
MCFsyn: A Multi-Party Set Reconciliation
Protocol With the Marked Cuckoo Filter
Lailong Luo , Deke Guo , Senior Member, IEEE, Yawei Zhao, Ori Rottenstreich ,

Richard T. B. Ma , and Xueshan Luo

Abstract—Multi-party set reconciliation is a key component in distributed and networking systems. It naturally contains two

dimensions, i.e., set representation and reconciliation protocol. However, existing sketch data structures are insufficient to satisfy the

new needs brought by the multi-party scenario simultaneously, including space-efficiency, mergeability, and completeness. The

current reconciliation protocols, on the other hand, fail to achieve the global optimization of communication cost. To this end, in this

article, we propose the marked cuckoo filter (MCF), a data structure for representing set members. Grounded on MCF, we implement

the MCFsyn protocol to reconcile multiple sets. MCFsyn aggregates and distributes sets information represented by MCFs along with

an underlying minimum spanning tree among the participants. The participants then identify the different elements by traversing the

overall MCF which contains the information of all elements in the union set. For the identified missing elements, MCFsyn helps the

participants to choose the optimal senders to fetch with the minimum communication cost. Comprehensive evaluations indicate that

MCFsyn significantly outperforms existing alternatives in terms of both reconciliation accuracy and communication cost.

Index Terms—Set reconciliation, minimum spanning tree, marked cuckoo filter, accuracy, communication cost

Ç

1 INTRODUCTION

AS USERS migrate their computation and data to the cloud,
cloud-based services such as Dropbox, Google Drive,

and OneDrive have emerged to enable users to access data
from various devices and allow team collaborations over
the same data. Since multiple copies of the data exist in
users’ devices, cloud servers, and edge servers, as users
update them possibly from different devices simulta-
neously, these multiple copies need to be periodically recon-
ciled or synchronized for their consistency and correctness.
This so-called multi-party set reconciliation problem also
occurs in wireless sensor networks [1], software-defined
networks [2], content delivery networks [3], blockchain
transaction pools [4] and beyond.

The multi-party set reconciliation problem can be natu-
rally decomposed and tackled from two dimensions: 1)
set representation — how the set elements are repre-
sented; and 2) reconciliation protocol — how the partici-
pants interact with each other to identify and thereafter

transfer the different elements. Existing set reconciliation
methods mainly rely on linear sketch data structures
(e.g., hash tree, Bloom filter (BF) [5], [6], Invertible Bloom
filter [7], Invertible Bloom lookup table (IBLT) [8], [9],
Invertible Counting Bloom filter (ICBF) [10], etc) to repre-
sent set elements. In particular, if set elements can be rep-
resented as integers, the characteristic polynomial can
also work as a sketch of the corresponding set [11], [12].
The reconciliation protocol is thereafter built on top of
these set sketches. Usually, these sketches are exchanged
among reconciliation participants. With the sketches from
others, a local participant can identify (with high accu-
racy) the particular elements which have to be transferred
for reconciliation.

However, existing sketch data structures are insufficient
to satisfy the new needs brought by the multi-party set rec-
onciliation scenario. Specifically, a sketch data structure in
the multi-party context should be: 1) space-efficient, the used
space should be much less than the original data size; 2)
mergeable, multiple such data structures can be merged as
one without loss of information; and 3) complete, both the
content information (such as a fingerprint representing ele-
ment identity) and the affiliation information (the sets an
element belongs to) are correctly represented. The space-
efficiency and mergeability features guarantee the low com-
munication cost of exchanging the sketches among the rec-
onciliation participants. The completeness property further
ensures reconciliation accuracy. On the contrary, existing
sketch data structures fail to achieve them simultaneously.
Bloom filter and its variants are space-efficient, but most
of them are often not mergeable. The IBLT is both space-
efficient and mergeable, yet fails to achieve the complete-
ness property.

� Lailong Luo, Deke Guo, and Xueshan Luo are with the Science and
Technology on Information Systems Engineering Laboratory, National
University of Defense Technology, Changsha, Hunan 410073, China.
E-mail: {luolailong09, dekeguo, xsluo}@nudt.edu.cn.

� Yawei Zhao is with the China Electronic Equipment System Engineering
Company, Beijing 100039, China. E-mail: csyawei.zhao@gmail.com.

� Richard T. B. Ma is with the School of Computing, National University of
Singapore, Singapore 119077, Singapore. E-mail: tbma@comp.nus.edu.sg.

� Ori Rottenstreich is with the Israel Institute of Technology and ORBS
Research, Haifa 3200003, Israel. E-mail: or@cs.technion.ac.il.

Manuscript received 6 June 2020; revised 23 Feb. 2021; accepted 14 Apr. 2021.
Date of publication 21 Apr. 2021; date of current version 13 May 2021.
(Corresponding author: Lailong Luo.)
Recommended for acceptance by A. Sussman.
Digital Object Identifier no. 10.1109/TPDS.2021.3074440

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021 2705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4886-9974
https://orcid.org/0000-0002-4886-9974
https://orcid.org/0000-0002-4886-9974
https://orcid.org/0000-0002-4886-9974
https://orcid.org/0000-0002-4886-9974
https://orcid.org/0000-0003-4894-5540
https://orcid.org/0000-0003-4894-5540
https://orcid.org/0000-0003-4894-5540
https://orcid.org/0000-0003-4894-5540
https://orcid.org/0000-0003-4894-5540
https://orcid.org/0000-0002-4064-1238
https://orcid.org/0000-0002-4064-1238
https://orcid.org/0000-0002-4064-1238
https://orcid.org/0000-0002-4064-1238
https://orcid.org/0000-0002-4064-1238
https://orcid.org/0000-0002-9883-5844
https://orcid.org/0000-0002-9883-5844
https://orcid.org/0000-0002-9883-5844
https://orcid.org/0000-0002-9883-5844
https://orcid.org/0000-0002-9883-5844
mailto:luolailong09@nudt.edu.cn
mailto:dekeguo@nudt.edu.cn
mailto:xsluo@nudt.edu.cn
mailto:csyawei.zhao@gmail.com
mailto:tbma@comp.nus.edu.sg
mailto:or@cs.technion.ac.il

Moreover, existing reconciliation protocols do not opti-
mize the communication cost with the joint consideration of
the positions of participants in the network and the data dis-
tribution among the participants. Accordingly, they usually
result in redundant sketch exchange and data transfer. Cur-
rently, most cloud storage services implement the backup
strategy to reconcile sets. They usually maintain the cloud
server as the central party to gather all the elements from
the participants. Participants upload their modified data or
download their missing data from the central party. Unfor-
tunately, the overall cost of this strategy highly depends on
the physical locations of participants and the distance
between them. It may waste network bandwidth since a
participant can only get its missing elements from the cen-
tral party, even though its neighbor may also hold that ele-
ment. Other possible protocols, such as exchanging the
sketches and different elements through the all-to-all trans-
mission or gossip protocol, occupy the network bandwidth
in an even more aggressive manner.

For the above reasons, in this paper, we first propose a
new variant of cuckoo filter [13], named the marked cuckoo
filter (MCF), to represent the sets in each reconciliation par-
ticipant. The MCF attaches an additional field in each slot to
describe which set(s) the stored fingerprint belongs to (ear-
lier to the reconciliation). This field is called the mark field.
For example, given three sets S1, S2 and S3, it has three bits
in each MCF slot (in addition to the fingerprint) to indicate
the affiliation of the stored element. The ith bit will be set to
1 if Si contains that element. MCF naturally inherits the
functionalities from the standard cuckoo filter, including
element insertion, query, and deletion. Additionally, MCF
enables filter-level operations, such as aggregation and sub-
traction, so that the MCFs from different sets can be aggre-
gated together or subtracted pair-wisely. Such a design
allows MCF to be space-efficient, mergeable, and complete.

Based on MCF, we propose a novel multi-party set recon-
ciliation protocol named MCFsyn. MCFsyn has the follow-
ing five main steps : (i) each participant represents its set
elements as an MCF vector; (ii) MCFsyn aggregates the
MCF sketches from all sets as an overall MCF in the central
relay participant; (iii) the central relay participant distrib-
utes the overall MCF to all other participants; (iv) the partic-
ipants determine the missing elements by traversing the
overall MCF; and (v) the participants try to pull these miss-
ing elements with the least transmission cost. Each of the
above steps needs a careful design with the joint consider-
ation of reconciliation delay, communication cost, and net-
work topology. The main contribution of this paper can be
summarized as follows:

� We propose the MCF data structure to represent set
elements. Besides the fingerprint field, MCF uses an
additional mark field in each slot to record the affilia-
tion of the stored element. The space-efficiency, mer-
geability, and completeness properties make MCF
an elegant sketch in the multi-party set reconciliation
scenarios.

� We design the MCFsyn protocol to reconcile sets of
the multiple participants. MCFsyn relies on an
underlying minimum spanning tree of the partici-
pants to aggregate and distribute the MCFs. Then a

participant Pi tries to pull any missing element x
with the minimum communication cost from a pre-
ferred participant which hosts x.

� Comprehensive evaluations are conducted to quantify
the performance ofMCFsyn. Specifically, in our evalu-
ations, MCFsyn generates 20x and 70x times fewer
errors on average than themethods enabled by BF and
IBLT with the same bits per element, respectively.
Moreover, MCFsyn causes 21x and 7.9x times less
communication cost on average than transferring BF
with the all-to-all scheme and exchanging IBLT with
the gossip protocol, respectively.

The rest of this paper is organized as follows. Section 2
introduces the background and related work. Section 3
presents a novel Cuckoo filter variant named marked
Cuckoo filter. Section 4 details the design philosophy of our
MCFsyn protocol. Section 5 presents the theoretical perfor-
mance analysis for MCFsyn. Section 6 reports the evaluation
results and at last Section 8 concludes the whole paper.

2 BACKGROUND AND RELATED WORK

2.1 Set Reconciliation

The input to the multi-party set reconciliation are n hosts (or
parties), each of which has a set Si�U (where U is the univer-
sal from which elements are taken). The target is to identify
and thereafter exchange the different elements among these
sets, so that after reconciling S0

1 ¼ S0
2 ¼ � � � ¼ S0

n ¼ S ¼ [i

Si. One previous approach for two-party set reconciliation
uses characteristic polynomials [11], [12] coupled with coding
theories such as Reed-Solomon codes, BHC codes, etc. This
kind of methods treat each element as an integer value. For
set S1, its characteristic polynomial is calculated as:

xS1
ðZÞ ¼

Y

xi2S1
ðZ � xiÞ; (1)

The set S2 also derives out its xS2
ðZÞ. Thereafter, in the fol-

lowing rational function

xS1
ðZÞ

xS2
ðZÞ ; (2)

the common elements are eliminated. The sum of the degrees
of the numerator and denominator is at most d, where
d ¼ jS1nS2jþjS2nS1j. Interpolation is then executed to deter-
mine the integer values of different elements demonstrated in
the above rational function. However, this division and inter-
polation method is somewhat time-consuming (Oðd3Þ time-
complexity) and it is computation-intensive to recover all ele-
ments usingGaussian elimination.

Recent set reconciliation methods rely on randomized
data structures to provide a sketch of sets. After exchanging
and comparing these sketches, the different elements can be
determined and transferred reasonably. These data struc-
tures include Merkle tree [14], [15], Counting Bloom filter
(CBF) [5], Invertible Bloom filter (IBF) [7], IBLT [8], [9],
Invertiable Counting Bloom filter (ICBF) [10], etc. The nodes
in the Merkle trees are compared to prune same sub-trees,
thereby deriving out the different elements between two
sets. CBF, IBF, IBLT, ICBF, on the contrary, subtract the fil-
ters to eliminate the existence information of common

2706 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

elements. The remained different elements are decoded
from the subtraction results through either query or listing
mechanisms.

As for multi-party set reconciliation, it is usually decom-
posed as multiple rounds of two-party set reconciliation with
the above methods. We note that most-recently, the IBLT and
characteristic polynomial are generalized from two-party set
reconciliation to multi-party scenarios [16], [17]. Specifically,
the binary fields in IBLT are extended to multi-ary to aggre-
gate element information [16]. The XOR operations in the
IBLT are also redefined in the multi-ary system correspond-
ingly. The possibility of using characteristic polynomials to
reconcile multiple sets is investigated by combining with the
gossip protocol in general networks [17].

Another related model is the multi-party membership
query, which answers the question which set(s) an element
belongs to. The existing solutions for this query are mainly
based on Bloom filter variants [18], [19], [20], [21], [22]. The
Combinatorial Bloom filter indicates the affiliation informa-
tion of any element with different groups of hash functions
[18]. The OMASS proposes to isolate the values generated
from hash functions in a sub-block for diverse sets with dif-
ferentiated hash functions [19]. In Noisy Bloom filter, an ele-
ment x is mapped to k bits in the bit vector. The bits after
these k bits are employed to explicitly record the affiliation
information of x [20]. The Difference Bloom filter makes the
representation of elements exclusive by writing a different
number of 1s and 0s in the same filter [21]. Particularly, the
coloring embedder first maps elements to a high dimen-
sional space to almost eliminate hashing collisions and then
uses a dimensional reduction representation to save mem-
ory [22]. However, these methods assume that an arbitrary
element x exclusively belongs to a single set, making these
proposals impractical in our cases.

2.2 Cuckoo Filter and its Variants

Cuckoo filter (CF)[13] is a light-weight probabilistic data struc-
ture to support constant-time membership query. An element
x is associated with a f-bit fingerprint hx which is derived out
by a hash function h0. Unlike Bloomfilter, CF stores the finger-
print of each element directly. Structurally, a CF consists of m
buckets, each of which is capable of residing b fingerprints. An
CF offers 2 candidate buckets to each element, and the finger-
print can be stored in either of the candidates. If both candi-
dates are occupied, CF randomly kicks out an existing
fingerprint in one of the candidates and reinserts the victim in
its alternative candidate bucket. This reallocation ends success-
fullywhen a bucket has available space or fails when the num-
ber of such re-allocations reaches a given threshold max.
During reallocation, the alternative bucket can be derived out
by executing an XOR operation towards the current bucket
and the fingerprint of the victim. Specifically, the two candi-
date buckets are derived as h1ðxÞ ¼ hashðxÞ and pair-wisely
h2ðxÞ ¼ h1ðxÞ � hashðhxÞ.

Most recently, several CF variants have been proposed to
further improve its performance [23], [24], [25], [26]. The
Simplified Cuckoo filter [23] (SCF) calculates the indices of
buckets for an element x as h1ðxÞ and h1ðxÞ�hx. In this way,
SCF provides a theoretical analysis of its performance with
the graph theory. The Adaptive cuckoo filter [24] tries to

remove false positive errors from the CF vector by resetting
the collided fingerprints with optional hash functions.
Dynamic Cuckoo filter [25] (DCF) adaptively maintains
multiple homogeneous CFs with same parameter setting to
enable the filter-level capacity elasticity. Consistent Cuckoo
filter (CCF) further realizes the bucket-level capacity elastic-
ity by introducing a consistent hash ring into each CF [26].
The buckets in each CF are mapped onto the consistent
hash ring so that the buckets can be added or removed at
will. Thereafter, the element fingerprints are also mapped
onto the consistent hash ring to determine their candidate
buckets on the ring. The upper bounds of false positive rate
in both DCF and CCF are 1�Qs

i¼1ð1��iÞ, where s is the
number CFs in DCF and CCF and �i is the false positive rate
of the ith CF. There are also some lock-free designs for
cuckoo hashing [27]. Besides, Morton filter speeds up the
insertion, query and deletion operations by organizing the
buckets as compressed blocks and pruning unnecessary
memory accesses [28]. Vacuum filter [29] achieves a signifi-
cant improvement of throughput by confining the two can-
didate buckets for any element in an alternate range which
can be fetched by exactly one memory access.

Generally, the above CF variants are space-efficient and
mergeable, however, fail to achieve the completeness prop-
erty (they cannot represent the affiliation information of ele-
ments). Therefore, we investigate the MCF to represent
multi-party set members. As shown in Fig. 1, our MCFsyn
dedicates to solve the multi-party reconciliation problem in
distributed systems, it implements the mergeable sketches
to aggregate and distribute set information and tries to min-
imize the overall communication cost.

3 THE MARKED CUCKOO FILTER

In this section, we present the MCF design, including its
data structure and operations to represent multi-party sets.

3.1 The MCF Data Structure

Besides the fingerprint information of elements, multi-set
representation also requires the affiliates of the stored ele-
ments. Therefore, MCF attaches additional bits in each slot
to integrate element affiliation information.

As depicted in Fig. 2, MCF consists of m buckets, each of
which has b slots to accommodate at most b element finger-
prints. Each slot has two fields, including the fingerprint field
to represent element fingerprint information and the mark

Fig. 1. The existing work for set reconciliation. MCFsyn differs from
others by implementing mergeable sketches and optimizing the commu-
nication cost with a customized reconciliation protocol.

LUO ET AL.: MCFSYN: A MULTI-PARTY SET RECONCILIATION PROTOCOL WITH THE MARKED CUCKOO FILTER 2707

field showing the affiliation information of the element. The
fingerprint field has f bits to store the element fingerprint;
while the mark field occupies n bits (correspond to the num-
ber of participants n) to explicitly label the affiliation(s) of the
stored fingerprint. The ith bit in the mark field will be set to 1
if the represented element in this slot is amember of the set Si.
Just as CF,MCF offers two candidate buckets for each element
to represent with hash functions h1ðxÞ ¼ hashðxÞ%m and
h2ðxÞ ¼ h1ðxÞ�ðhashðhxÞ%mÞ, respectively. The fingerprint
hx can be stored in either of its candidate buckets. Upon inser-
tion, if both candidate buckets are fully occupied, MCF ran-
domly kicks out an existing fingerprint from one of the
candidate buckets to store hx. The victimwill be reallocated to
its alternative candidate bucket. The re-allocation ends suc-
cessfully when a bucket has available space or fails when the
number of re-allocations reaches a given thresholdmax.

The MCF naturally supports multi-party set representa-
tion by jointly considering the fingerprint and mark field in
slots. Therefore, it acts as the basis of our multi-party set rec-
onciliation protocol.

3.2 MCF Operations

With the above design, MCF provides element-oriented
operations to represent sets, including element insertion,
query, and deletion. Besides, some inter-filter operations
such as aggregation and subtraction are also enabled.

Element Insertion. To insert an arbitrary element x in set
Si, we first generate its f-bit fingerprint with the hash func-
tion h0ðxÞ. The candidate buckets for x are then calculated
by the functions h1ðxÞ and h2ðxÞ. If either of its candidate
buckets has an empty slot to accommodate x, the fingerprint
hx will be stored there and the ith bit of the mark field will
be set to 1. Otherwise, MCF has to kick out a stored finger-
print randomly and clear its mark field from the two candi-
date buckets to represent x. The victim will be re-allocated
to its alternative candidate bucket. The re-allocation will
end until there is no further victim or the number of re-allo-
cations reaches the given upper bound max. Notice that
when a victim is kicked out, the 1s in mark field of that slot
will be reset as 0s. Pair-wisely, when the victim is rein-
serted, the corresponding mark field bit(s) in the target slot
will be set to 1s. This guarantees the correctness of the
recorded affiliation information.

Element Query. Toquery an arbitrary element xwith finger-
print hx, MCF just checks the two candidate buckets. If the fin-
gerprint can be found in either of its candidate buckets, MCF
returns the mark field to explicitly demonstrate the set(s) x
belongs to. Otherwise, MCF returns False to indicate that x is
not a member of any set. The time-complexity of query is con-
stant since only two candidate buckets are checked. Similar to
the standard cuckoo filter, the false positive rate of a query
(wrongly indicating a membership is some set the element
does not belong to) is bounded as ��1�ð1� 1

2f
Þ2b, where f and

b are the number of bits in each fingerprint and the number of
slots in each bucket, respectively.

Algorithm 1.MCF Aggregation

Input: Two MCFs to aggregate:MCFi andMCFj

Output: The aggregation resultMCFo

1 for k ¼ 0 tom�1 do
2 for r ¼ 0 to b�1 do
3 ifMCFj½k�½r�:fingerprint 6¼ ; then
4 Locate theMCFj½k�½r�:fingerprint inMCFi, denoted as

slot;
5 if slot is not Null then
6 slot:mark = slot:mark ORMCFj½k�½r�:mark;
7 else
8 InsertMCFj½k�½r�:fingerprint intoMCFi;
9 LetMCFo ¼ MCFi;
10 returnMCFo

Algorithm 2.MCF Subtraction

Input: The two MCFs to subtractMCFi andMCFj

Output: TheMCFi andMCFj after subtracting
1 for k ¼ 0 tom�1 do
2 for r ¼ 0 to b�1 do
3 ifMCFj½k�½r�:fingerprint 6¼ ; then
4 Locate theMCFj½k�½r�:fingerprint inMCFi, denoted as

slot;
5 if slot is not Null then
6 Reset the common 1s in slot.mark and

MCFj½k�½r�:mark to 0s;
7 Empty slot andMCFj½k�½r�when no 1s left in their

mark fields;
8 returnMCFi andMCFj;

Element Deletion. Deletion is required for dynamic set
representation. MCF supports both the deletion of element
x from a specific set Si and the elimination of element x
from all its affiliates with only one execution. For example,
to delete x from set Si, MCF first locates the fingerprint hx in
the candidate buckets. If hx cannot be found in its candidate
buckets or the ith bit in the mark field is 0, MCF returns
False to declare that x is not a member of set Si and the dele-
tion has failed. Otherwise, MCF just resets the ith bit in the
mark field to 0 to indicate that x is not a member of Si any-
more. After that, if there are no 1s in that mark field, the fin-
gerprint field will also be cleared. To eliminate x from all
the sets, MCF simply tries to remove hx and reset all the 1s
in the mark field. If succeed, MCF returns True; otherwise, it
returns False. The time-complexity of deleting an element is
also constant.

Fig. 2. A toy example of Marked Cuckoo Filter (MCF) which represents
three sets, including S1 ¼ fx; zg, S2 ¼ fy; wg, and S3 ¼ fwg. The mark
field has three bits to explicitly indicate whether the represented element
is a member of S1, S2, and S3 (from right to left), respectively. For
instance, the element x that belongs only to S1 is associated with the
mark 001 and w that belongs to both S2; S3 with 110.

2708 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

MCF Aggregation. Aggregation means to merge the fin-
gerprint information and affiliation information from multi-
ple homogeneous MCFs into one single MCF. This
operation is important to reduce communication overhead
during reconciliation. As shown in Algorithm 1, given
MCFi and MCFj, the basic insight is to add the affiliation
information of common fingerprints into MCFi and insert
sole fingerprint of MCFj into MCFi. Specifically, the algo-
rithm needs to traverse the whole MCFj vector. For any
MCFj½k�½r�:fingerprint, we try to locate it in MCFi. For
MCFi and MCFj with the same parameter setting and hash
functions, this is straightforward since they offer same can-
didate buckets for a common fingerprint. If this fingerprint
can be found in MCFi, the slot in MCFi will OR itself with
the mark field of the corresponding slot in MCFj to aggre-
gate the affiliation information (line 4 to 6). Otherwise,
MCFj½k�½r�:fingerprint is inserted into MCFi. Eventually,
the updatedMCFi is returned as the aggregation result. The
time-complexity of aggregation is OðmbÞ.

MCF Subtraction. Given two homogeneous MCFs, e.g.,
MCFi andMCFj, subtraction tries to eliminate common fin-
gerprints in them. Only the fingerprints appear in one single
set or common fingerprints with diverse affiliations will be
remained. To this end, as shown in Algorithm 2, we also
have to traverse the whole MCFj vector. For any
MCFj½k�½r�:fingerprint, Algorithm 2 locates this fingerprint
in MCFi first. If this fingerprint can be found in slot of
MCFi, the common bits in the mark field of slot and
MCFj½k�½r�will be reset to 0s. In this way, the common affili-
ations of this fingerprint are removed. After such resetting,
if there is no 1 in slot.mark or MCFj½k�½r�.mark, Algorithm 2
will empty the fingerprint fields in these two slots. On the
other hand, if this fingerprint cannot be found in MCFi, it
will be remained in MCFj. The time-complexity of subtrac-
tion is also OðmbÞ. Such subtraction functionality is useful
for two-party set reconciliation and difference estimation.

4 THE MCFSYN RECONCILIATION PROTOCOL

4.1 The MCFsyn Framework

Multi-party set reconciliation means to deduce the different
elements between sets and exchange these different ele-
ments such that every participant has the same set elements
as the union of these sets. We provide a general framework
for multi-party set reconciliation with the following five
steps.

� Step 1: Representation. Every participant represents
its local elements with the employed data structure
(MCF in our proposal) to provide a sketch of the
local set.

� Step 2: Aggregation. The sketches from all the partici-
pants are sent to a logical central relay wherein they
are aggregated together to produce a sketch of the
global union, S¼ [i Si. For privacy preservation, the
data should only be stored and transferred within
the group. Therefore, the logical central relay must
also be a reconciliation participant.

� Step 3: Distribution. The logical central relay distrib-
utes the aggregation results to all the participants.

By doing so, every participant acknowledges the
union set.

� Step 4: Extraction. Each participant traverses the
global sketch to determine its missing elements (ele-
ments which do not belong to the local set), as well
as exclusive elements (elements that belong only to
the local set).

� Step 5: Transmission. The different elements in [iSi �
\iSi are transmitted among the participants with
selected senders to accomplish the reconciliation task.

The above framework is general while we specify it with
our MCF. The reason is that the MCF data structure natu-
rally provides the following features: 1) space-efficiency,
the caused communication overhead in the aggregation and
distribution steps is bounded and acceptable; 2) mergeabil-
ity, a participant can aggregate the received MCFs with its
local MCF as a single MCF before sending them out; 3) com-
pleteness, the mark field in MCF is responsible to record the
affiliation of the stored elements. Additionally, MCFsyn can
implement differentiated transfer strategies for the missing
elements and exclusive elements to save the communication
cost in the transmission step.

4.2 The Design Details of MCFsyn

With the above framework, there are still two challenges
remained. First, the route of aggregation and distribution
have significant impacts on the total communication over-
head. Gossiping or broadcasting these sketches indeedworks,
however, leads to vast delay and communication cost. There-
fore, reasonable routes are neededwith the joint consideration
of the underlying network. Second, themissing elementsmay
be hold by multiple participants. It is challenging to select a
provider so that the communication overhead is minimized.
To settle these challenges, we first present the abstraction of
the reconciliation group before elaborating our design details.

We consider n participants denoted as P1; . . . ; Pn, each of
which hosts a set of elements. As depicted in Fig. 3, we
abstract the reconciliation group as a fully-connected graph.
Each edge in the graph couples with a weight which meas-
ures the hops in the physical network between this pair of
participants. For instance, the weight wi;j denotes the hops
between participant Pi and Pj. In the aggregation step, all
sketches are sent to the logical central relay. With the above
abstraction, the design details are stated as follows.

Fig. 3. Left: The reconciliation group graph. Right: The aggregation (dot-
ted blue arrows) and distribution (dotted orange arrows) of sketches
within the reconciliation group.

LUO ET AL.: MCFSYN: A MULTI-PARTY SET RECONCILIATION PROTOCOL WITH THE MARKED CUCKOO FILTER 2709

Representation. Each participant represents its local set
with an MCF. These MCFs are homogeneous with identical
parameter settings, including filter length m, the hash func-
tions for fingerprints and candidate buckets, and the num-
ber of slots in each bucket b. The homogeneity simplifies the
subsequential aggregation and extraction steps signifi-
cantly. These MCFs can also be heterogeneous with a slight
alteration, as elaborated later in Section 4.3.

Algorithm 3.MCFsyn Extraction at Participant Pi

Input: The overall MCFMCFo

Output: The missing elements and exclusive elements of Pi

1 LetDMi
¼ ; denote the set of Pi’s missing elements;

2 LetDEi
¼ ; denote the set of Pi’s exclusive elements;

3 for k ¼ 0 tom�1 do
4 for r ¼ 0 to b�1 do
5 ifMCFo½k�½r�:fingerprint 6¼ ; then
6 ifMCFo½k�½r�:mark[i]==0
7 AddMCFo½k�½r� intoDMi

; then
8 else if OnlyMCFo½k�½r�:slot[i]==1 then
9 AddMCFo½k�½r�:fingerprint intoDEi

;
10 returnDMi

andDEi
;

Aggregation. After formulating the reconciliation group
graph, we derive out a minimum spanning tree (MST) of
the graph as the route for the sketch aggregation. A single
participant is regarded as the logic central relay to gather
and distribute the MCFs from others. Note that the selection
of the logic central relay has no impact on the communica-
tion cost of MCFsyn. We prefer to selecting the participant
with the largest degree in the MST as the logic central relay.
Such design enables the parallel transmission of sketches
from the leaf participants to the central relay. In the example
shown in Fig. 3, participant P3 is selected as the central
relay. Consequently, the two leaf participants P5 and P2 can
send their MCFs along with the MST simultaneously. An
internal participant aggregates the MCFs from its children
(having longer distance to the central relay) with its local
MCF and thereafter sends the aggregation results to its
father participant. In the example depicted in Fig. 3, after
receiving MCF5 from participant P5, participant P1 aggre-
gates its MCF1 with MCF5 and then sends the result to par-
ticipant P3. This aggregating-while-transmitting strategy
reduces communication cost significantly.

Distribution. The central relay executes the aggregation
operation provided by MCF, so that all the MCFs from its
children are merged as an overall MCF, denoted as MCFo.
MCFo represents all the elements in the union set S ¼ [i Si

and their affiliation information. As shown in Fig. 3,
MCFsyn distributes MCFo from the central relay to others
along with the generated MST.

Extraction. After receivingMCFo, each participant tries to
determine both the missing elements and exclusive ele-
ments by traversing MCFo. As elaborated in Algorithm 3,
participant Pi processes the received MCFo. For any stored
fingerprint in a slot, if the ith bit in the corresponding mark
field is 0, it means this fingerprint is not a member of Si.
Therefore, this fingerprint, together with its affiliation infor-
mation, is added into DMi

(line 6 to 7). On the other hand, if
only the ith bit in the corresponding mark field is 1, this ele-
ment belongs to Si solely and is added into DEi

(line 8 to 9).

The time-complexity of the extraction is OðmbÞ since all the
slots will be checked.

Transmission. Lastly, the participants exchange their dif-
ferent elements to finish the reconciliation task. For a partic-
ipant Pi, its exclusive elements in DEi

will be pushed to
other participants by either broadcasting directly to save
time or spreading along with the MST to achieve optimal
communication cost. For a missing element inDMi

, if its cor-
responding mark field only has one non-zero bit then this
element is an exclusive element of another participant.
Therefore participant Pi will do nothing but waiting for
receiving that element content from that element holder. By
contrast, if there are multiple 1s in that mark field, partici-
pant Pi selects the participant with which it establishes a
link with the lowest weight as its provider. This strategy is
implemented as a preference list based on the reconciliation
group graph. In this list, a neighbour with a lower-weight
link gets a higher preference. Consequently, the challenge
of selecting the optimal element sender is resolved.

4.3 The Generalization of MCFsyn

We consider the generalization of MCFsyn by further inves-
tigating the using of heterogeneous MCFs and the scenario
with dynamic reconciliation participants.

4.3.1 Heterogeneous MCFs

The above MCFsyn protocol implements homogeneous
MCFs at each participants. However, in reality, a participant
may hold much fewer elements than others due to long-
term offline reasons or store much more elements than
others because of a sudden content update. In this case, rep-
resenting elements with homogeneous MCFs may not be
economic. Consequently, we consider the using of heteroge-
neous MCFs in the MCFsyn reconciliation framework. In
this manner, each participant customizes its MCF according
to its local set cardinality.

Unlike homogeneous MCFs, the candidate buckets in het-
erogeneousMCFs with unequal lengths are not the same. This
feature disables the proposed aggregation algorithm. Thus,we
redesign the data structure ofMCF so that the candidate buck-
ets are derived out by the fingerprint. Given an element xwith
fingerprint hx, the two candidate buckets are calculated
as: h1ðxÞ ¼ hashðhxÞ%m and h2ðxÞ ¼ ðh1ðxÞ�hxÞ%m. In this
manner, when inserting fingerprints from two MCFs into the
aggregated MCF, the candidate buckets can be simply deter-
mined by the fingerprints themselves. The impact of this alter-
ation is theoretically detailed in [23]. For a participant Pi, the
capacity of its MCF is determined as mi � bi 	 a � jSij, where
mi, bi are the number and capacity of buckets inMCFi respec-
tively, and a
 1 is a constant coefficient.

GivenMCFi andMCFj, the aggregation algorithm is also
altered correspondingly. A new MCF MCFo is initialized
with capacity mo � bo ¼ a� jSi [Sjj. The value of jSi [Sjj
can be evaluated by counting the total number of distinct
fingerprints in MCFi andMCFj. Thereafter, the fingerprints
in both MCFi and MCFj, as well as the associated mark
fields, are inserted into MCFo one by one. The time-com-
plexity is thereby increased from OðmbÞ (for homogeneous
MCFs) to Oðmibi þ mjbjÞ.

2710 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

Another problem of using heterogeneous MCFs is that
transmitting MCFs with the MST may not be the optimal
choice anymore. The reason is that transmitting the most
lengthy MCF all along with the MST is not economic. To
generate the optimal transmission route, one has to traverse
all the nn�2 possible spanning trees [30] in the reconciliation
group graph. This is certainly computation-intensive.
Therefore, there is a trade-off between the communication
cost and the computation complexity here. A proper span-
ning tree can surely lower the communication cost of
MCFsyn, yet determining such a tree will occupy computa-
tion resources. For a bandwidth-scarce situation (such as
wireless sensor networks), saving the bandwidth is the first
priority; thus choosing the best spanning tree is worthwhile.
By contrast, when the network resource is abundant, it may
be not advisable to spend time to derive out the optimal
spanning tree.

4.3.2 Dynamic Reconciliation Participants

In the design of the protocol we assumed the set of partici-
pants is fixed. In reality, participants may join in or depart
unpredictably. In the reconciliation group graph, if a leaf
participant of the construct MST departures, there is no
impact to the rest of the MST. The corresponding bit in the
mark field of MCF will be removed or ignored. On the other
hand, when a non-leaf (internal) participant of the MST
leaves, the MST is divided into multiple connected compo-
nents. In that case, MCFsyn has to reconstruct a new MST.
This can be achieved based on the following cut property
and corollaries.

Theorem 1. (Cut property of MST [31]) Let GðV;EÞ be a
graph, ðX;V�XÞ be a cut of G, and edge e be the only mini-
mum cost edge that crosses the cut ðX; V�XÞ. Then every min-
imum spanning tree contains the edge e.

Corollary 1. Let GðV;EÞ be a graph, T be an MST of G,
ĜðV̂ ; ÊÞ (with V̂�V and Ê�E) be a connected subgraph of G.
T̂ is a subtree of T which covers all the participants in Ĝ. Then
T̂ is an MST of the graph Ĝ.

Proof. Consider the cut ðĜ;G� ĜÞ and the MST T , then
according to Theorem 1, we have T ¼ T̂ [T [ê, where T
and ê are the subtree of T which covers all participants in
the graph G� Ĝ and the minimum edge across Ĝ and
G� Ĝ. If T̂ is not an MST of graph Ĝ, then it can be
replaced by an MST of a smaller weight in Ĝ to allow an
MST of G with a weight smaller than T , in contradiction.
This proves the correctness of Corollary 1. tu

Corollary 2. For a fully connected reconciliation group graph
GðV;EÞ and its MST T , when a participant Pi leaves the
group, T may be split as multiple subtrees. Connecting these
subtrees incrementally with the minimum edges without creat-
ing cycles among them generates a new MST for the group
without Pi.

Corollary 2 is a natural result of Theorem 1 and Corollary
1. Therefore we omit its proof here. Based on this corollary,
MCFsyn reconstructs the disconnected MST by adding the
edges with the minimum weight between these discon-
nected components. Certainly, when adding these edges,

MCFsyn must ensure that there is no cycle introduced into
the MST.

When a new participant Pnþ1 joins into the reconciliation
group and all weights associated with the introduced edges
are larger than the weights in the existing MST, MCFsyn
just adds the edge which connects Pnþ1 with any existing
participants and has the minimum weight into the MST.
Otherwise, MCFsyn has to run some existing algorithms to
update the MST with the time-complexity of Oðn4=3lognÞ
[32]. Besides, the MCF data structure introduces one addi-
tional bit into its mark field to explicitly demonstrate the
members of the set Snþ1.

5 PERFORMANCE ANALYSIS

5.1 Failures of Element Representation

The ability of a CF to represent a set without failures in ele-
ment insertions is probabilistic. In a CF with mi buckets and
bi slots in each bucket, there exists a threshold Hi, when
Hi
 jSi j

mi
, the jSij elements can be represented by this CF

successfully with probability 1� oð1Þ; otherwise, this CF
fails to represent all the jSij elements with probability 1�
oð1Þ. This threshold is detailed in previous work [26], [33],
[34]. Furthermore, an upper bound of the probability that
all the jSij elements are successfully represented by the CF
with parameters mi and bi is also presented in [26]. We
denote this upper bound as Fðmi; bi; jSijÞ. The same bound
applies also to MCF since its additional field does not affect
the element representation. Pair-wisely, following con-
straints among the CF parametersmi, bi, f , jSij given in [23],
a lower bound of the probability that all jSij elements are
successfully represented by the CF can be derived. We
denote this lower bound which is also affected by the finger-
print length f as Qðmi; bi; jSij; fÞ. Then the probability that
all participants represent their set members with MCFs suc-
cessfully is bounded as:

Yn

i¼1

Qðmi; bi; jSij; fÞ � pr �
Yn

i¼1

Fðmi; bi; jSijÞ: (3)

With these theories, the capacity of our MCF can also be
designed such that all the elements in each participant can
be represented successfully with a probability close to 1.
However, we cannot guarantee that every element is repre-
sented eventually. Therefore, we analyze the consequence
of such failures in our MCFsyn framework. A reconciliation
participant Pi, might have three kinds of elements: 1) com-
mon elements Sc

i which exist in every participants; 2) exclu-
sive elements Se

i which are only held by Pi; and 3) partial
elements Sp

i which only appear in part of these participants
(in at least one other set).

For a common element, if the local MCF fails to represent
it, it will be regarded as a missing element during the
extraction step. As a result, a false positive error of reconcili-
ation (identifying a common element as a different one) will
occur. In the last step of reconciliation, Pi has to request this
element from the participant with the highest priority, intro-
ducing unnecessary element transfer.

The failure of representing an exclusive element at Pi, on
the other hand, leads to a false negative error of reconciliation

LUO ET AL.: MCFSYN: A MULTI-PARTY SET RECONCILIATION PROTOCOL WITH THE MARKED CUCKOO FILTER 2711

(identifying a different element as a common one). As a conse-
quence, Pi will not push this exclusive element to others,
resulting in inaccurate reconciliation. As for a partial element,
missing its information also causes a false positive error of rec-
onciliation. The participant Pi will pull this element from a
non-optimal participant. Besides, for those participants which
assign Pi with the highest priority, they cannot fetch this par-
tial element with theminimum communication overhead.

5.2 Impact of Hash Collisions

In the framework of MCF, two independent sets of hash
functions are employed — one for fingerprint generation
and one for candidate buckets derivation. Hash collisions
are not avoidable. When diverse elements are assigned to
the same candidate buckets, this hash collision is resolvable
because each bucket has b slots. Therefore, we focus on hash
collisions in the generation of element fingerprints.

If two elements (e.g., x and y) share the same fingerprint
yet have totally different candidate buckets, the aggregation
and distribution step will not be affected. However, a prob-
lem will occur during the extraction process (detailed in
Section 4) because participants cannot distinguish them
when they try to fetch these two elements. To resolve this
dilemma, participants only pull x and y from the partici-
pants which don’t have x and y simultaneously. On the
other hand, if x and y share common affiliates, they will be
reconciled according to the standard extraction and trans-
mission steps.

When elements x and y share the same fingerprint and
some common candidate bucket(s), the aggregation step
and the thereafter extraction step have to handle this excep-
tion. During aggregation, adding the affiliation information
of x to y will surely lead to inaccurate reconciliation, and
vice versa. MCFsyn mitigates this issue conservatively by
broadcasting x and y to all the participants and setting the
corresponding mark fields to 1s. Specifically, during aggre-
gation, if Pi finds this collision, the elements x and y will be
pushed to others from Pi or (and) the participants which
hold x or y. After that, in the overall MCF, the bits of the
mark fields in the corresponding slots are all set to 1 to
explicitly declare that these elements are already common
elements. The later steps can be executed as they are
designed, without the worry of conflicted elements.

Theorem 2. Consider a n-party set reconciliation using
MCFsyn with parameters m, b and f , given the boarder length
of MCF m̂ calculated with the threshold H, as long as we
choose m
 ð1þ �Þm̂ for some � > 0, the MCFsyn reconciles
all the elements from S ¼ [iSi correctly with probability:

p ¼ Oð1� oð1ÞÞ � 2�jSjf �
YjSj�1

i¼0

ð2f � iÞ: (4)

Besides, the reconciliation takes 2ðn � 1Þ steps with 2ðn � 1Þ
total messages of size Oðj [i SijÞ to identify the differences.

Proof. For a successful MCFsyn reconciliation, all the ele-
ments should be correctly represented and there must
have no fingerprint collisions. According to the theory
presented in [26], [33], [34], when m
 ð1þ�Þm̂ for some
� > 0, the MCF represents all elements in S successfully

with probability Oð1 � oð1ÞÞ. Given the number of bits in
each fingerprint as f , the probability of collision-free fin-
gerprint generation is 2�jSjf �QjSj�1

i¼0 ð2f � iÞ. Consequently,
Eq. (4) follows. Moreover, MCFsyn aggregates and dis-
tributes the MCFs along with the MST to and from the
logic central relay. Each aggregation and distribution
operation carries an MCF. The size of that MCF is decided
by the number of elements in the union set. Therefore, the
whole reconciliation takes 2ðn � 1Þ steps with 2ðn � 1Þ
total messages of size Oðj [i SijÞ to identify all the differ-
ent elements among participants. tu

5.3 The Space Overhead of MCFs

In this subsection, we quantify the space overhead of repre-
senting the elements for reconciliation with MCFsyn.

Suppose a reconciliation group with n participants, and
the total number of elements in the union set S ¼ [iSi is jSj,
then the bits per element (bpe) after the aggregation step
can be formulated as:

BPEMCF ¼ ðnþ fÞ � b�m

jSj ; (5)

where f , b and m are the parameters of MCFs to represent
the union set S. With the given b and jSj, the value of m can
be derived out by the threshold introduced in previous
work [26], [33], [34]. In effect, MCF introduces a mark field
with n bits into each slot to label which participant(s) this
element belongs to. Each slot needs nþ f bits, and the total
number of bits of the whole filter is ðnþ fÞ � b�m. This
confirms Eq. (5). Note that, if homogeneous MCFs are
deployed, they share the same capacity yet unequal jSij.
Therefore, the bpe of participant Pi at the representation
step is ðnþfÞ�b�m

jSij . By contrast, when heterogeneous MCFs
are used as stated in Section 4.3, then the bpe of participant
Pi at the representation step is ðnþfÞ�b�mi

jSij .
An extended problem is how to determine the value of

jSj before reconciliation. It can be abstracted as a cardinality
estimation problem. There are a family of solutions [35],
such as LogLog [36], SuperLogLog [37], HyperLogLog [37],
HyperLogLog++[38], MinCount[39], AKMV[40], etc. They
usually rely on the bit-mapping, hashing, sampling techni-
ques to derive out the cardinality of a given set. In our case,
undoubtedly, to implement these methods among multiple
reconciliation participants, multiple rounds of communica-
tions are necessary.

5.4 Communication Cost of MCFsyn

In this paper, we measure the communication cost over a
link as the product of the size of the carried message by the
link weight (described in the reconciliation graph). The total
communication cost is given by the summation over all
links.

Theorem 3. Given the size of the sketch data structure, when the
different elements can only be sent from their affiliates before
reconciliation, MCFsyn achieves the minimum communica-
tion cost of multi-party set reconciliation.

Proof. The communication cost of MCFsyn is caused by
exchanging the MCFs (the aggregation and distribution
steps) and transferring different elements (the transmission

2712 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

step) among the participants. LetCa,Cd,Ce, andCm denote
the communication cost of sketch aggregation, sketch dis-
tribution, exclusive element transfer, and missing element
transfer, respectively. The overall communication cost of
MCFsyn (denoted asCo) can be calculated as:

Co ¼ Ca þ Cd þ Ce þ Cm: (6)

Assuming the employed sketch data structure is Bs bits,
then we have:

Ca ¼ Bs �
X

ei;j2Ea

wi;j and Cd ¼ Bs �
X

ei;j2Ed

wi;j; (7)

where Ea is the set of edges which get involved with the
aggregation step and Ed is the corresponding set for the
distribution step. Note that both the aggregation and dis-
tribution steps need to cover all participants. Moreover,
Ca=Bs and Cd=Bs are the sums of weights for all involved
edges. Therefore the minimal Ca=Bs and Cd=Bs naturally
fit the definition of a minimum spanning tree. Hence, the
communication cost Ca þ Cd is minimized.

MCFsyn implements diverse transmission strategies
for the exclusive elements and missing elements to save
bandwidth. Specifically, when the exclusive elements are
pushed to other participants along with the MST tree, we
have:

Ce ¼
X

x2DE

Bx �
X

ei;j2MST

wi;j; (8)

where x is an exclusive element and Bx is the number of
bit of the element x. Consequently, when distributing the
exclusive elements with the MST, MCFsyn minimizes the
cost Ce. As for Cm, note that in MCFsyn, for missing ele-
ments with multiple holders, the local participant just
fetches the content from its nearest participants. This
mechanism naturally minimizes the cost Cm. Thus, the
communication cost of transferring different elements is
also optimal in MCFsyn. tu

6 EVALUATION

In this section, we compare MCFsyn with other methods for
multi-party set reconciliation, including the BF-based
method and the IBLT-based method. All the experiments
are conducted on a host with 8 GB RAM and 3.4 GHz CPU.
Note that the element content has merely impact on the rec-
onciliation performance, thereby we generate random
strings with diverse lengths as set elements. The metrics

include the number of false positives, the number of false
negatives, and the communication cost of reconciliation.

6.1 Reconciliation Accuracy

We quantify the false positives (FPs) and false negatives
(FNs) of reconciliation with different parameter settings.
The considered parameters include the number of elements
in the union set S, denoted as jSj, the number of different
elements jDj (appear in some but not all sets), the ratio
between jDE j (appear in only one of the sets) and jDj
denoted as R and the number of participants n. The default
parameter setting is jSj ¼ 28,000 with jDj ¼ 1,000, R ¼ 0.5
and, n ¼ 10. Given the same bits per element for each data
structure, we alter the above parameters respectively and
plot the results in Fig. 4.

We also observe that the BF-based method and our MCF-
based method incur no false positive errors; the IBLT-based
method, by contrast, leads to no false negative errors. In effect,
BF relies on the membership query operations to determine
the different elements among participants. MCFsyn traverses
the overall MCF to identify the different elements. Therefore
they never suffer from false negative errors, once the elements
are represented successfully. The IBLT, on the contrary, tries
to list the different elements from the subtracting result which
only contains the information of different elements. Conse-
quently, IBLT may fail to list these elements but will never
identify a common element as a different one.

We first set the total number of elements jSj between
4,000 to 44,000. As depicted in Fig. 4a, BF-FN shows a signif-
icant growth from 364 to 869. The reason is that larger jSj
means more membership queries, thus increasing the risk
of false negatives of set reconciliation. On the contrary, the
IBLT-based method leads to less false positives when jSj
grows. Intrinsically, more elements require more cells to
represent them. In the generated IBLT after subtracting,
more cells increase the probability of successful decoding.
Obviously, our MCFsyn has the least false negatives. These
false negatives are caused by the failures of representing
elements. Certainly, by lengthening the MCFs, we can gen-
erate an even better reconciliation accuracy.

We then change the number of different elements jDj
from 200 to 2,200. As plotted in Fig. 4b, when jDj grows,
both BF and IBLT experience increasing reconciliation
errors. When jDj increases, more elements in D may be
identified as common ones by BFs. IBLT need to decode
more elements from the subtracting result; thereby its risk
of unsuccessful decoding rises up significantly. As for
MCFsyn, we only observe a few false negatives in our
experiments, rising from 1.8 to 16. The reason for such an

Fig. 4. The multi-party reconciliation accuracy with diverse parameter settings.

LUO ET AL.: MCFSYN: A MULTI-PARTY SET RECONCILIATION PROTOCOL WITH THE MARKED CUCKOO FILTER 2713

increasing trend is that more element representation failures
may happen upon the different elements when jDj grows.

Lastly, we vary the ratio between jDEj and jDj from 0 to
1. As specified in Fig. 4d, BF still causes the most false nega-
tives, fluctuating around 818. The number of false negatives
resulted by MCF decreases from 17 to 1.33. In fact, a larger
value of jDEj lowers the number of elements in each partici-
pant. Consequently, the participants can represent their
local sets with MCF successfully with a higher probability.
This explains the decreasing curve of MCF-FN in Fig. 4d.
IBLT, on the contrary, shows its instability and still incurs
much more errors than our MCF.

Additionally, we also note that the IBLT-based method
[16] may fail to tell the affiliation of these elements precisely.
Therefore, Fig. 5 presents the exact fractions of the decoded
different elements with correct affiliations by IBLTs when
the parameters change. It is clear that IBLT can seldom
judge the affiliation of the different elements correctly (the
fraction of such correct decoding is at the level of 10�2). As
suggested by Mitzenmacher and Pagh [16], IBLT leverages
the parity of the corresponding bit in the ID field of each
cell to represent the affiliation of each stored element. How-
ever, when the ith set has multiple elements mapped into
this cell, the parity of the ith bit in the ID field may fail to
tell the affiliation of these elements. The absence of the exact
affiliation information of the recorded elements surely
results in inaccurate set reconciliation. This is also why we
introduce the completeness feature into MCF .

Given the default setting, i.e., jSj ¼ 28,000, jDj ¼ 1,000,
R ¼ 0.5 and n ¼ 10, we vary the four parameters respec-
tively and record the generated ratio of correct decoding in
IBLT. As depicted in Fig. 5a, when jSj increases from 4,000
to 44,000, more elements in D are decoded correctly. The
behind reason is that, the increasing number of elements
generates a longer IBLT vector, which creates a higher prob-
ability of successful decoding. However, in Fig. 5b, the
growth of jDj decreases the fraction of successful IBLT
decoding. The decrement is expected since it can be more
difficult to search a “pure” cell for decoding when IBLT
stores more different elements.

Additionally, as reported by Fig. 5c, when the number of
reconciliation participants n grows from 4 to 24, the fraction
of correct decoding experiences a slight growth. With the
given total number of elements and growing number of par-
ticipants, each participant holds shrinking number of ele-
ments. Consequently, the parity of the corresponding bit in
the ID field can correctly represent the affiliation of ele-
ments with a higher probability. The difference ratio R, on
the contrary, has limited impact on the IBLT decoding

accuracy. Therefore, the fraction of correct decoding in
Fig. 5d fluctuates around 29 � 10�3. Note that, the curves in
Fig. 5 are unstable to some extent. The instability is caused
by the decodings which end far early before all the different
elements are listed. IBLT’s unstable performance further
limits its usage in multi-party reconciliation scenarios.

6.2 Communication Cost

During reconciliation, the participants need to exchange
their local sketches with others. Therefore, the communica-
tion overhead of transferring these sketches is a joint result
of the employed data structure and the transfer scheme.
MCFsyn relies on the MST to aggregate and distribute the
MCFs. By contrast, other reconciliation methods launch the
all-to-all transmission or the gossip traffic (denoted as the
suffix -A and -G respectively in the legends of Fig. 6) within
the reconciliation group to exchange their sketches.

We evaluate the communication cost of transferring the
sketch data structures in a random regular graph (a widely
used topology in computer networks), with the consider-
ation of three main parameters, i.e., the network scale P, the
number of reconciliation participants n, and the degree of
nodes in the network. We let P ¼ 30; 000, n ¼ 30 and
degree ¼ 20 by default and then vary them respectively to
compare the communication cost of distinct combinations
of data structures and transmission schemes. In our evalua-
tions, we assume that each of the BF, IBLT, and MCF occu-
pies the same space (normalized as 1 unit for simplicity) to
represent each set.

As plotted in Fig. 6a, when the underlying network scale
grows from 5,000 to 55,000, all methods lead to increasing
communication cost of transferring their sketches. Note that
transmitting BF and IBLT with the all-to-all strategy incur the
same communication cost. In this strategy, all participants
send their local sketch to others. Therefore the total communi-
cation cost is

Pn
i¼1

Pn
j¼1 Li;j, where Li;j is the shortest path

length from participant i to participant j. To gossip these
sketches, logn rounds of transmissions are required on aver-
age. Each participant merges the received IBLTs as a single
IBLT. The generated IBLTs are exchanged in the next round
of gossip transmission. However, BFs cannot be merged. The
participants have to send all the received BFs out in the next
round of gossip transmission. This explains why the curve
BF-G is much higher than IBLT-G in Fig. 6. In contrast,
MCFsyn causes the least communication cost by aggregating
and distributing the MCFs with MST. Beside of the MST, just
like IBLT, the mergeability of MCF also highly contributes to
such an excellent performance.

Fig. 5. The fraction of correctly decoded different elements by the IBLT-based reconciliation method.

2714 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

When n varies from 10 to 60 (in Fig. 6b) we observed the
increase of communication cost for all measured methods.
With more reconciliation participants, we have to transfer
more sketches with the underlying network. Still, gossiping
BFs results in the most communication cost, while our
MCFsyn incurs one or two orders less communication cost
than others. On the contrary, as presented in Fig. 6c, when the
node degree in the network gets larger, the communication
cost for all the methods decreases constantly. The increased
degree shortens the distance between all participants, thereby
lowers the cost. MCFsyn still outperforms others in a large
scale.

We further consider the communication cost of transmit-
ting different elements. Note that, due to the unacceptable rec-
onciliation accuracy or (and) the incapability of telling the
affiliation of different elements, both the BF and IBLT enabled
methods can be impractical. Consequently, we only compare
the caused communication cost of our MCFsyn protocol, the
backup strategy and the LAN sync strategy [41] in cloud serv-
ices. The network topology is illustrated in Fig. 7. The backup
strategy is widely used in current personal file cloud storage
applications, such as Dropbox, Google Drive, OneDrive, etc.
In this backup strategy, each local device uploads its data to
the remote cloud for backup (usually three replicas in the
cloud). Then the cloud pushes its data to the devices for con-
sistency.We also note that, Dropbox has a “LAN sync” option
for users. When a file is edited by a device, the updated ver-
sion is first uploaded to the cloud server for sure. Thereafter,
instead of pulling updates from the cloud server, the devices
will try to obtain the updates from the devices in the same
LAN first. By doing so, unnecessary cloud-device communi-
cations are avoided significantly.

As depicted in Fig. 6d, this kind of communication over-
head of backup strategy and our MCFsyn protocol increases
linearly with the growth of the number of local devices.

However, the backup strategy costs much more than our
MCFsyn protocol. Specifically, in our evaluation, we suppose
that the local devices are interconnected with an access point.
According to [42] the AS level path length of the Internet is 3.9.
For simplicity, we suppose the hops from the access point to a
cloud rack is approximated as 3.9. Therefore, fetching (upload-
ing) a data block from (to) the backup server costs 5.9 hops.
Given the same volume of different elements to reconcile (nor-
malized as 1 unit), the backup strategy causes 5.9�#device
communication cost. The reason is that each different element
has to be sent to the cloud first. After that, the cloud will push
that element to the rest of the devices. By contrast, this kind of
communication cost in MCFsyn is 2�ð#device�1Þþ5:9. Note
that the addend 5.9 indicates the cost of transferring different
elements to the cloud; while 2�ð#device�1Þ is the overhead of
transmitting the different elements from its host to other devi-
ces by using the access point as a relay. As for LAN sync, in
this network setting, it realizes the same communication over-
head of transmitting different elements asMCFsyn does, since
all the devices lie in a single LAN and the different elements
can be fetched locally.

However, we argue that MCFsyn generally outperforms
LAN sync from the following two aspects. First, in MCFsyn,
participants always try to get the missing elements with mini-
mal overhead; while this is not guaranteed in LAN sync since
it fails to optimize inter-LAN reconciliations. For instance, if
the devices in Fig. 7 belong to diverse LANs, the devices in a
LAN can only fetch updated data from the remote cloud
server but not other LANs even they may be geographically
close. Second, the LAN sync has not changed the nature of the
backup strategy in personal cloud storage. In other words,
LAN sync is still centralized, whileMCFsyn is fully decentral-
ized. The cloud server still plays a central role in the whole
system. It confirms the changes and initiates the sync process.
What LAN sync does is only try to speed up the data distribu-
tion step. By contrast, in MCFsyn, all the participants are
totally equal and self-organized. They decide and then push/
pull the different elements all by themselves. Such a design
philosophy brings both flexibility and fault-tolerance. The
participants are allowed to join or leave dynamically. Even
when the cloud-LAN links fail, the devices in Fig. 7 can still
sync with each other with our MCFsyn protocol; but such a
failuremay be problematic in LAN sync.

6.3 MCFsyn in Blockchains

In a blockchain, the transactions are validated and propagated
as blocks. A fundamental question is that the transactions
should be synchronized before block propagation. Specifically,
each peer in the blockchain maintains a mempool which stores

Fig. 6. The communication cost of multi-party set reconciliation for diverse methods.

Fig. 7. A typical network topology of personal cloud storage system,
wherein the personal devices are interconnected with a LAN switch, i.e.,
an access point. A device (device 4 in this example) has 1 unit of new
files to sync with others.

LUO ET AL.: MCFSYN: A MULTI-PARTY SET RECONCILIATION PROTOCOL WITH THE MARKED CUCKOO FILTER 2715

unpackaged transactions. The problem can be abstracted as set
reconciliation between mempools. The state-of-the-art method
for such a scenario is called Graphene [4] which employs both
BF [6] and IBLT [8] to identify the missing transactions in a
peer. However, Graphene and its same kind only try to solve
the two-party reconciliation problem, thus fail to achieve an
overall optimization of communication overhead. Basically,
Graphene needs to broadcast the newly formed block from the
source to others, with the two-party synchronization strategy.

In this paper, we conduct simulations to compare MCFsyn
with Graphene in blockchains with real Ethereum transac-
tions [43]. We consider the first million on-chain blocks and
extract more than 5,500 blocks that possess no less than 30
transactions. Thereafter, we try to propagate such blocks by
reconciling their transactions. In our experiment, we generate
ER graphs to simulate the underlying blockchain P2P net-
works and assignweights to the links to demonstrate the com-
munication cost. We simplify the size of each transaction as 1
unit and then sum up the weights of utilized links to quantify
the overall communication cost for network-wide consis-
tency. For each node, we decide a randomnumber in [0, 10] as
its missing transactions. Our target is to reconcile such ran-
domly chosen transactions for each block in the network.

As shown in Fig. 8, MCFsyn outperforms the broadcast
strategy in current blockchain systems significantly. To be
specific, when n ¼ 1; 000 and the probability in ER graph is
p ¼ 0:05, the overhead of MCFsyn ranges from 10,947 to
15,050, with an average value of 12,939. By contrast, the mini-
mum, maximum, and average costs of the broadcast strategy
are 24,600, 30,399, and 27,456, respectively. In other words,
MCFsyn savesmore than half of the communication overhead
when transmitting the different transactions. The intrinsic
reason is that a node inMCFsyn always tries to fetch its miss-
ing transactions with the minimum cost. However, for broad-
cast transmission, nodes just push/pull missing transactions
from their neighborswithout considering the cost.

Moreover, we quantify the communication cost of trans-
mitting transactions in the blockchain network when the
number of nodes n and the probability of links in ER graph
p increase constantly. The results are presented in Fig. 9.
Obviously, MCFsyn still outperforms the broadcast strategy
significantly. When n grows, both the MCFsyn and the
broadcast methods lead to increasing cost, since more links
are employed to transmit the missing transactions. When p
increases from 0.005 to 0.05, the communication cost
decreases in MCFsyn while remains at a high level in broad-
cast strategy. With more links in the network, MCFsyn can

search out a smaller MST with high probability; for broad-
cast, the introduced links may help to speed up the trans-
mission but cannot decrease the communication cost.

As a summary, MCFsyn significantly outperforms other
methods. Quantitatively, in our evaluations, MCFsyn gener-
ates 20x and 70x times fewer errors on average than the
methods enabled by IBLT and BF with the same bits per ele-
ment, respectively. Moreover, MCFsyn causes 21x and 7.9x
times less communication cost on average than transferring
BFs with the all-to-all scheme and exchanging IBLTs with
the gossip protocol, respectively. Especially, the IBLT-based
method can barely tell the affiliations of its decoded ele-
ments. MCFsyn is competent to discover the different ele-
ments with their correct affiliations so that these different
elements can be synchronized to other participants with the
optimal senders. Therefore, MCFsyn shows much less com-
munication cost to deliver these different elements than the
general backup strategy used in current cloud storage serv-
ices. Besides, the trace-driven simulations indicate that
MCFsyn can half the communication overhead of transmit-
ting transactions, compared with the current broadcast-
based reconciliation strategy.

7 DISCUSSION

In this section, we further discuss several issues about the
MCFsyn protocol.

Evil Nodes in the Reconciliation Group. In a distributed sce-
nario, it is possible that evil nodes intend to steal informa-
tion from the group or spread unwanted data within the
group. Such an issue is beyond the scope of this paper.
However, we think it is costly or uneasy to do so. First, the
hackers have to pass the verification and authorization from
the upper-level applications, before becoming a member of
the reconciliation group. For enterprises or institutions
which build their own private networks, they have no such
worry since they are independent from the public Internet
physically. Second, the network security modules in the net-
work monitor the network consistently and provide security
to the reconciliation group, to some extent. If the evil nodes
attack or disturb the network, the defense facilities will act.

When to Run the MCFsyn Protocol. MCFsyn is a low-level
protocol to synchronize content among multiple partici-
pants. An upper-level question is when MCFsyn should be
executed. In effect, there is a body of work that focuses on
this field [44], [45]. For example, UDS proposes to batch the
micro changes before synchronization to save bandwidth
[44]. These strategies can potentially be applied to MCFsyn.

Fig. 8. The communication overhead of reconciling transactions in block-
chain networks when n ¼ 1; 000 and p ¼ 0:05.

Fig. 9. The communication cost of reconciling transactions in blockchain
networks when n and p vary.

2716 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

In our case, an upper-level control scheme can be either
update-driven or time-divided. For an update-driven pol-
icy, the MCFsyn is triggered once new elements are
included or existing elements are edited. Alternatively, it is
also advisable to prob the participants periodically and
sync the updates in a batched fashion. Generally, the latter
can is more bandwidth-friendly than the former, since rec-
onciling the micro updates may cause the overuse of syn-
chronization messages.

MCFsyn in Extreme Scenarios. MCFsyn is a general proto-
col for multi-party reconciliation and can be applied to rec-
oncile elements no matter how the different elements
distribute among the participants. When the participants
have a skewed number of elements, following the MCFsyn
steps can identify and transmit the different elements suc-
cessfully. A possible optimization for this case is to choose
the node with the most elements as its central relay, such
that the others may use smaller MCFs for bandwidth saving
purposes. Besides, in the scenario where the sets are totally
or barely different, MCFsyn still works. Specifically, if the
sets are almost the same, MCFsyn should still be employed
to discover the different elements. By contrast, when they
share no common elements, MCFsyn can still guide the par-
ticipants to transmit the elements along with the MST tree
for fast and economic reconciliation.

8 CONCLUSION AND FUTURE WORK

In this paper, we present the MCFsyn protocol for multi-
party set reconciliation in distributed scenarios. MCFsyn
employs the MCF data structure as a sketch of each set,
thereafter aggregates and distributes the MCFs with the
underlying MST to minimize the communication cost. The
aggregating-while-transmitting strategy further reduces the
communication cost of exchanging MCFs. By differentiating
the exclusive elements from missing elements, MCFsyn
realizes an optimal strategy to transmit the different ele-
ments among the participants. The comprehensive evalua-
tions indicate that MCFsyn significantly outperforms its
same kind in terms of both reconciliation accuracy and com-
munication cost.

Our future work is mainly two-fold. First, we will imple-
ment MCFsyn in real systems, such as open-source block-
chain platforms Ethereum [46], Hyperledger [47], Corda
[48], and private cloud storage systems such as OwnCloud
[49], Nextcloud [50], Seafile [51], etc. As far as we know,
these blockchain and cloud storage systems mainly rely on
a two-party reconciliation scheme [4] to synchronize trans-
actions before block construction. Our MCFsyn may help to
speed up this process with less communication overhead.
Second, we would like to consider the multi-party reconcili-
ation of multisets wherein elements are allowed to have
multiple instances. In such cases, both the element content
and multiplicity can cause differences; thus identifying and
transmitting such elements can be more challenging.

ACKNOWLEDGMENTS

The authors would like to thank all the anonymous reviewers
for their insightful feedback. This workwas supported in part
by the National Key Research and Development Program of

China under Grant 2018YFB1800203, in part by the National
Natural Science Foundation of China under Grant 62002378,
and in part by the Research Funding of NUDT under Grant
ZK20-3.

REFERENCES

[1] S. Guo, Y. Gu, B. Jiang, and T. He, “Opportunistic flooding in low-
duty-cycle wireless sensor networks with unreliable links,” IEEE
Trans. Comput., vol. 63, no. 11, pp. 2787–2802, Nov. 2014.

[2] V. Stefano, L. Vanbever and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” in ACM
SIGCOMMComput. Commun. Rev., vol. 44, no. 2, pp. 70–75, 2014.

[3] B. Maggs and R. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 3,
pp. 52–66, 2015.

[4] A.Ozisik, B. Levine, G. Bissias, G.Andresen, D. Tapp and S.Katkuri,
“Graphene: Efficient interactive set reconciliation applied to block-
chain propagation,” in Proc. ACM Special Int. Group Data Commun.,
2019, pp. 303–317.

[5] D. Guo and M. Li, “Set reconciliation via counting Bloom filters,”
IEEE Trans. Knowl. Data Eng., vol. 25, no. 10, pp. 2367–2380,
Oct. 2013.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[7] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the difference?: Efficient set reconciliation without prior context,”
in Proc. ACM SIGCOMM Conf., 2011, pp. 218–229.

[8] M. T. Goodrich and M. Mitzenmacher, “Invertible Bloom lookup
tables,” in Proc. 49th Annu. Allerton Conf. Commun., Control, Com-
put., 2011, pp. 792–799.

[9] D. Chen, C. Konrad, K. Yi, W. Yu, and Q. Zhang, “Robust set rec-
onciliation,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2014,
pp. 135–146.

[10] L. Luo et al., “Efficient multiset synchronization,” IEEE Trans.
Netw., vol. 25, no. 2, pp. 1190–1205, Apr. 2017.

[11] G. Karpovsky and B. Levitin, “Data verification and reconciliation
with generalized error-control codes,” IEEE Trans. Inf. Theory, vol.
49, no. 7, pp. 1788–1793, Jul. 2003.

[12] K. A. S. Abdel-Ghaffar and A. El Abbadi, “An optimal strategy for
comparing file copies,” IEEE Trans. Parallel Distrib. Syst., vol. 5,
no. 1, pp. 87–93, Jan. 1994.

[13] B. Fan, D. Andersen, M. Kaminsky, and M. Mitzenmacher,
“Cuckoo filter: Practically better than Bloom,” in Proc. 10th ACM
Int. Conf. Emerg. Netw. Experiments Technol., 2014, pp. 75–88.

[14] Z. Zhu and A. Afanasyev, “Let’s chronosync: Decentralized data-
set state synchronization in named data networking,” in Proc. 21st
IEEE Int. Conf. Netw. Protoc., 2013, pp. 1–10.

[15] T. T. Chekam, E. Zhai, Z. Li, Y. Cui, and K. Ren, “On the synchroni-
zation bottleneck of OpenStack Swift-like cloud storage systems,” in
Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.

[16] M. Mitzenmacher and R. Pagh, “Simple multi-party set recon-
ciliation,”Distrib. Comput., vol. 31, no. 6, pp. 441–453, 2018.

[17] A. Boral and M. Mitzenmacher, “Multi-party set reconciliation
using characteristic polynomials,” in Proc. 52nd Annu. Allerton
Conf. Commun., Control, Comput., 2014, pp. 1182–1187.

[18] F. Hao, M. Kodialam, T. V. Lakshman, and H. Song, “Fast
dynamic multiset membership testing using combinatorial Bloom
filters,” in Proc. IEEE INFOCOM, 2009, pp. 513–521.

[19] M. Mitzenmacher, P. Reviriego, and S. Pontarelli, “OMASS: One
memory access set separation,” IEEE Trans. Knowl. Data Eng., vol.
28, no. 7, pp. 1940–1943, Jul. 2016.

[20] H. Dai, Y. Zhong, A. Liu, W. Wang, and M. Li, “Noisy Bloom fil-
ters for multi-set membership testing,” in Proc. ACM SIGMET-
RICS Int. Conf. Meas. Model. Comput. Sci., 2016, pp. 139–151.

[21] D. Yang, D. Tian, J. Gong, S. Gao, T. Yang, and X. Li, “Difference
Bloom filter: A probabilistic structure for multi-set membership
query,” in Proc. IEEE Int. Conf. Commun., 2017, pp. 1–6.

[22] T. Yang et al., “Coloring embedder: A memory efficient data struc-
ture for answering multi-set query,” in Proc. IEEE 35th Int. Conf.
Data Eng., 2019, pp. 1142–1153.

[23] D. Eppstein, “Cuckoo filter: Simplification and analysis,” 2016,
arXiv:1604.06067.

[24] M. Mitzenmacher, S. Pontarelli, and P. Reviriego, “Adaptive
Cuckoo filters,” in Proc. Meeting Algorithm Eng. Experiments, 2018,
pp. 36–47.

LUO ET AL.: MCFSYN: A MULTI-PARTY SET RECONCILIATION PROTOCOL WITH THE MARKED CUCKOO FILTER 2717

[25] H. Chen, L. Liao, H. Jin, and J. Wu, “The dynamic cuckoo filter,”
in Proc. IEEE 25th Int. Conf. Netw. Protoc., 2017, pp. 1–10.

[26] L. Luo, D. Guo, O. Rottenstreich, R. T. B. Ma, X. Luo, and B. Ren,
“The Consistent cuckoo filter,” in Proc. IEEE Conf. Comput. Com-
mun., 2019, pp. 712–720.

[27] N. Nguyen and P. Tsigas, “Lock-free cuckoo hashing,” in Proc.
IEEE 34th Int. Conf. Distrib. Comput. Syst., 2014, pp. 627–636.

[28] A. Breslow andN. Jayasena, “Morton filter: Fast, compressed sparse
cuckoo filters,”Very LargeData Bases J., vol. 29, pp. 731–754, 2020.

[29] M. Wang, M. Zhou, S. Shi, and C. Qian, “Vacuum filters: More
space-efficient and faster replacement for bloom and cuckoo fil-
ters,” Proc. VLDB Endowment, vol. 13, no. 2, pp. 197–210, 2019.

[30] B. Y. Wu and K. M.- Chao, Spanning Trees And Optimization Prob-
lems. Boca Raton, FL, USA: Chapman and Hall/CRC, 2004.

[31] J. Kleinberg and E. Tardos, Algorithm Design. Boston, MA,USA:
Pearson Addison Wesley, 2006.

[32] M. Henzinger and V. King, “Maintaining minimum spanning
trees in dynamic graphs,” in Proc. Int. Colloq. Automata, Lang., Pro-
gram., 1997, pp. 594–604.

[33] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R.
Pagh, and M. Rink, “Tight thresholds for cuckoo hashing via
XORSAT,” in Proc. Int. Colloq. Automata Lang. Program., 2010,
pp. 213–225.

[34] N. Fountoulakis, M. Khosla, and K. Panagiotou, “The multiple ori-
entability thresholds for random hypergraphs,” in Proc. Annu.
ACM-SIAM Symp. Discrete Algorithms, 2011, pp. 1222–1236.

[35] H. Harmouch and F. Naumann, “Cardinality estimation: An
experimental survey,” Proc. VLDB Endowment, vol. 11, no. 4,
pp. 499–512, 2017.

[36] M. Durand and P. Flajolet, “LogLog counting of large
cardinalities,” in Proc. Eur. Symp. Algorithms, 2003, pp. 605–617.

[37] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog:
The analysis of a near-optimal cardinality estimation algorithm,”
in Proc. Discrete Math. Theor. Comput. Sci., 2007, pp. 137–156.

[38] P. J. Haas and L. Stokes, “Estimating the number of classes in a finite
population,” J. Amer. Stat. Assoc., vol. 93, no. 444, pp. 1475––1487, 1998.

[39] F. Giroire, “Order statistics and estimating cardinalities of massive
data sets,”Discrete Appl.Math., vol. 157, no. 2, pp. 406–427, 2009.

[40] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla, “On
synopses for distinct-value estimation under multiset operations,” in
Proc. ACMSIGMOD Int. Conf.Manage. Data, 2007, pp. 199–210.

[41] What is LAN sync?. Accessed: Feb. 21, 2021. [Online]. Available:
https://help.dropbox.com/installs-integrations/sync-uploads/
lan-sync-overview

[42] B. Edwards, S. Hofmeyr, G. Stelle, and S. Forrest, “Internet topol-
ogy over time,” 2012, arXiv:1202.3993.

[43] Ethereum On-chain Data. Accessed: Feb. 18, 2021. [Online]. Avail-
able: http://xblock.pro/xblock-eth.html

[44] Z. Li et al., “Efficient batched synchronization in dropbox-like
cloud storage services,” in Proc. ACM/IFIP/USENIX Int. Conf. Dis-
trib. Syst. Platforms Open Distrib. Process., 2013, pp. 307–327.

[45] L. Caviglione, M. Podolski, W. Mazurczyk, and M. Ianigro, “Covert
channels in personal cloud storage services: The case of Dropbox,”
IEEETrans. Ind. Inform., vol. 13, no. 4, pp. 1921–1931,Aug. 2017.

[46] Ethereum. Accessed: Feb. 20, 2021. [Online]. Available: https://
ethereum.org/en/

[47] Hyperledger. Accessed: Feb. 18, 2021. [Online]. Available: https://
www.hyperledger.org/

[48] Corda. Accessed: Feb. 18, 2021. [Online]. Available: https://www.
corda.net/

[49] OwnCloud. Accessed: Feb. 18, 2021. [Online]. Available: https://
owncloud.com/

[50] Nextcloud. Accessed: Feb. 18, 2021. [Online]. Available: https://
nextcloud.com/

[51] Seafile. Accessed: Feb. 18, 2021. [Online]. Available: https://
www.seafile.com/en/home/

Lailong Luo received the BS, MS, and PhD
degrees from the College of Systems Engineering,
National University of Defence Technology, Chang-
sha, China, in 2013, 2015, and 2019, respectively.
He is currently a lecturer with the School of Sys-
tems, National University of Defense Technology,
Changsha, China. His research interests include
data structure and distributed networking systems.

Deke Guo (Senior Member, IEEE) received the
BS degree in industry engineering from the Bei-
jing University of Aeronautics and Astronautics,
Beijing, China, in 2001 and the PhD degree in
management science and engineering from the
National University of Defense Technology,
Changsha, China, in 2008. He is currently a pro-
fessor with the College of Systems Engineering,
National University of Defense Technology. His
research interests include distributed systems,
software-defined networking, data center net-

working, wireless and mobile systems, and interconnection networks.
He is a member of ACM.

Yawei Zhao received the BE and MS degrees in
computer science from the National University of
Defense Technology, China, in 2013 and 2015,
respectively. He is currently working toward the
PhD degree with the School of Computer,
National University of Defense Technology. His
research interests include numerical optimization
algorithms, pattern recognition, machine learn-
ing, and data structures and algorithms.

Ori Rottenstreich received the BSc degree in
computer engineering (summa cum laude) and
the PhD degree from the Technion, in 2008 and
2014, respectively. In 2015 to 2017, he was a
postdoctoral research fellow with the Department
of Computer Science, Princeton University. He is
currently an assistant professor with the Depart-
ment of Computer Science and the Department
of Electrical Engineering of the Technion, Haifa,
Israel. He is also the chief scientist with Orbs. His
research interests include computer networks
and blockchain technologies.

Richard T. B. Ma received the PhD degree in
electrical engineering from Columbia University,
New York, in May 2010. During his PhD study, he
was a research intern with IBM T. J. Watson
Research Center, Yorktown Heights, NY, USA,
and Telefonica Research, Barcelona, Spain. He
is currently a research scientist with the Advan-
ced Digital Science Center, University of Illinois,
USA, and an assistant professor with the School
of Computing, National University of Singapore.
His research interests include distributed sys-
tems and network economics.

Xueshan Luo received the BE degree in informa-
tion engineering from the Huazhong Institute of
Technology, Wuhan, China, in 1985, and the MS
and PhD degrees in system engineering from the
National University of Defense Technology, Chang-
sha, China, in 1988 and 1992, respectively. He is
currently a professor with the College of Systems
Engineering, National University of Defense Tech-
nology. His research interests include information
systemand operation research.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2718 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

https://help.dropbox.com/installs-integrations/sync-uploads/lan-sync-overview
https://help.dropbox.com/installs-integrations/sync-uploads/lan-sync-overview
http://xblock.pro/xblock-eth.html
https://ethereum.org/en/
https://ethereum.org/en/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.corda.net/
https://www.corda.net/
https://owncloud.com/
https://owncloud.com/
https://nextcloud.com/
https://nextcloud.com/
https://www.seafile.com/en/home/
https://www.seafile.com/en/home/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

