
1

LightChain: Scalable DHT-based Blockchain
Yahya Hassanzadeh-Nazarabadi, Alptekin Küpçü, and Öznur Özkasap
Department of Computer Engineering, Koç University, İstanbul, Turkey

{yhassanzadeh13, akupcu, oozkasap}@ku.edu.tr

Abstract—As an append-only distributed database, blockchain is utilized in a vast variety of applications including the cryptocurrency
and Internet-of-Things (IoT). The existing blockchain solutions show downsides in communication and storage scalability, as well as
decentralization. In this paper, we propose LightChain, which is the first blockchain architecture that operates over a Distributed Hash
Table (DHT) of participating peers. LightChain is a permissionless blockchain that provides addressable blocks and transactions within
the network, which makes them efficiently accessible by all peers. Each block and transaction is replicated within the DHT of peers and
is retrieved in an on-demand manner. Hence, peers in LightChain are not required to retrieve or keep the entire ledger. LightChain is
fair as all of the participating peers have a uniform chance of being involved in the consensus regardless of their influence such as
hashing power or stake. We provide formal mathematical analysis and experimental results (simulations and cloud deployment) to
demonstrate the security, efficiency, and fairness of LightChain, and show that LightChain is the only existing blockchain that can
provide integrity under the corrupted majority power of peers. As we experimentally demonstrate, compared to the mainstream
blockchains such as Bitcoin and Ethereum, LightChain requires around 66 times smaller per node storage, and is around 380 times
faster on bootstrapping a new node to the system, and each LightChain node is rewarded equally likely for participating in the protocol.

Index Terms—Blockchain, Permissionless, DHT, Consensus, Storage Efficiency, Communication Efficiency, Scalability, Skip Graph.

F

1 INTRODUCTION

B Lockchain [1] is an append-only distributed database
that provides a partial ordering of blocks among a set

of trust-less peers. The blocks consist of transactions and
are connected via immutable links from each block to its
previous one on a chain that is called the ledger. Because
they define a partial ordering of blocks without the need
of a globally synchronized clock, provide a tamper-proof
architecture, and establish trust over a trust-less system of
independent peers, the blockchain systems are exploited in
numerous decentralized applications including the crypto-
currencies [1], Internet-of-Things [2], [3], energy trading
platforms [4], [5], donation systems [6], smart grids [7],
and P2P cloud storage systems [8]. A blockchain system is
usually modeled as a layered-architecture with at least four
layers, which from bottom to top are named as Network, Con-
sensus, Storage, and View layers [9]. The Network layer deals
with the dissemination mechanism of the transactions and
blocks among the peers of the system. The Consensus layer
represents the protocols for the block generation decision-
making process, which aim at providing a sequential or-
dering of the blocks among all the peers. The Storage layer
provides the read functionality for the peers to read from the
blockchain. The View layer represents the most recent state
of the participating peers’ data considering all the updates
on the ledger from the very first to the most recent blocks.

© 20xx IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, including reprinting/republishing
this material for advertising or promotional purposes, collecting new collected
works for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
Hassanzadeh-Nazarabadi, Y., Küpçü, A. and Özkasap, Ö., 2021. LightChain:
Scalable DHT-Based Blockchain. IEEE Transactions on Parallel and Dis-
tributed Systems, 32(10), pp.2582-2593. DOI: 10.1109/TPDS.2021.3071176

The existing blockchain solutions show scalability prob-
lems in at least one layer of the aforementioned architecture.
To the best of our knowledge, at the Network layer, all
the existing blockchains operate on unstructured overlays
[1], [10]–[20]. Such overlays have no deterministic, well-
defined, and efficient lookup mechanism to retrieve the
address of the peers, the content of the blocks, and the
new transactions. Rather, the knowledge of a peer of other
peers, blocks, and transactions is gained by the epidemic
message dissemination among the peers (e.g., broadcasting
in Bitcoin [1]) which costs a message complexity of O(n) to
disseminate a new block or transaction through the entire
system, where n is the number of participating peers in the
system.

At the Consensus layer, the existing solutions degrade
the decentralization of the system by delegating the block
generation decision making to a biased subset of the special
peers [21], e.g., the peers with higher computational power
[1], [16], [17], higher stakes [10], or longer activity history
in the system [12]. The existing blockchains are also prone
to the consistency problems that are caused by their prob-
abilistic fork-resolving approach at the Consensus layer,
i.e., following the longest chain of the forks as the main
chain [1]. This causes the block generated by the existing
consensus solutions is not considered finalized until some
new blocks come after it and make that block residing on
the longest chain (i.e., main chain) [22]. The main chain of
existing solutions is not deterministic and can be switched
abruptly once another longer chain is introduced by other
peers, which compromises the consistency of blockchain.

At the Storage layer, the existing blockchains require a
memory complexity of O(b) by downloading and keeping
the entire ledger locally at the peer’s storage [9], where b is
the number of blocks in the system. In other words, as peers

ar
X

iv
:2

10
9.

00
41

6v
1

 [
cs

.D
C

]
 1

 S
ep

 2
02

1

2

are not able to efficiently lookup any information within
the unstructured overlay, they locally store the perceived
information and gradually construct a local copy of the
entire ledger, which takes O(b) storage complexity. Like-
wise, upon joining the system, during the bootstrapping
phase, a new peer needs to verify the entire state of the
ledger from the very first block to the most recent one to
check the integrity of the ledger [21]. This imposes a time
and communication complexity of O(b) at the View layer.
Bootstrapping is defined as the process in which a new node
constructs its view of the blockchain [9].

The best existing approach to overcome the mentioned
scalability problems of the blockchains is to apply sharding
[13], [14], [18], i.e., splitting the system into multiple smaller
groups of peers, and each group operates in parallel on a
disjoint version of the ledger. Although this reduces the
required storage complexity of the nodes to O(b

logn), it
does not improve the O(n) communication complexity for
processing a single transaction or block [18].

In this paper, to provide a scalable blockchain architec-
ture with fully decentralized and uniform block generation
decision-making, we propose LightChain, which is a per-
missionless blockchain defined over a Skip Graph-based
peer-to-peer (P2P) Distributed Hash Table (DHT) overlay
[23]. LightChain is permissionless [24] and unmoderated
[25], as it allows every peer to freely join the blockchain sys-
tem and participate in the block generation decision-making
without any authority. At the Network layer, LightChain
operates on top of a Skip Graph that is a DHT-based
structured P2P system with a well-defined topology and
deterministic and efficient lookup strategy for data objects.
We model each peer, block, and transaction by a Skip Graph
node. Compared to the existing blockchains that rely on
epidemic dissemination and retrieval of data with the mes-
sage complexity of O(n), our DHT-based LightChain enables
participating peers to make their blocks and transactions
addressable and efficiently accessible at the Network layer
with the message complexity of O(log n).

At the Consensus layer, we propose Proof-of-Validation
(PoV) as an efficient, immutable, and secure consensus
protocol for LightChain. PoV is efficient as it requires only
O(log n) message complexity for validating a single trans-
action or block. PoV is fair since each participating peer
in the system has a uniform chance of being involved in
the consensus regardless of its influence, e.g., processing
power, available bandwidth, or stake. PoV is immutable
as none of the (influential) peers in reaching a consensus
can legitimately change the consensus at a later time after
it is finalized. PoV is secure as the malicious peers are not
able to generate and append an illegitimate transaction or
block to the ledger. In PoV, the validation of each block
is designated to a subset of the peers, which are chosen
uniformly for each block based on its hash value (modeled
as a random oracle), and are contacted efficiently using the
DHT overlay. In contrast to existing consensus approaches,
our PoV preserves the integrity and consistency of the
blockchain in the presence of colluding adversarial peers
(e.g., Sybil adversary [26]), as well as selfish miners [27],
[28], as no peer can contribute to the consensus of any two
consecutive blocks unless with a negligible probability in

the security parameter of the system. As we show both
experimentally and analytically in the rest of the paper,
there is no threshold for the number of adversarial peers
in PoV, and it can be configured to remain secure and
immutable even when the adversarial peers become the
majority. PoV also governs a deterministic rule on resolving
the forks at the Consensus layer, which makes the main
chain recognized in a deterministic fashion and followed
by all the peers.

At the Storage layer LightChain provides storage scala-
bility and load distribution for the peers by utilizing DHT-
based replication. Each peer in LightChain is only respon-
sible for keeping a small subset of the randomly assigned
blocks and transactions while accessing the transactions and
blocks replicated on other peers of the system on an on-
demand basis using the efficient Skip Graph retrievability.
To preserve the data availability in presence of malicious
peers, the replication in LightChain is done in a way that
it provides at least one copy of each block and transaction
accessible at any time with a very high probability in the
security parameter of the system. Having b blocks in the
system, compared to the existing shardless solutions that
require memory complexity of O(b) on each node, our
LightChain imposes only a memory complexity of O(bn) on
each node.

At the View layer, LightChain provides each new node
to the system with a fast bootstrapping mechanism called
Randomized Bootstrapping, which takes O(log n) message
complexity and O(n) time complexity to construct its
view of the entire ledger. Hence, opposed to the exist-
ing solutions that take O(b) message and time complexity
(b >> n), LightChain enables immediate participation on
the blockchain system without the need to verify the entire
blockchain for new nodes. Operating on a DHT-based over-
lay of peers, LightChain also provides a novel approach to
directly obtain a particular peer’s state without the need to
traverse the entire ledger, which takes the message complex-
ity of O(log n) and the time complexity of O(1).

The original contributions of this paper are as follows.

• We propose LightChain, the first fully decentralized
scalable, permissionless, and DHT-based blockchain
architecture, with asymptotic communication and
storage complexities’ superiority compared to the
existing blockchain solutions. LightChain provides
full decentralization and fairness in block-generation
decision making by providing each peer of the sys-
tem with a uniform chance of being involved in the
consensus regardless of its influence, e.g., processing
power, available bandwidth, or stake.

• We provide security definitions for LightChain, and
analyze how to set its operational parameters to
achieve those security features.

• We extended the Skip Graph simulator SkipSim [29]
with the blockchain-based simulation scenarios, im-
plemented and simulated the LightChain in exten-
sive simulation scales of 10K nodes, and show its
performance concerning the security features, in the
presence of colluding adversarial nodes.

• We also implemented a proof-of-concept version of
LightChain node [30], deployed it as an operational

3

LightChain system on Google Cloud Platform, and
measured its operational overheads in practice.

2 RELATED WORKS

Network Layer: Dissemination of a new transaction or
block in the existing blockchains is done via Broadcasting
[1], Flooding [16], or Gossiping [17], which require O(n)
message complexity for a single block or transaction to be
accessible by every peer of the system. On the other hand,
our proposed LightChain applies a message complexity of
O(log n) to insert a new transaction or block in the Skip
Graph DHT overlay, and make it accessible by every peer
of the system. Additionally, in our proposed LightChain, the
latest state of the data objects are addressable within the
network (e.g., the balance of a node in cryptocurrency ap-
plications), and retrievable with the message complexity of
O(log n). Therefore, in contrast to the existing blockchains,
peers in LightChain are not required to keep searching and
retrieving the most recent blocks frequently. Rather, they can
search and retrieve the latest state of their data objects of
demand interest.

Consensus Layer: In Proof-of-Work (PoW) [1], [31], the
block generation decision-making is heavily correlated with
the hash power of peers, which sacrifices the fairness and
decentralization of the system in favor of the nodes with
higher hash power. PoW tolerates up to 1

2 fraction of mali-
cious hashing power. Proof-of-Stake (PoS)-based approaches,
degrade the decentralization of the system by binding the
block generation decision-making power of the nodes with
the amount of stake they own [10], [11], [32]. PoS can tolerate
less than 1

3 fraction of malicious stakeholders. However,
they apply a message complexity of Ω(n) to the system
for block generation decision making. In the Byzantine Fault
Tolerance (BFT)-based approaches, each node broadcasts its
vote to the others, receives their votes, and follows the
majority [15], [19], [20], [33]–[35]. Practical BFT (PBFT)
[35] is one of the pioneers in the BFT-based class that is
adaptable to the practical asynchronous setups (e.g., the
Internet) where there are no known bounds on the relative
execution speeds of the nodes and the message-delivery
latency among them [36]. Although such BFT-based consen-
sus protocols can tolerate up to 1

3 fraction of the adversarial
nodes [37], they apply a message complexity of O(n2) to
the system for processing a single transaction or block [38].
Some efforts are done to improve the message overhead
in such systems. For example, in Ripple [33] instead of
reaching a consensus with the majority of the system, each
node only reaches a consensus with a subset of nodes it
has trust on. Although this slightly improves the message
overhead per node depending on the size of its trusted
list, it degrades the fault tolerance of the system to less
than a fraction of 1

5 of malicious nodes (in contrast to the
classical 1

3). In the sharding-based approaches the system is
partitioned into disjoint subsets of peers, e.g., subsets of size
O(log n) [18]. Each subset is working on an independent
version of the ledger using BFT in an epoch-based manner
[13], [14]. Although intra-shard transactions are processed
with a lower message complexity, the inter-shard transac-
tions should go through the main ledger, which requires the
same message complexity as the case of BFT in the no-shard

scenarios. As we define in Section 1, compared to the exist-
ing PoW and PoS consensus solutions, our proposed Proof-
of-Validation (PoV) is the only one that provides security,
immutability, decentralization, and fairness altogether. Like-
wise, compared to the BFT-based mechanisms, our PoV only
applies a message complexity of O(log n) to the system for
reaching consensus over a block. Finally, there is no inherent
adversarial fraction limitation in PoV. Rather, it receives the
upper bound on the adversarial fraction of the nodes as
input and tweaks its parameters to preserve the security and
immutability accordingly. Considering that in PoV the block
generation decision making chance is uniformly distributed
among the participating nodes regardless of their influence
in the system, as we experimentally show in Section 6, our
proposed PoV remains secure and immutable even when
the fraction of malicious nodes becomes the majority, which
is in contract to the existing PoW-, PoS-, and BFT- consensus
solutions.

Storage Layer: Having b blocks in the system, most
of the existing blockchains apply a storage complexity of
O(b) on each peer [1], [9], [31]. The best existing blockchain
architectures concerning storage overhead are the shard-
based ones, which apply a storage complexity of O(b

logn)
[16], [18]. Current attempts on storing each transaction only
on the sender and receiver nodes result in overwhelming
time complexity of O(n× b) on generating new transactions
[17], [39]. Compared to the existing solutions, our proposed
LightChain requires O(bn) storage complexity on each peer
without any sharding, and with the decentralization of
system fully preserved.

View Layer: To the best of our knowledge, there is no
existing secure and fast bootstrapping approach as we have
in our proposed LightChain, i.e., O(n) in time and O(log n)
in message complexity. Having b blocks in the system, the
local self-construction of view from scratch in the existing
blockchains takes the time and message complexity of O(b)
(b >> n) on each node by collecting all the blocks, recon-
structing the ledger locally, and computing the state of each
node by replaying all transactions.

Table 1 compares a variety of the best existing blockchain
solutions to our proposed LightChain across different layers
of blockchain protocols stack.

3 PRELIMINARIES AND SYSTEM MODEL

Skip Graphs [23] are DHT-based overlay of nodes, where
each node is identified with an (IP) address and two iden-
tifiers: a numerical ID and a name ID. Each Skip Graph
node can search and find the address of other nodes of Skip
Graph that possess a specific numerical ID or name ID, by
utilizing a search for numerical ID [23], [41], or a search
for name ID [42] of those nodes, respectively. Both searches
are done with the message complexity of O(log n). As the
result of the searches, if the targeted identifier is available
in the Skip Graph, the (IP) addresses of their corresponding
nodes are returned to the search initiator. Otherwise, the (IP)
addresses of the nodes with the most similar identifiers to
the search target are returned. As detailed in Section 4, in
LightChain, a Skip Graph overlay of peers is constructed by
representing each peer as a Skip Graph node. We assume
that each participating peer joins the Skip Graph overlay

4

Strategy Network Consensus Storage View
Bitcoin [1] Broadcasting (O(n)) PoW Full (O(b)) Self-Construction (O(b))
Rollerchain [16] Flooding (O(n)) PoW Distributed (O(b

logn
)) Self-Construction (O(b))

Trustchain [17] Gossiping (O(n)) PoW Distributed (O(b)) Self-Construction (O(b))
Snow White [10] Broadcasting (O(n)) PoS Full (O(b)) Self-Construction (O(b))
PoA-Bitcoin [12] Broadcasting (O(n)) PoW-PoS Full (O(b)) Self-Construction (O(b))
Elastico [13] Broadcasting (O(n)) BFT Full (O(b)) Self-Construction (O(b))
Rapidchain [18] Gossiping(o(n)) BFT Distributed (O(b

logn
)) Self-Construction (O(b))

BitCoin-NG [40] Broadcasting (O(n)) PoW Full (O(b)) Self-Construction (O(b))
Ouroboros [11] Broadcasting (O(n)) PoS Full (O(b)) Self-Construction (O(b))
Omniledger [14] Gossiping (O(n)) BFT Full (O(b)) Self-Construction (O(b))
Avalanche [15] Gossiping (O(n)) Snowflake Full (O(b)) Self-Construction (O(b))
LightChain DHT (O(logn)) PoV Distributed (O(b

n
)) Randomized-Bootstrapping (O(logn))

Table 1: A comparison among the best existing blockchain solutions in a system with n nodes and b blocks. We assume an approach supports distributed storage, if
the storage load of blocks and transactions is distributed among all the participating peers in a policy-based manner, e.g., replication. Also, by the self-construction at

the view layer we mean a peer is required to collect all blocks, build the ledger locally, and construct its view by traversing the ledger from the tail to the head.

using the Skip Graph join protocol in a fully decentralized
manner [23]. In this paper, each peer corresponds to a device
connected to the Internet (e.g., a laptop, smartphone, smart
TV) that executes an instance of the LightChain protocol.
We consider the system under constant churn [43], i.e., the
participating peers are dynamic between offline and online
states. We assume the existence of a churn stabilization
strategy [44] that preserves the connectivity of the overlay
under churn.

Synchronization: We assume the system is partially
synchronous [36], meaning that most of the time the process
execution speeds and message-delivery times are bounded.
To handle the times that the system goes asynchronous
where no such bounds are assumed, processes use a timer
and timeout mechanism to detect process crash failures.

A blockchain is a linked-list of blocks with an im-
mutable link from each block to its previous one [9]. By
an immutable link, we mean that each block points back
to the collision-resistant hash value of its previous block on
the linked-list. The linked-list of blocks is called ledger. In
this paper, we call the first block of the ledger (i.e., head)
as the Genesis block and the most recent block (i.e., tail) as
the current tail. For each block on the ledger, the previous
relationship is the immutable link from it to its previous
block on the ledger. Blockchain defines a partial ordering of
the blocks on the ledger based on the previous relationship.
We say that block blk1 is the immediate predecessor of the
blk2, if blk2 points back to the hash value of blk1 as its
previous block on the ledger. In this situation, blk2 is the
immediate successor of blk1. Due to the immutable links,
the blockchain is considered as an append-only database.
Updating a block of the ledger by changing its content
is not allowed, and is considered an adversarial act. Re-
establishing the connectivity of ledger after an update on
a single block requires refreshing the hash pointers on all
the subsequent blocks, which is a computationally hard
problem in the existing blockchains [1].

Notations: In this paper, we say that a block is committed
to the blockchain if it is being written by the Consensus
layer protocol of the blockchain to its storage, i.e., the
block passes the defined consensus verification and is being
appended to the tail of the ledger. We denote the security
parameter of the system by λ. We denote the hash function
H : {0, 1}∗ → {0, 1}s as a random oracle [45], where s is the
identifier size of peers in bits. We assume s is polynomial
in the security parameter of the system, i.e., s = poly(λ).

We denote the System Capacity by n, and define it as the
maximum number of registered peers in the system, i.e.,
n = O(2s). Similarly, we denote the Block Capacity by b and
define it as the maximum number of the generated blocks
in the system. We assume b >> n.

View Layer: We assume each peer is participating in
the blockchain by a set of assets as well as a balance. The
assets set corresponds to the data objects that the peer
initially registers on the blockchain via a transaction, and
can update it later on by generating new transactions. The
balance of a peer is used to cover its transaction generation
fees. We consider a transaction as a state transition of the
assets of the transaction’s owner. View of a participating
peer in our system model towards the blockchain is a table
of (numID , lastblk , state , balance) tuples. Each tuple rep-
resents the view of the peer concerning another peer of the
system with the numerical ID of numID, where lastblk is
the hash value of the last committed block to the blockchain
that contains its most recent transaction, and the current
state of the assets as well as the remaining balance of state
and balance, respectively. By the current state, we mean the
most recent values of the assets of the peer considering all
the generated transactions by that peer from the Genesis
block up to the current tail of the blockchain.

Authenticated Searches: We assume that the search
queries over the Skip Graph overlay are authenticated by
an authentication mechanism in the presence of an adver-
sarial party that adaptively controls a fraction f of nodes
and is aiming at conducting routing attacks to the system
[46], [47]. By the authenticated searches, we mean that the
validity of the search results is publicly verifiable through
a search proof that is generated by the signing keys of the
participating peers on the search path. The search proof also
contains the attributes of the peers on the search query path
(e.g., identifiers and (IP) addresses) with the last node on
the search path considered as the search result. We assume
the success chance of the adversary on breaking the au-
thenticated search mechanism and forging a search proof is
limited to some negligible function ε(λ) (e.g., ε(λ) = 2−λ).

5

4 LIGHTCHAIN SYSTEM ARCHITECTURE 1

4.1 Overview:

Overlay: In LightChain the peers, as well as the transactions
and blocks, are represented by Skip Graph nodes. Each peer
invokes the join protocol of Skip Graph [23] using its identi-
fiers and (IP) address and joins the system. Both identifiers
of a peer (i.e., its name ID and numerical ID) are the hash
value of its public key (i.e., verification key). In this paper,
we assume the peers utilize a digital signature scheme that
is existentially unforgeable under adaptive chosen message
attack [45]. Once the peer joins the Skip Graph overlay,
it can efficiently search for any other peer of the system
with the message complexity of O(log n). Upon joining
the Skip Graph overlay, the peer creates its view of the
blockchain using LightChain’s Randomized Bootstrapping
feature without the need to download and process the entire
ledger.

Transaction Generation: In LightChain, a transaction rep-
resents a state transition of the assets of a peer, which is
denoted by the owner peer of that transaction. For example,
in cryptocurrency applications, the asset of a peer is its
monetary wealth, and a transaction represents the state tran-
sition of the monetary wealth of it. The owner peer casts the
state transition into a transaction, computes the identifiers
of validators, searches for the validators over Skip Graph
overlay, and asks them to validate its transaction. To be
validated, each transaction needs to be signed by a system-
wide constant number of validators, where their identifiers
are chosen randomly for each transaction to ensure security.
In addition to security, the idea of validating transactions
makes participating nodes in the block generation needless
of going through the validation of individual transactions.

Block Generation: Once the transaction gets validated,
the owner inserts it as a node into the Skip Graph overlay,
which makes it searchable and accessible by any other peer.
The insertion of the transaction is done by invoking the join
protocol of Skip Graph using the transaction’s identifiers
(i.e., its hash value) but the (IP) address of the owner peer
itself. The Skip Graph peers route the messages on behalf of
the transaction nodes they hold. This idea is similar to the
other existing DHTs like Chord [49], and enables LightChain
peers to search and find the new transactions. Upon finding
new validated transactions, each peer is able to cast them
into blocks, go through the validation procedure (similar
to the transactions’ case), and insert the validated block
into the Skip Graph overlay. Each transaction’s owner then
removes its transaction node from the overlay once it is
successfully included in a validated block. The idea of
representing each transaction and block by a Skip Graph
node results in any search for the peer or the transactions
and blocks that it holds to be routed to the peer’s (IP)
address, rendering them accessible by every other peer in
a fully decentralized manner with the message complexity
ofO(log n). Hence, in LightChain’s Skip Graph overlay, there
exist three types of nodes: peers, transactions, and blocks. In

1In this section, we present the architecture of LightChain at each
layer of the blockchain protocol stack. We skip the detailed algorithmic
presentation of LightChain’s protocols for sake of page limit and refer
the interested readers to the full version of this paper [48] for those
details.

other words, the Skip Graph overlay acts as a distributed
database of the transactions and blocks that are owned
by the peers. As elaborated later, the previous relationship
of blocks stored in a distributed manner on distinct peers
defines a blockchain.

Distributed Storage Layer: In LightChain, each block
and transaction is replicated on its owner and validators to
support availability, accessibility, and fault tolerance. Using
searchable blocks and transactions as well as replication, in
LightChain we introduce the idea of a distributed storage
layer for the blockchain where participating peers in the
consensus only need to keep and maintain a subset of the
blocks, and not the ledger entirely. In the rest of this section,
unless stated otherwise, by the term node, we mean a peer.

Incentive Mechanism: As an incentive mechanism,
LightChain employs a monetary balance for each partici-
pating peer to exchange with other peers and cover the
operational fees of appending data to the blockchain [1].
LightChain rewards the peers’ honest contribution to main-
tain the connectivity of the system, provide validation ser-
vice, and generate blocks. Moreover, LightChain encourages
honest peers to audit other peers, by rewarding the detec-
tion and report of adversarial acts. Malicious behavior is
penalized by LightChain upon detection, and the adversarial
peers are blacklisted and gradually isolated from the sys-
tem.

4.2 Structure of Transactions and Blocks

A LightChain transaction, tx, is represented by a
(prev, owner, cont, search_proof, h, σ) tuple, where prev
is the hash value of a committed block to the blockchain.
We use the prev pointer for each transaction tx to define
an order of precedence between tx and all the blocks and
transactions in the blockchain without the need for any
synchronized clock. The block that is referred by prev takes
precedence over tx. All the transactions included in the
prev block are assumed to be committed before tx in the
essence of time. Following the same convention, all the
blocks and transactions that precede prev, also precede tx.
The owner represents the identifier of the owner node in
the Skip Graph overlay that generates the transaction tx.
The contribution field (i.e., cont) of a transaction denotes
the state transition of the assets of the owner node, e.g., a
monetary remittance between two peers in cryptocurrency
applications. The search_proof field of a transaction is the
authenticated proof of searches over the peers of the Skip
Graph overlay to find the validators of the transaction tx,
as explained before. The h field of the transaction tx is the
hash value of the transaction, which is computed as shown
by Equation 1. The σ field of the transaction tx contains
the signatures of both the owner as well the validators
on its hash value h. The validators’ signature is a part of
LightChain’s consensus strategy and is explained later.

h = H(prev||owner||cont||search_proof) (1)
Similarly, a LightChain block blk is defined by a
(prev, owner, S, search_proof, h, σ) tuple. S represents
the set of all the transactions that are included in the block
blk. The h field of block blk is its hash value, which is
computed as shown by Equation 2. The σ field contains the

6

signatures of both the block’s owner as well as the block’s
validators on its hash value h.

h = H(prev||owner||S||search_proof) (2)

4.3 Network Layer: Skip Graph overlay

In our proposed LightChain, we represent each peer, transac-
tion, and block by a Skip Graph node. This way, all the peers,
transactions, and blocks are addressable within the network.
In other words, participating nodes (i.e., peers) in LightChain
exploit the Skip Graph overlay to search for each other,
as well as each others’ blocks and transactions. Both the
numerical ID and name ID of the peers are the hash value of
their public key using a collision-resistant hash function. As
in a Skip Graph, nodes’ identifiers define the topology [23];
hence, considering the hash function as a random oracle
results in the uniform placement of peers in Skip Graph
overlay topology, which limits the adversarial power on
tweaking the Skip Graph topology for its advantage.

The numerical ID and name ID of a transaction (or a
block) in the Skip Graph overlay is its hash value (i.e., h)
and its corresponding prev field value, respectively. This
regulation enables peers to traverse the LightChain’s ledger
in both forward and backward directions. Following this
convention, in LightChain, having a block with numerical
ID (i.e., the hash value) of h and previous pointer value of
prev, the (IP) address of the peers that hold the immediate
predecessor block are obtained by performing a search for
the numerical ID of prev in the Skip Graph overlay [23].
Similarly, the (IP) address of the peers holding the imme-
diate successor transaction(s) or block(s) in the blockchain
are obtainable by performing a search for name ID of h
over the Skip Graph overlay. This follows the fact that all
the immediate successors of the block have its hash value
h as their name ID. This feature of the LightChain enables
the peers to efficiently update their view towards the tail of
the blockchain by performing a search for the name ID of
their local tail [42]. The search returns all the blocks that are
appended subsequently to their local tail, as well as all the
new validated transactions that are waiting to be included in
blocks. Additionally, using this feature, a peer does not need
to store the entire blockchain locally. Rather, having only
a single block of the ledger enables the peer to efficiently
retrieve the predecessor and successor blocks to it with the
message complexity of O(log n).

Figure 1 illustrates this convention of LightChain, where
a peer that only has blk2 is able to efficiently retrieve
its immediate predecessor (i.e., blk1) by searching for the
numerical ID [23] of its prev value (i.e., blk2.prev = blk1.h)
in a fully decentralized manner. The search is responded
by the replicas of blk1 with their (IP) addresses, and hence
the predecessor of blk2 (i.e., blk1) is retrievable efficiently
by directly contacting those replicas. Similarly, the peer that
only possesses blk2 is able to perform a search for name
ID [42] over its hash value (i.e., blk2.h) to retrieve the
immediate successor block that comes after blk2. As the
result of the search for the name ID of blk2.h, replicas of blk3
respond to the search initiator peer with their (IP) addresses,
and blk3 is retrievable efficiently by directly contacting
those replicas. In the case where a single block has several

Figure 1: The LightChain regulation on name IDs and numerical IDs. Numerical
ID (i.e., Num ID) of a block or transaction is its hash value, and name ID is its

corresponding prev value.

successor blocks, the search initiator receives a response
from each of the immediate successor block replicas. In the
example of Figure 1, considering blk4 as the current tail of
the blockchain, as discussed later in this section, the newly
generated transactions that succeed blk4 (i.e., tx1, tx2, and
tx3) are efficiently retrievable by performing a search for the
name ID using blk4.h.

4.4 Consensus Layer: Proof-of-Validation (PoV)
The consensus layer of LightChain is based on our proposed
PoV, which is a fair, immutable, secure, and efficient con-
sensus protocol (see Section 1 for more details on these
features). A transaction or block is considered as validated
once it successfully passes the PoV consensus. Note that a
validated transaction’s contribution is not considered effec-
tive and authoritative unless it is included in a validated
block that is committed to the blockchain. As detailed in
the following, PoV provides a set of α uniformly chosen
validators for each transaction or block. PoV then considers
a transaction or block as valid if its hash value h is signed
by t validators. Both t and α are constant protocol parame-
ters, which are called the Signatures Threshold and Validators
Threshold, respectively. We formally discuss this in Section
5, and develop a formulation for deciding on the proper
values of the Signatures Threshold and Validators Threshold
considering the security of the system.

4.4.1 Transaction Generation and Validation
For a transaction tx, the numerical ID of each validator is
chosen uniformly as shown by Equation 3, where vi is the
numerical ID of the ith validator in the Skip Graph overlay.

vi = H(tx.prev||tx.owner||tx.cont||i) (3)
The transaction’s owner then conducts a search for the
numerical ID of the validator (i.e., vi) within the Skip
Graph overlay. If there exists a peer with the numerical
ID of vi in the overlay, the owner receives its (IP) address.
Otherwise, it receives the (IP) address of the peer with the
largest available numerical ID that is less than vi. Both
cases are supported by an authenticated search proof that
is generated by the Skip Graph peers on the search path
and is delivered to the owner. The authenticated proof
of the search for the numerical ID of the ith validator
is denoted by search_proofi, which also contains all the
(IP) addresses and identifiers of the Skip Graph peers on
the search path. The last peer on the search path of vi is
designated as the ith validator. The transaction’s owner then
adds the authenticated search proof for all the validators to
the transaction, computes its hash value h as specified by
Equation 1, signs the hash value, and appends her signature
to σ. The transaction’s owner then contacts the validators
asking for the validation of the tx. Each validator evaluates

7

the soundness, correctness, and authenticity of tx, as well as
the balance compliance of its owner to cover the fees. As the
validation result for tx, the transaction owner either receives
a signature over h or ⊥ from a contacted validator.

Soundness: A transaction tx is sound if it does not
precede the latest transaction of its owner on the blockchain,
i.e., its prev should point to the hash value of a validated
and committed block on the ledger with no transaction of
its owner in any of the subsequent blocks. In other words,
soundness requires a causal ordering among the committed
transactions of each owner. This is both to counter double-
spending from the same set of assets, as well as to make
the validation of a transaction a one-time operation, i.e.,
the owner of a validated tx transaction can append it to
the blockchain as long as it does not generate any new
transaction on the blockchain that precedes tx based on
prev. Considering the soundness, at most one of the concur-
rently generated and validated transactions of a peer has the
chance to be included in a new block. Once one of its trans-
actions is included in a block, the others become unsound,
cannot be included in the same block or further blocks, and
should go over re-validation. Therefore, besides preventing
the double-spending, soundness provides a uniform chance
for the transaction generators to include their transaction
into each new block.

Correctness: For a transaction tx to be correct, its con-
tribution field (i.e., cont) should represent a valid state
transition of the owner’s assets. The compliance metric
is application dependent. For example, in cryptocurrency
applications, for a transaction to be correct, the owner’s
account should have enough balance to cover the remittance
fee (i.e., the contribution).

Authenticity: The evaluation of authenticity is done by
checking the correctness of h based on Equation 1, verifying
σ for the inclusion of a valid signature of the transaction’s
owner over h, and verifying search_proof for all the val-
idators of tx. A validator rejects the validation of tx as
unauthenticated if any of these conditions is not satisfied.

Balance Compliance: As an incentive mechanism to par-
ticipate in the validation, LightChain considers a validation
fee in the favor of the t validators of the transaction tx that
sign its hash value and make it validated. Also, LightChain
considers a routing fee in the favor of all the Skip Graph
peers that participate in finding the transaction’s validators,
i.e., the peers in search_proof . A transaction tx passes
the balance compliance part of validation if its owner has
enough balance to cover the validation and routing fees. The
balance compliance validation is done based on the view
of the validator towards the blockchain. Both the routing
and validation fees are fixed-value protocol parameters and
are the incentive mechanism for the peers to perform the
routing and validation honestly [1], [40]. The fees also
prevent Sybil adversarial peers from indefinitely generating
transactions by circulating the adversarial balance among
themselves and continuously congesting the system with
the validation of adversarial transactions.

Once a transaction tx receives t valid signatures issued
by its uniformly designated validators, it is considered
valid and is inserted as a Skip Graph node by its owner,
which makes it accessible by other participating peers of the
system to be included in a block. The numerical ID of tx is

tx.h, and the name ID of tx is tx.prev (block). This enables
any Skip Graph peer to conduct a search for name ID on
the hash value of any ledger’s block within the Skip Graph
overlay and find all the new transactions that are pointing
back to that block. Setting tx.prev to point to the tail of the
ledger hence increases the chance of tx for being discovered
by other peers.

4.4.2 Block Generation and Validation

In LightChain, a peer that generates blocks is called a block
owner. Once a block owner collects at least min_tx newly
generated transactions that have not been included in any
committed block to the ledger, it casts them into a new
block blk, and sends the block for validation. By casting
transactions into blk we mean including the collected trans-
actions into the set S as discussed earlier (i.e., Section 4.2).
min_tx is an application-dependent fixed-value parameter
of LightChain denoting the minimum number of transactions
that should be included in a block. To have blk validated, the
block owner computes the numerical ID of the ith validator
as shown by Equation 4, where prev is the hash value of the
current tail of the ledger. The rest of the finding validators
procedure is similar to the transaction case. On receiving a
validation request for a block blk, each of its PoV validators
checks the authenticity and consistency of blk itself, as
well as the authenticity and soundness of all transactions
included in S (as discussed earlier). The authenticity evalu-
ation of blocks is done similar to the transactions.

vi = H(prev||owner||S||i) (4)
Consistency: A block blk is said to be consistent if its

prev pointer points to the current tail of the blockchain; oth-
erwise it is inconsistent. By the current tail of the blockchain,
we mean the most recent view of the validators towards
the tail of the chain. However, it is likely for the current
tail of the blockchain to be updated during the validation
of a newly generated block and make the block under
validation inconsistent. To avoid forking the ledger, upon
the start of validation, all randomly chosen PoV validators
continuously monitor the updates on the tail of the ledger
and terminate the validation with rejection (at any step)
upon detecting a potential fork that is caused by the current
block under validation.

After the blk gets validated, its owner inserts it in the
Skip Graph overlay as a node. As the incentive mechanism
of LightChain, the owner of a block receives a block genera-
tion reward once its block gets validated and committed to
the blockchain. The block generation reward is a fixed-value
parameter of LightChain that acts both as an incentive mech-
anism for encouraging the peers to participate progressively
in generating blocks, as well as a mean for wealth creation.
In this paper, we assume that the generation reward for a
block is larger than its validation and routing fees.

4.4.3 Fork-free mechanism:

To resolve the forks caused by the simultaneously validated
blocks, LightChain governs a fork-free mechanism, which is
a deterministic approach that instructs all the peers to solely
follow the block with the lowest hash value upon a fork.
Upon a fork, we call the block with the lowest hash value
as the winner block and the other participating blocks of the

8

fork as the knocked-out ones. The knocked-out block own-
ers remove their block from the Skip Graph overlay, update
their set of transactions by dropping the transactions that are
included in the winner block, adding the new transactions
to reach the min_tx threshold, and restart the validation
procedure. The knocked-out block owners neither gain any
block generation reward nor lose any balance because of
the fees, as these fees and rewards are not effective unless
the block is successfully committed to the ledger. To ensure
that a newly appended validated block blk to the ledger
does not undergo any further fork rivalry, and is considered
committed, effective, and finalized, LightChain waits for only
one further block to be appended subsequently to blk. In
this way, as explained earlier, all the forks at the height of
the blk are considered as potential forks and are rejected by
the consistency checking mechanism of PoV validators.

4.5 Storage Layer: Replication
To provide efficient retrievability and data availability un-
der churn [43] in LightChain, each transaction or block is
replicated in the local storage of its owner as well as its
uniformly chosen PoV validators, and presented by them
as Skip Graph nodes. This makes the transactions and
blocks efficiently searchable by all the participating peers
in the system. As we show in Section 6, the parameters of
LightChain are chosen in a way that at least one (honest)
replica for each transaction and block is always available
in expectation. Hence, in LightChain, peers do not need to
store or download the entire ledger. Rather, they access the
transactions and blocks in an on-demand manner, i.e., a peer
searches for a transaction or block upon a need and retrieves
it efficiently from the overlay.

4.6 View Layer: Randomized Bootstrapping and Fast
Retrieval

Randomized Bootstrapping: We define the view introducers
of a new peer as the set of randomly chosen peers that share
their view of the blockchain with the newly joined peer.
Upon joining the overlay, a new peer computes the numer-
ical IDs of its view introducers based on Equation 5, where
new_peer.numID is the numerical ID of the new peer and
view_introi is the numerical ID of the ith view introducer
of it. The new peer then conducts an authenticated search
for the numerical ID of view_introi within the overlay [46],
contacts the peer in the search result, and obtains its view of
the blockchain. The new peer continues iterating over i until
it obtains t consistent views. As we show later, we determine
t and α in such a way that a new peer obtains t consistent
views of the honest peers by iterating i over [1, α].

view_introi = H(new_peer.numID||i) (5)
Fast Retrieval: Tracking the updates on the entire view

of other peers’ assets requires a peer to keep its local view
updated with the new blocks, which is a plausible assump-
tion in the majority of the existing solutions [9]. However,
in addition to this traditional approach, LightChain enables
each peer to directly retrieve the latest assets’ state of
another peer of interest without the need to keep track of
the new blocks on the ledger and sequentially applying
the updates. This is done by the additional representation

Figure 2: Transaction pointers for the transactions of blocks blk2 and blk4.
Transactions and pointers of other blocks are not shown for sake of simplicity.

of each block with multiple Skip Graph nodes, one per
included transaction, which we call them the associated
transaction pointers of that block. In this approach, each
transaction tx that is included in a committed block blk is
represented by a transaction pointer node (i.e., pointer) with
pointer.nameID = tx.owner and pointer.numID = blk.h.
The transaction pointer nodes associated with each block are
inserted by the block’s owner and replicated on the block’s
PoV validators. Figure 2 depicts an example of transaction
pointers for transactions of block blk2 and blk4 on the
ledger. Assume that by the time blk2 is committed to the
ledger, it contains the transaction tx2,2, which is the most re-
cent transaction of tx2,2.owner at the height of blk2. Hence,
any peer that is solely interested in knowing the latest state
of the owner of tx2,2 performs a search for the transaction
pointer with the name ID of the owner node’s identifier,
i.e., tx2,2.owner in this example. As result of the search,
the querying peer obtains a copy of the transaction pointer.
Since the numerical ID of transaction pointer corresponds
to the hash of the block that the transaction is included
in, by having the transaction pointer, the querying peer
finds that the latest transaction of tx2,2.owner is included in
block blk2. By performing a search for the block numerical
ID of blk2, the querying peer obtains the content of blk2,
which includes tx2,2 that also contains the latest state of
tx2,2.owner affected by the transaction. To keep track of the
latest updates over the state of assets, both the owner and
validators of a block should drop each of their associated
transaction pointers once an update on the corresponding
assets appears on a newer committed block to the ledger.
In this way, the transaction pointers act as moving flags
within the ledger each pointing to the latest transaction
of a peer on the ledger. For example, in Figure 2 assume
that once blk4 is committed to the ledger, it contains a
new transaction tx4,2 from the same owner as tx2,2 (i.e.,
tx2,2.owner = tx4,2.owner). In this situation, blk2 no longer
holds the latest transaction of tx4,2.owner. Hence, the owner
and PoV validators of blk2 drop the transaction pointer for
tx2,2 from the Skip Graph overlay. Taking down a pointer
node from the overlay is simply done by performing the
Skip Graph node deletion operation [23] by the owner and
each of the validators in a fully decentralized manner. This
is for the sake of better efficiency of the search, and to make
sure that the transaction pointers always point to the most
recent states. Not dropping the (old) pointers after a new
update is counted as misbehavior, which we address by the
misbehavior detection strategy of LightChain. To address the
network asynchrony, however, the block owner and PoV
validators are allowed to take down the pointers within
a certain block interval upon a new transaction on the
associated set of assets that they maintain the pointers.

9

Operation Type Complexity
Joining Skip Graph Overlay Message O(logn)
Randomized Bootstrapping Message O(logn)
TxB Generation/Validation Time O(logn)
TxB Generation/Validation Message O(logn)

TxB Storage Storage O(b
n
)

Direct State Retrieval Message O(logn)
Table 2: Summary of asymptotic operational complexities of LightChain in a
system with n nodes and b blocks. TxB stands for "Transaction and Block".

This allows them to have enough time to discover the new
updates without being subject to misbehavior. The length
of the block interval (i.e., number of blocks between two
transaction pointers over the same set of assets) is a constant
protocol parameter that is application dependent.

4.7 Incentive Mechanism

As discussed earlier, the block generation reward and the
routing and validation fees constitute the incentive mech-
anism of LightChain for the peers to retain their honest
behavior. The counterpart of honest behavior is the mis-
behavior, which we define as any sort of deviation from
the described LightChain’s protocol and architecture. As
detailed earlier, for the transactions and blocks that are gone
through the consensus layer, we consider the randomly
chosen PoV validators to check the submitted transaction or
block against the misbehavior. As we show in Section 5, we
set the operational parameters of LightChain in a way that
an adversarial peer cannot convince the PoV validators on
misbehavior unless with a negligible probability in the se-
curity parameter. We also introduce the misbehavior detection
as an extra level of adversarial countermeasure, especially
for the adversarial actions that are not gone through the
PoV, e.g., direct submission of an invalid block to the ledger.
Each peer of LightChain also acts as an auditor for other
peers’ behavior and gains a misbehavior audition reward by
reporting their misbehavior. As an auditor, any peer should
be able to evaluate a block or transaction in the same way
that its PoV validators do during the validation.

Upon a misbehavior detection, the auditor generates a
transaction with the evidence of the misbehavior in the
contribution field (e.g., a soundness violating transaction in
a committed block). The transaction then goes through the
same PoV validation process as described earlier, except that
the validators verify the correctness of the transaction as the
correctness of the reported evidence. Once the transaction
is validated and placed into a committed block to the
ledger, the misbehaving peer is penalized by a misbehavior
penalty fee. The misbehavior penalty fee is another constant
parameter of LightChain that is application dependent, and
is paid in the favor of the auditor peer who reports the
misbehavior. Once a misbehavior is recorded for a peer on a
committed block, its identifier is blacklisted. The blacklisted
peers are isolated by the honest peers and hence can no
longer participate in LightChain, i.e., any incoming message
from the blacklisted peers is discarded by the honest peers.
Table 2 summarizes the asymptotic operational complexities
of LightChain.

5 SECURITY ANALYSIS

This section provides a summary of the security analysis of
LightChain and skips details and intermediate steps due to

the page limit. The interested readers are referred to the full
version of our work [48] for the detailed security analysis.

Definitions: We analyze the security of LightChain from
the lens of integrity, data availability, and service availability
[50]. We define the integrity of LightChain as the property
that the views of the peers towards the ledger are not being
changed, except by committing a new block of validated
transactions to the current tail of the ledger solely by the
designated PoV validators of that block. We define the data
availability as the property that every validated transaction
or committed block is being accessible in a timely fashion
[50]. We define the service availability as the availability
of the Consensus and View layer protocols. The Consen-
sus layer service availability means that the honest nodes
who follow the LightChain protocols should be able to find
enough honest PoV validators, in expectation, to validate
their transaction and block, as specified in Section 4.4. The
availability of the View layer means that the honest nodes
should be able to find enough honest view introducers,
in expectation, to bootstrap to the system, as specified in
Section 4.6. Defining the service availability in expectation
means that the honest nodes should be able to eventually
bootstrap to the system and have their transactions and
blocks eventually validated.

Adversarial and Honest Behavior: We model all par-
ticipating peers as probabilistic Turing machines, whose
running time is polynomial in the security parameter of
the system (i.e., λ). We define honest behavior as the one
that follows LightChain protocols specified in Section 4, and
maintains its availability and accessibility in the network.
On the contrary, the adversarial behavior is the one that de-
liberately deviates from the LightChain protocols at arbitrary
points. Similar to BFT-based approaches [37], we assume
the existence of a Sybil adversarial party [26] that adaptively
takes control over at most a fraction f of peers in the system.
The adversarial party aims at compromising the integrity,
data availability, or service availability of LightChain by
orchestrating attacks through its controlled set of corrupted
peers. In our analysis, to presume the worst-case scenario,
we assume no churn and failure for corrupted peers under
the control of the adversary. For the honest peers, on the
other hand, we model the churn with a uniform failure
probability of q, under the crash-recover model [36], i.e., an
honest node fails with a probability of q and recovers back
online after a while.

Assumptions: Based on the above definitions we sum-
marize the assumptions in the following corollaries. We
assume a LightChain system with n peers, a partially syn-
chronous network, an authenticated routing mechanism (as
defined in Section 3), where honest nodes follow a uniform
failure probability of q under the crash-recover model. We
assume the existence of the negligible probability ε(λ) and
a probabilistic polynomial-time adversary that adaptively
controls a fraction f of all peers in the system.

Corollary 5.1. (Integrity and Data Availability): Under
the specified assumptions above, selecting the Validators
Threshold α and the Signatures Threshold t in such a way
that it satisfies the inequalities shown by Equations 6 and
7, respectively, yields in the success probability of the
adversary on breaking the integrity or data availability

10

of LightChain bounded by ε(λ).

α ≥
(
√
f +

√
f × (ψ−1(1− ε(λ)))2 + 4))2

4(1− f)
(6)

t ≥ (
√
αf(1− f)× ψ−1(1− ε(λ))) + αf + 1 (7)

Corollary 5.2. (Service Availability): Under the specified as-
sumptions above, setting values of the Validators Thresh-
old α and the Signatures Threshold t in such a way that
it satisfies the inequality shown by Equation 8, yields in
LightChain providing its service availability (where one
replica per block is available) in expectation.

t ≤ α(1− f)(1− q)
f + (1− f)(1− q)

(8)

6 EXPERIMENTAL RESULTS

6.1 Simulation Results
Setup: We implemented LightChain over the SkipSim sim-
ulator [29], where each node follows the Bitcoin churn trace
with an expected online and offline duration of 10.6 and
2.8 hours, respectively [43], and generates a transaction per
hour [51], [52]. We simulated for 100 LightChain systems
each n = 10, 000 peers. Each system was simulated for 48
hours.

Integrity: Figure 3.a shows the success probability of
the adversary that controls fraction f of corrupted peers
on compromising the integrity of the system as defined in
Section 5. In this figure, f = 0.16 corresponds to the largest
fraction of colluding hash power in the Bitcoin network [10].
Considering that each node in LightChain has a uniform
chance of involvement in consensus, f = 0.33 is beyond
the adversarial fraction threshold of BFT and PoS-based
blockchains, e.g., Hyperledger [19]. Likewise, f = 0.51 is
beyond the adversarial power threshold of the PoW, e.g.,
Bitcoin [1]. Supported by Corollary 5.1, as shown by Figure
3.a, for each simulated adversarial fraction, there exists a
certain value of α in which the success probability of ad-
versarial peers in compromising the integrity of LightChain
exponentially converges to zero with the growth of t. This
implies that the integrity of LightChain is preserved even
when corrupted peers become the majority.

Service Availability: Figure 3.b presents the integrity as-
pect of LightChain when its service availability is preserved.
The validator thresholds of Figure 3.b are obtained by
applying both Corollaries 5.1 and 5.2. These corollaries are
infeasible to satisfy together for f > 0.5. Hence, although
there is no adversarial bound for the integrity of LightChain
alone, its integrity under service availability is preserved
for the adversarial fractions less than 0.5. This means that in
contrast to the state-of-the-art blockchains such as Bitcoin
[1], Ethereum [31], and Hyperledger [19], that are fully
compromised once the adversarial fraction of nodes goes
beyond their inherent threshold, our proposed LightChain
system halts when the adversarial fraction of nodes goes
beyond its configured operational parameters. This allows
the blockchain community to notice the security risks and
perform a decentralized bootstrapping of the system by
discarding the nodes with suspicious behavior, which is left
as future work.

Data Availability: Figure 3.c illustrates the average num-
ber of available replicas for each block in the system at each
time slot over 48 hours of the simulation as t grows. Each
validated block is replicated t + 1 times in the system, i.e.,
t validators as well as the owner itself. As shown by Figure
3.c, the average availability of the blocks increases linearly
with respect to t. With the uniform failure probability of q,
having t + 1 replicas for a block results in (t + 1) × (1 − q)
available replicas in expectation. Hence, as shown by Figure
3.c choosing t ≥ 1

1−q − 1 results in an expected availability
of at least one replica at each time slot. In Figure 3.c, the
number of replicas for t = 1 is about 1.6 replicas on the
average, and grows linearly as t increases. An identical
behavior is observed for the transactions’ availability.

6.2 Cloud Platform Deployment
We implemented and deployed a proof-of-concept version
of the LightChain [30], [53] with 1000 nodes for the adver-
sarial fractions of 0.16 and 0.33, and block sizes of 10, 20,
and 40 transactions on the Google Cloud Platform, where
each node generates a transaction per second for a total of
1000 transactions per node. Due to the quota limitations,
we run each node on a low-power hardware setup with
2.2 GHz of processing power and 3.9 GB of memory. To
avoid these low-power nodes crashing of a high degree
of concurrency, and memory limitation, we serialized those
operations of the nodes that require synchronized commu-
nication, i.e., resources getting blocked for a response or
timeout. Figure 4.a shows the block formation time, which is
the time that it takes for a node to collect a certain number
of newly validated transactions into a block, generate the
block metadata as specified in Section 4, and request the
validation of the block. Figure 4.b shows the average local
block validation time at each validator. Finally, Figure 4.c
presents the block size in KB as the number of transactions
grows. The difference between f = 0.16 and f = 0.33
in the slope of growth of the block formation time (i.e.,
Figure 4.a) and block size (i.e., Figure 4.c) is due to the
10 times growth in the number of validators per block.
A similar pattern is also observed in the transaction time
(i.e., generation, validation, and insertion in the Skip Graph
overlay), which is about 7 and 82 seconds for f = 0.16 and
f = 0.33 on average, respectively. As mentioned earlier due
to hardware limitations the operations like transaction and
block generation are serialized in our implementation on
the Google Cloud Platform. This difference is however not
evident in the block validation process (i.e., Figure 4.b) since
verifying the validators signature is a lighter operation than
the network-based operations (i.e., transactions and block
generation) and is done with some degree of concurrency.

6.3 Comparison With Mainstreams
Advantages: As shown by our experimental results in Fig-
ure 3.a, LightChain preserves its integrity under the cor-
rupted majority power of the system (e.g., f = 0.51),
which is in contrast to all mainstream blockchains including
Bitcoin [1] and Ethereum [31] that are fully compromised
on integrity under this adversarial fraction. Also, as shown
in Figure 3.b, LightChain preserves both its integrity and
service availability under the corrupted power fraction of

11

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signatures Threshold (t)

A
dv

er
sa

ri
al

Su
cc

es
s

Pr
ob

ab
ili

ty

f = 0.16, α = 10
f = 0.33, α = 20
f = 0.51, α = 39

(a) Integrity

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signatures Threshold (t)

A
dv

er
sa

ri
al

Su
cc

es
s

Pr
ob

ab
ili

ty

f = 0.16, α = 14
f = 0.33, α = 144

(b) Integrity and Service Availability

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80
85

Signatures Threshold (t)

A
ve

ra
ge

Bl
oc

ks
A

va
ila

bi
lit

y

f = 0.16, α = 14
f = 0.33, α = 144

(c) Data Availability
Figure 3: Performance evaluation of LightChain concerning its integrity, and service and data availability. The performance is reported as averages over 100 LightChain

systems each with 10, 000 nodes. Each system is simulated for 48 hours under the real churn traces of Bitcoin [43].

0 10 20 40
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Transactions Number

A
ve

ra
ge

Bl
oc

k
Fo

rm
at

io
n

Ti
m

e
(s

) f = 0.16, α = 14
f = 0.33, α = 144

(a) The block formation time versus the
number of transactions in a block

0 10 20 40
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Number of Transactions

A
ve

ra
ge

Bl
oc

k
V

al
id

at
io

n
Ti

m
e

(s
) f = 0.16, α = 14

f = 0.33, α = 144

(b) The block validation time versus the number of
transactions in a block

0 10 20 40
0

100

200

300

400

500

600

700

800

Transactions Number

A
ve

ra
ge

Bl
oc

k
Si

ze
(K

B)

f = 0.16, α = 14
f = 0.33, α = 144

(c) The block size versus the number of
transactions in a block

Figure 4: The performance of the proof-of-concept of LightChain deployment on the Google Cloud Platform with 1000 nodes and one million transactions.

f = 0.33 of system, which is in contrast to the mainstream
PoS- and BFT-based blockchains (e.g., Hyperledger [19]).
Considering our Google Cloud Platform deployment with
1, 000 nodes, one million transactions, 25, 000 blocks, and
f = 0.16, LightChain only has a storage overhead of about
30 MB per node to maintain the transactions and blocks
and keep up with the protocol. This is around 66 times less
storage compared to the mainstream blockchains such as
Bitcoin and Ethereum that result in a storage overhead of
about 2 GB per node under the same setup. Also, in our
cloud deployment, bootstrapping a new LightChain node
to the system at the block height of 25, 000 via the ran-
domized bootstrapping protocol takes around 28 seconds
on average. Considering the average block retrieval time of
around 400 ms in our deployment, LightChain is around 380
times faster on bootstrapping a new node than the main-
stream blockchains such as Bitcoin and Ethereum, which
take around 3 hours by imposing a new node to download
and process all 25, 000 generated blocks. Finally, under the
mentioned setup, each LightChain node is involved in and
rewarded for an average of 348 block generation decision
makings with a standard deviation of around 1.3 blocks,
which denotes a uniform distribution of the consensus
involvement among the nodes. This is in contrast to the
mainstream blockchains like Bitcoin where nodes are in-
volved in the block generation decision making based on
their influence in the system, i.e., hash power.

Shortcomings: LightChain’s implementation is currently
at the prototype level, which hinders back its transaction
throughput to around a single transaction per second on av-
erage. This makes the transaction throughput of LightChain
lower than the mainstream blockchains like the Bitcoin and
Ethereum that are capable of processing around 4 and 12
transactions per second under their production-level imple-
mentation [51]. As our future work, we plan to optimize the
throughput of LightChain through a production-level imple-

mentation and software engineering-level optimizations.

7 CONCLUSION

To improve the communication and storage scalability, as
well as the decentralization of blockchain architectures,
we proposed LightChain, which is a novel blockchain ar-
chitecture that operates over a DHT overlay. LightChain
provides addressable peers, blocks, and transactions within
the network, which makes them efficiently accessible in an
on-demand manner. Using LightChain, no peer is required
to store the entire ledger. Rather, each peer replicates a
random subset of the blocks and transactions, and answers
other peer’s queries on those. LightChain is a fair blockchain
as it considers a uniform chance for all the participating
peers to be involved in the consensus protocol regardless
of their influence in the system (e.g., hashing power or
stake). We analyzed LightChain both mathematically and
experimentally regarding its security and performance.

ACKNOWLEDGEMENT

The authors thank Ali Utkan Şahin, Nazir Nayal, Shadi
Sameh Hamdan, and Mohammad Kefah Issa for their imple-
mentation, and TÜBİTAK (the Scientific and Technological
Research Council of Turkey) for project 119E088.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[2] S. Aggarwal, R. Chaudhary, G. S. Aujla, N. Kumar, K.-K. R.
Choo, and A. Y. Zomaya, “Blockchain for smart communities:
Applications, challenges and opportunities,” Journal of Network and
Computer Applications, 2019.

[3] N. Kumar and A. Miglani, Probabilistic Data Structures for
Blockchain-Based Internet of Things Applications. CRC Press, 2021.

12

[4] A. Jindal, G. S. Aujla, and N. Kumar, “Survivor: A blockchain
based edge-as-a-service framework for secure energy trading
in sdn-enabled vehicle-to-grid environment,” Computer Networks,
2019.

[5] R. Chaudhary, A. Jindal, G. S. Aujla, S. Aggarwal, N. Kumar,
and K.-K. R. Choo, “Best: Blockchain-based secure energy trading
in sdn-enabled intelligent transportation system,” Computers &
Security, 2019.

[6] O. Biçer and A. Küpçü, “Anonymous, attribute based, decentral-
ized, secure, and fair e-donation,” Proceedings on Privacy Enhancing
Technologies, vol. 2020, no. 4, pp. 196–219, 2020.

[7] N. Kumar, S. Aggarwal, and P. Raj, “The blockchain technology for
secure and smart applications across industry verticals,” Academic
Press, 2021.

[8] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and O. Ozkasap, “Decen-
tralized utility-and locality-aware replication for heterogeneous
dht-based p2p cloud storage systems,” TPDS, 2019.

[9] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentral-
ized blockchains,” in FC. Springer, 2016.

[10] P. Daian, R. Pass, and E. Shi, “Snow white: Provably secure proofs
of stake,” Cryptology ePrint Archive, 2016, https://eprint.iacr.
org/2016/919.

[11] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in CRYPTO.
Springer, 2017.

[12] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “proof of activity:
Extending bitcoin’s proof of work via proof of stake [extended
abstract],” Performance Evaluation Review, ACM, 2014.

[13] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and
P. Saxena, “A secure sharding protocol for open blockchains,” in
SIGSAC. ACM, 2016.

[14] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger
via sharding,” in IEEE SP, 2018.

[15] T. Rocket, “Snowflake to avalanche: A novel metastable consensus
protocol family for cryptocurrencies,” 2018.

[16] A. Chepurnoy, M. Larangeira, and A. Ojiganov, “A prunable
blockchain consensus protocol based on non-interactive proofs of
past states retrievability.” arXiv preprint arXiv:1603.07926, 2016.

[17] P. Otte, M. de Vos, and J. Pouwelse, “Trustchain: A sybil-resistant
scalable blockchain,” FGCS, 2017.

[18] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in CCS. ACM, 2018.

[19] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich
et al., “Hyperledger fabric: a distributed operating system for
permissioned blockchains,” in EuroSys. ACM, 2018.

[20] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in
DCCL, 2016.

[21] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview
of blockchain technology: Architecture, consensus, and future
trends,” in BigData congress. IEEE, 2017.

[22] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: A survey,” IJWGS, IEL, 2018.

[23] J. Aspnes and G. Shah, “Skip graphs,” ACM TALG, 2007.
[24] K. Wüst and A. Gervais, “Do you need a blockchain?” in CVCBT.

IEEE, 2018.
[25] M. S. Dousti and A. Küpçü, “Moderated redactable blockchains:

A definitional framework with an efficient construct,” 2020.
[26] J. R. Douceur, “The sybil attack,” in International workshop on peer-

to-peer systems. Springer, 2002.
[27] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is

vulnerable,” Communications of the ACM, 2018.
[28] O. Biçer and A. Küpçü, “Fortis: Forgeable timestamps thwart

selfish mining,” IACR ePrint Cryptology Archive, Report 2020/1290,
2020.

[29] Y. Hassanzadeh-Nazarabadi, A. U. Şahin, Ö. Özkasap, and
A. Küpçü, “Skipsim: Scalable skip graph simulator,” in ICBC.
IEEE, 2020.

[30] Y. Hassanzadeh-Nazarabadi, N. Nayal, S. S. Hamdan, Ö. Özkasap,
and A. Küpçü, “A containerized proof-of-concept implementation
of lightchain system,” in ICBC. IEEE, 2020.

[31] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, 2014.

[32] V. Buterin and V. Griffith, “Casper the friendly finality gadget,”
arXiv preprint arXiv:1710.09437, 2017.

[33] D. Schwartz, N. Youngs, A. Britto et al., “The ripple protocol
consensus algorithm,” Ripple Labs Inc White Paper, 2014.

[34] J. Kwon, “Tendermint: Consensus without mining,” 2014.
[35] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in

OSDI, 1999.
[36] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles

and paradigms. Prentice-Hall, 2007.
[37] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the

presence of faults,” JACM, 1980.
[38] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed

consensus protocols for blockchain networks,” IEEE Communica-
tions Surveys & Tutorials, 2020.

[39] E. Harris-Braun, N. Luck, and A. Brock, “Holochain-scalable
agentcentric distributed computing,” Alpha, 2018.

[40] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng:
A scalable blockchain protocol.” in NSDI, 2016.

[41] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Ö. Özkasap, “Locality
aware skip graph,” in IEEE ICDCSW, 2015.

[42] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and O. Ozkasap, “Laras:
Locality aware replication algorithm for the skip graph,” in IEEE
NOMS, 2016.

[43] M. A. Imtiaz, D. Starobinski, A. Trachtenberg, and N. Younis,
“Churn in the bitcoin network: Characterization and impact,” in
ICBC. IEEE, 2019.

[44] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Ö. Özkasap, “Inter-
laced: Fully decentralized churn stabilization for skip graph-based
dhts,” Journal of Parallel and Distributed Computing, Elsevier, 2020.

[45] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC
press, 2014.

[46] S. T. Boshrooyeh and O. Ozkasap, “Guard: Secure routing in skip
graph,” in IFIP Networking. IEEE, 2017.

[47] S. Taheri-Boshrooyeh, A. U. Şahin, Y. Hassanzadeh-Nazarabadi,
and Ö. Özkasap, “A proof-of-concept implementation of guard
secure routing protocol,” in SRDS. IEEE, 2020.

[48] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Ö. Özkasap,
“Lightchain: A dht-based blockchain for resource constrained
environments,” arXiv preprint arXiv:1904.00375, 2019.

[49] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” ACM SIGCOMM Computer Communication Review,
2001.

[50] M. T. Goodrich and R. Tamassia, Introduction to computer security.
Pearson, 2011.

[51] “Blockchain charts,” https://www.blockchain.com/en/charts.
[52] “Global bitcoin nodes distribution,” https://bitnodes.earn.com/.
[53] Y. Hassanzadeh-Nazarabadi, N. Nayal, S. S. Hamdan, A. U. Şahin,

Ö. Özkasap, and A. Küpçü, “Skip graph middleware implementa-
tion,” in SRDS. IEEE, 2020.

Yahya Hassanzadeh-Nazarabadi received his
Ph.D. degree in Computer Science and Engi-
neering from Koç University, Istanbul, Turkey,
in 2019. His research interests are distributed
cloud storage systems, blockchains, and secu-
rity. Dr. Hassanzadeh is currently a Senior Dis-
tributed Systems Engineer at Dapper Labs, Van-
couver, Canada.

Alptekin Küpçü received his Ph.D. degree from
Brown University Computer Science Depart-
ment in 2010. Since then, he has been work-
ing as a faculty at Koç University, and lead-
ing the Cryptography, Cyber Security & Privacy
Research Group he has founded. Dr. Küpçü
has various accomplishments including 6 inter-
national patents granted, 11 funded research
projects (for 9 of which he was the principal
investigator), 2 European Union COST Action
management committee memberships, 4 Koç

University Teaching Awards, 4 Outstanding Young Scientist Awards
(BAGEP, GEBİP, METU Parlar Foundation, IEEE Turkey), ACM and
IEEE Senior Member Awards, and the Royal Society of UK Newton
Advanced Fellowship. For more information, visit https://crypto.ku.edu.tr

https://eprint.iacr.org/2016/919
https://eprint.iacr.org/2016/919
https://www.blockchain.com/en/charts
https://bitnodes.earn.com/

13

Öznur Özkasap received her Ph.D. degree in
Computer Engineering from Ege University in
2000 and was a Graduate Research Assistant
with the Department of Computer Science, Cor-
nell University where she completed her Ph.D.
dissertation. She is currently a Professor with
the Department of Computer Engineering, Koç
University, and leading the Distributed Systems
and Reliable Networks (DISNET) Research Lab.
She is the General Co-Chair of BCCA 2020
(International Conference on Blockchain Com-

puting and Applications), and the Area Editor for Future Generation
Computer Systems, Elsevier and Cluster Computing, Springer. She is
a recipient of The Informatics Association of Turkey 2019 Prof. Aydın
Köksal Computer Engineering Science Award.

	1 Introduction
	2 Related Works
	3 Preliminaries and System Model
	4 LightChain System Architecture In this section, we present the architecture of LightChain at each layer of the blockchain protocol stack. We skip the detailed algorithmic presentation of LightChain's protocols for sake of page limit and refer the interested readers to the full version of this paper hassanzadeh2019lightchain for those details.
	4.1 Overview:
	4.2 Structure of Transactions and Blocks
	4.3 Network Layer: Skip Graph overlay
	4.4 Consensus Layer: Proof-of-Validation (PoV)
	4.4.1 Transaction Generation and Validation
	4.4.2 Block Generation and Validation
	4.4.3 Fork-free mechanism:

	4.5 Storage Layer: Replication
	4.6 View Layer: Randomized Bootstrapping and Fast Retrieval
	4.7 Incentive Mechanism

	5 Security Analysis
	6 Experimental Results
	6.1 Simulation Results
	6.2 Cloud Platform Deployment
	6.3 Comparison With Mainstreams

	7 Conclusion
	References
	Biographies
	Yahya Hassanzadeh-Nazarabadi
	Alptekin Küpçü
	Öznur Özkasap

