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High-performance Computing Implementations
of Agent-based Economic Models for Realizing
1:1 Scale Simulations of Large Economies
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Abstract—We present a scalable high-performance computing implementation of an agent-based economic model using distributed +
shared-memory hybrid parallelization paradigms, capable of simulating 1:1 scale models of large economies like the eurozone.
Agent-based economic models consist of millions of agents interacting over several graphs, which are either centralized or scale-free in
nature. While most of the interactions are bi-directional, the interaction graphs are dense and random and keep evolving as the
simulation progresses. These characteristics cause a very large and unknown number of random communications among MPI
processes, posing challenges to developing scalable parallel extensions. Further, random access to large volume of data makes the
algorithms highly memory-bound, severely degrading computational performance. Adopting various strategies inspired by the
real-world functioning of economies, we reduce the large unknown number of communications to a known handful number.
Memory-intensive algorithms are improved to make these cache-efficient, and advanced MPI functions are used to minimize
communication overhead, thereby attaining higher performance and scalability. Further, an MP1 + OpenMP hybrid model is developed
to best utilize modern many-core computing nodes with low per-core memory capacity. It is demonstrated that our implementation can
simulate a full fledged economic model with 331 million agents within 108 seconds using 128 CPU cores attaining 70% strong

scalability.

Index Terms—Agent-based Economic Models, High-performance Computing, One-to-one scale simulations, Large economies,

Scale-Free Graphs, Message Passing interface, OpenMP

1 INTRODUCTION

Agent-based modeling has gained significant popularity
in the computational economics community as an alterna-
tive to conventional approaches like Dynamic Stochastic
General Equilibrium (DGSE) modeling. The economy of a
country or an economic bloc is characterized by the interac-
tions among individual entities, each with its own cognitive
abilities, and these interactions give rise to complex, hard-to-
predict macro-economic outcomes like recessions. In agent-
based economic models (ABEMs) or agent-based compu-
tational economics (ACE), agents approximately mimic the
decisions and actions of their real-life economic counter-
parts, reproducing the observed complex macro-economic
behaviors as emergent phenomena. Agents” behavior may
be governed by simple rules obtained from behavioral
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economics or machine-learning models trained with past
data. The majority of the studies focus on the development
of agents’ rules to replicate macro-economic and micro-
economic empirical stylized facts, such as the time-series
properties of the output fluctuations and growth, as well as
the cross-sectional distributional characteristics of firms.

There has been a significant interest in the agent-based
modeling community to develop HPC enhanced models to
simulate 1:1 scale models of large economies such as the
European Economy ( [1], [2], [3], [4]). To that end, the Eu-
ropean Union, for example, has funded three multi-million
Euro projects ( [5], [6], [7]) to develop ABEMs over the last
decade. However, to the best of the authors’ knowledge,
the ambition of performing 1:1 scale simulations of large
economies has not been realized yet. Some implementations
aiming for large-scale agent-based simulations of economies
are [1] and [8]. Poledna et al.’s advanced ABEM [8] utilizes
big data to set the agents” parameters. Their OpenMP-based
shared-memory parallel implementation is capable of 1:1
scale simulations of a small open economy with 10 million
agents. However, no metrics of computational performance
have been reported. Though Deissenberg et al. [1] present an
ambitious plan to develop an HPC-implementation of their
ABEM called EURACE to conduct large-scale simulations
of the European Economy, no publication on their realized
implementations is available.

Most authors, e.g., [1], [6], draft their HPC plans relying
on general-purpose agent-based programming frameworks
like Pandora [9], Repast HPC [10], EcoLab [11], FLAME [12],
etc. In the authors’ point of view, these general-purpose
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frameworks hit strong limitations in both the number of
agents and computational performance due to complex
interactions among the economic agents. Pandora, Repast
HPC, and EcoLab facilitate interactions among agents lo-
cated in two independent CPUs by copying the interacting
agents into both the CPUs. These copies are widely known
as ghost or halo copies. In general, the larger the number of
ghost copies, the lower the computational efficiency. These
platforms are therefore best suited for models in which
agents interact within a limited neighborhood. Using ghost
copies is not an effective strategy when each interaction
involves certain constraints such as the agents having a
limited consumption budget. It is fundamental in ABEMs
that an arbitrary pair of agents must be able to interact, and
most interactions involve certain constraints. Hence, these
platforms can impose serious performance limitations on
ABEMs unless the model is compromised. FLAME man-
ages the interactions among agents of two processes by
posting/receiving messages to/from queues maintained at
each process. The size of these message queues can grow
exponentially, hampering the computational efficiency of
ABEMs, since the interactions are random and the number
of interactions is several orders of magnitude larger than the
number of agents, etc.

This paper presents the details of an efficient, from
scratch developed HPC implementation capable of simu-
lating 1:1 scale models of large economies, finally realizing
the ABEM communities’” long-sought ambition. Our HPC
implementation is efficient enough to simulate several hun-
dred millions of interacting agents within minutes using
high-end workstations or small computer clusters. The con-
tents of this paper can be considered an extension of our pre-
liminary distributed-memory parallel implementation [13]
to a several-fold more efficient and scalable MPI+OpenMP
hybrid parallel implementation targeting the modern many-
core computing nodes with low per-core memory capacity.

Agents in ABEMs interact over several centralized
graphs like financial networks, and several scale-free graphs
like goods market, job market, etc. Most of these interactions
are dynamic, random, and bi-directional in nature. These
complex interactions among agents pose serious challenges
to developing a scalable parallel implementation. To attain
high performance in distributed-memory parallel imple-
mentation, the agents must be partitioned (i.e., distributed)
among MPI-ranks ensuring a balanced load distribution
while minimizing the number of communications among
the MPI-ranks. As it is not possible to consider the interac-
tions over all the graphs and partition the agents to mini-
mize communications, we partition the agents based on a
representative graph of the labor market and adopt various
strategies to ensure that the agents can freely interact over
the remaining graphs. Most of our strategies are inspired
by real-life economic interactions. For example, banks have
many branches across a nation, and the customers visit local
branches instead of the head office. We use the same strategy
for the parallelization of credit network and introduce local
branches of banks in each CPU. Similarly, we adopt vari-
ous other strategies by mimicking a real-life consumption
market, labor market, etc., to reduce the number of com-
munications. To efficiently communicate the data, we use
suitably designed MPI-datatypes and utilize advanced MPI
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functions. We use non-blocking communications to utilize
communication time by overlapping communication with
computation. To improve the computational efficiency, serial
algorithms are improved to make them cache-friendly and
less memory-intensive. Details of these improvements and
their performance advantages are presented in this paper.
We also present an MPI + OpenMP hybrid implementation
targeting the optimal use of many core computing nodes
with low per-core memory capacity. The performance of
the implementation has been evaluated by simulating a
small economy with 10 million agents and a large economy
with 331 million agents. Some results from the early stage
of the development, which is capable of simulating small
economies up to 10 million agents, have been presented in
[13]. The current implementation possesses a high strong
scalability of up to 67%, which is significantly high for this
class of problems; strong scalability is a standard measure
of a parallel program’s capacity to effectively utilize a larger
number of CPUs. Moreover, improved serial algorithms
significantly boost the computational performance, enabling
large economies to be simulated using a relatively small
amount of computational resources, even on workstations,
and that, too, within minutes.

The rest of the paper is organized as follows. In section
2, we present the ABEMs from the perspective of high-
performance computing, and the challenges involved in
implementing a scalable solution are discussed. Section 3
describes our implementation in detail, explaining the var-
ious strategies adopted to address the challenges presented
in section 2. In section 4, we analyze the computational
performance of the strategies presented in 3. Section 5
presents the MPI + OpenMP hybrid implementation, and
section 6 concludes.

2 ABEMS FROM THE PERSPECTIVE OF HPC

A typical ABEM simulates an economy as both a time- and
event-driven dynamic system of interacting heterogeneous
and autonomous agents. An agent can be active in the mar-
kets of several industries to satisfy its needs. An individual
agent’s behavior is defined by rules based on behavioral
economics, and its actions are influenced by its current
state and past experiences. Every interaction between two
agents in a market results in relevant decision-making and
exchange of some data between the two. The markets evolve
over time depending on the satisfaction or dissatisfaction of
the agents with the counterparts they select.

Fig. 1 presents a schematic diagram of a typical ABEM.
The model consists of various agents: firms as a part of
industries, foreign firms, households consisting of investors,
workers, and inactive households, banks, central govern-
ment, and central bank. Most of the stylized ABEMs do not
include the geographical distribution of agents. However,
we assign geographical location to each agent, as this has
a significant influence on the assessment of the economic
impacts of natural disasters, etc. In our implementation,
agents operate from their location and are assumed to be
connected by various networks.

High performance computing involves many CPU cores,
distributed over multiple computing nodes, working on
disjoint subsets of the data in parallel. In distributed parallel
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Fig. 1: Schematic diagram of an ABEM

implementations, each CPU core is assigned its own private
memory space, and data are exchanged among CPU cores
using the Message Passing Interface (MPI). Often, each CPU
core is referred to as MPI-process or MPI-rank; for the sake
of brevity, we use the term rank. Distributing equal work-
load among MPI-ranks so that all can finish the assigned
tasks at almost the same time with the least idle time is
the key to attaining high performance. Since the speed of
communication networks is much slower than that of CPUs,
minimizing the number and volume of communications
among the ranks is equally important in terms of attaining
high performance. The nature, frequency, and volume of
communications depend on the type of interactions among
the agents located in different ranks. Hence, understanding
the nature of different interactions in ABEMs is important
in implementing a high-performing parallel code. The rest
of this section describes details of the different types of
interactions among the agents and the difficulties that they
pose.

2.1 Uni- and bi-directional interactions

The interactions among agents can be divided into two
categories: uni-directional and bi-directional. Interactions
like paying tax to the government and depositing money
in the bank are uni-directional, whereas interactions involv-
ing taking a bank loan, a government subsidy payment,
buying goods in the market, applying for jobs, etc., are bi-
directional. Uni-directional interactions involve some data
transfer from the source agents to the target agents and are
easy to parallelize, as all such interactions emanating from
a rank can be clubbed together into one message, which
requires only one communication. On the other hand, bi-
directional interactions consist of three stages: data transfer
from the source agent to the target agent, some decision-
making by the target agent based on the data received,
and a reply to the source agent. Thus, these interactions
require two or more communications and cause a huge load
imbalance, as the target agent processes the requests serially.

2.2

Agents’ interactions with the banks and the government
take place over centralized graphs. Some of the interactions,
like paying tax to the government, are uni-directional, while
others, like taking loans from the bank, are bi-directional.

Interactions over centralized graphs
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(a) Bank-customers interactions on centralized graphs
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(b) Buyer-seller interactions on scale-free graphs

Fig. 2: Schematic diagrams of typical centralized and scale-
free interaction graphs in an ABEM

Fig. 2a shows a schematic diagram of bank-customers inter-
actions.

2.2.1 Interactions of firms, households, and bank with gov-
ernment over centralized graphs

All local firms, foreign firms, workers, investors, inactive
households, and banks pay various kinds of taxes to the
central government. The government pays social benefits
and subsidies to the households, and subsidies to some of
the industrial sectors. Tax paying is uni-directional and can
easily be parallelized by making each rank collect tax from
its agents and then sending the collected tax to the rank
containing the government agent. On the other hand, social
benefit payments by the government is bi-directional as the
amount of social benefits to be paid to a household depends
on the latter’s economic status. A simple solution to re-
duce the number of communications involved is to make
the government agent collect the economic status of each
household using MPI_Gatherv() 1 then make it calculate
the amount of social benefits payable to each household, and
finally deliver the social benefits to each household using
MPI_Scatterv(). However, this introduces a significant
load imbalance, as all the waiting ranks will idle until the
rank containing the government agent calculates the social
benefits of millions of households.

1. All the typewriter format terms starting with MPI_ are functions
or data types of MPL.
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2.2.2 Interaction of firms and households with the bank

All firms and households, depending on their financial
situation, interact with the bank to deposit their surplus
income, withdraw their deposited money, or take a loan.
Depositing is uni-directional, whereas withdrawing and
taking a loan are bi-directional. Similar to the social benefit
transfers by the government, withdrawing and taking a
loan involve three steps: gathering the loan applications
using MPI_Gatherv(), processing the applications one
by one, and scattering the reply to the applicants using
MPI_Scatter(). This imposes a high computational load
on the rank containing the bank. It is also important to
note here that not all the agents may apply for loans at the
same point in time, and it may be that not all agents will
apply for loans in each period. Therefore, the interaction
graph between loan applicants and the bank is dynamic
in nature and keeps evolving with time, which makes its
parallel implementation more challenging.

23

Interactions in the goods market and also in the labor
market take place over scale-free graphs. Almost all these
interactions are bi-directional, random, and dynamic in na-
ture. A typical buyer-seller interaction graph is presented
in Fig. 2b. As the interactions are driven by continuously
varying states of individual agents, the interaction graphs
randomly grow within each iteration. The bi-directional
interactions over random graphs make it a challenging task
to implement scalable parallel extensions.

Interactions over scale-free graphs

2.3.1 Buyer-seller interactions in the goods market

Each period, all buyers (i.e., firms, foreign firms, house-
holds, and government agencies) visit a random set of
sellers (i.e., local firms and foreign firms) from each industry
to buy capital goods and consumption goods. Most ABEMs
assume that all the sellers of the economy are accessible to
all the buyers. The probability of a seller being chosen by a
buyer depends on the seller’s size (i.e., the quantity of goods
produced) and the price of its products; sellers with larger
quantities and lower prices have a higher probability of be-
ing visited by the buyers. To give a fair chance to all buyers,
the order in which they go shopping is randomized in each
period. Each visit of a buyer to a seller located in another
rank needs two MPI communications between their home
ranks because of the bi-directional nature of the interaction.
The number of sellers visited by a buyer is unpredictable, as
it depends on its budget and the quantity of goods available
for sale with the seller at the time of the buyer’s visit.
Therefore, the goods market produces a very large number
of random, one-to-one, and bi-directional communications
between ranks. Developing a scalable algorithm for such a
scenario is challenging.

A simple solution is to make each seller agent receive
purchase requests from its buyers to a queue and process
the requests sequentially. However, sequential processing of
requests means that the buyers will have to wait until the
sellers they visited process all the requests and send a reply
message and that they will be able to decide whether they
have to visit another seller only after the reply. There will
be a large load imbalance among MPI ranks, as the ranks
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containing sellers with higher selling probability receive a
larger number of requests. This solution will also produce an
event-driven algorithm consisting of many buying events,
decreasing the opportunities for parallel processing and
forcing even satisfied buyers to participate in buying events
until the last buyer satisfies its needs. For a number of such
reasons, the overall performance of this simple solution can
be even worse than the serial code.

2.3.2 Employee-employer interactions in the labor market

In each period, firms hire or fire workers according to their
labor demand, and unemployed workers search for jobs.
As the system is dynamically evolving, it is not possible to
partition the agents such that each rank contains a sufficient
number of workers to satisfy the labor demand of the firms
assigned to it. Some ranks can thus have excess labor while
some others are short of labor. At the start of each period,
the unemployed workers situated in ranks that have more
workers than jobs have to search for jobs in the labor-
deficient ranks. A job application by a worker to a firm
in another rank is bi-directional and involves two point-to-
point communications: the application by the worker and
the firm'’s reply. If the worker can secure a job with a firm
located in a remote rank, the firm will send messages to
the worker either to deliver his wages to him or to inform
him that he has been fired. Like the goods market, the
number of firms visited by a worker in search of a job is
unpredictable. Obviously, implementing a scalable solution
for such a scenario is also challenging.

3 SCALABLE HIGH-PERFORMANCE IMPLEMENTA-
TION

This section presents the details of the strategies used to
develop an HPC-enhanced ABEM, particularly the overall
design of the implementation, the partitioning of agents to
assign balanced workload to MPI ranks, various strategies
to address the challenges discussed in the previous section,
and cache-friendly algorithms and data structures for en-
hancing serial performance.

3.1 Partitioning

Balanced distribution of workload among ranks while mini-
mizing the number of communications and exploiting op-
portunities to hide the communications are widely used
strategies in developing a scalable parallel code. As ex-
plained in the previous section, the agents interact over
different sets of centralized or scale-free graphs. The two
scale-free graphs are the biggest barriers to developing a
scalable solution, as they are random and dynamic. As
the topological connectivity is significantly different in the
two scale-free graphs, computational work is distributed
among ranks based only on a representative, scale-free
graph of employer-employee interactions, and other inter-
action graphs are made available at a low communication
cost using various strategies.

We construct the representative employer-employee in-
teraction graph by joining each firm f; with n; nearest
workers, where n; is the initial labor demand of f;. From
the remaining agents, inactive households and foreign firms
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Fig. 3: A graph connecting firms and other agents, and
partitions generated using METIS [14].

are included in the graph by connecting them to the nearest
one or two firms, whereas investors, banks, government,
and central bank are not included in the graph but assigned
to the partitions later. To ensure that the graph sufficiently
reflects the employer-employee interactions, low weights
are assigned to the links connecting inactive households and
foreign firms to the firms. Further, to ensure that the graph
is connected, the firms are also linked with neighboring
firms using triangulation with low link weights. The nodes
of the graph are assigned a nodal weight according to
the computational workload of their associated agent. The
graph is partitioned using the METIS_PartGraphKway()
function of the METIS library [14], such that each partition
has a nearly equal sum of nodal weights and the partition
boundaries cut the minimum number of edges (i.e., “N"

~ ZlfNT n;, where “N7 and /N" are the numbers of work-
ers and firms finally assigned to the rank r). Fig. 3 shows
part of a small graph and the eight partitions generated.
After partitioning, firms’ investors are assigned to the par-
titions that include the respective firms. Bank, government,
and central bank are assigned to the master rank (e.g., rank
0) so that they can interact among themselves without any
communications.

3.2 Scalable solutions for the centralized graphs

Decentralizing the functionalities of the agent at the central
node of centralized graphs by adding one local-central-node
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to each partition and connecting only the local-central-node
to the global-central-node (see Fig. 4) is an effective way
of drastically reducing the high communication overhead
discussed in section 2.2.

Once decentralized, not only do the interactions involve
load and store to the individual rank’s private memory, but
they can also take place in parallel. To evaluate the gains of
the decentralization, consider N number of agents equally
distributed over P number of MPI-ranks. If the NV agents
have bi-directional interactions with the global-central-node
located in rank 0, and if each message involves d number
of double precision values, the total size of the messages
is 2 x (N x £51) x (8 x d) bytes. If the central node takes
0t time to process each request and if we ignore the time
for message passing, the amount of wasted CPU time due
to resulting load imbalance is §t x N x %. On the other
hand, when decentralized, the total message size is (P —
1) x (8 x d) bytes and the amount of wasted CPU time is
0. N being in the range of 10 to 100 million, and P being in
the range of 10 to several hundreds, the time saved by the
decentralized system is significant. Hence, decentralization
improves the scalability while reducing the total execution
time proportional to P.

3.2.1 Interactions with the government

The simple solution discussed in section 2.2.1 has poor scal-
ability because of the high load imbalance and the resulting
serialization. As discussed above, a scalable solution is to
decentralize the government by introducing a new agent,
LocalGovt, in each rank which will serve as the government
agent. The LocalGouvt collects taxes from all other agents,
calculates and pays social benefits to households, and buys
a portion of goods required by the government. At the end
of the financial period, LocalGovt communicates the amount
of taxes collected, social benefits paid, and the goods bought
to its parent agent, the government, which is present in the
master rank using just one communication. This solution
evenly distributes the computational workload, eliminates
all bi-directional communications, and drastically reduces
the overall number of communications.

3.2.2 Interactions with the bank

Just like the interactions with the government, the problem
can be solved by introducing a new agent, LocalBank, in
each rank that is able to locally process all the deposit
and withdrawal requests from the customers. This not only
improves scalability and reduces run-time, but also reduces
the memory requirements of the master rank, as the master
rank doesn’t need to store the account details of the millions
of bank customers.

Ei(t—1)
Mimt (Li(t = 1) + ALi(1))
Ei(t—1)
T
2y Li(t = 1)
Decentralization of some interactions may, however, re-
quire somewhat compromising modifications to be made
to the agent-based model. One such example is interac-

tions with customers requesting loans. In typical agent-
based models, a bank extends loans to customers based on

> ¢ M

>¢ @
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Fig. 4: Interactions of LocalBanks with rest of the agents

conditions like those in Equation 1, where Ej(t — 1) is the
bank’s equity at the start of t'* period, 1/¢ is the maximum
allowable leverage for the bank, AL;(¢) and L;(t—1) are the
requested amount of loan and the outstanding loan of the
it" customer, and I is the total number of customers. The
denominator makes the processing of loan requests sequen-
tial, as LocalBanks have to consult the bank’s headquarters in
rank 0, which requires a large number of communications
and makes this interaction serial. Since ¥/_ | AL;(t) <<
L(t — 1), a solution with a negligible compromise is to use
the condition 2, instead of 1. Numerical tests confirmed that
this modification has imperceptible effects. At the end of the
financial period ¢, the bank’s headquarters, located in rank
0, collects the financial reports (i.e., total deposits, loans,
interests received, etc.) from all LocalBanks and informs each
local branch of the values of Zle L;(t) and Ej(t) so that
local branches can independently extend loans to customers
in the respective ranks in the next period ¢ + 1.

3.3 Scalable solution for scale-free graphs

As discussed in section 2.3, implementing a scalable solution
for scale-free graphs is challenging because of their ran-
dom, dense, and dynamic nature. However, it is the highly
stylized nature of the ABEMs which makes it difficult to
parallelize the goods market and the labor market. In almost
all ABEMs, the customers buy goods directly from manu-
facturing firms, whereas in the real world, customers buy
goods from intermediate entities like supermarkets. Our
scalable solution for scale-free graphs is to closely mimic
the real-world functioning of the goods market and labor
market, by introducing new intermediate agents SalesOutlet
and RecruitmentAgency.

3.3.1 Interactions on goods market

To mimic the real world, a firm ff *® from an industrial sector
s located in a given rank 7 is set to sell its products to
the customers in any rank r through f;"*’s SalesOutlet o,*,
where 7,7 € {0,...,P — 1}, and s € {0,...,S —1}; P
and S are the total number of ranks and the total number
of industries respectively. This enables the consumers in
rank 7 to directly buy goods of firm f;”° from o;® without
requiring any MPI communications, which addresses all the
problems related to the goods market discussed in section
23.1.

6

In each period ¢, there are two interactions between a
firm f;°° and its SalesOutlet o;°: supply of products to o,
before the start of the goods market and collection of sales
records from o;® at the end of the goods market. Firms
distribute products among their SalesOutlets proportionally
to the demand for their products in each rank. Firm f;**
supplies y;*(t) of its total production Y;"*(¢) to its Sale-

sOutlet 0, as per Equation 3, where D"*(t) is the demand
for goods of sector s in rank 7.

DT,S(t)
Zf:ol Drs(t)

In our implementation, each rank r estimates its demand
D™*(t) by summing the budget allocated by rank ’s buyers
for the goods of sector s and finds the global demand (i.e.,
Zf;ol Dm*(t)) for sector s using MPI_Allreduce(). The
firm f>° communicates its total production Y;*(¢) to its
SalesOutlets located in other ranks using MPI_Scatter().
After receiving Y;°(t), each SalesOutlet 0;® computes its
portion of products as per Equation 3 and sells to the local
buyers in rank 7. The reporting of sales records of each
sector s is done in two steps; first, the master rank collects
the sales record of all 0;"® using MPI_Reduce() and then
it scatters the reduced results to the ranks where there are
owner firms f;® using MPI_Scatter().

Although this simple solution eliminates a large number
of random communications, careful planning is required to
communicate a large volume of data between SalesOutlets
and their owners. Fig. 5 shows the desired layout of firms
and their SalesOutlets. Each small box indicates a number
of firms of a given industry, located in a rank. The boxes
on the left indicate the firms in each rank and the boxes
on the right indicate their corresponding SalesOutlets. Using
a common MPI collective communication is not the most
efficient solution, as it involves at least 2S5 number of mes-
sages: S calls to MPI_Allgatherv() to distribute products
to sell, and another S calls to MPI_Allscatterv() to
collect the sales record. This will introduce a significant
overhead when it comes to simulating large economies with
many industrial sectors. The communication overhead can
be reduced by combining these .S independent communica-
tions into a single communication using MPI_Alltoallw
(), which generalizes the collective communications by
allowing counts, displacements, and MPI data types to be
specified separately. By appropriately defining the MPI data
types and displacements at the sending and receiving ends,
a single call to MPI_Alltoallw() is sufficient to commu-
nicate the data of all the firms to their SalesOutlets or of all
SalesOutlets to their owners.

yt () = Yo (t) 3)

3.3.2 Interactions on the labor market

The partitions, generated based on a representative graph of
the labor market (see section 3.1), only ensure that the labor
demand in each rank will be approximately satisfied, i.e.,
WNT ZlfNr n;, where “N7 and fN" are the numbers
of workers and firms assigned to the rank r, and n; is
the labor demand of the i*" firm. The presence of ranks
with “N" < ZlfNr n; causes a significant number of inter-
process interactions among workers and firms located in
different ranks, as discussed in section 2.3.2. Further, since
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Fig. 5: Layout of firms and their SalesOutlets in different MPI-ranks. Each colored box represents a set of local or foreign

firms assigned to each rank.

the labor demand of firms is time-dependent, the imbalance
may worsen, and the number of interactions may increase.
To get rid of these large inter-process interactions, an in-
termediate agent, RecruitmentAgency R", is introduced into
each rank r which acts as a labor supplier for the firms and
job provider for the job seekers. The firms and workers of
two ranks r and 7 interact indirectly through R" and R". The
actions of RecruitmentAgency R" are summarized below:

1) Firing: In each rank r,

a) Each firm f"® reports vacancies v; and fired
labors lf"e to R"
b) R" flres local workers and sends the list of

fired non-local workers to R”, where r # 7

Local hiring: In each rank r,

a)
b)

Unemployed workers “w" register with R"
R assigns available jobs V(= > v;) to “w".
The imbalance E"(= V" — " “w") indicates
the number of extra jobs (E” > 0) or extra
workers (E” < 0)

Master rank’s RecruitmentAgency, R, collects E" of
each R", and assigns labor from R toR"ina greedy
manner so that vacancies of R" are filled.

RY sends labor assignments to other R"s, based on
which they exchange the labor and make workers
employed at a firm in a remote rank.

After the receipt of wages from firms f™°, R" pays
the wages to local workers, and sends wages of non-
local workers, if any, to R”

The introduction of RecruitmentAgency agents has elim-
inated random interactions in the labor market; moreover,
their functioning is not affected by the dynamic nature of
the graph. All these factors make this a scalable solution.

3.4 Communication hiding

Overlapping the communications and computations, or
communication hiding, is a standard technique for reducing

the overhead of communications and thereby improving
the scalability. Even though blocking MPI functions are
mentioned in the text, non-blocking MPI functions (e.g.,
MPI_Iscatter() in place of MPI_Scatter()) are used
in the actual implementation. We overlap almost all the
communications by posting a non-blocking send and receive
of a message as soon as the data to be sent become available
and finalize the reception of the message just before the start
of the event that uses that data.

3.5 Algorithmic improvements

Apart from the above strategies to overcome the difficul-
ties posed by different agents’ interactions, the algorithms
of data-intensive and extensively called functions are im-
proved to make them cache-friendly. Frequent random read
and/or write access to large data arrays, which are larger
than the available cache memory of a rank, can add a signif-
icant run-time overhead due to the long delays in accessing
the main memory or RAM. The goods market, or buy()
function (Algorithm 1), is the most data-intensive function
in an ABEM; hundreds of millions of buyers randomly
interact with several millions of SalesOutlets. We observed
that buy() consumes 90% of the total run-time.

The rest of this section provides some details of the
algorithmic and data structural changes to reduce the run-
time of buy(). The effectiveness of these improvements is
demonstrated in the next section.

3.5.1

As mentloned in section 2.3.1, the chance p;® of a SalesOutlet
® being visited by buyers of rank r depends on the
size and the price set by f;”°, which is 0;"*’s parent firm
located in the rank 7. At the start of each period, t, the
p;® for each SalesOutlet in each industry s is calculated,
and corresponding cumulative distributions P"™°, where
P ={P"°|P* = ZJ 1 ;" }, are generated. To choose a
seller in industrial sector s, a buyer draws a uniform random

Updating sellers’ distribution
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Algorithm 1: Pseudocode for buy()

0"% « vector of active SalesOutlets of the sector s in
the rank r;

Uy, + vector of unsatisfied buyers of the sector s in
the rank r;

N, <~ 0™*.size() ; // number of
active-sellers

p;’® < probability of i*" SalesOutlet of the vector S;

1 Generate a cumulative probability distribution

vector P7* = {P/°[P]"* = Y, pi*);

while 0 < Uy,.size() and 0 < N, do

U, < an empty vector to store remaining
unsatisfied buyers
fori = 0;i < Up.size();i+ =1do
2 Draw a uniform random number z such that
0<a< PJQ;S for the buyer, Uy|i];
3 Find the index j of the vector P™* such that
P <z < P
4 Uy, [i] visits the seller 0™*[j] i.e., 0}° to buy;
5 if Uy i) can not buy everything it needs then
6 t U,,.push_back(Uy|i]);
if 07" is sold-out then
7 N, = Update_cumulative_
8 L probability_distribution()
9 | Uy« Uy,

number z such that 0 < = < P"j, where N is the number
of total SalesOutlets in industrial sector s. Searching the
distribution P™*, each buyer identifies the seller og’s, which
satisfies P}, < z < P;**, and visits 0} to buy the required
goods. If the seller og’s thus selected is active (i.e., goods
are available for sale), the buyer’s visit is successful and
it purchases all it needs or all that is available. Buyers keep
visiting sellers until they have either purchased their desired
quantities of goods or all the SalesOutlets are sold out. As the
buy() progresses, the number of sold-out SalesOutlets in-
creases, rapidly increasing the number of unsuccessful buy
attempts of unsatisfied buyers. Each buy attempt requires
random access to arrays containing P™* and o™®, which are
large in volume, making each unsuccessful buy attempt a
large waste of computational resources. Therefore, sold-out
sellers are removed from the distribution as soon as they are
sold-out, and the distribution is regenerated as illustrated in
Fig. 6. We refer to this implementation as naive_update_distr
(Algorithm 1 in the supplementary file). Deleting random
elements of large arrays requires large amounts of data
to be copied, and regenerating the distribution requires
each element p;”° of active SalesOutlets to be accessed to
update their values and to be re-normalized by dividing by
P;,’j, where N, is the number of active SalesOutlets. These
time consuming memory operations on large arrays render
naive_update_distr highly inefficient.

Compared to the deletion of elements from P"*%, a more
computationally efficient approach is to disable any sold-
out SalesOutlet 0}° by updating the cumulative distribution
P"™% as follows.

Pir,s — {Pz7 _pj ) fOI'j SZSNS (4)

P, otherwise

Given a random value z, the selection criterion P,”°; <
x < P;’° ensures that disabled sellers will not be selected
from the updated P"™°. Further, there is no need to update
p;°, as disabling does not change the probability p;” of
an active seller j. This implementation is referred to as
improved_update_distr (Algorithm 2 in the supplementary
file).

The improved_update_distr implementation is efficient
when whole P™? can fit into the available cache memory of
the respective MPI rank. However, when simulating large-
scale models, like the 1:1 scale model of the eurozone,
the memory requirement for P™® for some industries can
be several times the size of available cache memory per
rank. When the size of P™* is so large, both the random
selection of seller from P"* and disabling agents introduce
a large run-time overhead. Selection of a seller according
to the distribution P™?, requires the j to be found such
that P/*, < x < P;° using an algorithm similar to
binary search. When the data size of P™° is much larger
than the available cache memory, binary search requires the
repeated loading of subsets of P™° directly from RAM. As
searching and disabling happens several billion times in
large-scale simulations, this can introduce an excessive run-
time overhead.

These excessive overheads can be significantly reduced
by partitioning P™* and maintaining a table of the values at
the partition boundaries. P™>* is partitioned into m num-
ber of subsets of length I(= Ns/m) such that [ elements
fit into the available cache memory. Then a search table
consisting of the P;"’s at the boundaries of the divisions

Q= {Pjr’s |7 mod I = 0} is generated. Now, the excessive
memory-access overheads in the search can be eliminated
by first searching the table for k£ such that Q; <z < Qgy1,
and then searching P™* for the random value z in the sub-
range k x | < j < (k+ 1) x [. Further, the sold-out sellers
are disabled by updating P™* according to Equation 5, and
Q is updated accordingly.

pre _ {P;’S+p;’s, for0<i<j—1;ifj < Nef2 -

TR pyt, forj Si< Ny ifj > Nofa,

K2

As shown in Fig. 7, this requires a maximum of Ns/2
elements of P™® to be updated and does not involve the
heavy memory copy operation. It is also clear from Fig. 7
that the criterion for selection P;”*} < z < PJT’S ensures
that a disabled seller will not be selected. This implemen-
tation with improved search and disable is referred to as
advanced_update_distr (Algorithm 3 in the supplementary
file).

3.5.2 Data-oriented design

In the buy(), millions of customer agents visit several
thousands of sellers of several tens of industries, exchanging
a large volume of data. This is a memory-bound operation,
and the size of customer objects and the memory-access
patterns will have a notable impact on the run-time. In our
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implementation, for example, the household customer ob-
jects have at least 15 double, 2 float, and 4 int variables.
However, of these, only 6 double variables are involved in
the buying process. Moreover, to provide fair opportunities
to all, the buyers are made to go shopping in a random
sequence. The random accesses to a large array consisting of
bloated objects cause poor cache performance and severely
impact the overall performance of the code. To overcome
this problem, new lightweight agents consisting of only buy
() -related 6 variables of the customers are used as proxies
for buyers. An array C is used to store all these lightweight
buyers. Iterating through this lightweight array C' improves
the memory performance. For cache-friendly design, the
array C' is randomized before the start of the buy(). As
element-wise randomizing is still a memory-intensive task,
the Fisher-Yates algorithm [15] is utilized. As the array C
consists of millions of elements, block-wise shuffling with
a block size of a few thousand is sufficient to provide
unbiased opportunities to the buyers. This implementation
is referred to as data-oriented_buy.

3.5.3 Selling by sellers of big industries

The improvements presented in section 3.5.1 significantly
improve the cache performance of maintaining and draw-
ing random SalesOutlets 0,° from P™*. However, it was
observed that for the sectors with millions of sellers (i.e.,
N ~ 0(10°)), these improvements are not sufficient. Some
sectors of large economies like the eurozone have millions
of SalesOutlets; 8 of the 62 sectors in the eurozone have
more than 1 million SalesOutlets. The size of arrays con-
taining millions of SalesOutlets, each having 6 doubles, is
much larger than the available L3 cache memory shared by
multiple CPU cores. To overcome this issue, the SalesOutlets
of large sectors are partitioned into n independent subsets
with a maximum size of L, where 6 x 8 x L is less than
L3 cache memory available to a CPU core. For the k"
subset, the cumulative distribution P75% where P75F =
(PP =3 0k x L<i< ((k+1)x L—1)},
is generated. To choose a random seller o;® from the subset
k, a buyer draws a uniform random value z, 0 < z < P;{,’j’k,
where N (< L) is the number of sellers in the k*" subset. At
the start of buy() of sector s, a randomly selected subset k
is activated. The buyers visit sellers of the active subset, and
after a random number of buy interactions, another subset
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is activated. The optimal value of L depends on the specifi-
cations of the platform and can easily be determined by trial
and error. L = 100,000 produced high-performance in the
system we used for the simulations given in section 4. This
implementation is referred to as salesoutlets_subsets_buy.

3.5.4 Big buyers buy()

Buyers in goods market comprise local and foreign firms,
government agencies, investors, workers, and inactive
households. Some of these agents, like government, wealthy
investors, large firms, etc., have large buying powers (ie.,
large financial wealth). Total den’gand for goods of sector
s in rank 7, D™*, is equal to 3,y CI**, where C"* is
the consumption budget of i'" buyer and BN"* is the
number of buyers of sector s. Because of non-uniform dis-
tribution of wealthy buyers over ranks, the demand D" is
not evenly distributed among ranks, causing a large load
imbalance in buy(). Making the large buyers buy in all
the ranks is one effective way of making the demands
D"™® uniform over the ranks, and thereby reducing the
load imbalance. The threshold value of consumption budget
C;"® to designate a buyer B;” as a big buyer can be
determined by measuring the computational performance.
For the data sets used in this paper, all the firms with
more than 100 workers and their investors, bank investor,
and government are designated as big buyers. To distribute
the buying action of a big buyer B;”* located in rank 7,
we introduce a new agent ProcurementDivision b;"* in each
rank 7, and the government agent is made to buy in all
ranks through its branches LocalGovts. At the start of buy
(), B;’® distributes its consumption budget equally (i.e.,
Ci"*/P) to its ProcurementDivisions b;"* and collects the goods
bought at the end of buy(). The communications among
ProcurementDivisions and their owners are designed on the
lines of those of SalesOutlets and their owners, as explained
in 3.3.1. As demand becomes uniformly distributed, the load
imbalance and run-time reduce, improving scalability. This
implementation is referred to as dstr_big_buy.

4 COMPUTATIONAL PERFORMANCE

We developed a high performance version of the ABEM
proposed by Poledna et al. [8] based on the strategies pre-
sented in the previous section. This section presents several
numerical tests to quantitatively examine the effectiveness
of those strategies in improving the performance of the code.

4.1

Two data sets are used in the numerical tests: a small
economy with a total of 9.8 million agents, including 732,289
firms (herein referred to as Small-Economy), and a large
economy with a total of 331 million agents, including 22.6
million firms (herein referred to as Large-Economy). Both the
economies have 62 industrial sectors. Small-Economy and
Large-Economy roughly represent the Austrian economy and
the eurozone economy, respectively.

One simulaton period corresponds to one financial quar-
ter. Each simulation is conducted for 13 time periods (one
initialization period and 12 quarters ahead forecast) with
different numbers of MPI processes in the Oakbridge-CX

Problem settings

10

supercomputer of the University of Tokyo. Each computing
node consists of Intel® Xeon® Platinum 8280 (2.7 GHz with
28 cores)x2 socket, and 192 GB memory with 281 GB/s
bandwidth. The interconnection network is Intel® Omni-
Path Host Fabric Interface (12.5 GBps).

4.2 Performance of algorithmic improvements

As mentioned earlier, buy() is the most time-consuming
event, and its performance depends on how the active
sellers are managed as the goods market progresses, as
well as the uniformity of the demand distributed among
various ranks. First, the performance analysis of algorith-
mic improvements discussed in sections 3.5.1 and 3.5.2 is
presented. The strategies presented in section 3.5.1 aim
to enhance the performance of buy() by managing the
SalesOutlets of various industrial sectors in a cache-friendly
manner, whereas those in 3.5.2 enhance the cache perfor-
mance by using lightweight buyers. Four simulations cor-
responding to the naive_update_distr, improved_update_distr,
data-oriented_buy, and advanced_update_distr were conducted
with each of the two problems to check the effectiveness of
the improvements. The code including all these improve-
ments is referred to as first_version (see Algorithm 4 in the
supplimentry file for the pseudo code of the kernel).

Fig. 8 presents the run-time details of the Small_Economy,
averaged over 13 iterations, with different numbers of MPI-
ranks. The centers of dots and circles represent the maxi-
mum and minimum run-time taken by each of the 32 events
in the main loop, respectively; the distances between the
centers indicate the load imbalances in respective events.
Events related to RecruitmentAgency are not included in
these simulations. As Fig. 8 shows, these algorithmic im-
provements have drastically reduced the run-time and load
imbalance of the most time consuming event, event 21, the
buy() . These numerical results confirm that the first_version
has sufficient performance for practical applications for
economies of a few ten million agents.

Exposing a severe performance bottleneck of the
first_version, a single iteration of Large-Economy with 1024
MPI-ranks required around 5700 sec, which is excessively
large: a 34-times-larger problem took 19,826 (5700/18.40 X
1024/16) times more computational resources than Small-
Economy. Fig. 9 presents the run-times taken by the slowest
and fastest ranks to finish buy() of each sector. As the
figure shows, there is significant load imbalance in buy
() of sectors 0, 26, 28, 29, 35, 43, 44, 45, 52, 55, and 61,
which have more than 500,000 SalesOutlets (see Fig. 10).
As 500,000 SalesOutlets do not fit into the available CPU
cache, drawing a seller from the distribution and disabling a
sold-out seller require repeated loading of data from RAM,
which makes these operations very slow. It is to address
this issue that we introduced subsets of SalesOutlets, as
discussed in section 3.5.3. Fig. 11a illustrates the minimum
and maximum run-times taken by 1024 MPI-ranks for one
iteration when first_version is made to use SalesOutlet subsets
with a maximum size of 100,000. As can be seen, the use of
subsets has drastically reduced the load imbalances in all
the sectors: imbalance in sector 26 drops from 2520 sec to
just 73 sec.

The remaining imbalance comes from the non uniform
distribution of demands among ranks. When the demands
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Fig. 8: Mean run-times (of 13 iterations) of 32 events of Small-Economy. Zoomed views show the standard deviations of the
event 21. The difference between the centers of dot and circle corresponding to an event denotes the load imbalance.

of big buyers are uniformly distributed among the ranks,
as explained in the section 3.5.4, the load-imbalance reduces

to a few seconds, as shown in Fig. 11b. We refer to this [ Max runtime $  Min runtime
. . . . . 32007
implementation of the code as final_version (see Algorithm 6
in the supplimentry file for the pseudo code of the kernel). 28001 \

The final_version includes all the strategies presented in 2400
this paper and has 50 events in the main loop. These events B
include all the economic processes, including non-local 2 20007 8
hiring/firing and the initializing and finalizing of many 2 1600, ;
non-blocking communications. The buy() is separated into £ =
firms” buy() and non-firm buyers’ buy() to hide some £ 12007
communications. 800 . .

400+ .

4.3 Events and their load imbalances in the fi- s L.
nal_version 01 ’ Seete

0 5 10 15 20 25 30 35 40 45 50 55 60

As demonstrated in the previous section, various strate- Sector ID

gies have significantly reduced the load imbalance in buy

(). This section studies the performance of all the events Fig. 9: first_version: Mean run-times along with standard
of final_version against load imbalance. For this purpose, ~deviations of buy() of each sector for 13 Monte Carlo
two simulations, one for Small-Econony and one for Large- simulations of Large-Economy using 1024 MPI-ranks.
Economy, were conducted, and the results are presented in

Fig. 12.
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As Fig. 12 shows, most of the events except 32, 34, 36,
41, and 43 take a negligible amount of time. Some of these
events are initialization and finalization of non-blocking
messages, and others are various economic processes. The
most time-consuming event is event 34, which represents
buy() of millions of non-firm buyers. As there are millions
of random interactions between buyers and sellers causing
millions of random memory accesses, event 34 takes a
significant amount of time. Event 34 is followed by event 32,
which is firm buyers’ buy() . Apart from these events being
the most time-consuming, there is a slight load imbalance in
them. The reason for the load imbalance is the imbalance
in the demand distributed among ranks, as discussed in
the previous section. The load imbalance of event 32 is
taken over to event 36, which is the finalization of the
non-blocking communication posted in event 33 for the
reduction of the quantity bought by distributed firm buyers.
The imbalances of both events 32 and 34 are carried over
to events 41 and 43, which finalize and post non-blocking
communications for each of the SalesOutlets, respectively.
Event 41 finalizes the non-blocking communication posted
in event 39 for reducing the sales record of SalesOutlets
at the master rank, and posts another non-blocking com-
munication for scattering the reduced sales record back to
the ranks containing owner firms. Event 43 finalizes the
communication posted in event 41 and assigns the received
sales records to the owner firms.

Furthermore, a comparison of Fig. 8d and 12a shows
that, for Small-Economy simulations, final_version consumes
approximately half of the time consumed by first_version
to complete the most time-consuming event buy(). Even
for Large-Economy, final_version takes only a few hundred
seconds using just 16 MPI-ranks.

4.4 Scalability

Table 1a and 1b show the average run-time of 13 runs and
the corresponding strong scalability of the final_version, with
both the Small-Economy and the Large-Economy. The strong
scalability is a standard performance measure in parallel
computing and is defined as (T,,/T},)/(m/n), where T,
is the average run-time taken by n number of ranks, and
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m > 2n. As is evident from the tables, the code is quite fast
and possesses a high, strong scalability for both small- and
large-scale problems. Even large economies with hundreds
of millions of agents can be simulated using small compu-
tational resources in a reasonably short time.

(a) Small-Economy simulations

MPI Run-time Scalability
ranks (s) (%)
4 22.92
8 12.03 95.26
16 6.57 91.55
32 3.93 83.58
64 2.53 77.66

(b) Large-Economy simulations

MPI Run-time Scalability
ranks (s) (%)
16 483.75
32 241.23 100.26
64 152.95 78.85
128 108.95 70.19
256 80.56 67.62

TABLE 1: Run-time and strong scalability for Small-Economy
and Large-Economy simulations

5 MPI + OPENMP HYBRID IMPLEMENTATION

The MPI-only implementation discussed so far provides a
fast and scalable parallel implementation with a reasonably
low requirement for computational resources. Due to the
dense and random nature of the interactions, it is difficult to
achieve good scalability using shared-memory paralleliza-
tion. However, a hybrid implementation can be utilized
to reduce the memory requirements and the computation
time when per node memory is small. This section presents
an MPI + OpenMP hybrid implementation targeting the
optimal use of computing nodes with limited memory.

As explained in section 3.3.1, the nature of goods market
is such that all the SalesOutlets must be copied in all the
MPI-ranks. In large economies, there can be several million
SalesOutlets; for example, there are 22 million SalesOutlets
(each with 6 double variables) in Large-Economy, requiring
1.056 GB (6 x 8 x 22 x 105 Bytes) memory per MPI-rank.
In modern computing nodes with many-core CPUs, this
large memory requirement may lead to a waste of com-
putational resources, unless CPU cores are equipped with
a large enough memory. As an example, the A64FX CPU,
developed for the Fugaku supercomputer, has 48 CPU cores
and only 32 GB of on-chip high-bandwidth memory. In such
cases, less than half of the CPU cores can be utilized in MPI-
only implementation.

The use of MPI + OpenMP hybrid parallelization to
share the SalesOutlets assigned to an MPI-rank among mul-
tiple threads is an effective means of reducing the wastage
of computational resources in memory-deprived many-core
computing nodes. As buyers buy from one sector at a time
and buying from two sectors is two independent opera-
tions, OpenMP threads can be utilized to make buyers buy
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Fig. 12: Mean runtimes (of 13 iterations) for each event. Zoomed views show the standard deviations of the event 34. The
difference between the centers of dot and circle corresponding to an event denotes the load imbalance.

from different sectors concurrently, and thereby utilize the
unused CPU cores. However, this requires all the buyers
assigned to an MPI-rank to be copied to all the corre-
sponding OpenMP threads, which, as a downside, increases
the memory consumption. The trade-off between MPI-only
and hybrid implementation depends on the number of
MPI ranks and OpenMP threads. As an example, consider
simulation of Large-Economy with nj; MPI-ranks, each with
no OpenMP threads. Altogether, the 300 million buyers,
each with 2 int and 8 double variables, in Large-Economy
require 21.6 GB (9 x 8 x 300 x 10° Bytes) memory. Therefore,
the hybrid implementation requires (21.6 X no+1.056 X np7)
GB in order to store sellers and buyers. When n,; = 56 and
no = 1, the total memory requirement is 80.736 GB, whereas
for ny; = 28 and np = 2, itis 72.77 GB. This shows that n
and no have to be decided based on the specifications of
the computing nodes, as well as on the amount of run-time
reduction brought by the OpenMP threads.

To check the performance of the hybrid implementation,
Large-Economy simulations were conducted. Table 2 presents
the average run-time of 13 runs and corresponding strong
scalability. The implementation possesses a strong scalabil-
ity of up to 80%. According to our tests, the distributed
memory implementation is predominant in the hybrid im-
plementation, and the implementation works best with a
large number of MPI-ranks and 2 to 8 OpenMP threads.

TABLE 2: Run-time and strong scalability of MPI+OpenMP
hybrid implementation for Large-Economy simulations

MPI OpenMP  Run-time Scalability
ranks threads (s) (%)
1 157.15
56 2 96.72 81.24
3 79.81 80.79
4 74.45 80.40
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6 CONCLUDING REMARKS

A scalable HPC implementation of an ABEM capable of
performing 1:1 scale simulations of large economies is
presented. The challenges posed by dense, random, and
dynamic interaction graphs are addressed by partitioning
the agents based on a representative employer-employee
interaction graph to assign balanced loads to MPI-ranks. By
mimicking real-life solutions, the unknown large number of
MPI messages required in the original ABEM is drastically
reduced to a handful of well-organized communications
overlapped with computations, thereby gaining a signifi-
cant parallel performance. The performance of the goods
market, the most time-consuming event, is enhanced by
maintaining the sellers” cumulative probability distribution
in a cache-friendly data structure. This implementation with
the cache-friendly goods market is sufficient for simulating
medium-size economies with a maximum of 100,000 sellers
per sector. The cache performance of the goods market is
further improved by using seller subsets to simulate large
economies with millions of sellers in a sector. All these
strategies make the implementation highly scalable and
capable of simulating large economies within a few minutes
utilizing small computational resources. Further, an MPI
+ OpenMP hybrid implementation has been developed to
utilize all the computational resources with low per-core
memory capacity. It is demonstrated that the hybrid im-
plementation requires a relatively small amount of memory
and possesses a strong scalability of up to 80%.
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