
Self-Stabilizing Population Protocols
With Global Knowledge

Yuichi Sudo ,Member, IEEE, Masahiro Shibata , Junya Nakamura ,Member, IEEE,

Yonghwan Kim , and Toshimitsu Masuzawa ,Member, IEEE

Abstract—In the population protocol model, many problems cannot be solved in a self-stabilizing manner. However, global knowledge,

such as the number of nodes in a network, sometimes enables the design of a self-stabilizing protocol for such problems. For example,

it is known that we can solve the self-stabilizing leader election in complete graphs if and only if every node knows the exact number of

nodes. In this article, we investigate the effect of global knowledge on the possibility of self-stabilizing population protocols in arbitrary

graphs. Specifically, we clarify the solvability of the leader election problem, the ranking problem, the degree recognition problem, and

the neighbor recognition problem by self-stabilizing population protocols with knowledge of the number of nodes and/or the number of

edges in a network.

Index Terms—Population protocols, leader election, self-stabilization

Ç

1 INTRODUCTION

WE consider the population protocol (PP) model [2] in this
paper. A network called population consists of a large

number of finite-state automata, called agents. Agents make
interactions (i.e., pairwise communication) with each other
to update their states. The interactions are opportunistic,
i.e., they are unpredictable for the agents. Agents are
strongly anonymous: they do not have identifiers, and they
cannot distinguish their neighbors in the same states. One
example represented by this model is a flock of birds where
each bird is equipped with a sensing device with a small
transmission range. Two devices can communicate (i.e.,
interact) with each other only when the corresponding birds
come sufficiently close to each other. Therefore, an agent
cannot predict when its next interaction will occur. A popu-
lation is modeled by a graph G ¼ ðV;EÞ, where V represents
the set of agents, and E indicates which pair of agents can
interact. Each pair of agents ðu; vÞ 2 E has interactions infi-
nitely often, while each pair of agents ðu0; v0Þ =2 E never has
an interaction. In the field of population protocols, many
efforts have been devoted to devising protocols for a com-
plete graph, i.e., a population where every pair of agents
interacts infinitely often. In addition, several studies [2], [3],

[4], [5], [6], [7], [8], [9], [10], [11], [12] have investigated pop-
ulations represented by a general graph.

Self-stabilization [13] is a fault-tolerant property whereby,
evenwhen any transient fault (e.g., memory crash) occurs, the
network can autonomously recover from the fault. Formally,
self-stabilization is defined as follows: (i) starting from an
arbitrary configuration, a network eventually reaches a safe
configuration (convergence), and (ii) once a network reaches a
safe configuration, it maintains its specification forever (clo-
sure). Self-stabilization is of great importance in the PP model
because self-stabilization tolerates any finite number of tran-
sient faults, and this is a necessary property in a network con-
sisting of a large number of inexpensive and unreliable sensor
nodes.

Consequently, many studies have been devoted to self-
stabilizing population protocols [3], [4], [5], [6], [9], [10],
[11], [14], [15], [16], [17], [18]. Angluin et al. [3] proposed
self-stabilizing protocols for a variety of problems,i.e.,
leader election in rings whose sizes are not multiples of a
given integer k (in particular, rings of odd size), token circu-
lation in rings with a pre-selected leader, 2-hop coloring in
degree-bounded graphs, consistent global orientation in
undirected rings, and spanning-tree construction in regular
graphs. The protocols for the first four problems use only a
constant agent memory space, while the protocol for the last
problem requires OðlogDÞ bits of agent memory, where D
is (a known upper bound1 on) the diameter of the graph.
Chen and Chen [6] gave a constant-space and self-stabiliz-
ing protocol for the leader election in rings with arbitrary
size.

� Yuichi Sudo is with Hosei University, Tokyo 102-8160, Japan.
E-mail: sudo@hosei.ac.jp.

� Masahiro Shibata is with the Kyushu Institute of Technology, Kitakyushu
804-8550, Japan. E-mail: shibata@cse.kyutech.ac.jp.

� Junya Nakamura is with the Toyohashi University of Technology, Toyohashi
441-8580, Japan. E-mail: junya@imc.tut.ac.jp.

� Yonghwan Kim is with the Nagoya Institute of Technology, Nagoya
466-8555, Japan. E-mail: kim@nitech.ac.jp.

� Toshimitsu Masuzawa is with the Osaka University, Osaka 565-0871,
Japan. E-mail: masuzawa@ist.osaka-u.ac.jp.

Manuscript received 27 July 2020; revised 12 Apr. 2021; accepted 27 Apr. 2021.
Date of publication 3 May 2021; date of current version 9 June 2021.
(Corresponding author: Yuichi Sudo.)
Recommended for acceptance by D. Yang.
Digital Object Identifier no. 10.1109/TPDS.2021.3076769

1. In [3], D is defined as the diameter of the graph, not a known
upper bound on it. However, since we must consider an arbitrary initial
configuration, we require an upper bound on the diameter; Otherwise,
the agents need memory of unbounded size. Fortunately, the knowl-
edge of the upper bound is not a strong assumption in this case: any
upper bound that is polynomial in the true diameter is acceptable since
the space complexity is OðlogDÞ bits.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021 3011

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4442-1750
https://orcid.org/0000-0002-4442-1750
https://orcid.org/0000-0002-4442-1750
https://orcid.org/0000-0002-4442-1750
https://orcid.org/0000-0002-4442-1750
https://orcid.org/0000-0003-1414-8033
https://orcid.org/0000-0003-1414-8033
https://orcid.org/0000-0003-1414-8033
https://orcid.org/0000-0003-1414-8033
https://orcid.org/0000-0003-1414-8033
https://orcid.org/0000-0002-1363-4358
https://orcid.org/0000-0002-1363-4358
https://orcid.org/0000-0002-1363-4358
https://orcid.org/0000-0002-1363-4358
https://orcid.org/0000-0002-1363-4358
https://orcid.org/0000-0002-5437-7626
https://orcid.org/0000-0002-5437-7626
https://orcid.org/0000-0002-5437-7626
https://orcid.org/0000-0002-5437-7626
https://orcid.org/0000-0002-5437-7626
https://orcid.org/0000-0003-4628-6393
https://orcid.org/0000-0003-4628-6393
https://orcid.org/0000-0003-4628-6393
https://orcid.org/0000-0003-4628-6393
https://orcid.org/0000-0003-4628-6393
mailto:sudo@hosei.ac.jp
mailto:shibata@cse.kyutech.ac.jp
mailto:junya@imc.tut.ac.jp
mailto:kim@nitech.ac.jp
mailto:masuzawa@ist.osaka-u.ac.jp

On the negative side, Angluin et al. [3] proved that the
self-stabilizing leader election (SS-LE) is impossible for arbi-
trary graphs. In particular, it immediately follows from their
theorem that no protocol solves SS-LE in complete graphs
with three different sizes, i.e., in all of Ki, Kj, and Kk for
any distinct integers i; j; k � 2, whereKl is a complete graph
with size l. Cai et al. [14] proved that no protocol solves SS-
LE both in Ki and in Kiþ1 for any integer i � 2. In almost
the same way, we can easily observe that no protocol solves
SS-LE both in Ki and Kj for any distinct integers i; j � 2. (A
more detailed explanation is provided in a previous study
[18].) In other words, SS-LE is impossible in complete
graphs unless the exact number of agents in the population
is known to the agents. Note that Cai et al. [14] also gave a
protocol that solves SS-LE in Kl for a given integer l. Thus,
the knowledge of the exact number of agents is necessary
and sufficient to solve SS-LE in a complete graph.

In addition to [3], [6], [14], many studies have focused on
SS-LE because leader election is one of the most fundamen-
tal problems in the PP model. Several important protocols
[2], [3], [19] require a pre-selected unique leader. In particu-
lar, as shown Angluin et al. [19], all semi-linear predicates
can be solved very quickly if we have a unique leader. How-
ever, we have strong impossibility as mentioned above, i.e.,
SS-LE cannot be solved unless knowledge of the exact num-
ber of agents is given to the agents. In the literature, three
approaches to overcome this impossibility are identified.
One approach [14], [20] is to assume that every agent knows
the exact number of agents. The protocol proposed by Cai
et al. [14] uses OðlognÞ bits (n states) of memory space per
agent and converges within Oðn3Þ steps in expectation in
the complete graph of n agents under the uniformly random
scheduler, which selects a pair of interacting agents uni-
formly at random from all pairs at each step. Burman et al.
[20] proposed three SS-LE protocols, also for the complete
graph of n agents, performed faster than the protocol pro-
posed by Cai et al. [14]. These self-stabilizing protocols [14],
[20] solve not only the leader election problem but also the
ranking problem, which requires ranking n agents by assign-
ing them different integers from 0; 1; . . .; n� 1. The results
for the other two approaches to overcome the impossibility,
i.e., SS-LE protocols with oracles [4], [5], [15] and loosely-stabi-
lizing protocols [9], [10], [11], [16], [17], [18], are discussed in
Section 1.2.

1.1 Our Contribution

As mentioned above, we can solve the self-stabilizing leader
election in complete graphs if and only if we have knowledge
of the exact number of agents. In this paper, we investigate
how powerful global knowledge, such as the exact number of
agents in the population, is for designing self-stabilizing pop-
ulation protocols for arbitrary graphs. Specifically, we consider
two types of global knowledge, the number of agents and the
number of edges (i.e., interactable pairs) in the population,
and clarify the relationships between the knowledge and the
solvability of the following four problems.

� leader election (LE): Elect exactly one leader,
� ranking (RK): Assign the agents in the population

G ¼ ðVG;EGÞ distinct integers (or ranks) from 0 to
jVGj � 1,

� degree recognition (DR): Let each agent recognize its
degree in the graph,

� neighbor recognition (NR): Let each agent recognize
the set of its neighbors in the graph. Since the popu-
lation is anonymous, this problem also requires 2-
hop coloring, i.e., all agents must be assigned inte-
gers (or colors) such that all neighbors of any agent
have different colors.

In addition to the above specifications, we require that no
agent changes its outputs (e.g., its rank in RK) after the pop-
ulation converges, i.e., it reaches a safe configuration.

We denote A1 � A2 if problem A1 is reducible to A2. We
have LE � RK and DR � NR. The first relationship holds
because if the agents are labeled 0; 1; . . .; jVGj � 1, LE is
immediately solved by selecting the agent with label 0 as
the unique leader. The second relationship is trivial.

To clarify our contributions, we formally define the
global knowledge that we consider. Define Gn;m as the set of
all the simple, undirected, and connected graphs with n
nodes and m edges. Let n and m be any sets of positive inte-
gers such that n � N�2 ¼ fn 2 N jn � 2g and m � N�1 ¼
fm 2 N jm � 1g. Then, we define Gn;m ¼

S
n2n;m2mGn;m. For

simplicity, we define Gn;� ¼ Gn;N�1 and G�;m ¼ GN�2;m for any
n � N�2 and m � N�1. We consider that n and m are global
knowledge on the population. Here, n is the set of the possi-
ble numbers of agents, and m is the set of the possible num-
bers of interactable pairs. In other words, when we are
given n and m, our protocol has to solve a problem only in
the populations represented by the graphs in Gn;m. We say
that protocol P solves problem Ain arbitrary graphs given
knowledge n and m if P solves A in all graphs in Gn;m.

In this paper, we investigate the solvability of LE, RK,
DR, and NR for arbitrary graphs with the knowledge n and
m. Specifically, we prove the following propositions assum-
ing that the agents are given knowledge n and m:

1) When the agents know nothing about the number of
interactable pairs, i.e., m ¼ N�1, there exists a self-sta-
bilizing protocol that solves LE and RK in arbitrary
graphs if and only if the agents know the exact num-
ber of agents i.e., Gn;m ¼ Gn;� for some n 2 N�2.

2) There exists a self-stabilizing protocol that solvesNR
(� DR) in arbitrary graphs if the agents know the
exact number of agents and the exact number of
interactable pairs i.e., Gn;m ¼ Gn;m holds for some n 2
N�2 andm 2 N�1.

3) The knowledge of the exact number of agents is not
sufficient to design a self-stabilizing protocol that
solves DR (� NR) in arbitrary graphs if the agents
do not know the number of interactable pairs exactly.
Specifically, no self-stabilizing protocol solves DR in
all graphs in Gn;m if Gn;m1

[Gn;m2
� Gn;m holds for

some n 2 N�2 and some distinct m1;m2 2 N�1 such
that Gn;m1

6¼ ; and Gn;m2
6¼ ;.

In the most of standard distributed computing models,
each node always has its local knowledge, e.g., its degree and
the set of its neighbors. In the PP model, the agents do not
have the local knowledge a priori, and many impossibility
results (e.g., the impossibility of SS-LE in complete graphs
[3], [14]) come from the lack of the local knowledge. Interest-
ingly, the third proposition yields that, for self-stabilizing

3012 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

population protocols, obtaining some local knowledge (degree
recognition of each agent) is at least as difficult as obtaining
the corresponding global knowledge (the number of interact-
able pairs). It is also worthwhile to mention that the PP model
is greatly empowered if LE and NR are solved. After the
agents recognize their neighbors correctly, the population can
simulate one of the most standard distributed computing
models, i.e., the message passing model, if each agent main-
tains a variable corresponding to a message buffer for each
neighbor. Moreover, we have the unique leader in the popula-
tion, by which we can easily break the symmetry of a graph
and solve many important problems even in a self-stabilizing
way. For example, we can construct a spanning tree rooted by
the leader. This fact and the above propositions show how
powerful this type of global knowledge is when designing
self-stabilizing population protocols.

One may think that the assumption that all agents have
global knowledge such as the number of agents and/or the
number of edges is impractical. This may be true in some
applications. However, this impracticality does not neces-
sarily impair the importance of the contribution of this
paper. Our results show that such global knowledge is nec-
essary and sufficient to solve the above fundamental prob-
lems. Thus, to solve the problems, we must make some
other assumptions on the original model of population pro-
tocols so that the agents can obtain the global knowledge.
We leave open an interesting question what kind of (practi-
cal) assumptions (e.g., restricting the topology of graphs)
enables the agents to compute the number of agents and/or
the number of edges in a self-stabilizing fashion.

A preliminary extended abstract [1] of this article appeared
in the proceedings of SIROCCO 2020.

1.2 Other Related Work

Several studies employ oracles, a kind of failure detectors, to
solve SS-LE. Fischer and Jiang [15] introduced oracle V? that
eventually tells all agents whether or not at least one leader
exists and proposed two protocols that solve SS-LE for rings
and complete graphs using V?. Beauquier et al. [4] presented
an SS-LE protocol for arbitrary graphs that uses two copies of
V?. One copy is used to detect the existence of a leader and
the other is used to detect the existence of a special agent
called a token. Canepa et al. [5] proposed two SS-LE protocols
that use V? and require only a single bit of each agent. One is
a deterministic protocol for trees and the other is a random-
ized protocol for arbitrary graphs although the position of the
leader is not static andmoves among the agents forever.

To solve SS-LE without oracles or the knowledge of the
exact number of agents, Sudo et al. [17] introduced the concept
of loose� stabilization, which relaxes the closure requirement
of self-stabilization, but retains its advantage in practice. Specif-
ically, loose-stabilization guarantees that (i) starting from any
configuration, the population reaches a safe configuration
within a relatively short time, and (ii) thereafter the problem
specification, such as having a unique leader, must be sus-
tained for a sufficiently long time, although not necessarily for-
ever. In [17], a loosely-stabilizing leader election (LS-LE)
protocol was given for the first time. Here, the proposed proto-
col assumes that the population is a complete graph and every
agent knows a common upper boundN ofn, wheren is the num-
ber of agents in the population. This protocol is practically

equivalent to an SS-LE protocol since it maintains the unique
leader for an exponentially large number of steps in ex-
pectation (i.e., practically forever) after reaching a safe
configuration within OðnN logNÞ steps in expectation. The
assumption that an upper boundN ofn can be used is practical
because the protocol works correctly even if n is significantly
overestimated, such as N ¼ 10n. Izumi [16] proposed a
method that reduces the number of steps for convergence to
OðnNÞ. Later, Sudo et al. [18] presented a much faster loosely-
stabilizing leader election protocol for complete graphs. Given
parameter t � 10, it reaches a safe configuration within
Oðtnlog 3NÞ steps and thereafter it retains the unique leader
forVðn10tÞ steps, both in expectation. Very recently, Sudo et al.
[21] gave a time optimal protocol for complete graphs where
the convergence time isOðtnlogNÞ steps and the holding time
(i.e., the number of stepswhere the unique leader is retained) is
Vðntþ1Þ steps in expectation. In addition, several studies have
presented, LS-LE protocols for arbitrary graphs [9], [10], [11].

2 PRELIMINARIES

A population is represented by a simple and connected
graph G ¼ ðVG;EGÞ, where VG is the set of the agents and
EG � VG 	 VG is the set of the interactable pairs of agents. If
ðu; vÞ 2 EG, two agents u and v can interact in the popula-
tion G, where u serves as the initiator and v serves as the
responder of the interaction. In this paper, we consider only
undirected populations, i.e., we assume that, for any popula-
tion G, ðu; vÞ 2 EG yields ðv; uÞ 2 EG for any u; v 2 VG. For
formality, we sometimes use G ¼ ðVG;EGÞ to denote the
undirected graph corresponding to population G, i.e., EG ¼
ffu; vg j ðu; vÞ 2 EGg. We define the set of the neighbors of
agent v as NGðvÞ ¼ fu 2 VG j fv; ug 2 EGg and define the
degree of v as dGðvÞ ¼ jNGðvÞj.

A protocol P ðQ; Y; T;poutÞ consists of a finite set Q of
states, a finite set Y of output symbols, a transition function
T : Q	Q! Q	Q, and an output function pout : Q! Y .
When two agents interact, T determines their next states
according to their current states. The output of an agent is
determined by pout, i.e., the output of an agent in state q is
poutðqÞ. As mentioned in Section 1, we assume that the
agents can use knowledge n and m. Therefore, the four
parameters of protocol P , i.e.,Q, Y , T , and pout, may depend
on n and m. We sometimes write P ðn;mÞ explicitly to denote
protocol P with knowledge n and m.

A configuration on population G is a mapping C : VG ! Q
that specifies the states of all agents in G. The set of all con-
figurations of protocol P on population G is denoted by
CallðP;GÞ. We say that a configuration C changes to C0 by an
interaction e ¼ ðu; vÞ, denoted by C !P;e C0, if ðC0ðuÞ; C0ðvÞÞ ¼
T ðCðuÞ; CðvÞÞ and C0ðwÞ ¼ CðwÞ for all w 2 V nfu; vg. We

also denote C !P;G C0 if C !P;e C0 holds for some e 2 EG. We
say that a configuration C0 is reachable from C by P on pop-
ulation G if there is a sequence of configurations C0; C1;

. . .; Ck such that C ¼ C0, C
0 ¼ Ck, and Ci !

P;G
Ciþ1 for i ¼

0; 1; . . .; k� 1. In addition, we say that a set S of configura-
tions is closed if no configuration outside S is reachable from
a configuration in S.

An execution of protocol P on population G is an infinite
sequence of configurations � ¼ C0; C1; . . . such that Ci !

P;G

Ciþ1 for i ¼ 0; 1; We call C0 the initial configuration of

SUDO ET AL.: SELF-STABILIZING POPULATION PROTOCOLS WITH GLOBAL KNOWLEDGE 3013

the execution �. We must assume some kind of fairness of
an execution; otherwise, for example, we cannot exclude an
execution such that only one pair of agents have interactions
in a row and all other pairs have no interaction forever.
Unlike most distributed computing models in the literature,
global fairness is usually assumed in the PP model. We say
that an execution � ¼ C0; C1; . . . of P on population G satis-
fies global fairness (or � is globally fair) if for any configura-
tion C that appears infinitely often in �, every configuration
C0 such that C !P;G C0 also appears infinitely often in �.

A problem is P specified by a predicate on the outputs of
the agents. We call this predicate the specification of P . We
say that a configuration C satisfies the specification of P if
the outputs of the agents satisfy it in C. We consider the fol-
lowing four problems in this paper.

Definition 1 (LE). The specification of the leader election prob-
lem (LE) requires that exactly one agent outputs L and all other
agents output F .

Definition 2 (RK). The specification of the ranking problem
(RK) requires that in the population G ¼ ðVG;EGÞ, the set of
the outputs of the agents in the population equals to f0; 1; . . .;
jVGj � 1g.

Definition 3 (DR). The specification of the degree recognition
problem (DR) requires that in the population G ¼ ðVG;EGÞ,
every agent v 2 VG outputs jNGðvÞj.

Definition 4 (NR). The specification of the neighbor recognition
problem (NR) requires that in the population G ¼ ðVG;EGÞ,
every agent v 2 VG outputs a two-tuple ðcv; SvÞ 2 Z	 2Z such
that, for all v 2 VG, we have Sv ¼ fcu ju 2 NGðvÞg and jSvj ¼
jNGðvÞj.

The definition of NR is complicated while those of the
other three problems are simple, thus we will give the intui-
tive explanation aboutNR. The integer cv represents the color
of agent v. The first condition Sv ¼ fcu ju 2 NGðvÞg implies
that v outputs the set of the colors of v’s neighbors correctly.
The second condition jSvj ¼ jNGðvÞj, together with the first
condition, implies that no two neighbors of v have the same
color. Thus, the colors are so-called two-hop coloring (or
agentswith distance 1 or 2 have different colors).

Now, we define self-stabilizing protocols in Definitions
5 and 6, where we use the definitions given in Section 1.1
for knowledge n and m and the set Gn;m of graphs. Note that
Definition 5 is not sufficient if we consider dynamic prob-
lems, such as the token circulation, where the specifications
must be defined as predicates on executions rather than
configurations. However, in this paper, we only consider
static problems; thus this definition is sufficient for our
purpose.

Definition 5 (Safe configuration). Given a protocol P and a
population G, we say that a configuration C 2 CallðP ðn;mÞ; GÞ
is safe for problem A if (i) C satisfies the specification of prob-
lem A, and (ii) no agent changes its output in any execution of
P on G starting from C.

Definition 6 (Self-stabilizing protocol). For any n and m,
we say that a protocol P is a self-stabilizing protocol that solves
problem A in arbitrary graphs given knowledge n and m if every
globally-fair execution of P ðn;mÞ on any population G, which

starts from any configuration C0 2 CallðP ðn;mÞ; GÞ, reaches a
safe configuration for A.

Finally, we define the uniformly random scheduler, which
has been considered in most previous studies in the PP
model [2], [9], [10], [11], [17], [18], [19], [22], [23], [24]. Under
this scheduler, exactly one ordered pair ðu; vÞ 2 EG is
selected to interact uniformly at random from all interact-
able pairs. This scheduler is required to evaluate the time
complexities of protocols because global fairness only guar-
antees that an execution makes progress eventually. For-
mally, the uniformly random scheduler is defined as a
sequence of interactions G ¼ G0;G1; . . ., where each Gt is a
random variable such that PrðGt ¼ ðu; vÞÞ ¼ 1=jEGj for any
t � 0 and any ðu; vÞ 2 EG. Given a population G, a protocol
P ðn;mÞ, and an initial configuration C0 2 CallðP ðn;mÞ; GÞ, the
execution under the uniformly random scheduler is defined

as �P ðn;mÞðG;C0;GÞ ¼ C0; C1; . . . such that Ct !P ðn;mÞ;Gt
Ctþ1 for

all t � 0. When we assume this scheduler, we can evaluate
time complexities of a population protocol, e.g., the expected
number of steps required to reach a safe configuration. We
have the following observation.

Observation 1. A protocol P ðn;mÞ is self-stabilizing for a prob-
lem A if and only if �P ðn;mÞðG;C0;GÞ reaches a safe configura-
tion for A with probability 1 for any configuration C0 2 Call
ðP ðn;mÞ; GÞ.

Proof. Remember that we do not allow a protocol to have
an infinite number of states. According to a previous
study [2], we say that a set C of configurations is final if C
is closed, and all configurations in C are reachable from
each other. We also say that a configuration C is final if it
belongs to a final set. Every protocol has at least one final
configuration and every globally-fair execution eventu-
ally reaches a final configuration. Therefore, protocol P is
self-stabilizing if and only if all final configurations are
safe. Thus, it suffices to show that execution � ¼ �P ðn;mÞ
ðG;C0;GÞ reaches a safe configuration for A with proba-
bility 1 for any C0 2 CallðP ðn;mÞ; GÞ if and only if all final
configurations of P ðn;mÞ are safe for A. The sufficiency
holds because � reaches a final configuration with proba-
bility 1 regardless of C0. We prove the necessary condi-
tion below. Suppose that there is a final configuration C
that is not safe. By definition, C belongs to a final set C.
Since C is reachable from all configurations in C, no con-
figuration in C is safe. Since C is closed, � will never reach
a safe configuration if C0 ¼ C. tu

3 RANDOM WALK IN POPULATION PROTOCOLS

In this paper, we give two self-stabilizing protocols Prank and
Pneigh. Both protocols use n tokens thatmake the randomwalk,
where n is the number of agents in the population. Specifically,
all agents in the population always have exactly one token, and
two agents swap their tokens whenever they have an interac-
tion. In this section, we prove several lemmas about the move-
ments of the tokens to analyze the expected number of steps
until an execution ofPrank orPneigh reaches a safe configuration.
Very recently, Alistarh, Gelashvili, and Rybicki independently
made a similar token-based analysis for population protocols
and presented it in their pre-print [12].

3014 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

3.1 Preliminaries

Fix a population G ¼ ðVG;EGÞ and consider the execution
� ¼ C0; C1; . . . of Prank or Pneigh

2 under the uniformly ran-
dom scheduler starting from an arbitrary configuration C0.
Let G ¼ G0;G1; . . . ¼ ðu0; v0Þ; ðu1; v1Þ; . . ., i.e., we denote the
ith interaction under the uniformly random scheduler G by
ðui; viÞ. For each w 2 VG, we define token tw : N�0 ! VG as
follows:

� twð0Þ ¼ w,

� twðiÞ ¼
ui�1 if twði� 1Þ ¼ vi�1
vi�1 if twði� 1Þ ¼ ui�1
twði� 1Þ otherwise

8<
:

for each i > 0.
We say that token tv visits u in the ith step if tvðiÞ ¼ u. We

also say that two tokens tu and tv meet in the ith step if Gi ¼
ðtuðiÞ; tvðiÞÞ or Gi ¼ ðtvðiÞ; tuðiÞÞ holds. In the rest of this sec-
tion, we denote the number of agents and the number of
interactable pairs by n andm, respectively, i.e., n ¼ jVGj and
m ¼ jEGj. The diameter of G is denoted by d.

We introduce here two kinds of hitting time, HPG and HSG.
The former is the one about the random walks of the tokens
defined above on population G, while the latter is the one
about the (standard) simple random walk on an undirected
graph G. Define HPGðu; vÞ ¼ E minft � 1 j tuðtÞ ¼ vg½
 for any
u; v 2 VG. Intuitively,H

P
Gðu; vÞ is the expected number of steps

until token tu reaches an agent v for the first time. To define
HSG, we introduce a (discrete time) Markov Chain S ¼ fSðtÞ 2
VG j t ¼ 0; 1; . . .g, which corresponds to the simple random
walk on graphG. For any t > 1 and u; v 2 VG, the probability
PrðSðtÞ ¼ v jSðt� 1Þ ¼ uÞ is independent of t and denoted by
PSðu; vÞ. Probability PSðu; vÞ is given as follows:

PSðu; vÞ ¼
1=dGðuÞ if fu; vg 2 EG
0 otherwise:

�

DefineHSGðu; vÞ ¼ E minft � 1 jSðtÞ ¼ vg jSð0Þ ¼ u½
. Finally,
we define HPG ¼ maxu;v2VH

P
Gðu; vÞ andHSG ¼ maxu;v2VH

S
Gðu; vÞ.

We are also interested in how fast each token tu moves on
population G. To evaluate this, for any k � 1, we define
suðkÞ as the expected number of steps until tu moves k times.

3.2 Lemmas

The main claims of this section are Lemmas 2 and 3, which
is crucial to evaluate the time complexities of the proposed
protocol in Sections 4 and 5. When tv is located at vertex u 2
VG, it requires m=dGðuÞ steps in expectation to make one
move (i.e., to move to one of the neighbors of u). Thus, the
expected number of steps to make one move of tv heavily
depends on the degree of the agent at which the token is
located, while the degree may range from Qð1Þ to QðmÞ.
Hence, it is not trivial how HPG and HSG are related or how
fast each token moves on the population. Lemmas 2 and 3
give good bounds for them. The former argues HPG ¼ O
ðnHSGÞ, while the latter argues that the expected number of
steps to make k moves is well-bounded by nk=2 plus an

additive overhead of OðnHSGÞ steps. Interestingly, the base
value nk=2 corresponds to the average probability that an
agent has an interaction at each step, ð1=nÞ

P
w2VG dG

ðwÞ=m ¼ 2=n. These two lemmas are very useful because
we can apply a huge number of previously proven theo-
rems about the random walk on a graph to the field of pop-
ulation protocols.

To prove Lemmas 2 and 3, we first introduce Lemma 1.

Lemma 1. For any integer k > 0, there exists an agent u 2 VG

such that suðkÞ � nk=2.

Proof. If a token visits agent w 2 VG, then it requires m=
dGðwÞ steps in expectation to leave w, i.e., move to another
agent from w. Thus, we assign each agent x 2 VGweight

WðxÞ ¼def m=dGðxÞ. Then, with Markov chain S ¼ fSðtÞ 2
VG j t ¼ 0; 1; . . .g defined in Section 3.1, we have swðkÞ ¼
E

Pk�1
t¼0 WðSðtÞÞ

����Sð0Þ ¼ w

� �
for any w 2 VG. Note that

pS ¼ ðpSðwÞÞw2VG is a (unique) stationary distribution

where pSðwÞ ¼ dGðwÞ=2m for any w 2 VG, because we

have pSPS ¼ pS. Assume that the initial state Sð0Þ is now
set according to this stationary distribution, i.e., PrðSð0Þ ¼
wÞ ¼ pSðwÞ ¼ dGðwÞ=2m for any w 2 VG. Since pS is a sta-

tionary distribution, we always have the same distribu-

tion thereafter, i.e., we have PrðSðtÞ ¼ wÞ ¼ pZðwÞ for any
t ¼ 0; 1; . . . and w 2 VG. Therefore, under this assumption,

we have

E
Xk�1
t¼0

WðSðtÞÞ
" #

¼ k
X
w2VG

pZðwÞWðwÞ

¼ k
X
w2VG

dGðwÞ
2m

� m

dGðwÞ

¼ nk

2
:

We also have

E
Xk�1
t¼0

WðSðtÞÞ
" #

¼
X
v2VG

pSðvÞ � E
Xk�1
t¼0

W ðSðtÞÞ
����Sð0Þ ¼ v

" #

¼
X
v2VG

pSðvÞsvðkÞ:

Thus, we have obtained
P

w2VG pSðwÞswðkÞ ¼ nk=2. The

lemma follows from
P

w2VG pSðwÞ ¼ 1. tu

Lemma 2. HPG ¼ OðnHSGÞ.

Proof. By Lemma 1, there exists an agent w 2 VG such that

swð6HSGÞ � 3nHSG. Let w be such an agent and u; v be any

two agents in VG. LetX denote the number of moves of tw
moves until it reaches u and thereafter v. Let Y denote the
number of steps until tw reaches u and thereafter v. By

definition, it is immediate that E X½
 ¼ HSGðw; uÞ þHSG
ðu; vÞ � 2HSG. By Markov’s inequality, we have PrðX �
6HSGÞ � 1=3. Since swð6HSGÞ � 3nHSG, the probability that
tw moves less than 6HSG times within 9nHSG steps is at

most 1=3 by Markov’s inequality. Thus, by the union

bound, we have observed that token tw reaches u and

2. In this section, we do not care which protocol, Prank or Pneigh, is
executed because we only focus on the movement of tokens making the
random walk.

SUDO ET AL.: SELF-STABILIZING POPULATION PROTOCOLS WITH GLOBAL KNOWLEDGE 3015

thereafter v within 9nHSG steps with probability at least
1� ð1=3þ 1=3Þ ¼ 1=3, i.e., PrðY � 9nHSGÞ � 1=3. From

the memoryless property of tw’s movement, this observa-

tion immediately yields that for any u; v 2 VG, token tu
reaches v within 9nHSG steps with probability at least 1=3.

Thus, for any u; v 2 VG we have

HPGðu; vÞ � 9nHSG þ ð1� 1=3Þ � max
u0;v02VG

HPGðu0; v0Þ:

This yields that HPG � 9nHSG þ ð2=3Þ �HPG. Solving this

inequality givesHPG � 27nHSG ¼ OðnHSGÞ. tu

By Lemma 2, we have the following two corollaries.

Corollary 1. In execution �, for any v 2 VG, all n tokens visit
agent v within OðnHSGlognÞ steps in expectation.

Proof. Let u be any agent in VG. It immediately follows from
Lemma 2 that token tu visits agent v within OðnHSGÞ steps
in expectation. Therefore, by Markov’s inequality, tu visits
v within OðnHSGÞ steps with a sufficiently large hidden
constant with probability at least 1=2. Therefore, they
meet within 2log 2n �OðnHSGÞ ¼ OðnHSGlognÞ steps with
probability at least 1� 1=n2. By the union bound, all n
tokens ðtuÞu2VG visit v within OðnHSGlognÞ steps with
probability 1�Oð1=nÞ, thus also in expectation. tu

Corollary 2. In execution �, for any v 2 VG, token tv visits all
agents in VG within OðnHSGlognÞ steps in expectation.

Proof. Let u be an arbitrary agent in VG. By Lemma 2 and
Markov’s inequality, tv visits u with probability 1=2 in
every OðnHSGlognÞ steps with a sufficiently large hidden
constant. Therefore, tv visits uwithin OðnHSGÞ � ð2log 2nÞ ¼
OðnHSGlognÞ steps with probability 1� ð1=2Þ2log 2n ¼ 1� 1
=n2. The union bound for all u 2 VG yields that tv visits all
agents within OðnHSGlognÞ steps with probability 1�
Oð1=nÞ, thus also in expectation. tu

Lemma 3. For any integer k � 1 and v 2 VG, svðkÞ ¼
nk=2þOðnHSGÞ holds.

Proof. By Lemma 1, there exists w 2 SG such that swðkÞ �
nk=2. By Lemma 2, token tv visits w within at most
OðnHSGÞ steps in expectation. After visiting w, token tv
moves k times within at most nk=2 steps in expectation.
In total, token tv moves k times within at most nk=2þ
OðnHSGÞ steps in expectation. Thus, we have svðkÞ �
nk=2þOðnHSGÞ.

Next, we analyze how many steps are required in
expectation until all n tokens meet each other. (We say
that two tokens tu and tv meet when an interaction hap-
pens such that tu and tv are swapped between two
agents.) In our previous study [11], we proved that
Oðmn2dlognÞ steps are sufficient. In this paper, we
improve this upper bound with the help of Lemma 3.
Specifically, we obtain the following lemma here.3 tu

Lemma 4. In execution �, all the n tokens meet each other within
OðnHSGlognÞ steps in expectation.

Proof. Consider the following game:

Two particle x and y, initially located at different vertices in
G, make the simple random walk on G. At each time round,
x or y is selected by an adversary. The selected particle
chooses one vertex uniformly at random from the neighbors
of the current vertex and moves to that neighbor. The game
ends when two particle meets, i.e., they are located at the
same vertex.

Coppersmith et al. proved that this game ends within
at most 2HSG rounds in expectation irrespective of the
strategy of the adversary (Theorem 2 in [25]). Therefore,
in an execution of Prank and Pneigh, every two tokens tu
and tv meet with probability at least 2=3 each time they
move 6HSG times in total, by Markov’s inequality. Clearly,
tu and tv moves at least 6HSG times in total when tu moves
6HSG times, which occurs with probability 2=3 in every
OðnHSGÞ steps (with a sufficiently large hidden constant)
by Lemma 3 and Markov’s inequality. Thus, tu and tv
meet within ð2log 3nÞ �OðnHSGÞ ¼ OðnHSGlognÞ steps with
probability at least 1� ð1=3Þ2log 3n ¼ 1� 1=n2. Therefore,
by the union bound, all tokens meet each other within
some x ¼ OðnHSGlognÞ steps with a probability 1� n

2

� �
�

ð1=n2Þ � 1=2.
Let T (resp. T 0) be the expected number of steps until

all tokens meet each other by interactions G ¼ G0;G1; . . .
(resp. G0 ¼ Gx;Gxþ1; . . .). We have T � xþ ð1� 1=2ÞT 0
from the above discussion. Since T ¼ T 0 holds, solving
this inequality gives T � 2x ¼ OðnHSGlognÞ. tu

4 LEADER ELECTION AND RANKING

The goal of this section is to provide a necessary and suffi-
cient condition to solve RK and LE on knowledge n, pro-
vided that m gives no information, i.e., m ¼ N�1.

4.1 Necessary Knowledge

Lemma 5 ([3], [14], [18]). Given knowledge n and m, there exists
no self-stabilizing protocol that solves LE in arbitrary graphs if
Gn1;� [Gn2;� � Gn;m for some two distinct n1; n2 2 N�2.

Proof. The lemma immediately follows from the fact that
there exists no self-stabilizing protocol that solves LE
in complete graphs of two different sizes, i.e., both in
Kn1 and Kn2 for any two integers n1 > n2 � 2. As
mentioned in Section 1, Sudo et al. [18] indicated how
to prove this fact based on the proofs in two previous
studies [3], [14]. tu

4.2 Sufficient Knowledge

To give a sufficient condition, we provide a self-stabiliz-
ing protocol Prank that solves the ranking problem (RK)
in arbitrary graphs given the knowledge of the exact
number of agents in a population. Specifically, this pro-
tocol assumes that the given knowledge n satisfies jnj ¼
1. Protocol Prank does not care about the number of inter-
actable pairs, that is, Prankðn;mÞ works even if m does not
give any knowledge (i.e., m ¼ N�1). Let n be the integer
such that n ¼ fng. In the remainder of this section, we
fix a population G ¼ ðVG; EGÞ 2 Gn;�, let m ¼ jEGj, and let
d be the diameter of G.

3. Since it is well known that HSG ¼ OðmdÞ, Lemma 4 improves the
upper boundOðmn2dlognÞ of [11] at least by a multiplicative factor of n.

3016 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

Algorithm 1. Prankðn;mÞ
Assumption: jnj ¼ 1. (Let n ¼ fng.)
Variables:
idA; idT 2 f0; 1; . . .; n� 1g,
colorA 2 fW;R;Bg, colorT 2 fR;Bg

Output Function: idA
Interaction between initiator a0 and responder a1:

1: ða0:idT ; a0:colorT Þ $ ða1:idT ; a1:colorT Þ;
// Execute random walk

2: if a0:idT ¼ a1:idT then
3: a1:idT a1:idT þ 1 ðmod nÞ
4: for all i 2 f0; 1g such that ai:idA ¼ ai:idT do
5: if ai:colorA ¼W then
6: ai:colorA ai:colorT
7: else if ai:colorA 6¼ ai:colorT then
8: ai:idA ai:idA þ 1 ðmod nÞ;
9: ai:colorA W ;
10: else
11: ai:colorA ai:colorT

B if i ¼ 0
R if i ¼ 1

�
;

// Recolor B or R depending on the role, initia-

tor or responder

If we focus only on complete graphs, the following sim-
ple algorithm [14] is sufficient to solve self-stabilizing rank-
ing with the exact knowledge n of agents:

� Each agent v has only one variable v:id 2 f0; 1; . . .;
n� 1g, and

� Each time two agents with the same id meet, one of
them (the initiator) increases its id by one modulo n.

Since this algorithm assumes complete graphs, all pairs
of agents in the population eventually have interactions.
Therefore, as long as two agents have the same identifiers,
they eventually meet and the collision of their identifiers is
resolved. However, this algorithm does not work in arbi-
trary graphs, even if the exact number of agents is given.
This is because some pair of agents may not be interactable
in an arbitrary graph and they cannot resolve the conflicts
of their identifiers by meeting each other.

It is worthwhile to mention that Angluin et al. [2] proves
that for any population protocol P working on complete
graphs, there exists a protocol that simulates P on arbi-
trary graphs. One may think that we can immediately
obtain a self-stabilizing ranking protocol on arbitrary
graphs using this transformer together with the above
ranking protocol for complete graphs. However, we can-
not apply the technique for our goal from the following
two reasons. First, the technique cannot be applied to self-
stabilizing protocols since it assumes that all the agents
start with the common initial state, which violates the
essential requirement of self-stabilization. Second, the
technique targets the problems where all agents are
required to output the same value, such as computing a
function on the inputs of the agents. It cannot be applied
to the problems that require the agents to output different
values, such as LE and RK.

Protocol Prank detects the conflicts between any (possibly
non-interactable) two agents by traversing n tokens in a
population where each agent always has exactly one token.
This protocol is inspired by a self-stabilizing leader election

protocol with oracles given by Beauquier et al. [4], where the
agents traverse exactly one token in a population.

The pseudocode of Prank is given in Algorithm 1. Our
goal is to assign the agents the distinct labels 0; 1; . . .; n� 1.
Each agent v stores its label in a variable v:idA 2 f0; 1;
. . .; n� 1g and outputs it as it is. To detect and resolve the
conflicts of the labels in arbitrary graphs, each agent main-
tains four other variables idT 2 f0; 1; . . .; n� 1g, colorA 2
fW;R;Bg, and colorT 2 fR;Bg. Each agent v has one color,
white (W), red (R), or blue (B), while v’s token has one
color, red (R) or blue (B), maintained by variables v:idA and
v:idT , respectively.

The tokens always make the random walk: two agents
swap their tokens whenever they interact (Line 1). If the
two tokens have the same label, one of them increments its
label by one modulo n (Lines 2–3). Since all tokens meet
each other infinitely often by the random walk, they eventu-
ally have mutually distinct labels (idT), after which they
never change their labels. Thereafter, the conflicts of labels
among the agents are resolved by using the tokens. Let x be
any integer in f0; 1; . . .; n� 1g and denote the token labeled
x by Tx. Ideally, an agent labeled x always has the same
color as that of Tx. Consider the case that an agent labeled x,
say v, meets Tx, and v and Tx have different colors, blue and
red. Then, v suspects that there is another agent labeled x,
and v increases its label by one modulo n (Lines 7–8). The
agent v, now labeled xþ 1 ðmod nÞ, changes its color to
white (Line 9). The next time v meets Txþ1 ðmod nÞ, it copies
the color of the token to its color to synchronize a color with
Txþ1 ðmod nÞ (Lines 5–6). Each time token Tx meets an agent
labeled x with the same color, Tx and the agent change their
common color randomly (Line 11). Specifically, if the agent
is an initiator in this interaction, they choose B; Otherwise,
they choose R. As a result, they keep their color with proba-
bility 1=2 and flip their color with probability 1=2. If there
are two or more agents labeled x, this multiplicity is eventu-
ally detected because Tx makes a random walk forever
changing its color randomly and eventually meets an agent
labeled xwith a different color. By repeating this procedure,
the population eventually reaches a configuration where
all the agents have distinct labels and the agent labeled x
has the same color as that of Tx for all x ¼ 0; 1; . . .; n� 1. No
agent changes its label thereafter.

Note that this protocol works even if we do not use color
W . We introduce this color to guarantee the fast stabiliza-
tion time under the uniformly random scheduler. In the rest
of this section, we prove the following theorem.

Theorem 1. Given knowledge n and m, Prankðn;mÞ is a self-stabi-
lizing protocol that solves RK in arbitrary graphs if n ¼ fng
for some integer n, regardless of m. Starting from any configu-
ration C0 on any population G ¼ ðVG;EGÞ 2 Gn;�, the execu-
tion of Prankðn;mÞ under the uniformly random scheduler (i.e.,

�Prankðn;mÞðG;C0;GÞ) reaches a safe configuration within Oðn2

HSGlognÞ steps in expectation. Each agent uses OðlognÞ bits of
memory space to execute Prankðn;mÞ.

Recall that HSG is the hitting time of the simple random
walk on G, which is formally defined in Section 3.1. We
evaluate the convergence time of Prank with HSG in the above
theorem in order to keep it a general result. It is well known

SUDO ET AL.: SELF-STABILIZING POPULATION PROTOCOLS WITH GLOBAL KNOWLEDGE 3017

that HSG ¼ OðmdÞ holds for any simple, connected, and
undirected graph G, where d is the diameter of G. Thus, the
convergence time of Prank is bounded byOðmn2dlognÞ steps.
The hitting time is much smaller than the bound OðmdÞ for
some specific class of the graphs, so the convergence time of
Prank is much smaller accordingly for such a class.

To prove Theorem 1, we define three sets Stoken, Ssync,
and Srank of configurations in CallðPrankðn;mÞ; GÞ as follows.

� Stoken: the set of all configurations in CallðPrankðn;
mÞ; GÞ where all tokens have distinct labels, i.e.,
8u; v 2 VG : u:idT 6¼ v:idT . In a configuration in Stoken,
there exists exactly one token labeled x in the popu-
lation for each x 2 f0; 1; . . .; n� 1g. We use the nota-
tion Tx to denote both the unique token labeled by x
and the agent on which this token currently stays.

� Ssync: the set of all configurations in Stoken where

proposition QtokenðxÞ

def

VGðxÞ 6¼ ;) ð9u 2 VGðxÞ :
u:colorA ¼ Tx:colorT _ u:colorA ¼W Þ holds for any

x 2 f0; 1; . . .; n� 1g, where VGðxÞ ¼
def fv 2 V j v:idA ¼ xg.

� Srank: the set of all the configurations in Ssync where
all the agents in VG have distinct labels, i.e., 8u; v 2
VG : u:idA 6¼ v:idA.

Lemma 6. The set Stoken is closed for Prankðn;mÞ.

Proof. A token changes its label only if it meets another token
with the same label. Thus, no token changes its label in an
execution starting from a configuration inStoken. tu

Lemma 7. Let x 2 f0; 1; . . .; n� 1g. In an execution of Prank

ðn;mÞ starting from a configuration in Stoken, once QtokenðxÞ
holds, it always holds thereafter.

Proof. This lemma holds because (i) an agent must be white
just after it changes its label from x� 1 ðmod nÞ to x, (ii) a
white agent labeled x changes its color only when token
Tx visits it at an interaction, at which point this white
agent gets the same color as that of Tx, (iii) an agent
labeled x with the same color as that of Tx changes its
color only when token Tx visits it at an interaction, at
which this agent and Tx get the same new color. tu

Lemma 8. The set Ssync is closed for Prankðn;mÞ.

Proof. The lemma immediately follows from Lemma 7. tu

Lemma 9. Let x 2 f0; 1; . . .; n� 1g. In an execution of Prank

ðn;mÞ starting from a configuration in Ssync, once at least one
agent is labeled x, the number of agents labeled x never becomes
zero thereafter.

Proof. The lemma holds in the same way as the proof of
Lemma 7. tu

Lemma 10. The set Srank is closed for Prankðn;mÞ.

Proof. The lemma immediately follows from Lemmas 8
and 9. tu

The following lemma is useful to analyze the expected
number of steps required to reach a configuration in Srank in
an execution of Prankðn;mÞ.

Lemma 11. Consider the following game with n players p0; p1;
. . .; pn�1. Each player always has one state in f0; 1; . . .; n� 1g.

At each step, an arbitrary pair of players is selected and they
check each other’s states. If they have the same state, one player
increases its state by one modulo n. Otherwise, their states do
not change. Let c be any configuration (i.e., any combination of
the states of all players) of this game. Then, there is at least one
state z 2 f0; 1; . . .; n� 1g such that the transition from z�
1 ðmod nÞ to z never occurs in any execution of this game start-
ing from c.

Proof. Let c ¼ ðk0; k1; . . .; kn�1Þ, where ki represents the
number of agents in state i in the configuration c. In this
proof, we make every addition and subtraction in modulo
n and omit the notation “ ðmod nÞ”. For any z 2 f0; 1; . . .;
n� 1g, it is trivial that the transition from z� 1 to z never
occurs in any execution of this game starting from c if
and only if z satisfies

Pi
j¼1 kz�j � i for all i 2 f1; 2; . . .; n�

1g. Burman et al. [20] proved that there is at least one inte-
ger z that satisfies the above condition from which the
lemma immediately follows. For the completeness of this
paper, we give here the proof of [20] (Lemma A.1.) with
our notation. The goal is to show the existence of z that
satisfies

Pi
j¼1 kz�j � i for all i 2 f1; 2; . . .; n� 1g. Let Si ¼Pi

j¼0ðkj � 1Þ. Note that Sn�1 ¼ 0 holds because
Pn�1

j¼0 kj ¼
n. Choose z 2 f1; 2; . . .; n� 1g with the minimum Sz�1
(i.e., Sz�1 � Si for any i). Then, by the minimality of Sz�1
and Sn�1 ¼ 0, we have

8i � z :
Xi

j¼1
kz�j ¼ iþ Sz�1 � Sz�i � i;

8i > z :
Xi

j¼1
kz�j ¼ iþ Sz�1 þ Sn�1 � Sn�1�ði�zÞ � i:

Thus, we have
Pi

j¼1 kz�j � i for all i 2 f1; 2; . . .; n� 1g. tu

Lemma 12. Starting from any configuration C0 2 CallðPrank

ðn;mÞ; GÞ, an execution of Prankðn;mÞ under the uniformly ran-
dom scheduler (i.e., �P ðn;mÞðG;C0;GÞ) reaches a configuration

in Stoken within Oðn2HSGlognÞ steps in expectation.

Proof. By Lemma 11, there exists an integer z 2 f0; 1;
. . .; n� 1g such that no token changes its label from z�
1 ðmod nÞ to z. Then, the number of tokens labeled z
becomes exactly one before or when all the tokens meet
each other. Since the n tokens meet each other within
OðnHSGlognÞ steps in expectation (Lemma 4), the number
of tokens labeled z becomes exactly one within OðnHSG
lognÞ steps in expectation. Thereafter, no token changes
its label from z to zþ 1 ðmod nÞ. Hence, the number of
tokens labeled zþ 1 ðmod nÞ becomes one in the next
OðnHSGlognÞ steps in the same way. Repeating this proce-
dure, all the tokens have distinct labels within Oðn2HSG
lognÞ steps in expectation. tu

Lemma 13. Starting from any configuration C0 2 Stoken, an exe-
cution of Prankðn;mÞ under the uniformly random scheduler
(i.e., �P ðn;mÞðG;C0;GÞ) reaches a configuration in Ssync within
OðnHSGlognÞ steps in expectation.

Proof. By Lemmas 6 and 7, it suffices to show that for each
x 2 f0; 1; . . .; n� 1g, QtokenðxÞ becomes true within Oðn
HSGlognÞ steps in expectation in an execution of Prank

3018 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

ðn;mÞ starting from C0. Let S be the set of the agents
labeled x in C0. If QtokenðxÞ ¼ false in C0, we have S 6¼ ;
and all agents in S have non-white color different from
Tx:colorT in C0. Then, QtokenðxÞ becomes true before or
when Tx meets all of the agents in S. By Corollary 2, Tx

visits (i.e., meets) all agents within OðnHSGlognÞ steps in
expectation, from which the lemma follows. tu

Lemma 14. Let C0 be a configuration in Ssync. Suppose that there
are two distinct agents u; v 2 VG such that they are labeled the
same level x 2 f0; 1; . . .; n� 1g and have non-white colors in
C0. Then, an execution of Prankðn;mÞ starting from C0 under
the uniformly random scheduler (i.e., �P ðn;mÞðG;C0;GÞ) reaches
a configuration where u or v is labeled xþ 1 ðmod nÞ within
OðnHSGlognÞ steps with probability 1� n�2.

Proof. Let �P ðn;mÞðG;C0;GÞ ¼ C0; C1; C2; Define two
sequences of random variables ðT u;iÞi¼1;2;... and ðT v;iÞi¼1;2;...
as follows:

� T u;1 is the minimum integer t � 1 such that u ¼ Tx

holds in Ct,
� T v;i is the minimum integer t > T u;i such that v ¼

Tx holds in Ct for any i ¼ 1; 2; . . ., and
� T u;iþ1 is the minimum integer t > T v;i such that

u ¼ Tx holds in Ct for any i ¼ 1; 2;
Note that T u;1 < T v;1 < T u;2 < T v;2 < . . . holds by

definition. Let t be the minimum integer such that u or v
is labeled xþ 1 ðmod nÞ in Ct . In the rest of this proof, we
will show:

� t � T v;4dlog 2ne holds with probability 1� oðn�2Þ,
and

� T v;4dlog 2ne < 64HPGdlog 2ne holds with probability
1� oðn�2Þ,

from which the lemma immediately follows because
HPG ¼ OðnHSGÞ by Lemma 2.

Let i be any positive integer. At step T u;i � 1, in which
CT u;i�1 changes to CT u;i

, token Tx visits agent u. At this
time, unless t � T u;i holds, Tx and u updates their color
together to red with probability 1=2 and to blue with
probability 1=2. Therefore, at step T v;i � 1, Tx finds that v
has a different color from Tx’s color and increases v’s
color to xþ 1 ðmod nÞ with probability 1=2. Note that Tx

may visit an agent labeled x in the steps T u;i; T u;i þ
1; . . .; T v;i � 2, however, this does not impair the above
discussion. Thus, we have Prðt � T v;i j t > T u;iÞ � 1=2
for any i ¼ 1; 2; This yields that Prðt � T v;4dlog 2neÞ
� 1� ð1=2Þ4log 2n ¼ 1� oðn�2Þ.

By Markov’s inequality, for each i ¼ 1; 2; . . ., we have
PrðT v;i � T u;i � 2HPGÞ � 1=2 and PrðT u;iþ1 � T v;i � 2HPGÞ
� 1=2. Thus, by the memoryless property of Tx’s move-
ment, we have

PrðT v;4dlog 2ne < 64HPGdlog 2neÞ � PrðX � 8dlog 2neÞ;

where X is a binomial random variable with 32dlog 2ne
trials and success probability 1=2. Chernoff bound gives

PrðX � 8dlog 2neÞ ¼ PrðX � E X½
=2Þ � 1� n�2:8:

Thus, T v;4dlog 2ne < 64HPGdlog 2ne holds with probability

at least 1� n�2:8 ¼ 1� oðn�2Þ. tu

Lemma 15. Starting from any configuration C0 2 Ssync, an exe-
cution of Prankðn;mÞ under the uniformly random scheduler
(i.e., �P ðn;mÞðG;C0;GÞ) reaches a configuration in Srank within

Oðn2HSGlognÞ steps in expectation.

Proof. By Lemmas 9 and 11, there exists an integer z 2
f0; 1; . . .; n� 1g such that no agent changes its label from z�
1 ðmod nÞ to z. Therefore, at least one agent is labeled z in
C0. All such agents get non-white color, i.e., blue or red, or
get a new label zþ 1 ðmod nÞ before or when Tz meets all
agents, which requires only OðnHSGlognÞ steps in expecta-
tion (See Corollary 2). By Lemma 14 and the union bound,
the number of agents labeled z becomes one within
OðnHSGlognÞ steps with probability 1� n

2

� �
� n�2 � 1=2 and

thus also in expectation. After that, no agent changes its label
from z to zþ 1 ðmod nÞ. Thus, the number of agents labeled
zþ 1 ðmod nÞ becomes one in the nextOðnHSGlognÞ steps in
expectation for the same reason. Repeating this procedure,
all agents get mutually distinct labels (i.e., idA) within
Oðn2HSGlognÞ steps in expectation. tu

Proof of Theorem 1 By Lemmas 12, 13, and 15, �Prankðn;mÞ

ðG;C0;GÞ reaches a configuration in Srank within Oðn2HSG

lognÞ steps in expectation. By Lemma 10, every configuration

inSrank is a safe configuration for the ranking problem. tu

Theorem 2. Let n be any subset of N�2 and let m ¼ N�1. Given
knowledge n and m ð¼ N�1Þ, there exists a self-stabilizing pro-
tocol that solves LE and RK in arbitrary graphs if and only if
the agents know the exact number of agents i.e., Gn;m ¼ Gn;� for
some n 2 N�2.

Proof. The theorem immediately follows from Lemma 5,
Theorem 1, and the fact that LE � RK. tu

5 DEGREE RECOGNITION AND NEIGHBOR

RECOGNITION

Our goal is to prove the negative and positive propositions
forDR andNR introduced in Section 1.

5.1 Necessary Knowledge

Lemma 16. Let n and m be any sets such that n � N�2 and m �
N�1. There exists no self-stabilizing protocol that solves DR in
all graphs in Gn;m if Gn;m1

[Gn;m2
� Gn;m holds for some n 2

N�2 and some distinct m1;m2 2 N�1 such that Gn;m1
6¼ ; and

Gn;m2
6¼ ;.

Proof. Assumem1 < m2 without loss of generality. By defi-
nition, there must exist two graphs G0 ¼ ðVG0 ; EG0 Þ 2 Gn;m1

and G00 ¼ ðVG00 ; EG00 Þ 2 Gn;m2
such that VG0 ¼ VG00 and

EG0 � EG00 . Then, there exists at least one agent v 2 VG00

such that its degree differs in G0 and G00. Let d0 and d00 be
the degrees of v in G0 and G00, respectively. Assume for
contradiction that there is a self-stabilizing protocol
P ðn;mÞ that solves DR both in G0 and G00. By definition,
there must be at least one safe configuration S of protocol
P ðn;mÞ on G00 for DR. In every execution of P ðn;mÞ start-
ing from S on G00, agent v must always output d00 as its
degree. The configuration S can also be a configuration on
G0 because VG0 ¼ VG00 . Since P ðn;mÞ is self-stabilizing inG0,
there must be a finite sequence of interactions g0; g1; . . .; gt

SUDO ET AL.: SELF-STABILIZING POPULATION PROTOCOLS WITH GLOBAL KNOWLEDGE 3019

of G0 that put configuration S to a configuration where v
outputs d0 as its degree. Since EG0 � EG00 , g0; g1; . . .; gt is
also a sequence of interactions inG00. This implies that this
sequence changes the output of v from d00 to d0 starting
from a safe configuration, a contradiction. tu

5.2 Sufficient Knowledge

To prove the positive proposition for DR and NR described
in Section 1, we give a self-stabilizing protocol Pneigh, which
solves NR in arbitrary graphs given the knowledge of the
exact number of agents and the exact number of interactable
pairs, i.e., given knowledge n and m such that jnj ¼ jmj ¼ 1.
In the rest of this section, let n and m be the integers such
that n ¼ fng and m ¼ fmg, respectively. We fix a population
G ¼ ðVG;EGÞ 2 Gn;m and let d be the diameter of G.

The pseudocode of Pneigh is given in Algorithm 2. Our
goal is to let the agents recognize the set of their neighbors.
Each agent v stores its label in a variable v:idA 2
f0; 1; . . .; n� 1g and the set of the labels assigned to its
neighbors in a variable neighbors 2 2f0;1;...;n�1g. Each agent v
outputs ðv:idA; v:neighborsÞ.

Algorithm 2. Pneighðn;mÞ
Assumption:
jnj ¼ 1 and jmj ¼ 1. (Let n ¼ fng and m ¼ fmg.)

Variables:
idA; idT 2 f0; 1; . . .; n� 1g // Updated by Prank

degreeT 2 f1; . . .; ng, sum 2 f0; 1; . . .; 2mþ 1g
reset 2 f0; 1; . . .; URg
neighbors; counted 2 2f0;1;...;n�1g

Output Function: ðidA; neighborsÞ
Interaction between initiator a0 and responder a1

1: Execute Prank;
2: ða0:degreeT ; a0:resetÞ $ ða1:degreeT ; a1:resetÞ;

// tokens also carry degreeT and reset.

3: for all i 2 f0; 1g do
4: ai:neighbors ai:neighbors [fa1�i:idAg;
5: if ai:idA ¼ ai:idT then
6: ai:degreeT jai:neighborsj
7: if ai:idT =2 ai:counted then
8: ai:sum minð2mþ 1; ai:sumþ ai:degreeT Þ;
9: ai:counted ai:counted [fai:idTg;
10: if ai:sum ¼ 2mþ 1 then
11: ai:reset UR

12: if ai:counted ¼ f0; 1; . . .; n� 1g then
13: ðai:sum; ai:countedÞ ð0; ;Þ
14: if ai:reset > 0 then
15: a0:neighbors a1:neighbors ;;
16: ai:reset ai:reset� 1;

We use Prank as a sub-algorithm to assign the agents the
distinct labels 0; 1; . . .; n� 1 and to let the n tokens make the
random walk. Specifically, we first execute Prank whenever
two agents have an interaction (Line 1). Note that we do not
update the variables used in Prank in the other lines (Lines
2–16). Therefore, by Theorem 1, an execution of Pneigh start-
ing from any configuration reaches a configuration in Srank
within Oðn2HSGlognÞ steps in expectation. Thus, we only
need to consider an execution after reaching a configuration
in Srank. Then, we can assume that the population always

has exactly one agent labeled x and exactly one token
labeled x for each x ¼ f0; 1; . . .; n� 1g. We denote this agent
and token by Ax and Tx, respectively.

The agents compute their neighbors in a simple way: each
time two agents u and v have an interaction, u adds v:idA to
u:neighbors and v adds u:idA to v:neighbors (Line 4). How-
ever, this simple way to compute neighbors is not sufficient to
design a self-stabilizing protocol because we consider an arbi-
trary initial configuration. Specifically, in an initial configura-
tion, v:neighbors may include u:idA for some u =2 NGðvÞ. We
call such u:idA a fake label. To compute v:neighbors correctly,
in addition to the above simple mechanism, it suffices to
detect the existence of a fake label and reset the neighbors of
all agents to the empty set if a fake label is detected.

Using the knowledge m ¼ fmg, we can detect fake labels
with the following strategy. Each token Tx carries jAx:
neighborsj in a variable degreeT 2 f1; . . .; ng (Line 2). When-
ever Tx meets Ax, the value of Tx:degreeT is updated by the
current value of jAx:neighborsj (Line 6). Each agent always
attempts to estimate

P
v2VG jv:neighborsj using variables

sum 2 f0; 1; . . .; 2mþ 1g, and counted 2 2f0;1;...;n�1g. Each
time Ax:counted becomes full, i.e., Ax:counted ¼ f0; 1; . . .;
n� 1g holds, Ax resets its sum and counted to 0 and ;,
respectively (Lines 12–13). Whenever agent Ax meets Ty

such that y =2 Ax:counted, Ax executes Ax:sum minð2mþ
1; Ax:sumþ Ty:degreeT Þ and adds y to Ax:counted (Lines 7–
9). We expect Ax:sum ¼

P
v2VG jv:neighborsj when Ax meets

all of T0; T1; . . .; Tn�1. If Ax:sum reaches 2mþ 1, Ax con-
cludes that at least one agent has a fake label, i.e.,
u:neighbors 6� fw:idA jw 2 NGðuÞg for some u 2 VG.

When the existence of a fake label is detected, we reset
the neighborss of all agents using a variable reset 2 f0; 1;
. . .; URg, where UR is a design parameter of Pneigh such that
UR � 4HSGlog 2n. We will explain how to assign UR such a
value in the end of this section. When v:sum ¼ 2mþ 1
holds, v emits an resetting signal by setting variable v:reset
to UR (Lines 10-11). Like variable degreeT , token Tx carries
variable reset each time it moves from agent to agent (Line
2). Whenever Tx:reset > 0 holds, Tx resets Tx:neighbors
(and u:neighbors, where u is the agent that Tx interacts with)
to the empty set (Line 15). Each time Tx moves, Tx:reset
decreases by one (Line 16), thus Tx:reset eventually becomes
zero, at which the resetting signal becomes disabled.

By this mechanism, even if some agent has fake labels at the
beginning of an execution, the population eventually reaches a
configuration where no agent has fake labels. Thereafter, for
any x 2 f0; 1; . . .; n� 1g, Tx eventually meets Ax, after which
Tx:degreeT � jNGðAxÞj always holds. Therefore, by the peri-
odical resets of variables sum and counted at Lines 12–13, the
population eventually reaches a configuration from which no
agent newly emits the error signal. Thereafter, the population
will soon reach a configuration that satisfies v:neighbors ¼
fu:idA ju 2 NGðvÞg for all v 2 VG by the above simple compu-
tation of neighbors (Line 4). Once it reaches such a configura-
tion, no agent changes its neighbors.

Define SnoFake as the set of all configurations in Srank
where no agent has a fake label in its variable neighbors.

Lemma 17. Starting from any configuration C0 2 CallðPneigh

ðn;mÞ; GÞ, an execution of Pneighðn;mÞ under the uniformly

3020 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

random scheduler (i.e., �P ðn;mÞðG;C0;GÞ) reaches a configuration
inSnoFake withinOððn2HSG þ nURÞlognÞ steps in expectation.

Proof. By Theorem 1, � ¼ �P ðn;mÞðG;C0;GÞ reaches a config-

uration in Srank within Oðn2HSGlognÞ steps in expectation.

Thus, we assume C0 2 Srank without loss of generality.

We also assume C0 =2 SnoFake because otherwise we need
not discuss anything.

First, we will prove that some agent emits a new reset-
ting signal, i.e., changes its reset to UR at Line 11, within
Oðn2HSGlognÞ steps in expectation. In this paragraph, we
often omit the phrase “unless some agent emits a new
resetting signal” for simplicity. Token Tx decreases
Tx:reset by one each time it moves as long as Tx:reset >
0. Hence, by Lemma 3, Markov’s inequality, and the
union bound, � reaches a configuration where Tx:reset ¼
0 for all x ¼ 0; 1; . . .; n� 1 within OððnUR þ nHSGÞlognÞ ¼
OðnURlognÞ steps with a constant probability, thus also
in expectation. All interactable pairs have at least one inter-
action within OðmlognÞ steps in expectation. Therefore,
within the next OðmlognÞ ¼ Oðn2lognÞ steps in expecta-
tion,� reaches a configurationwhere fu:idA ju 2 NGðvÞg �
v:neighbors. In this configuration,

P
v2V jv:neighborsj >

2m holds since at least one agent has one or more fake
labels in its neighbors. By Lemma 2, Markov’s inequality,
and the union bound, all tokens Tx meet Ax thus Tx:
degreeT ¼ jAx:neighborsj holds for all x ¼ 0; 1; . . .; n� 1
within OðHPGlognÞ ¼ OðnHSGlognÞ steps with a constant
probability, thus also in expectation. An agent v resets
v:sum and v:counted before or when it meets all tokens,
thereafter v adds Tx:degreeT to v:sum for all tokens Tx

before or when it meets all tokens again. As a result, v:sum
reaches 2mþ 1 and emits a new resetting signal before or
when it meets all tokens and thereafter meets all tokens
again, which occurs withinOðnHSGÞ steps in expectation by
Corollary 1. To conclude, some agent emits a new resetting
signal withinOððn2HSG þ nURÞlognÞ steps in expectation.

Suppose now that an agent v emits a new resetting
signal and a token Tx is located at v at this time. By the
definition of HSG, Markov’s inequality, and the union
bound, Tx visits all agents before or when it moves UR �
4HSG log 2n ¼ ð2log 2nÞ � ð2HSGÞ times with a probability at

least 1� n � ð1=2Þ2logn ¼ 1� 1=n ¼ 1� oð1Þ. This yields
that Tx resets the variable neighbors of all agents to the

empty set at least once before or when it visits all agents

with a probability at least 1� oð1Þ. By Markov’s inequal-

ity and Corollary 2, Tx visits all agents within OðnHSGÞ
steps with a probability p ¼ Vð1Þ, once an agent emits a

new resetting signal.
From above, we have observed that all agents reset

their neighbors at least once and thus � reaches a config-
uration in SnoFake within ð1=pÞ �Oððn2HSG þ nURÞlognÞ ¼
Oððn2HSG þ nURÞlognÞ steps in expectation. tu

Lemma 18. Starting from any configuration C0 2 SnoFake, an
execution of Pneighðn;mÞ under the uniformly random scheduler
(i.e., �P ðn;mÞðG;C0;GÞ) reaches a safe configuration within
Oððn2HSG þ nURÞlognÞ steps in expectation.

Proof. � ¼ �P ðn;mÞðG;C0;GÞ reaches a configuration wherePn�1
x¼0 Tx:degreeT � 2m holds within OðnHSGlognÞ steps in

expectation; because every Tx meets Ax within OðnHSGÞ
steps in expectation for each x 2 f0; 1; . . .; n� 1g (Lemma
2). Similarly, all agents reset their sum and counted in the

nextOðnHSGlognÞ step in expectation. Thereafter, no agent

sees sum ¼ 2mþ 1, thus no agent emits the resetting sig-

nal. Then, the resetting signal disappears from the popu-

lation in the next OððnUR þ nHSGÞlognÞ ¼ ðnURlognÞ
steps in expectation by Lemma 2, Markov’s inequality,

and the union bound. The interactions between all inter-

actable pairs occur in the next OðmlognÞ steps in expecta-

tion. Thus, v:neighbors ¼ fu:idA ju 2 NGðvÞg holds for all
v 2 VG. After that, no agent v changes v:neighbors, which

yields that � has reached a safe configuration. tu

Theorem 3. Given knowledge n and m, Pneighðn;mÞ is a self-sta-
bilizing protocol that solves NR in arbitrary graphs if n ¼ fng
and m ¼ fmg for some integers n and m, respectively. Starting
from any configuration C0 on any population G ¼ ðVG;EGÞ 2
Gn;m, the execution of Pneighðn;mÞ under the uniformly random
scheduler (i.e., �Pneighðn;mÞðG;C0;GÞ) reaches a safe configura-

tion within Oððn2HSG þ nURÞlognÞ steps in expectation. Each
agent uses OðnÞ bits of memory space to execute Pneighðn;mÞ.

Proof. The correctness and the time complexities are immedi-
ate from Lemmas 17 and 18. Each agent uses onlyOðnÞ bits:
both variables neighbors and counted require n bits and all
other variables used inPneigh requireOðlognÞ bits. tu

Recall that we require UR � 4HSGlog 2n. It is well known
that HSG ¼ OðmdÞ, where d is the diameter of G. Since we
know both n and m, we can substitute a sufficiently large
QðmnlognÞ value for UR. Then, Pneighðn;mÞ converges in
Oðn2HSGlognþmn2log 2nÞ steps in expectation. In addition,
if an asymptotically tight upper bound H on HSG is known
to the agents, we can substitute 4Hlog 2n for UR. Then,
Pneighðn;mÞ converges in Oðn2HSGlognÞ steps in expectation,
which may be much smaller than the above bound for some
class of graphs.

6 DISCUSSION

While the vast majority of the studies on population proto-
cols consider the population consisting of anonymous
agents (i.e., the agents without identifiers), one may wonder
why we do not consider agents with unique identifiers as in
[26] and [27], which seems greatly strengthen the power of
the model. This question is natural because our protocol
uses a logarithmic or larger number of bits in the memory
of each agent: Prank uses OðlognÞ bits and Pneigh uses OðnÞ
bits, which is usually enough to store the identifier of each
agent. However, unique identifiers do not help us to solve
the four problems we consider in this paper: the impossibil-
ity results (i.e., Lemmas 5 and 16) still hold even if the
agents have unique identifiers. (The proofs of both lemmas
are still correct without any modification.)

It is worth mentioning the difference between the rank-
ing RK and the assignment of the unique identifiers. The
RK assigns the unique identifiers (or ranks) to the agents
but has a much stronger requirement: the ranks must be the
distinct integers from 0 to n-1, while the requirement of the
unique identifiers allows assignment of integers larger

SUDO ET AL.: SELF-STABILIZING POPULATION PROTOCOLS WITH GLOBAL KNOWLEDGE 3021

than n-1. The difference makes a significance impact on
solvability of the leader election LE. Actually, we cannot
solve the self-stabilizing leader election even with the
unique identifiers, whereas it is immediately solved once
the self-stabilizing ranking is solved.

7 CONCLUSION

In this paper, we clarified the solvability of the leader elec-
tion problem, the ranking problem, the degree recognition
problem, and the neighbor recognition problem by self-sta-
bilizing population protocols with knowledge of the num-
ber of nodes and/or the number of edges in a network. The
protocols given in this paper require exact knowledge of the
number of agents and/or the number of interactable pairs.
It is interesting and still open whether ambiguous knowledge
such as “the number of interactable pairs is at most M” and
“the number of agents is not a prime number” is useful to
design self-stabilizing population protocols.

ACKNOWLEDGMENTS

This work was supported in part by JSPS KAKENHI under
Grants 17K19977, 18K18000, 18K18029, 18K18031, 19H04085,
20H04140, and 20KK0232 and in part by JST SICORP under
Grant JPMJSC1606.

REFERENCES

[1] Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa, “The
power of global knowledge on self-stabilizing population proto-
cols,” in Proc. Int. Colloq. Struct. Inf. Commun. Complexity, 2020,
pp. 237–254.

[2] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta,
“Computation in networks of passively mobile finite-state
sensors,”Distrib. Comput., vol. 18, no. 4, pp. 235–253, 2006.

[3] D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang, “Self-stabilizing
population protocols,” ACM Trans. Auton. Adaptive Syst., vol. 3,
no. 4, pp. 1–28, 2008.

[4] J. Beauquier, P. Blanchard, and J. Burman, “Self-stabilizing leader
election in population protocols over arbitrary communication
graphs,” in Proc. Int. Conf. Princ. Distrib. Syst., 2013, pp. 38–52.

[5] D. Canepa and M. G. Potop-Butucaru , “Stabilizing leader election
in population protocols,” 2007. [Online]. Available: http://hal.
inria.fr/inria-00166632

[6] H.-P. Chen and H.-L. Chen, “Self-stabilizing leader election,” in
Proc. ACM Symp. Princ. Distrib. Comput., 2019, pp. 53–59.

[7] G. Cordasco and L. Gargano, “Space-optimal proportion consen-
sus with population protocols,” in Proc. Int. Symp. Stabilization,
Saf., Secur. Distrib. Syst., 2017, pp. 384–398.

[8] G. B. Mertzios, S. E. Nikoletseas, C. L. Raptopoulos, and P. G.
Spirakis, “Determining majority in networks with local interac-
tions and very small local memory,” in Proc. Int. Colloq.
Automata, Lang., Program., 2014, pp. 871–882.

[9] Y. Sudo, T. Masuzawa, A. K. Datta, and L. L. Larmore, “The same
speed timer in population protocols,” in Proc. 36th IEEE Int. Conf.
Distrib. Comput. Syst., 2016, pp. 252–261.

[10] Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa, “Loosely-
stabilizing leader election on arbitrary graphs in population pro-
tocols,” in Proc. Int. Conf. Princ. Distrib. Syst., 2014, pp. 339–354.

[11] Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa, “Loosely
stabilizing leader election on arbitrary graphs in population pro-
tocols without identifiers or random numbers,” IEICE Trans. Inf.
Syst., vol. 103, no. 3, pp. 489–499, 2020.

[12] D. Alistarh, R. Gelashvili, and J. Rybicki, “Fast graphical popula-
tion protocols,” 2021, arXiv:2102.08808.

[13] E. Dijkstra, “Self-stabilizing systems in spite of distributed con-
trol,” Commun. ACM, vol. 17, no. 11, pp. 643–644, 1974.

[14] S. Cai, T. Izumi, and K. Wada, “How to prove impossibility under
global fairness: On space complexity of self-stabilizing leader elec-
tion on a population protocol model,” Theory Comput. Syst.,
vol. 50, no. 3, pp. 433–445, 2012.

[15] M. J. Fischer and H. Jiang, “Self-stabilizing leader election in net-
works of finite-state anonymous agents,” in Proc. Int. Conf. Princ.
Distrib. Syst., 2006, pp. 395–409.

[16] T. Izumi, “On space and time complexity of loosely-stabilizing
leader election,” in Proc. Int. Colloq. Struct. Inf. Commun. Complex-
ity, 2015, pp. 299–312.

[17] Y. Sudo, J. Nakamura, Y. Yamauchi, F. Ooshita, H. Kakugawa,
and T. Masuzawa, “Loosely-stabilizing leader election in a popu-
lation protocol model,” Theor. Comput. Sci., vol. 444, pp. 100–112,
2012.

[18] Y. Sudo, F. Ooshita, H. Kakugawa, T. Masuzawa, A. K. Datta, and
L. L. Larmore, “Loosely-stabilizing leader election with polylogar-
ithmic convergence time,” Theor. Comput. Sci., vol. 806, pp. 617–631,
2020.

[19] D. Angluin, J. Aspnes, and D. Eisenstat, “Fast computation by
population protocols with a leader,” Distrib. Comput., vol. 21,
no. 3, pp. 183–199, 2008.

[20] J. Burman, D. Doty, T. Nowak, E. E. Severson, and C. Xu,
“Efficient self-stabilizing leader election in population protocols,”
2020, arXiv: 1907.06068.

[21] Y. Sudo, R. Eguchi, T. Izumi, and T. Masuzawa, “Time-optimal
loosely-stabilizing leader election in population protocols,” 2020,
arXiv: 2005.09944.

[22] D. Alistarh and R. Gelashvili, “Polylogarithmic-time leader elec-
tion in population protocols,” in Proc. 42nd Int. Colloq. Automata,
Lang., Program., 2015, pp. 479–491.

[23] L. Gąsieniec, G. Stachowiak, and P. Uznanski, “Almost logarith-
mic-time space optimal leader election in population protocols,”
in Proc. ACM Symp. Parallelism Algorithms Archit., 2019, pp. 93–102.

[24] Y. Sudo, F. Ooshita, T. Izumi, H. Kakugawa, and T. Masuzawa,
“Time-optimal leader election in population protocols,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 11, pp. 2620–2632, Nov.
2020.

[25] D. Coppersmith, P. Tetali, and P. Winkler, “Collisions among ran-
dom walks on a graph,” SIAM J. Discrete Math., vol. 6, no. 3,
pp. 363–374, 1993.

[26] R. Guerraoui and E. Ruppert, “Even small birds are unique: Popu-
lation protocols with identifiers,” Dept. Comput. Sci. Eng., York
Univ., York, ON, Canada, Tech. Rep. TR-CSE-2007–04, 2007.

[27] Y. Sudo, F. Ooshita, H. Kakugawa, T. Masuzawa, A. K. Datta, and
L. L. Larmore, “Loosely-stabilizing leader election for arbitrary
graphs in population protocol model,” IEEE Trans. Parallel. Dis-
trib. Syst., vol. 30, no. 6, pp. 1359–1373, Jun. 2019.

Yuichi Sudo (Member, IEEE) received the BE,
ME, and PhD degrees in information science
and technology from Osaka University in 2009,
2011, and 2015, respectively. He was with Nip-
pon Telegraph and Telephone Corporation and
was engaged in research on network security
during 2011–2017. He was an assistant profes-
sor with the Graduate School of Information Sci-
ence and Technology, Osaka University, during
2017–2021. He has been an associate professor
with the Faculty of Computer and Information Sci-

ences, Hosei University, since April 2021. His research interests include
distributed algorithms and graph theory. He is a member of the EATCS.

Masahiro Shibata received the BE, ME, and DE
degrees in computer science from Osaka Univer-
sity in 2012, 2014, and 2017, respectively. Since
2017, he has been an assistant professor with
the Kyushu Institute of Technology. His research
interests include distributed algorithms and net-
work management. He is a member of the IPSJ
and IEICE.

3022 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

http://hal.inria.fr/inria-00166632
http://hal.inria.fr/inria-00166632

Junya Nakamura (Member, IEEE) received the
BE and ME degrees from the Toyohashi Univer-
sity of Technology, Japan, in 2006 and 2008,
respectively, and the PhD degree in information
science and technology from Osaka University in
2014. He is currently an associate professor with
Information and Media Center, Toyohashi Univer-
sity of Technology. His research interests include
theoretical and practical aspects of distributed
algorithms and systems. He is a member of the
IEEE Computer Society, IEICE, and IPSJ.

Yonghwan Kim received the BE double degree in
electronic engineering and computing fromSoongsil
University, Seoul, South Korea, in 2009, theMEand
PhD degrees in information science and technology
from Osaka University in 2011 and 2015, respec-
tively. He is currently an assistant professor with the
Department ofComputer Science,GraduateSchool
of Engineering, Nagoya Institute of Technology,
Japan. His research interests include distributed
algorithms, fault-tolerance, autonomous mobile
robots, and optimization problems. He is a regular
member of the IPSJ and IEICE.

Toshimitsu Masuzawa (Member, IEEE) received
the BE, ME, and DE degrees in computer science
from Osaka University in 1982, 1984, and 1987. He
was with Osaka University during 1987–1994, and
was an associate professor with the Graduate
School of Information Science, Nara Institute of Sci-
ence and Technology during 1994–2000. He was
also a visiting associate professor with the Depart-
ment of Computer Science, Cornell University
between 1993–1994. He is currently a professor
with the Graduate School of Information Science

and Technology, Osaka University. His research interests include distrib-
uted algorithms, parallel algorithms, and graph theory. He is a member of
the ACM, IEICE, and IPSJ.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SUDO ET AL.: SELF-STABILIZING POPULATION PROTOCOLS WITH GLOBAL KNOWLEDGE 3023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

