1
0

sc
al

e)

LB LE RE SOFS JPOFH

Fig. 7: Effect of number of
routing paths on running
time

5 50 100 150 200

Amount of average input data in Kb

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

A
ve

ra
ge

 c
om

pl
et

io
n

tim
e

in
 s

ec
on

ds

LB LE RE SOFS JPOFH

Fig. 8: Effect of amount of in-
put data on completion time

5 50 100 150 200

Amount of average input data in Kb

10-5

100

105

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

 (
lo

g1
0

sc
al

e)

LB LE RE SOFS JPOFH

Fig. 9: Effect of number of
routing paths on running
time

solver or implementation approach, we can still observe
the increase in running time of LB with an increase in the
number of tasks.

5.3.2 Effect of number of devices

Fig 4 shows the performance comparison, in terms of av-
erage completion time, on changing the number of devices
from 3 to 25. The comparison covers the full range from
when the number of devices is less than the number of
tasks to when the number of devices is 5 times the number
of tasks. The average completion time of tasks decreases
an increase in the number of devices as waiting time at
the devices is reduced. The performance difference between
JPOFH and LE increases from 12.2% at 3 devices to 26.6% at
25 devices. JPOFH performs even better when the number
of devices is more than the number of tasks as there are
more options of partially offloading the tasks leading to a
decrease in waiting time. In contrast, LE does not leverage
the resources available on other devices. JPOFH also shows
an increase in performance difference between RE from 9.1%
at 3 devices to 19.7% at 25 devices. Although RE can lever-
age resources on other devices, partially offloading the tasks
in JPOFH leads to better performance as the different com-
ponents of the tasks can be executed simultaneously. There
is a decrease in performance difference between JPOFH
and SOFS from 15% at 3 devices to 6% at 25 devices. As
explained earlier, the cost of waiting time at the devices and
start time of network flows is very low when the number
of devices is significantly high compared to the number
of tasks. However, JPOFH still performs better than SOFS,
even for a large number of devices.

The performance comparison, in terms of running time
of the algorithm, is shown in Fig 5. The running time of
all the algorithms, expect LE, increases with an increase in
the number of devices. SOFS also does not show significant
variance in running time as it does not have to calculate start

time of input data flow for all devices and routing paths
which is the most computation-intensive part of JPOFH
algorithm.

5.3.3 Effect of number of routing paths

Fig 6 shows the performance comparison, in terms of av-
erage completion time, on changing the number of routing
paths between any source-destination pair from 1 to 5. We
find K shortest paths for all source-destination pairs using
Yen’s algorithm [35]. JPOFH uses one of the routing paths
between source and destination device to send the input
data for a task. Although we initially expected to have an
improvement in completion time for an increased number of
routing paths, however, we find that there is no significant
change in the value of average completion time for a dif-
ferent number of routing paths available between any two
devices. This is because we use predetermined routing paths
with increasing value of communication delay for random
network topology. Besides, we measure the performance
for a specific case of the number of tasks and number of
devices. In order to observe the effect of the number of
routing path, we need to see the performance for specific
network topology with increased network traffic. However,
our aim in this work is to study the performance of the
proposed solution for random network topologies and not
for a specific network topology usually considered for data
centers. The evaluation for specific network topologies in
data center networks can be considered in future work.

The performance comparison, in terms of running time
of algorithm, is shown in Fig Fig 7. We observe an increase
in the running time of all algorithms, except LE for reasons
explained previously, on increasing the number of routing
paths. SOFS does not show significant variance in running
time as it considers a selected device and routing path to
calculate the start time of input data flow.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

5.3.4 Effect of amount of input data
Fig 8 shows the performance comparison, in terms of
average completion time, on changing the mean of nor-
mal distribution used to select the amount of input data
from 5 Kb to 200 Kb. The change in the amount of in-
put data reflects the change in the ratio of communica-
tion to computation cost. The comparison covers the full
range from computation-intensive tasks (5 Kb input data)
to communication-intensive tasks (200 Kb input data). We
observe an increase in average completion time on increas-
ing the amount of input data as communication cost is
increased. The performance difference between JPOFH and
LE decreases from 31.2% at average input data of 5 Kb to
16.7% at average input data of 200 Kb. This is because the
increase in input data leads to an increase in communication
cost only for JPOFH as tasks are executed on local devices in
LE. JPOFH also shows a decrease in performance difference
between RE from 18.1% at average input data of 5 Kb to
14.2% at average input data of 200 Kb. This is because the
benefit of executing the partitioned components of tasks
simultaneously in JPOFH, compared to RE, is limited by
high communication cost in case of high average input data.
There is also a decrease in performance difference between
JPOFH and SOFS from 20.8% at average input data of 5
Kb to 4.2% at average input data of 200 Kb. Compared to
SOFS, JPOFH considers the order of tasks for execution at
the devices based on their priority which leads to better
performance when average input data is low. However, the
effect is ordering the tasks is limited by high communication
cost in case of high average input data leading to a decrease
in performance difference between JPOFH and SOFS.

The performance comparison, in terms of running time
of algorithm, is shown in Fig Fig 9. There is no significant
difference in running time of algorithms on changing the
amount of input data as computation complexity of both
JPOFH and benchmark solutions is independent of the
amount of input data.

6 CONCLUSION

This paper studies the multi-hop multi-task partial compu-
tation offloading problem in collaborative edge computing
where heterogeneous independent tasks generated at dif-
ferent heterogeneous devices at different release time are
partially offloaded to a remote device with the objective of
minimizing the average completion time of all tasks. We
need to make a decision considering both partial offloading
and network flow scheduling as tasks can be offloaded to a
device which is multi-hop away. We formulate the problem
as an MINLP optimization problem which is proven to
be NP-hard. Therefore, we propose a JPOFH algorithm
which jointly solves the partial offloading and network flow
scheduling problem. The MINLP problem is also relaxed to
an LP problem using McCormick envelope and the solution
to the relaxed problem acts as lower bound for performance
comparison. We have done simulation experiments to evalu-
ate the efficacy of the JPOFH by comparing it against bench-
mark solutions, including local execution, remote execution,
and separate offloading and flow scheduling. We have done
a comprehensive performance comparison of JPOFH with
benchmark solutions by varying different input parameters,

including the number of tasks, number of devices, number
of routing paths, and the amount of input data. Performance
comparison shows that JPOFH leads to up to 32% improve-
ment in average completion time compared to benchmark
solutions.

We have solved the problem for an offline setting and
evaluated it using simulation experiments. In the future
work, we will implement the solution for an online setting
considering network dynamics and wireless interference.
Another direction for future work is to consider issues
related to SDN controller and implement the scheduling
and network monitoring components in the SDN controller.
We also plan to develop a real-world prototype to illustrate
the efficacy of the proposed solution. Furthermore, the
proposed approach assumes a centralized controller with
global knowledge which can be addressed in a future work
by proposing a distributed scheduling solution.

REFERENCES

[1] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
“A survey on the edge computing for the internet of things,” IEEE
access, vol. 6, pp. 6900–6919, 2017.

[2] L. U. Khan, I. Yaqoob, N. H. Tran, S. Kazmi, T. N. Dang, and C. S.
Hong, “Edge computing enabled smart cities: A comprehensive
survey,” arXiv preprint arXiv:1909.08747, 2019.

[3] A. Saeed, M. Ammar, K. A. Harras, and E. Zegura, “Vision: The
case for symbiosis in the internet of things,” in Proceedings of the
6th International Workshop on Mobile Cloud Computing and Services.
ACM, 2015, pp. 23–27.

[4] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5g networks: New paradigms, scenar-
ios, and challenges,” IEEE Communications Magazine, vol. 55, no. 4,
pp. 54–61, 2017.

[5] K. Wang, H. Yin, W. Quan, and G. Min, “Enabling collaborative
edge computing for software defined vehicular networks,” IEEE
Network, vol. 32, no. 5, pp. 112–117, 2018.

[6] H. Zhang, P. Dong, W. Quan, and B. Hu, “Promoting efficient
communications for high-speed railway using smart collaborative
networking,” IEEE wireless communications, vol. 22, no. 6, pp. 92–
97, 2015.

[7] L. Chen and J. Xu, “Socially trusted collaborative edge computing
in ultra dense networks,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. ACM, 2017, p. 9.

[8] Y. Sahni, J. Cao, S. Zhang, and L. Yang, “Edge mesh: A new
paradigm to enable distributed intelligence in internet of things,”
IEEE access, vol. 5, pp. 16 441–16 458, 2017.

[9] H. Al-Shatri, S. Müller, and A. Klein, “Distributed algorithm for
energy efficient multi-hop computation offloading,” in 2016 IEEE
International Conference on Communications (ICC). IEEE, 2016, pp.
1–6.

[10] C. F. Funai, C. Tapparello, and W. Heinzelman, “Computational
offloading for energy constrained devices in multi-hop coopera-
tive networks,” IEEE Transactions on Mobile Computing, 2019.

[11] Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng, “Qos-aware
cooperative computation offloading for robot swarms in cloud
robotics,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4,
pp. 4027–4041, 2019.

[12] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-
hop cooperative computation offloading for industrial iot-edge-
cloud computing environments,” IEEE Transactions on Parallel and
Distributed Systems, 2019.

[13] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial com-
putation offloading scheme for mobile edge computing enabled
internet of things,” IEEE Internet of Things Journal, 2018.

[14] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge
computing: Partial computation offloading using dynamic voltage
scaling,” IEEE Transactions on Communications, vol. 64, no. 10, pp.
4268–4282, 2016.

[15] B. Li, M. He, W. Wu, A. Sangaiah, and G. Jeon, “Computation of-
floading algorithm for arbitrarily divisible applications in mobile
edge computing environments: An ocr case,” Sustainability, vol. 10,
no. 5, p. 1611, 2018.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[16] Y. Jin, J. Jin, A. Gluhak, K. Moessner, and M. Palaniswami, “An in-
telligent task allocation scheme for multihop wireless networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 3,
pp. 444–451, 2011.

[17] A. Munir, T. He, R. Raghavendra, F. Le, and A. X. Liu, “Network
scheduling aware task placement in datacenters,” in Proceedings of
the 12th International on Conference on emerging Networking EXperi-
ments and Technologies. ACM, 2016, pp. 221–235.

[18] S. Sundar and B. Liang, “Offloading dependent tasks with com-
munication delay and deadline constraint,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 37–45.

[19] Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for
achieving low latency in collaborative edge computing,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 3512–3524, 2018.

[20] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance guaran-
teed computation offloading for mobile-edge cloud computing,”
IEEE Wireless Communications Letters, vol. 6, no. 6, pp. 774–777,
2017.

[21] Y. Tian and E. Ekici, “Cross-layer collaborative in-network pro-
cessing in multihop wireless sensor networks,” IEEE transactions
on mobile computing, vol. 6, no. 3, pp. 297–310, 2007.

[22] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading
for energy-constrained mobile edge computing in small-cell net-
works,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp.
1619–1632, 2018.

[23] Y. Zhao, C. Tian, J. Fan, T. Guan, and C. Qiao, “Rpc: Joint
online reducer placement and coflow bandwidth scheduling for
clusters,” in 2018 IEEE 26th International Conference on Network
Protocols (ICNP). IEEE, 2018, pp. 187–197.

[24] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data analytics,”
ACM SIGCOMM Computer Communication Review, vol. 45, no. 4,
pp. 421–434, 2015.

[25] L. Rupprecht, W. Culhane, and P. Pietzuch, “Squirreljoin: network-
aware distributed join processing with lazy partitioning,” Proceed-
ings of the VLDB Endowment, vol. 10, no. 11, pp. 1250–1261, 2017.

[26] C.-F. Liu, S. Samarakoon, M. Bennis, and H. V. Poor, “Fronthaul-
aware software-defined wireless networks: Resource allocation
and user scheduling,” IEEE Transactions on Wireless Communica-
tions, vol. 17, no. 1, pp. 533–547, 2017.

[27] T. De Schepper, S. Latré, and J. Famaey, “A transparent load bal-
ancing algorithm for heterogeneous local area networks,” in 2017
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM). IEEE, 2017, pp. 160–168.

[28] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt,
K.-H. Kim, and T. Nadeem, “mesdn: Mobile extension of sdn,”
in Proceedings of the fifth international workshop on Mobile cloud
computing & services, 2014, pp. 7–14.

[29] T. De Schepper, P. Bosch, E. Zeljkovic, K. De Schepper,
C. Hawinkel, S. Latré, and J. Famaey, “Sdn-based transparent flow
scheduling for heterogeneous wireless lans,” in 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM).
IEEE, 2017, pp. 901–902.

[30] Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, and F. Yang,
“Dependency-aware task scheduling in vehicular edge comput-
ing,” IEEE Internet of Things Journal, 2020.

[31] D. Nowak, T. Mahn, H. Al-Shatri, A. Schwartz, and A. Klein, “A
generalized nash game for mobile edge computation offloading,”
in 2018 6th IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering (MobileCloud). IEEE, 2018, pp. 95–102.

[32] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disciplined
convex programming,” 2008.

[33] J. Yang, H. Zhang, Y. Ling, C. Pan, and W. Sun, “Task allocation
for wireless sensor network using modified binary particle swarm
optimization,” IEEE Sensors Journal, vol. 14, no. 3, pp. 882–892,
2013.

[34] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly
with preemptive scheduling,” ACM SIGCOMM Computer Commu-
nication Review, vol. 42, no. 4, pp. 127–138, 2012.

[35] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
management Science, vol. 17, no. 11, pp. 712–716, 1971.

Yuvraj Sahni received B.E. (Hons) degree in
Electrical and Electronics Engineering from Birla
Institute of Technology and Science, Pilani, In-
dia in 2015. He is currently working towards
the Ph.D. degree at Department of Computing,
The Hong Kong Polytechnic University. Hong
Kong. His research interests include wireless
sensor networks, edge computing, and Internet
of Things.

Jiannong Cao received the B.Sc. degree
in computer science from Nanjing University,
China, in 1982, and the M.Sc. and Ph.D. degrees
in computer science from Washington State Uni-
versity, USA, in 1986 and 1990 respectively. He
is currently the Otto Poon Charitable Founda-
tion Professor in Data Science and the Chair
Professor of Distributed and Mobile Computing
in the Department of Computing at The Hong
Kong Polytechnic University, Hong Kong. He is
also the director of the Internet and Mobile Com-

puting Lab in the department and the associate director of University
Research Facility in Big Data Analytics. His research interests include
parallel and distributed computing, wireless networks and mobile com-
puting, big data and cloud computing, pervasive computing, and fault
tolerant computing. He has co-authored 5 books in Mobile Computing
and Wireless Sensor Networks, co-edited 9 books, and published over
600 papers in major international journals and conference proceedings.
He is a fellow of IEEE, a distinguished member of ACM, a senior
member of China Computer Federation (CCF).

Lei Yang received the BSc degree from Wuhan
University, in 2007, the MSc degree from the
Institute of Computing Technology, Chinese
Academy of Sciences, in 2010, and the PhD
degree from the Department of Computing, The
Hong Kong Polytechnic University, in 2014. He
is currently an associate professor at the School
of Software Engineering, South China Univer-
sity of Technology, China. His research inter-
est includes mobile cloud computing, Internet of
things, and big data analytic. He has published

more than 30 papers in conferences and journals. He is a program
committee member for many international conferences. He is a member
of the IEEE.

Yusheng Ji received the B.E., M.E., and D.E.
degrees in electrical engineering from The Uni-
versity of Tokyo. She joined the National Cen-
ter for Science Information Systems, Japan, in
1990. She is currently a Professor with the Na-
tional Institute of Informatics and with The Grad-
uate University for Advanced Studies. Her re-
search interests include network architecture, re-
source management, and quality of service pro-
visioning in wired and wireless communication
networks. She is/has been an Editor of the IEEE

Transactions on Vehicular Technology, a Symposium Co-Chair of the
IEEE GLOBECOM 2012 and the IEEE GLOBECOM 2014, and a Track
Co-Chair of the IEEE VTC 2016-Fall and IEEE VTC 2017-Fall.

	Introduction
	Related Works
	System Model and Problem Formulation
	System Model
	Problem Formulation
	Constraints
	Optimization Problem

	Joint Partial Offloading and Flow Scheduling Heuristic (JPOFH)
	JPOFH Algorithm
	Lower Bound Solution

	Evaluation
	Simulation Setting
	Benchmark solutions
	Simulation Results
	Effect of number of tasks
	Effect of number of devices
	Effect of number of routing paths
	Effect of amount of input data

	Conclusion
	References
	Biographies
	Yuvraj Sahni
	Jiannong Cao
	Lei Yang
	Yusheng Ji

