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Online Scheduling Technique To Handle Data
Velocity Changes in Stream Workflows
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Abstract—Many IoT applications and services such as smart parking and smart traffic control contain a network of different analytical
components, which are composed in the form of a workflow to make better decisions. These workflows are also known as stream
workflows. The focus of existing research works is on the streaming operator graph, which differs from stream workflow application as it
involves heterogeneity, multiple data sources and multiple outputs. Considering the complexity and dynamism of stream workflow,
meeting real-time data analysis requirements at deployment time is not the whole story as the velocity of data changes over time. This
change is the most dynamic form of stream workflow that occurs frequently during the execution of this application. In this paper, we
propose a new dynamic scheduling technique that manages cloud resources over time to handle data velocity changes in stream
workflow while maintaining user-defined real-time data analysis requirements and minimising execution cost. The efficiency of the
proposed technique is evaluated, and experimental results showed that this technique outperformed its competitors and is close to the
lower bound.

Index Terms—IoT, Stream workflow, Dynamic scheduling, Alpha-Beta pruning, GA with Random Immigrants, Cloud environments.
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1 INTRODUCTION

S EVERAL IoT applications and services such as smart city,
smart parking and smart traffic control, have evolved

to cope with the demand of improving our lives [1] [2].
These applications are not a monolithic application, but
they contain a network of different analytical components
which are composed in the form of a workflow to make
better decisions. For instance, smart road traffic monitoring
application as a service of smart city services utilises the
true power of connected vehicles in addition to roadside in-
frastructure (e.g. traffic lights, cameras) to a create real-time
view of road traffic conditions [3]. This type of workflow is
also called stream workflow application and is becoming
gradually viable for solving real-time data computation
problems that are more complex.

In contrast to traditional business and scientific work-
flows [?] [5], stream workflows support the continuous
processing of an infinite stream of data with each analytical
component always in an active state. They have multiple
data sources that inject their data streams into any analytical
components and have multiple outputs. They also differ
from streaming operator graphs as the source of data for
the whole operator graph is one and there is a one end
operator. Thus, the operator graph is just a simplified case
of stream workflow. Moreover, this workflow can be highly
dynamic in nature, where the data velocity may change at
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runtime reflecting the load at a given time, and therefore
the resources should be managed over time. Furthermore,
the use of a single cloud to execute this workflow could not
meet user requirements due to the distribution of external
data sources. Thus, multicloud environment that consolid-
ates multiple clouds can help in utilising data locality by or-
chestrating analytical components included in data pipeline
over different clouds. However, provisioning resources from
different clouds while meeting user performance require-
ments is also a challenge. By combining the aforementioned
challenges with the heterogeneity of compute resources
available in cloud datacenters and users’ quality of service
requirements, managing the execution of such applications
is a complex task.

In general, stream workflows have received less atten-
tion. But, the importance of making real-time decisions by
analysing streaming data is rising with IoT emergence. Most
of the existing research works focused on supporting the
other type of big data processing which is batch processing.
These works such as [6] [7] provided the ability to compose
batch processing applications into pipelines to process static
data at once and get final analytical insights by extending
the capability of scientific workflow management systems.
While the rest offered big data orchestrators (Apache YARN
[8] and Apache Mesos [9]) that do not need to deal with the
dynamism of stream workflow applications and meet real-
time user requirements. Therefore, there are few scheduling
algorithms in the literature that treat the scheduling prob-
lem of various streaming big data applications over cloud
infrastructure [10] [11] [12] [13] [14] or over geo-distributed
datacenters [15] [16] [17].

In respect to our previous work [18], this work investig-
ated the problem of scheduling stream workflow at deploy-
ment time. Genetic and greedy algorithms are proposed to
generate a sub-optimal provisioning and scheduling solu-
tion for executing stream workflow in a multicloud environ-
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ment. Such work does not deal with the dynamism of stream
workflows. Considering the velocity of data may fluctuate
over time, this paper investigates the problem of scheduling
stream workflows to support runtime data fluctuations. It
deals with a stream workflow application based on the fact
that this workflow is an adaptive workflow application.
Because this workflow serves the current-extra and future
demands of changing real-time analytical requirements at
runtime to make faster and better decisions.

To fill the gap of supporting dynamic scheduling un-
der the variations of data stream rates, we design a new
adaptive scheduling technique. This technique revises the
scheduling plan of a stream workflow application to handle
the changes that happen in the speed of data at runtime to
always meet real-time analytical requirements with minimal
execution cost. In other words, it is aimed at tackling data
stream velocity fluctuations while maximising performance
efficiency, and all of that at a minimal monetary cost. In
summary, our contributions are:

• Dynamic stream workflow application model.
• Two-phase adaptive scheduling technique that incor-

porates two advanced optimisation algorithms (Ran-
dom Immigrants Genetic Algorithm (GA for short)
and two-level greedy algorithm) to handle runtime
data fluctuations while meeting real time user per-
formance constraints and minimising execution cost.

This paper is structured as follows: Section 2 reviews the
related works. Section 3 presents dynamic stream workflow
requirements. The problem formulation is presented in Sec-
tion 4. Section 5 presents the proposed scheduling technique
whose performance is evaluated in Section 6. Section 7
concludes the paper and highlights future improvements.

2 RELATED WORK

In this section, we present the comparisons with related
works from three perspectives, which are application, mod-
elling and methods/techniques.

From the application perspective, there are a batch-
oriented big data workflow (MapReduce workflow) and a
stream-oriented big data workflow (stream workflow). The
focus of previous studies (such as J. Wang et al. [6] [7], F.
Teng [19], Y. Wang and W. Shi [20], T. Shu and C.Q. Wu [21],
and X. Zeng et al. [22] [23]) were mostly on MapReduce
workflows and their executions in cloud infrastructure.

From the modelling perspective, there are two stream
processing models, which are a data-flow graph with micro-
batch processing model (i.e. discretised streaming model)
and an operator graph with continuous processing model.
With discretised streaming model, streaming computations
are performed on a series of small data batches called micro-
batches. M. Zaharia et al. [24] followed this model and
proposed a stream programming model named Discretized
Streams (D-Streams). It brings together a series of Resilient
Distributed Datasets (RDDs) and allows performing com-
putations through various transformations. Apache Spark
uses RDD data model and allows to perform stream com-
putations on RDD to define data processing. While with
a continuous processing model, an operator graph is used
to model a data pipeline, where each node in the graph

is a long-lived operator. This operator carries-out stream
computation on streams as they arrive and produces a new
stream. Stream-oriented big data platforms and services
such as Apache Storm and IBM Streaming allow building
streaming operator graphs for performing real-time data
processing. As streaming operator graphs are different from
dynamic stream workflows in that the source of data for the
whole operator graph is one and there is one end operator,
a new model is needed for dynamic stream workflow. This
model should involve heterogeneity, multiple data sources
and outputs.

From the scheduling perspective, scheduling techniques
in the literature use heuristic and/or meta-heuristic ap-
proaches for making decisions based on different scheduling
criteria (such as deadline, execution cost and performance)
in order to meet user-defined SLA requirements. Research
works such as D. Sun [10], T. Buddhika et al. [11] and
A. Boek and F Werner [12] focused on scheduling data
stream computations for performance and/or energy optim-
isations. However, those research works and frameworks
model stream workflow as a streaming operator graph.
Since streaming operator graphs are different from dynamic
stream workflows, the scheduling problem of dynamic
stream workflows has different assumptions and optimisa-
tion goals. This problem considers the mapping of analytical
components to multiple compute resources and optimisa-
tion goals include minimising execution cost and improving
performance without violating real-time user requirements.

In the same perspective, D. Sun and R. Huang [13]
and D. Sun et al. [14] focused on online scheduling
with guaranteed makespan and utilised single cloud as
an execution environment for big data streaming applica-
tions. These scheduling strategies/methods do not consider
stream workflow as a network of streaming big data work-
flow applications (i.e. workflow of workflows). They also
do not take into consideration the dynamic nature of this
workflow and its unpredictable performance. They also do
not consider the various real-time decision support require-
ments and the powerful capability of ’cloud of clouds’ as
a dynamic execution environment. In the same context but
for scheduling big data processing jobs/tasks and workflow
in geo-distributed clouds, L. Chen et al. [15] proposed a
fair job scheduler. This scheduler aimed at reducing job
completion time that relied on Apache Spark. Z. Hu et al.
[16] proposed a new job scheduling method named Flutter,
which aimed at reducing completion time and implemen-
ted in Apache Spark. H. Chen et al. [17] proposed task-
duplication based real-time scheduling method to reduce
completion and execution times. However, these scheduling
methods are considered a stream workflow as an operator
graph and have different optimisation goals.

For scheduling techniques supported with big data ap-
plication orchestrators, each one of them uses a differ-
ent scheduling technique to map applications on cloud
resources. Apache YARN uses a monolithic scheduler to
map compute resources among competing applications in
the cluster. Apache Mesos uses a dual-level scheduling
mechanism called resource efforts, which provides resource
offerings to a framework. This framework will either accept
the offer or reject it if the offered resources do not meet
its constraints and then wait for the ones they do. Con-
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sequently, these orchestrators assume either that they do
not need to meet real-time decision support requirements
or are intended for big data workflows that have predictable
performance [25]. Therefore, the scheduling mechanisms in
those orchestrators consider big data workflow application
as a static structure, so that they neglect the following: (1)
dynamic nature of this application and its analytical com-
ponents, (2) unpredictable performance of this workflow
application, (3) real-time performance requirements defined
by the owners of these workflows, (4) runtime changes and
(5) the powerful capability of ’cloud of clouds’ as a dynamic
execution environment.

Accordingly, the scheduling techniques proposed in the
aforementioned studies do not fit the composition needs
of complex big data workflows. They also do not lever-
age the capability of multicloud environment to cope with
the dynamic aspects of these workflows. As a result, the
dynamic scheduling technique is needed for a stable and
efficient execution of stream workflow over multiple cloud
infrastructures. Such a technique should meet user real-time
performance requirements and respond to the fluctuations
of data at runtime while reducing the overall execution cost.

3 STREAM WORKFLOW AND ITS REQUIREMENT

Stream workflow application is a network of streaming big
data applications (analytical components) that can be inde-
pendently executed over cloud resources while maintaining
data dependencies among them. It has three main charac-
teristics that need to be considered. These characteristics are
continuous input data (from external and internal sources),
continuous processing and continuous insights produced
by end analytical components. Considering these charac-
teristics, the most dynamic form of stream workflow that
occurs frequently is the change in the speed of streaming
data. Example of stream workflow is a smart road traffic
monitoring that utilizes IoT connected vehicles and road-
side infrastructure to create real-time view of road traffic
and incidents. The details of this real use case for stream
workflow application is provided in Appendix A.

In stream workflow, the throughputs of services un-
der the dynamic variations of input data rates should be
maintained all the time. Also, end-to-end latency (response
time) is needed to be maintained or be bounded when
it starts to increase. Furthermore in this workflow, there
are distributed data sources that inject their data streams
into a data pipeline, thus data locality approach should be
utilised by leveraging multicloud environment. With this
environment, we can avoid transferring large data to the
corresponding resources over long-heal networks, that is
not only incurring high latency and execution cost but also
makes achieving real-time data analysis requirements more
difficult. Additionally, each cloud in a multicloud environ-
ment offers different computing capabilities with different
prices, so that changing the placement cloud for a service is
possible to reduce execution cost.

Consequently, the variables of stream workflow applic-
ation as pointed-out in our previous work [18] are: type
of service, its data processing requirement, its data pro-
cessing rate, data mode, the dynamic variations of input
data rates and the dynamism of execution environment (i.e.

multicloud environment). Overall, the requirements of both
workflow application and real-time data analysis should be
maintained while dealing with runtime data fluctuations
and minimising the monetary cost.

After presenting a stream workflow and its require-
ments, we will discuss how this workflow application will
be scheduled in a multicloud environment using a motiva-
tion example presented in Appendix A. First, we will walk
through a static schedule plan and then revise this plan
to cope with data velocity changes. For simplicity, let us
consider a sample multicloud environment that is formed
of two datacenters with different VM offers as listed in
Table 1. Also, let us consider the services’ configurations of a
motivation workflow as listed in Table 2. Based on the con-
figurations of workflow services and VM offers available,
the following are static and dynamic reosurce assignments:

• Static assignment: As we discussed in Appendix A,
S1, S3 and S4 are unmovable services, so we assume
that datacenter placement constrains for these ser-
vices are 1, 0 and 1 respectively. While the rest of
services are movable services, they can be placed on
any datacenter to minimise total execution cost. so,
we assume that S2, S5, S7 and S9 are placed in Data-
center 0, while S6 and S8 are placed in Datacenter 1.
Considering the configurations of workflow services
and given constraints, the following is the static as-
signment of motivation workflow that minimises the
total execution cost: S1(4 Small VMs from Datacenter
1), S2 (1 Small VM from Datacenter 0), S3(1 Large VM
from Datacenter 0), S4(4 Small VMs from Datacenter
1), S5(1 Small VM and 1 Large VM from Datacenter
0), S6(1 Large VM and 1 XLarge VM from Datacenter
1), S7(1 Large VM from Datacenter 0), S8(1 Small
VM and 1 Medium VM from Datacenter 1) and S9(1
Large VM from Datacenter 0).

• Dynamic assignment: Let us assume that a data
velocity increase request is occurred at runtime due
to the speed of one of the external sources connected
to S4 is increased by 4MB/s. This change means more
computing power may be required to process the
increased input data rate in S4 and its downstream
services (i.e. S6-S0). Thus, those affected services
will be updated as listed in Table 3. Considering
the updated information of those affected services
and current deployment plan (i.e. static scheduling
plan), the following are amendments on the current
scheduling plan for dynamic assignment: For S4 and
S6, extra 2 Small VMs from Datacenter 1 will be
provisioned for each service to provide an additional
8000 MIPS; For S7 and S9, there is no need to provi-
sion any extra VM because the overprovisioning on
the current plan (i.e. 2000 MIPS) can cover the need
of additional 1000 MIPS for data increase request;
For S8, extra 1 Small VMs from Datacenter 1 will be
provisioned to provide 2000 MIPS with an additional
2000 MIPS.

From the above walk-through motivation example, the static
assignment is only reasonable when the workflow applica-
tion is static in its nature. As a stream workflow is a dynamic
workflow, the dynamic assignment is needed to cope with
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its dynamic aspects. Thus, managing resources and revising
scheduling plan at runtime when the velocity of data stream
changes, requires careful scheduling decisions to keep exe-
cution cost and computational time as minimal as possible
and having no data processing disruptions. This will ensure
a stable and efficient execution of stream workflow over
multiple cloud infrastructures. Accordingly, it is important
and worthwhile to investigate the problem of dynamically
scheduling stream workflow application on various cloud
infrastructures to tackle the fluctuations of input data rate
at runtime while reducing the overall execution cost.

Table 1
VM offers in a sample multicloud environment

VM type Datacenter 0 Datacenter 1
Small MIPS:2000 Cost:0.05 ¢/s MIPS:4000 Cost:0.06 ¢/s
Medium MIPS:4000 Cost:0.1 ¢/s MIPS:8000 Cost:0.15 ¢/s
Large MIPS:8000 Cost:0.15 ¢/s MIPS:16000 Cost:0.3 ¢/s
XLarge MIPS:16000 Cost:0.25 ¢/s MIPS:32000 Cost:0.4 ¢/s

Table 2
Service configurations of motivation workflow

Service data processing requirement Input Output Required MIPS
S1 1000 16 10 16000
S2 1000 2 1 2000
S3 1000 8 4 8000
S4 2000 81 4 16000
S5 2000 5 8 10000
S6 4000 12 6 48000
S7 1000 6 6 6000
S8 1000 12 1 12000
S9 1000 6 2 6000

Table 3
Updated input and output of affected workflow services with MIPS

Service Proportion of out-
put to input

Updated
input

Updated
output

More MIPS
required

S4 4/8=0.5 12 12*0.5=6 8000
S6 6/12=0.5 14 14*0.5=7 8000
S7 6/6=1 7 7*1=7 1000
S8 1/12=0.83 14 14*0.83=1.2 2000
S9 2/6=0.33 7 7*0.33=2.3 1000

4 PROBLEM MODELLING

In this section, we represent and extend our previous
problem modelling [18] to model data velocity change at
runtime. The list of all terminologies that will be used in
this model is presented in Table 4.

4.1 Application Model
Stream workflow application can be represented as a Direct
Acyclic Graph (DAG) with G = (S,EX,E). S represents
a set of N services S = s1, s2, sn, ..., sN , EX represents
a set of P external sources EX = ex1, ex2, exp, ..., exP
and E represents a set of M edges/links between ex-
ternal sources and services and between services themselves
E = e1, e2, em, ..., eM . Each edge, em in workflow graph is
represented as a tuple (ψm, smdest,Y

m), where ψm denotes
stream output source which is either an external source
(exmp ) or an origin service (smorg), smdest denotes destination
service as the target of the edge em and Ym denotes the

Table 4
Problem Modelling Notation

Symbol / Term Description
G Workflow graph
S Set of all graph services
EX Set of all external sources in a workflow graph
E Set of all graph edges
em Edge m between to two services or an external source

and service in a workflow graph
exm

p External source p that is the origin source of the edge em
smorg Service that is the origin source of the edge em
smdest Service that is the target of the edge em
ψm Data source on edge em that can be external source exm

p
or origin service smorg injecting its output data stream
into the target of this edge smdest

Ym Percentage of data that is routed from parent service to
child service (100% in replica mode or any percent in
partition mode)

exp External source p in a workflow graph
Λexp Output data rate of external source exp

sn Service n in workflow graph
MIsn Number of floating-point operations required to process

one MB of sn input data (MI/MB)
λsn Amount of data produced by a given external source(s)

and being consumed by a service sn (MB/s)
γsn Proportion of output data to input data for sn
parent(sn) Set of parent services for sn
C Set of all clouds in multicloud environment
cg Particular cloud g in multicloud environment
cgsn Placement cloud g of sn
L Network latency matrix
L(cgsn1

, cgsn2
) Latency between sn1

placement cloud and sn2
place-

ment cloud
B Network bandwidth matrix
B(cgsn1

, cgsn2
) Bandwidth between sn1 placement cloud and sn2

placement cloud
D Data transfer cost matrix
D(cgsn1

, cgsn2
) Data transfer cost between sn1 placement cloud and sn2

placement cloud
VMg Set of all VMs in cloud g
vmg

k Particular VM k in cloud g
Ug Set of all internal network links between VMs in cloud g
ug
h Particular internal link between vmg

org and vmg
dest

MIPSvm
g
k

Rating of the capacity of VM k in cloud g

¢vm
g
k

Provisioning cost of VM k in cloud g (cents/s)

pro(sn, ti) Set of VMs that are provisioned from one cloud for sn at
ti

ϕ(sn, vm
g
k) Data processing rate for sn when mapped to vmg

k
ϕ′(sn, pro(sn, ti)) Total data processing rate for sn when mapped to all

VMs in pro(sn, ti)
pro+(sn, ti) Set of extra VMs being provisioned for sn from its

placement cloud at ti
pro−(sn, ti) Set of VMs being deprovisioned from pro(sn, ti) for sn

at ti
inStream(sn) Input data stream rate of sn
outStream(sn) Output data stream rate of sn
outStream′(sn1

, sn2
) Amount of output data stream of sn1

routed to sn2
taking into account network bandwidth and latency

MSU Minimum stream unit for the whole application (MB)
MSR Minimum stream processing rate based on MSU for the

whole application (MB/s)
ϑsn x MSUs based on percentage change from original data

rate that being increased or decreased from input stream
of service sn

χ Service unit data processing rate
% Data transfer time
EC(S, T ) Cost of running all provisioned VMs for all services in a

workflow application during T time
ec(sn, ti) Cost of running VMs provisioned for sn at ti
CTS(S, T ) Total data transfer costs performed by services for T time
cts(sn, ti) Total cost of transferring data to sn at ti
c̆(sn1

, sn2
) Cost of transferring data from sn1

parent service to sn2
child service

percentage of data generated by ψm that is routed towards
smdest. Each particular external source exp is represented as
a tuple exp = (Λexp), where Λexp denotes the output data
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rate (data velocity) of this data source.
Each particular service sn, is represented as a tuple

sn = (MIsn , λsn , γsn), where MIsn denotes the number
of floating-point operations required to process one MB
of incoming data (service data processing requirement)
in MI/MB, λsn denotes the arrival rate of data streams
generated by sources outside the application in MB/s (such
as data streams generated by sensors) to be consumed
by the service, and γsn denotes the proportion of data
generated by the service based on input streams.

Notice that, given the nature of stream workflow ap-
plications, it is possible that data generated by one service
can be sent to one or more services, or can be split among
different services. Thus, for service sn, both parameters γsn
and Ym (in edges where such service is origin service) are
necessary to define the whole application. Additionally, the
minimum stream unit per second (denoted as MSR) should
be defined to process streams that coming at different
speeds, where each VM can process one or more units based
on its computing power.

4.2 System Model

The cloud system is modelled as a tuple W = (C, L, B, D). A
set of G clouds in the multicloud environment is denoted as
C = c1, c2, cg, ..., cG. L, B, and D denotes matrices contain-
ing respectively the latency (in seconds), the bandwidth (in
MB/s), and the data transfer cost (in cents/MB or ¢/MB)
between each of the pair of clouds in C.

Each cloud, cg is represented as a tuple (VMg, Ug),
where VMg = vmg

1, vm
g
2, vm

g
k, ..., vm

g
K is a set of

K virtual machines (compute resources) with differ-
ent resource configurations deployed in cg , and Ug =
ug1, u

g
2, u

g
h, ..., u

g
H , u

g
h = (vmg

org, vm
g
dest), a set of H links that

are part of the data center network topology.
Each VM deployed in the cloud, vmg

k, is represented
as a tuple (MIPSvmg

k
, ¢vmg

k
), where MIPSvmg

k
denotes

floating-point operations computed by this VM according
to its compute capacity per second and ¢vmg

k
denotes the

cost of provisioning such VM (in cents per second).
The data processing rate for sn if it is mapped to vmg

k
is denoted as ϕ(sn, vm

g
k) and is calculated by dividing VM

computing power by service unit data processing rate and
service data processing requirement as follows:

ϕ(sn, vm
g
k) =

bMIPSvmg
k
/χc ∗ χ

MIsn
MB/s (1)

Where χ = MSR ∗MIsnand MIPSvmg
k
≥ χ

As sn could be mapped to more than one VM to achieve
user performance requirements, let pro(sn, ti) be the set of
VMs that are provisioned from one cloud for service sn at
ti. The data processing rate for sn if it is mapped to VMs in
pro(sn, ti) is denoted as ϕ′(sn, pro(sn, ti)) and is calculating
by summing data processing rates for sn on all provisioned
VMs at ti as follows:

ϕ′(sn, pro(sn, ti)) =
∑

v∈pro(sn,ti)
ϕ(sn, v) MB/s (2)

In stream workflow application, the calculation of data
processing rate for each service sn should be carried-out

at runtime. This is because of the need to handle dynamic
changes that result in varying the speed of input streams
being injecting into this service. Thus, system should cal-
culate this rate based on the updated input speed of a
service after the occurrence of change request at runtime.
Let inStream(sn) denotes the input stream of sn and is
the total rate of incoming data from external sources and
internal sources (i.e. parent services) based on data modes
used to route such streams toward this service:

inStream(sn) = λsn +
∑

em∈E|ψm=smorg&smdest=sn

(γs
m
org ∗ ϕ′(smorg, pro(smorg, ti))) ∗ Ym MB/s

Where λsn =
∑

em∈E|ψm=exm
p &smdest=sn

(Λex
m
p )

(3)

The following data processing constraint of sn is main-
tained:

ϕ′(sn, pro(sn, ti)) ≥ inStream(sn) (4)

Each service sn produces output stream as a result of
computation. Let outStream(sn) denote the output data
stream for a service sn and is calculated by multiplying the
total input rate of sn by output data proportion/percent as
follows:

outStream(sn) = γsn ∗ inStream(sn) MB/s (5)

The velocity of data for given external source may
change at runtime, which leads to a direct impact either
an increase or decrease on the velocity of data for each sn
connected to this source. This change makes inStream(sn)
and outStream(sn) be updated by the amount of data that
being increased or decreased. Also, this change affects not
only those services, but also has a subsequent change (i.e
indirect impact) on the velocity of data for child services
which have dependency-link with those services. Therefore,
it is worth to note that the maximum number of velocity
changes that can be sent at any instant of time is assumed to
be one and such velocity change request (either increase or
decrease request) is only happen via external source. Let ϑsn
denotes the amount of data stream (in MB/s) based on per-
centage change from original data rate that being increased
or decreased to inStream(sn) as x MSUs. In case of data
velocity decrease, ϑsn should be 0 < ϑsn < inStream(sn).
The inStream(sn) will be updated by adding or subtracting
x MSUs and outStream(sn) will be updated by multiplying
the update total input rate of sn by output data propor-
tion/percent as follows:

inStream(sn) = inStream(sn)± ϑsn
outStream(sn) = γsn ∗ inStream(sn)

(6)

As well as the decrease in velocity of data for sn leads
to lower computing needs for maintaining the above data
processing constraint, so that VM(s) that is not required
will be deprovisioned. This results in cost reduction while
meeting user real-time data processing requirements. While
the increase in velocity of data leads to more computing
demands to maintain the above data processing constraint
for this high data rate, additional VM(s) will be provisioned.
Let pro+(sn, ti) be the set of new VMs that need to be
provisioned from cgsn (placement cloud of service sn) at
ti to cope with the increase speed of data streams, and
pro−(sn, ti) be the set of VM(s) from pro(sn, ti) for service
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sn that will be terminated/deprovisioned at ti in response to
an decrease in the speed of data streams. Thus, pro(sn, ti) is
updated periodically at runtime by provisioning new VM(s)
in case of velocity increases or deprovisioning VM(s) from
the existing ones to respond to velocity decreases as follows:

pro(sn, ti) =


pro(sn, ti−1) ∪ pro+(sn, ti), if velocity incr.
pro(sn, ti−1)− pro−(sn, ti), if velocity decr.
pro(sn, ti−1), otherwise (no change)

(7)
As pro(sn, ti) is updated at runtime, the

ϕ′(sn, pro(sn, ti)) is also updated, reflecting the new
data processing rate for sn based on the updated pro(sn, ti).

Given the change in velocity of data that either increases
or decreases data rate which leads to provision more VMs
or deprovision existing VMs at runtime, the execution cost
needs to be calculated frequently. For our problem here, the
calculation basis for the total execution cost of stream work-
flow application is per second. If T is total time duration,
for cost calculations it is divided into several intervals (i.e.
t1, t2, ..., tI ).

Additionally, we assume that every data stream should
be processed, as unprocessed data streams lead to incorrect
results. We also assume that the order of stream portions
should be maintained during the distributed among the
corresponding compute resources. Based on these assump-
tions, we maintain user specific throughputs for all services
and end-to-end latency (response time) as low as possible
or even bounded when it is being increased. Thus, the
incoming data streams are processed as they arrive and the
latency is maintained, which is a time from a stream being
added to input queue until its emission from the service as
output stream. Of course, in case of a child service receives
two or more dependency streams from its parents services,
the latency is from the time of the last stream being added
to input queue until its emission from child service.

The cost of running VMs used by service sn to process
incoming streams per second ti is denoted as ec(sn) while
the total cost of running all VMs used by all services to
process incoming streams during period of time T is de-
noted as EC(S,T). The EC(S,T) is calculated by summing VM
provisioning costs for all services for T time as follows:

EC(S, T ) =
∑

ti

∑
sn
ec(sn, ti) cents (8)

The ec(sn, ti) is calculated by totalling the costs of all
VMs provisioned for sn at ti as follows:

ec(sn, ti) =
∑

v∈pro(sn,ti)
¢v cents (9)

The data transfer cost is based on the amount of data
being moved, the cost of data transfer charged by cloud
provider, and network bandwidth. In a dynamic workflow
application, the velocity of data determines the speed of
generation, processing and analysis of data, where both
input and output data are moved among different clouds.
As we mentioned before, the change in velocity of data
affects the data transfer cost as increasing speed leads to
an increase in the cost and vice versa, so that the cost
calculation needs to be carried-out per second. Let cts(sn, ti)
denotes the cost of transferring output streams of parent

services to sn at ti, and CTS(S, T ) denotes the total data
transfer cost for the amount of data being moved for all
services during the period of time T. The CTS(S, T ) is
calculated by summing the costs of data transfer between
services for T time as follows:

CTS(S, T ) =
∑

ti

∑
sn
cts(sn, ti) cents (10)

The cts(sn, ti) is calculated by totalling the costs of
transferring data performed by parent services to sn at ti
as follows::

cts(sn, ti) =
∑

sx∈parent(sn)
c̆(sx, sn) cents (11)

c̆(sx, sn) =

{
0, if cgsx = cgsn
outStream′(sx, sn) ∗D(cgsx , c

g
sn), otherwise

outStream′(sx, sn)

{
outStream(sx) ∗ Ym, if % ≤ 1
outStream(sx)∗Ym

% , otherwise

Where % =
outStream(sx) ∗ Ym

B(cgsx , c
g
sn)

+ L(cgsx , c
g
sn)

Overall, the objective function is to minimise the total
cost of executing the dynamic workflow without violating
data dependences and real-time performance requirements
while dealing with changes in speed of data at runtime:

min f(S, T ) = EC(S, T ) + CTS(S, T ) (12)

Eq. 12 is solved for minimisation to generate a cost-
efficient scheduling plan for the execution of stream work-
flows. Considering services’ data processing requirements
and the variety of resources offered by multiple clouds,
each service can be mapped to more than one resource.
This allows maintaining a service data processing constraint
based on input data rate (refer to Eq. 2 and Eq. 4). If we
relax such mapping constraint thus each service is mapped
only to one resource (i.e. |pro(sn, ti)| = 1), assuming that
this resource is sufficient to meet service’s data processing
constraint (Eq. 4). This relaxed constraint makes the problem
0-1 assignment problem. In this problem, the assignment
matrix M indicates that a service i is assigned to resource
j if mij = 1. This problem is well-known NP-hard [26].
Consequently, if we consider the mapping of service to more
than one resource without any relaxation now, our problem
is even harder than 0-1 assignment problem. Thus, it is an
NP-hard problem. Moreover, our problem belongs to NP be-
cause if a feasible resource allocation solution is given, this
solution can be tested in polynomial time using Algorithm
1. Accordingly, our problem is NP-complete problem.

5 PROPOSED ADAPTIVE SCHEDULING TECH-
NIQUE

As we discussed in the previous section, our schedul-
ing problem is NP-complete problem. Thus, the problem’s
search spaces are complex, with large sets of VM offer-
ings provided by various cloud infrastructures and many
constraints that need to be fulfilled. Examples of these
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Algorithm 1 polynomial-time algorithm for checking the
feasible solution
1: totalDPRate← 0
2: for each service sn in S do
3: for each VM vmg

k from pro(sn, ti) do
4: totalDPRate = totalDPRate + ϕ(sn, vmg

k)
5: end for
6: if totalDPRate < inStream(sn) then
7: return false {this is not feasible solution}
8: end if
9: end for

constraints are data dependencies, user-defined real-time
performance, throughput and end-to-end latency. Indeed,
the search space of finding candidate solutions for the
efficient execution of a stream workflow application rapidly
increases with the size of the problem. Furthermore, the
fluctuation of data velocity over time makes it necessary
to re-explore the complex search space to find a sub-optimal
solution as quickly as possible. The exhaustive search for
an optimal solution is not feasible. Consequently, the goal
is to find a near-optimal solution in the complex search
space and revise it quickly to tackle the changes in data
velocity over time without violating data dependences and
real-time performance requirements while minimising the
total execution cost (Eq 12). As we cope with velocity change
for this workflow application, the following are cases of
changing in input stream rate of a service:

• The speed of output stream of an external source con-
nected to this service is either increased or decreased.

• The speed of the output stream of parent service(s)
connected to this service is either increased or de-
creased. This happens when the increase or decrease
in the speed of stream propagated from parent ser-
vices due to the increase or decrease in the speed of
stream for connected external sources

From the aforementioned goal, we have two challenges:
(1) explore large search space to find candidate solution at
deployment time and (2) revise this solution quickly with
each velocity change request that occurs at runtime to locate
a sub-optimal solution to respond to such request. For the
first challenge, the genetic algorithm is a useful algorithm
in exploring complex search space to enable practical im-
plementation of the optimising problem. Thus, the objective
function of Eq. 12 can be considered as a fitness function
of the genetic algorithm. While for the second challenge,
Greedy heuristic can be used to adopt a deployment plan
generated by the genetic algorithm at runtime. Because it
provides an immediate sub-optimal solution for tackling
the velocity change request as it needs a relatively small
time to compute. Thus, it can fulfil the need to make a
scheduling decision under time constraints, enabling the
practical implementation of optimising objective function
at a given point. Accordingly, we propose a new dynamic
scheduling technique for stream workflows.

The proposed technique is a two-phase dynamic work-
flow scheduling technique that incorporates two advanced
optimisation algorithms (i.e. random immigrants genetic
algorithm in Phase 1 and two-level greedy algorithm in
Phase 2). It effectively performs dynamic scheduling of
stream workflow applications in multicloud environment

Table 5
Time complexity of random-based immigrants GA

Name Time complexity
Random population generation O(su)

Fitness Function O(ps2d)
Roulette wheel selection with binary search O(plog(p))
Crossover O(s)
Mutation O(sv)
Sort O(plog(p))

Random-based immigrants schema O(s2d)

Total O(gps2d)
g the number of generations (as termination condition), p the size of population,
s the length of candidate solution (number of services), u the maximum number
of required MSUs of any service, v the number of VM offers in the placement
cloud and d the maximum number of stream dependencies of any services

and intelligently response to changes happen at runtime (i.e.
velocity changes) with minimal execution costs. In Phase 1,
the proposed random immigrants GA is called at the begin
of workflow execution to find the best global sub-optimal
solution to deploy a given workflow. While in Phase 2, The
proposed two-level greedy algorithm is used to adapt a
scheduling plan to respond to the changes in the velocity
of data streams at runtime. The flowchart of the proposed
technique with its phases are provided in Appendix B.

5.1 GA with Random Immigrants Scheme

Traditional GA has a considerable problem, which is con-
vergence that prevents genetic diversity of the population.
Therefore, to avoid such problem and to enhance the genetic
diversity of the population, random immigrants schema is
used [27]. This schema retains the diversity level of the pop-
ulation every generation via replacing a portion of candidate
solutions in the current population with random candidate
solutions called immigrants. Accordingly, we propose a
random-based immigrants genetic algorithm that is able to
find sub-optimal resource selection solution for scheduling
stream workflow application in multicloud environment.
It exploits data locality by selecting the most appropriate
datacenter for each service, which leads to the reduction in
both execution and data transfer costs. It generates the initial
population randomly, and then evaluate the candidates
and sort them in ascending order of fitness. During each
generation, the elite candidate is selected and m random im-
migrants are generated then replaced the worst n candidates
in the current population. Following the evaluation of m
immigrants, the selection, crossover and mutation operators
are applied. Finally, the elite candidate is added and the
evolved population is evaluated and then sorted in ascend-
ing order of fitness before going to the next generation.
Algorithm 2 shows the pseudocode of the proposed random
immigrants GA provisioning and scheduling algorithm. The
time complexity of this algorithm is presented in Table 5.
The Watchmaker framework for evolutionary computation
[28] is used to implement this algorithm.

5.2 Two-level Greedy Algorithm

We propose a new two-level greedy algorithm that uses
Minimax with Alpha-Beta pruning method in game theory.
It minimises the maximum resource provisioning cost by
finding the best resource selection solution for services that
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Algorithm 2 GA with Random Immigrants Scheme
1: P← empty initial population
2: generate N candidates randomly and add them to P
3: calculate fitness values for candidates in P
4: sort candidates in P in ascending order of fitness
5: while condition not satisfied do
6: perform elitist selection
7: P’ = generate m random immigrants
8: replace worst m candidates in P by random immigrants in P’
9: calculate fitness values for random immigrants

10: select candidates using selection operator for evolving
11: create new offsprings using crossover operator
12: create new offsprings using mutation operator
13: add elite candidates to the evovled population
14: calculate fitness values for candidates of the evovled population
15: sort candidates of the evolved population in the ascending order of

fitness
16: end while
17: return best candidate (candidate with minimum cost)

Algorithm 3 Two-level Greedy Algorithm
1: min← TreeNode(−1,∞) {-1 is vm global id and∞ is value}
2: max← TreeNode(−1,−∞) {-1 is vm global id and -∞ is value}
3: depth← 2 {depth level in game tree}
4: affectedSIDs← get service ids affected by velocity change request
5: for each service sn in affectedSIDs do
6: if velocity change request is increase request then
7: Velocity Increase Req Proc(sn, min, max, depth)
8: else
9: Velocity Decrease Req Proc(sn, min, max, depth)

10: end if
11: end for

affected by data velocity changes. Minimax with Alpha-
Beta pruning method is considered as a powerful search-
ing and decision-making algorithm on game tree to find
optimal/sub-optimal result from possible choices. Thus, this
method is used in our algorithm to find the best resources
with the lowest provisioning cost at runtime to achieve the
updated data processing rate for each service affected by
the velocity change request. The direct effect happens when
the service is connected to an external source whose data
velocity will be changed. While indirect effect occurs when
the service is in the velocity change path.

Our proposed algorithm addresses the problem of on-
going resource scaling under the dynamic variations of
data stream rates by managing resources over time. This

Algorithm 4 Velocity Increase Req Proc(sn,min,max,depth)
1: reqUnits← 0
2: unitMIPS ←MSR ∗MIsn

3: avalV ms← get VM offers from service placement cloud cgsn
4: avalV ms = avalV ms− {x ∈ VMg |MIPSx < unitMIPS}
5: extraAchievedUnits ← ϕ′(sn, pro(sn, ti))/MSR −
d(inStream(sn) ∗MIsn )/unitMIPSe

6: incRate← get data rate increases over service input rate
7: reqUnits← get number of MSUs required based on incRate
8: reqUnits← reqUnits− extraAchievedUnits
9: nodes← create tree nodes list for avalVms list

10: while reqUnits > 0 do
11: shuffle nodes in the list and construct tree with specified depth
12: root← get root of constrcuted tree
13: best ← Minimax AlphaBeta(depth, true, root, min, max) {best

node for VM selected}
14: VMList = VMList ∪ best.getV mgid()
15: reqUnits = reqUnits− b(MIPSbest.getV m()/unitMIPS)c
16: end while
17: add VMList of sn to ServiceVMsMap { VMList6= φ}

Figure 1. Search Tree Sample

algorithm at first level determines the services whose input
data rates will be changed due to the received velocity
change request. Then, at the second level, it finds the best
resource provisioning/deprovisioning solution(s) that will
be used to revise the scheduling plan. With the occurrence
of a velocity change request, it dynamically and quickly
updates the scheduling plan to respond to this change
request while reducing the overall provisioning cost. The
pseudocode of the proposed two-level greedy algorithm is
shown in Algorithm 3 and the time complexity analysis
of this algorithm is presented in Table 6. The pseudocode
of two procedures that used in this algorithm to respond
to velocity increase and decrease requests are shown in
Algorithm 4 and Algorithm 5 respectively. The pseudocode
of Minimax with Alpha and Beta algorithm that used in
both procedures (Algorithm 4 and Algorithm 5) is shown
in Algorithm 6. Algorithm 7 shows the pseudocode of
evaluation function used in Algorithm 6.

Algorithm 5 Velocity Decrease Req Proc(sn,min,max,depth)
1: redUnits← 0
2: unitMIPS ←MSR ∗MIsn

3: SPVMs← pro(sn, ti)
4: extraAchievedUnits ← ϕ′(sn, pro(sn, ti))/MSR −
d(inStream(sn) ∗MIsn )/unitMIPSe

5: decRate← get data rate decreases from service input rate
6: redUnits← get number of MSUs based on decRate
7: redUnits← redUnits+ extraAchievedUnits
8: while redUnits > 0 do
9: remove VM(s) from SPVMs that achieved units > redUnits

10: if SPVMs is empty then
11: return {no provisioned VM can be deprovisioned}
12: end if
13: construct tree from SPVMs list with specified depth
14: root← the root of constrcuted tree
15: best← Minimax AlphaBeta(depth, true, root, min, max)
16: VMList = VMList ∪ best.getV mgid()
17: redUnits = redUnits− b(MIPSbest.getV m()/unitMIPS)c
18: SPVMs = SPVMs − best.getVm()
19: end while
20: if VMList is not empty then
21: add VMList of sn to ServiceVMsMap
22: end if

Prior processing the velocity change request, the pro-
posed technique finds the ids of service affected by this
request directly or indirectly (Algorithm 3 Line 4). Then,
for each service affected, it finds the best provisioning
or deprovisioning solution based on the type of velocity
change request. If the request is velocity increase request
(Algorithm 3 Line 6), it calls Algorithm 4 to get VM of-
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Algorithm 6 Minimax AlphaBeta(depth, maximisingPlayer,
node, alpha, beta)
1: if depth == 0 then
2: return evaluate(node)
3: else if maximisingPlayer then
4: for each child of node do
5: TreeNode val =

Minimax AlphaBeta(depth - 1, false, child, alpha, beta)
6: if val.getValue() > alpha.getValue() then
7: alpha = val
8: end if
9: if beta.getValue() <= alpha.getValue() then

10: break {alpha cut-off}
11: end if
12: end for
13: return alpha
14: else
15: for each child of node do
16: TreeNode val =

Minimax AlphaBeta(depth - 1, true, child, alpha, beta)
17: if val.getValue() < beta.getValue() then
18: beta = val
19: end if
20: if beta.getValue() <= alpha.getValue() then
21: break {beta cut-off}
22: end if
23: end for
24: return beta
25: end if

Algorithm 7 Evaluation Function - evaluate(node)
Require:
1: reqUnits, redUnits, unitMIPS
2: value, cost ← 0 {value for increase request and cost for decrease

request}
3: if velocity change request is increase request then
4: VMboottime ← get boottime for VM node
5: achievedUnits ← get units achieved by VM node
6: value← (achievedUnits/(reqUnits ∗ ¢vmg

k
))/VMboottime

7: value ← value + bMIPSvm
g
k
/(unitMIPS ∗

numServiceDependencies)c/¢vmg
k

8: node.value← value
9: else

10: achievedUnits ← get units achieved by VM node
11: cost← (achievedUnits/(redUnits ∗ ¢vmg

k
))

12: node.value← cost
13: end if
14: return node

fers of service placement cloud and then finds the extra
MSUs that are achieved by the current provisioned VMs
in accordance to service input data rate. In other words,
extraAchievedUnits is the number of extra MSUs that are
not required to achieve service input data rate due to over-
provisioning. Next, such algorithm calculates the number of
MSUs required for data rate being increased over service
input data (i.e. reqUnits). Based on the increase in data
velocity, reqUnits is the number of MSUs required to achieve
this increase in data rate. For example, consider MSU for
the whole application is 1MB/s, original service input data
rate is 3MB/s and this rate is increased by 2MB/s at a
given time to be 5MB/s, therefore reqUnits = 2MB/s

1MB/s = 2
MSUs. From reqUnits, the extra achieved units is deducted.
After that, it calls Algorithm 6 several times to finds best
VM(s) to provision until achieving the required units. While,
with velocity decrease request (Algorithm 3 Line 8), it calls
Algorithm 5 to get the list of VMs provisioned for a service
and then finds the extra MSUs that are achieved by these

Table 6
Time complexity of two-level greedy algorithm

Name Time complexity
Get affected services O(s)
Velocity increase request procedure O(ubm)
Velocity decrease request procedure O(ubm)
Minimax alpha-beta O(bm)
Evaluation function O(1)
Total O(subm)
s the number of services, u the maximum number of required MSUs of any
service, b the branching factor and m the maximum depth of the tree

VMs based on service input data rate. Next, such algorithm
calculates the number of MSUs based on the data rate being
decreased from service input data, and then increases this
number by extra achieved units. Indeed, the calculation of
extraAchievedUnits is the same that the one has done in
Algorithm 4 and redUnits is similar to the one done in
Algorithm 4 but for the amount of data decreases. After
that, it removes those VMs from the list of provisioned VMs
where their powers achieved units greater than the number
of minDPunits that will be removed. The remaining VMs
in this list will be used to find the best VM to deprovision
using Algorithm 6.

Each run of the game finds the best VM to provision it
in case of velocity increases or to deprovision it in case of
velocity decreases. For instance, let us say we have six VMs
remaining in the VM list for the game. The global ids of
these VMs are 0, 1, 4, 7, 9, 10, 12 and 13, and their values
evaluated using evaluation function (Algorithm 7) are 110,
142, 115, 141, 5, 6, 5 and 95 respectively. Figure 1 shows a
search tree sample and the best VM selected. Since multiple
VMs may be needed to achieve the updated data processing
rate or may be released in response to a velocity decrease
request, the game will be repeated to produce the best
solution. For each VM selected, the number of minimum
data processing units achieved based on the computing
power of this VM in one game is deducted from the total
required units (i.e. reqUnits) in case of velocity increases or
from total reduced units (i.e. redUnits) in case of velocity
decreases.

6 EXPERIMENTS AND DISCUSSION

6.1 Experiment Methodology

6.1.1 Configuration of Workflow Application
In our previous work [18], we simulated stream workflow
applications using common workflow structures (Mont-
age, Inspiral, Epigenomics and CyberShake) and described
the additional parameter configurations. These applications
with their different sizes are used in our experiments.

6.1.2 Multicloud Environment
In our previous work [18], we modelled three different cloud
system providers, namely Amazon EC2, Google Cloud En-
gine, and Microsoft Azure, to form a multicloud environ-
ment. This modelled multicloud environment is used here
for our experiments. Also, to model boot time (startup time)
for each VM configuration in the modelled clouds, we use
the average range of VM startup time defined in [29]. For
each modelled cloud, we generate random numbers from
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Table 7
Percentage ranges of data velocity increase and decrease amounts

Velocity
Range

Increase Decrease
Minimum
(Percent)

Maximum
(Percent)

Minimum
(Percent)

Maximum
(Percent)

Low 10 30 5 15
Medium 50 70 25 35
High 90 100 45 50

the defined range and then assign these numbers to its VM
configurations.

6.1.3 Configuration of Data Velocity
To model the amount of data that is being increasing or de-
creasing in velocity change request for one external source,
we utilised future data rates given in Gartner foreseen
[30]. The one connected vehicle will generate as much as
25GB/hour of data, equivalent to 8MB/s. By considering
this value as the average data rate of an external source in a
workflow application, we create different percentage ranges
for modelling the increase and decrease in data velocity. For
velocity increase, we model the value of increase in data
velocity as a percentage that is increased from current data
rate. Similarly, we model the data velocity decrease as per-
centage of decrease in the current data rate. Table 7 lists the
percentages of change to increase and decrease data velocity.
It is worth to note that as there is a minimum limit for a
stream unit in a workflow application, the change value will
be approximated/rounded to the nearest given MSU. As an
instance, if the minimum stream unit per second is 1MB/s
and there is a 65% increase in data velocity from 5MB/s
as original data rate is chosen randomly, the approximation
will be applied on the change value (3.25MB/s) to be 3MB/s
(i.e. the nearest value based on MSU) so that the new data
rate will be 8MB/s.

6.1.4 Workflow and Simulation Parameters
To run our experiments, we need to configure a set of
parameters for both workflow application and simulator.
These parameters and their values are fixed for all scenarios
and listed in Table 8. For external data source rate, the value
considered is from the data velocity configuration discussed
in the previous subsection. For network bandwidth and
latency for ingress and egress traffic, cost of data transfer
and service data processing requirement, we considered the
medium ranges of these parameters that presented in [18].

6.1.5 Experimental Scenarios
Our evaluations for efficiency and performance of the pro-
posed technique are described in the below paragraphs.

Comparison with lower bound (Evaluation 1) − Study
and compare the proposed dynamic scheduling technique
in finding the best resource provisioning solution and ad-
apting scheduling plan in response to velocity changes
with competitors (baseline algorithm and random-based
immigrants GA scheme) to approach lower bound. This
comparison is in terms of the execution cost of different
workflow applications for 3 minutes simulation time. A
realistic baseline algorithm is created for our problem that
does not need to use any advanced heuristic. It finds VM

Table 8
Workflow and simulation parameters

Parameter Value
External Source Data Rate 5 MB/s with increase-velocity

experiment
10 MB/s with decrease-velocity
experiment

Ingress Network Bandwidth Range [615, 926] MB/s
Ingress Network Latency Range [0.00064, 0.00086] second
Egress Network Bandwidth Range [122, 218] MB/s
Egress Network Latency Range [0.021, 0.031] second
Data Transfer Cost Ingress traffic: 0

Egress traffic: Range [0.013 -
0.019] cents/MB

Type of Service 50% unmovable services 50%
movable services

Service Data Processing Requirement Range [1348, 2674] MI/MB
Service Data Processing Rate System-calculated rate based

on input stream(s)
Data mode type Replica
Service Output Data Rate Range [1, 50] % of input rate
Minimum Stream Unit (MSU) 1 MB
Minimum Stream Processing Rate (MSR) 1 MB/s
GA - Population Size 50
GA - Generation Limit 50
GA - Elitism 1
GA - Crossover Probability 0.8
GA - Mutation Probability 0.3
GA - Number of Random Immigrants 5
Number of Velocity Change Events 2
Delay between Velocity Change Events 10 seconds
Simulation Time 180 seconds (3 minutes)
Note: Detailed information about the ranges of values for simulation
parameters are provided in [18].

with the highest computing power and then provisiones it
to respond to velocity increase requests. While with velocity
decrease requests, it deprovisions one or more VMs from
the available VMs to respond to these requests. The aim
of comparison with baseline algorithm is to appreciate the
necessity of our proposed technique to find the best resource
provisioning solution and adapting the scheduling plan in
response to velocity increases/decreases. The comparison
with GA is aimed at evaluating the proposed technique
with another meta-heuristic algorithm that is widely used
in workflow scheduling research works in order to further
proof its efficiency. Furthermore, the comparison with lower
bound is necessary to show how the proposed approach
is effective compared to its competitors. In lower bound,
we relaxed the same constraints that are discussed in our
previous work [18]. For the comparison, we consider the
results obtained from lower bound as the base values.

Guarantee processing speed for execution time (Evalu-
ation 2) − Study the efficiency of the proposed dynamic
scheduling technique in guaranteeing the processing speed
required with different workflow applications under differ-
ent velocity changes. This evaluation aims to show the data
processing constraint is satisfying at all times with chan-
ging data velocity. The baseline here to achieve real-time
user-defined requirements and end-to-end execution time
is that the computing power available should be sufficient
to process all incoming data without data loss. In other
words, the computing capacity should be greater than or
equal the velocity of incoming data at runtime. Thus, the
sufficient computing capacity should be always maintained
while the velocity of data increases or decreases at runtime.
The experimental results will be collected before the end
of simulation due to at that time all velocity changes have
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been made and handled by the proposed technique. This
ensures the efficiency of the proposed technique to adopt
a scheduling plan to handle velocity changes at runtime.
Also, this allows to guarantee processing speed required to
achieve end-to-end execution time.

Efficiency of handling velocity change (Evaluation 3) −
Study and compare the proposed dynamic scheduling tech-
nique with random-based immigrants GA scheme based on
performance matrix presented in Figure 2 for performing
dynamic scheduling at runtime. The aim of this evaluation
is to determine how our proposed technique is effective in
maintaining the quality of solution. This comparison is in
terms of the quality of solution for the revised scheduling
plan. The quality of solution includes solution cost (provi-
sioning + data transfer cost per second) after the data velo-
city change request is applied, and the number of allocation
changes applied on the current scheduling plan to respond
to this change request. The GA responses to each velocity
change request by generating a totally new scheduling plan,
which serves as a revised plan to replace the old one. While
the proposed technique revises the current scheduling plan.
When GA applied those VMs in a new plan that exist in the
old plan are being excluded to avoid VM duplication. By
doing so, only VMs in the new plan that do not exist in the
old plan will be provisioned and those VMs in the old plan
that are not part of the new plan will be deprovisioned.
Therefore, the number of allocation changes includes the
changes in provisioning plan (for new VMs that are not in
the old plan) and deprovisioning plan (for provisioned VMs
that do not exist in the new plan).

In aforementioned scenarios, data rate of each external
source in a workflow application is set to be 5MB/s with
velocity-increase experiment or 10 MB/s with velocity-
decrease experiment at the beginning of execution. As ve-
locity change requests being sent, the data rate of chosen
external sources will be increased or decreased according to
the conducted experiment.

Comparing the proposed technique with its competitors
based on lower bound values can demonstrate the efficiency
of the proposed technique in finding the best solution; this
comparison will also show which technique or algorithm
is closer to lower bound results. We can further quantify
the proposed technique efficiency by assessing its ability
to guarantee data processing constraint all the time. In
addition, comparing and evaluating the quality of solution
generated by the proposed technique in comparison with
GA allows to evaluate the performance of the proposed
technique in relative to the performance of GA.

6.2 Experimental Results

To evaluate the efficiency and performance of the proposed
technique, we conduct our experiments in a simulation
environment. This is because we need a controllable and
repeatable environment to configure the parameters of each
experiment scenario, and then compare the results obtained
from the proposed technique with those from competit-
ors under the same environment conditions. In real en-
vironment, some parameters like network bandwidth and
latency cannot be controlled, making environment condi-
tions change with each execution of a workflow application.

Figure 2. Performance Matrix

Thus, conducting our experiments in a real environment
will produce inconsistent evaluation results, where these
results cannot be used to assess the efficiency of proposed
technique and the quality of solution produced. Accord-
ingly, we conduct our experiments using IoTSim-Stream
[31], our simulation toolkit for modelling and simulating
stream workflow applications in multicloud environments.

The experimental scenarios are performed in a simu-
lation environment (by using IoTSim-Stream) on a Nectar
Cloud virtual machine that has 8 vCPUs, 32GB of RAM
memory and running Ubuntu 16.04.1 LTS, and the exper-
imental results are collected. Since a genetic algorithm is
used in our proposed technique, each experimental scenario
runs ten times, and the average value of the obtained results
is taken and used in the representation of experimental res-
ults. For Evaluation 3 results, we present the average value
for both solution cost and number of allocation changes
since two velocity changes are made during the simulation
time.

6.2.1 Evaluation 1: Results

We conducted experiments to record the total execution
cost achieved by the proposed technique, its competitors
(Baseline and GA) and lower bound for modelled workflow
applications under different ranges of velocity increase and
decrease. The experimental results for the first evaluation
showed that the total execution costs of modelled workflow
structures under different velocity change ranges for both
velocity-increase and velocity-decrease have not changed
significantly. Therefore, we only present those results for
medium range of velocity change.

Figure 3 and Figure 4 depict the relative difference
of execution cost for modelled workflow applications un-
der medium range of velocity increase and decrease that
achieved by the proposed technique and the competitors.
From these results, our analysis and findings are:

• With various workflow applications, the proposed
technique is efficient in finding the best solution to
quickly respond to velocity change requests and then
dynamically updating the current scheduling plan.
By comparing the execution cost (relative difference)
resulted from using the proposed technique with its
competitors based on lower bound (see Figure 3 and
4), the proposed technique reduces relative execution
cost with velocity increase request in comparison to
Baseline by at least 73.79%, and in comparison to
GA by at least 40.2%; While with velocity decrease
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Figure 3. Relative difference of execution cost vs. Modelled workflow applications under medium range of velocity increase

Figure 4. Relative difference of execution cost vs. Modelled workflow applications under medium range of velocity decrease

Figure 5. Total Input Rate vs. Total Processing Speed for different workflow structures (medium velocity increase range)

request, the proposed technique reduces relative ex-
ecution cost in comparison to Baseline by at least
68.1%, and in comparison to GA by at least 50.3%.
Therefore, the results of total execution cost obtained
through the proposed technique outperformed the
results obtained from both baseline and GA to ap-
proach lower bound with most workflow structures.
The reason behind that is the proposed technique
uses both GA and greedy heuristic. It uses GA at first

phase for exploiting data locality to find near-optimal
placement and scheduling plan, which reduces re-
source provisioning and data transfer costs. It then
uses greedy heuristic at second phase to find the
best provisioning plan that reduces the provisioning
cost as much as possible to respond to any velocity
change request. For instance, with velocity increase
request, the proposed technique achieved the same
total execution cost as lower bound achieved with
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Figure 6. Total Input Rate vs. Total Processing Speed for different workflow structures (medium velocity decrease range)

Inspiral 100, 12.7% more than lower bound with
Inspiral 50 and 18.3% more than lower bound with
Inspiral 30; while Baseline and GA are 48.5% and
20.2% more than lower bound with Inspiral 100,
48.4% and 27.9% more than lower bound with In-
spiral 50, and 82.6% and 37.1% more than lower
bound with Inspiral 30 respectively. Also, with ve-
locity decrease request, the proposed technique is
13.9%, 7.4% and 8.3% more than lower bound with
Montage 100, Montage 50 and Montage 25 respect-
ively; while Baseline and GA are 68.2% and 41.6%
more than lower bound with Montage 100, 64.8%
and 35.9% more than lower bound with Montage 50,
and 88.5% and 34.7% more than lower bound with
Montage 25 respectively.

• The total execution cost for the proposed technique
is a maximum of 32% of the cost generated by lower
bound from medium velocity change. The reason for
this difference is due to the structure of workflow
which may lead to processing less data. Thus, the
provisioning cost reduction factor contributes more
to the total execution cost. Based on that, lower
bound produces unachievable results as VM pro-
visioning constraint is relaxed, while the proposed
technique maintains this constraint.

• As data velocity increases from low to high range,
the total execution cost for modelled workflow ap-
plications is slightly increased. The reason behind
that is the proposed technique is able to revise the
current plan to cope with velocity increase changes
with minimal cost, leading to cost reduction even
with high velocity of data.

• The proposed technique is an adequate and prac-
tical dynamic scheduling method with competent
accuracy. This is because it takes all the defined
constraints into consideration while meeting user
real-time performance requirements and reducing
the overall execution cost with different workflows.

6.2.2 Evaluation 2: Results
We conducted experiments to record total input data rate
(in MB/s) and total processing speed (in MB/s) achieved

by proposed technique for modelled workflow applications
under different ranges of velocity increase and decrease.
From the results obtained, we present here those results
for medium range of velocity increase and decrease since
these results are enough to reach to the conclusion. Figure
5 and Figure 6 show the experimental results achieved by
the proposed technique in term of total input rate and total
processing speed. From the presented results, it is clear that
the proposed technique always guarantees processing speed
to process incoming data with all workflow applications.
Even more, it also has some extra computing power to
handle increase in data velocity with immediate response
and without the need to reschedule the execution plan.

6.2.3 Evaluation 3: Results
We conducted experiments to collect solution cost and num-
ber of allocation changes achieved by proposed technique
and GA for modelled workflow applications under different
ranges of velocity increase and decrease. It is worth noting
that we do not present the experiential results for end-to-
end latency because our assumption in problem modelling
is that every data stream arrives will be processed as soon
as the dependency is achieved. Moreover, we do not present
experimental results for the computational time required to
respond to velocity change requests because it is machine-
dependent and GA needs more time due to its evolutionary
nature. The experimental results for medium range of velo-
city changes (including both velocity increase and decrease
requests) are presented here. These results are enough to
reach to the conclusion. Figure 7 and Figure 8 show the
experimental results achieved by the proposed technique
compared to GA in term of solution cost and the number
of allocation changes required to revise scheduling plan.
From the presented results, our analysis and findings are
as follows:

• In term of execution cost, GA with each request tries
to find sub-optimal solution by generating a new
plan. While the proposed technique just revises the
current plan quickly, which may not lead to sub-
optimal solution.

• In terms of the number of allocation changes for
a velocity change request, the proposed technique
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(a) Solution cost (b) Number of changes

Figure 7. Quality of solution for different workflow structures (medium velocity increase range)

(a) Solution cost (b) Number of changes

Figure 8. Quality of solution for different workflow structures (medium velocity decrease range)

reduces these changes in comparison to GA by at
least 90.41% with increase request. While with de-
crease request, the proposed technique reduces these
changes by at least 86.11% in comparison to GA. This
is because it quickly adjusts the current scheduling
plan instead of generating a completely new schedul-
ing plan to respond to the velocity change request.
In contrast, GA generates a new scheduling plan
in both velocity changes. This is not only incurring
more computational time but also requires a lot of
VM changes to deprovision those VMs that are not
in the new plan and to provision those that are in the
new plan. To maintain the continuity of processing
incoming streams at current data rates, unneeded
VMs from the old plan must remain in use until
the new VMs become ready. This causes further
overhead in execution time and additional cost as
both new VMs and the current VMs (that will be
deprovisioned later on) are remaining in the resource
pool. This also incurs more processing delays for
upcoming streams when velocity change is a velocity
increase request or more provisioning cost when the
change is a velocity decrease request.

• From the results of the number of allocation changes
presented in Figure 7b and Figure 8b, we can notice
that the proposed technique achieved the most per-
formance gain (i.e. the number of allocation changes
is reduced by 99.65%) with Inspiral 100 with increase

request. The reason behind that is the structure of this
workflow processes huge amounts of data compared
with other workflows, resulting in more computing
powers are required. Thus, generating a new plan is
too expensive and incurs a large number of allocation
changes, while revising the existing plan incurs small
number of allocation changes that leads to huge
performance gain.

• Based on the presented performance matrix (Figure
2), the proposed technique achieved a competent per-
formance with high quality of solution besides good
execution cost compared to GA with most work-
flows. It also achieved a non-competitive number of
allocation changes required to revise the scheduling
plan, and little or negligible execution time. There-
fore, the proposed technique outforms GA with dif-
ferent workflow structures.

7 CONCLUSION AND FUTURE WORK

In this paper, we considered the dynamic scheduling prob-
lem of stream workflow application on various Cloud in-
frastructures. These infrastructures forming a multicloud
environment, which becomes the dynamic execution envir-
onment for these applications. To this end, we proposed a
new dynamic scheduling and provisioning technique that
incorporates GA and two-level greedy algorithm to effi-
ciently schedule stream workflow application in multicloud
environment while meeting real time user performance
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constraints under velocity changes with minimal execution
cost. The experimental results showed that the proposed
technique outperformed competitors in responding to data
velocity changes at runtime while reducing the total exe-
cution cost for all modelled workflow applications under
various data velocity ranges. It is also closer to lower bound
in comparison to its compositors (Baseline and GA).

For future study, this paper reveals two new directions
to enhance the performance and capability of the proposed
dynamic scheduling technique. The first direction is aiming
to parallelise Minimax with Alpha-Beta pruning algorithm
to reduce running cost and achieve speedup. The second
direction is to support more dynamism forms for stream
workflow applications such as application structure and
real-time data processing requirement, where coping with
these changes at runtime enables the full dynamic support.
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