
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, SUBMITTED FOR REVIEW 1 

 

Fast, Accurate Processor Evaluation through 
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Abstract— Performance evaluation is a key task in computing and communication systems. Benchmarking is one of the most 
common techniques for evaluation purposes, where the performance of a set of representative applications is used to infer 
system responsiveness in a general usage scenario. Unfortunately, most benchmarking suites are limited to a reduced number 
of applications, and in some cases, rigid execution configurations. This makes it hard to extrapolate performance metrics for a 
general-purpose architecture, supposed to have a multi-year lifecycle, running dissimilar applications concurrently. The main 
culprit of this situation is that current benchmark-derived metrics lack generality, statistical soundness and fail to represent 
general-purpose environments. Previous attempts to overcome these limitations through random app mixes significantly 
increase computational cost (workload population shoots up), making the evaluation process barely affordable. To circumvent 
this problem, in this paper we present a more elaborate performance evaluation methodology named BenchCast. Our proposal 
provides more representative performance metrics, but with a drastic reduction of computational cost, limiting app execution to 
a small and representative fraction marked through code annotation. Thanks to this labeling and making use of synchronization 
techniques, we generate heterogeneous workloads where every app runs simultaneously inside its Region Of Interest, making a 
few execution seconds highly representative of full application execution. 

Index Terms— C.1 Processor Architectures, C.4 Performance of Systems, C.4.c Measurement techniques, C.4.g 
Measurement, evaluation, modeling, simulation of multiple-processor systems.  

——————————      —————————— 

1 INTRODUCTION
EACHING nowadays the 50th anniversary of the 
commercialization of the first CPU-on-a-chip [1], we 

have witnessed technology evolution that has turned 
computing devices into the core component of nearly any 
activity in our everyday life. Currently, despite the recent 
emergence of domain-specific processors [2] (led by GPU 
computing for deep-learning applications), the general-
purpose computing model still constitutes a relevant 
fraction of the semiconductor market. In this computing 
model, the processor runs applications (often concurrent-
ly) with quite dissimilar characteristics. Under these con-
ditions, measuring (and defining) the expected processor 
behavior (performance) is challenging. Each piece of ap-
plication code can interact in a different way with proces-
sor microarchitecture and concurrency might introduce 
“unwanted” cross-effects, affecting overall system behav-
ior negatively. 
Benchmarking is the predominant methodology em-
ployed for performance evaluation, providing a standard-
ized way to measure and compare alternative processors. 
A meticulous selection process is usually performed in 
order to define a reduced set of applications that are suf-
ficiently representative of a much broader usage scenario, 
corresponding to a specific target environment (scientific 
[3], NoSQL serving [4], Machine Learning [5], etc.) or one 
closer to the “general purpose” scenario [6][7]. Unfortu-
nately, many of these benchmarking suites present two 

important drawbacks. First, the number of applications 
under evaluation is usually limited to a few tens. Even 
when considered a representative sample, if we want to 
model performance as a random variable, the available 
number of values is usually below the recommended 
limit to reach a reasonable confidence margin in the eval-
uation process. Second, most of the CPU market share 
corresponds to environments (desktop, cloud computing) 
where there is limited control of the kind of applications 
that run on the same processor chip simultaneously. Cur-
rent benchmarking metrics (latency, rate-mode through-
put) might not suffice to gain insight into the consequenc-
es of this resource sharing. Therefore, this makes the re-
design of the “representative workload” and “representa-
tive metric” concepts necessary. 
A straightforward technique to increase the benchmark 
size (and hence the statistical soundness of the results), 
targeting both heterogeneous and concurrent environ-
ments, consists of a random mix of benchmark applica-
tions running in parallel inside the same computer 
[8][9][10]. To the best of our knowledge, this technique is 
usually employed with a single benchmark suite, and 
parallel execution relies merely on launching every appli-
cation in a synchronous way. Despite partly solving tradi-
tional benchmarking limitations, this methodology signif-
icantly increases the computational cost of the evaluation 
process (to the point of being impractical in certain condi-
tions). Relying on the same principle of random mixing, 
in this paper we propose a much more elaborate method-
ology to avoid these increased costs through the follow-
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ing features: 
• Computational resource usage is limited to a small 

fraction of application code, belonging to its Region of 
Interest (ROI). Our preliminary explorations demon-
strate that many applications from different bench-
marks show a similar loop-based ROI structure that 
has repetitive behavior from the microarchitectural 
viewpoint. 

• To ensure that every application runs its ROI while 
performance is being measured a fine-grain synchro-
nization process is used. Additionally, automated 
hardware event counting during evaluation increases 
the variety of information available about execution, 
given the profuse list of events available in state-of-
the-art processors. 

• The methodology is generalized to any application, 
independently of its benchmark suite. This allows a 
sort of Meta-benchmarking methodology to be creat-
ed, which can increase metric coverage. To do this, we 
formally define the code and execution conditions that 
must be met by a new application to be part of the 
random mixes. 

Following the proposed methodology, we can increase 
performance metric representativeness, yet under con-
strained time. This enables the concurrent exploration of 
alternative performance metrics (such as fairness) and the 
study of diverse microarchitectural behaviors. 
This work expands on previous work [11] by generalizing 
our methodology to multiple benchmark suites and en-
hancing evaluation features. In this work, we make the 
following contributions: 
• We develop a multi-benchmark tool for exhaustive 

and accurate system evaluation. Thanks to the auto-
mated workload generation, execution and monitor-
ing process, the user will gain insight into perfor-
mance issues transparently and in a feasible amount of 
time. 

• We define and standardize the process to add new 
benchmarks to the initial application pool. Conditions 
that must be met by any candidate application are de-
fined. Around 50 applications have been profiled and 
employed in this work to test the methodology. 

• We carry out a raw performance evaluation of two 
counterpart server architectures from the two main 
CPU vendors, AMD and Intel. Our evaluation is com-
pared to a “conventional” one, such as the one per-
formed through the SPEC CPU17 benchmark [6]. 

• Direct access to hardware counters during the ROI 
execution enables elaborate performance evaluation 
methodologies such as Top-Down [12] and more sub-
tle microarchitectural analysis. We extend processor 
evaluation of micro-architectural parametrization 
(SMT and hardware prefetching), to prove that the 
technique is suitable to enhance understanding of the 
effect of these techniques. 

2 MOTIVATION 
As mentioned in the previous section, computational cost 
can hinder the evaluation process when it moves from a 
few workloads to several hundreds. This problem has 

been widely addressed for simulation-based research, 
where the entire execution of an application is, in most 
cases, unattainable. To circumvent the problem, sampling 
techniques (i.e., measuring performance only in a relevant 
fraction of the original application) are usually employed 
[13][14][15]. Our proposal follows the same approach in a 
different context: evaluation of real systems when the 
number of workloads to be considered is impractical for 
full execution. 
The core operation of BenchCast is based on a well-known 
observation about the execution structure found in many 
programs. As described in [16], computationally bound 
applications go through different stages of execution. 
They usually start with an initialization phase where data 
structures are set up, moving next to a stage correspond-
ing to the bulk of the execution and ending up with a 
phase devoted to presenting the application’s results. The 
central stage of the three described is usually labeled as 
the Region of Interest (ROI), because it corresponds to the 
largest fraction of execution time and is devoted to the 
resolution of the main tasks. For this reason, a program’s 
ROI is the most relevant stage in terms of performance. 
This stage usually has a marked periodical behavior [16] 
because it tends to be implemented as a set of hierarchical 
procedures contained in a main loop. Analyzed in detail, 
this arrangement implies non-uniform behavior from a 
performance viewpoint, making it difficult to find an 
execution phase that is representative of the whole pro-
gram’s execution. 

Figure 1 shows an example of this time-varying behavior 
for the 505.mcf application from the SPEC CPU 2017 
benchmark [6]. In both graphs, we measured the temporal 
evolution of alternative performance metrics (instructions 
per cycle, branch prediction accuracy and L1D Cache 
miss rate) making use of two different granularities. In 
the upper graph, performance metrics were collected 
through the Linux perf command [17], with a fixed period 

 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Time-varying behavior for the SPEC17 application 505.mcf. 
Results are shown for IPC, BPRED accuracy, L1D miss rates. (up) 
100ms X-axis interval, (down) X-axis interval 1 loop iteration. 
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of 100 milliseconds. In contrast, for the lower graph, 
events were measured at the end of each ROI iteration 
(variable period), modifying source code to perform this 
task.  
The obvious differences between the two graphs reveal a 
special feature of the aforementioned periodic behavior. 
When the sampling period is “randomly” selected as a 
constant time interval, the high variability makes it hard 
to find a single representative execution phase. In con-
trast, when the sampling period is somehow adapted to 
the internal structure of the program (fitting in this case 
the length of a ROI iteration), the performance metrics 
become much steadier, and average metrics are close to 
the global ones. According to this observation, we hy-
pothesize that the execution of a single ROI iteration can 
represent the whole application with accuracy. 

The next step in this process consisted of the exploration 
of a large set of applications to verify our hypothesis. We 
extended this kind of analysis (see Section 3.4 for system 
configuration) to all the applications from three different 
benchmarks focused on stressing the system’s processor 
and memory subsystem: SPEC CPU17 [6], Parsec [7] and 
NAS Parallel Benchmark [3]. SPEC CPU is an industry-
standardized suite with 23 benchmarks (rate mode) orga-
nized in two different suites (int and float), representative 
of very different application areas (from desktop to scien-
tific). Similarly, the Parsec suite contains 13 applications 

focused on emerging fields (computer vision, animation 
physics, financial analytics, etc.), attempting to be repre-
sentative of next-generation software. Finally, the eight 
workloads from the NAS Parallel Benchmarks have a 
more specific target, all of them being derived from com-
putational fluid dynamics. 
Figure 2 summarizes the results obtained in our explora-
tion. We were able to identify a loop-based ROI in 47 out 
of 50 applications (94%). For each of these 47 applications, 
we measured performance values for each ROI iteration, 
calculating average and standard deviation of each metric 
dataset. Next, average values were compared to full-
execution results, calculating their relative error, which 
was the value represented by the horizontal bars in Fig-
ure 2. The relative error of each performance metric 
formed the graph and, as can be seen, almost every appli-
cation presented a total value below 10%. 
Therefore, in most cases, it seems accurate to consider 
that a single iteration of the main loop inside the ROI 
represents the whole execution with a high degree of 
confidence. This means it could be possible to reduce the 
computational effort required to evaluate heterogeneous 
workloads. If ROI execution can be sychronized, then 
simply running one (or a few) iteration of the ROI loop of 
each application simultaneously would be enough to 
characterize system performance for each workload. This 
is the cornerstone of the proposed methodology, mixing 
smart sampling and synchronization to build a computa-
tionally feasible and statistically sound evaluation meth-
odology. Through the rest of the paper the proposal is 
thoroughly described (Section 3) and alternative evalua-
tion procedures are presented (Section 4). To facilitate 
access to the tool by other researchers and simplify the 
adoption of their own modifications, a public source code 
repository and project management tools have been made 
available (https://github.com/prietop/BenchCast). 

3 METHODOLOGY (BENCHCAST) 
The three main features of BenchCast are described in 
detail in the following subsections. 

3.1 Application Profiling & ROI Evaluation 
Despite being found in most applications analyzed, not 
every workload code corresponds to the loop-ROI struc-
ture, or the observed steady state between iterations. For 
this reason, every new application proposed as part of 
BenchCast must fulfill the set of requirements defined in 
this section. The profiling process was standardized to 
guarantee minimal deviation between the fraction of ROI 
executed and the whole application. Unfortunately, given 
the heterogeneous nature of the methodology (multi-
language, multi-benchmark, etc.), the complete automati-
zation of this profiling process was nearly impossible, 
and minimal manual work was required to identify and 
label the ROI. 
In summary, this preliminary process involves the follow-
ing steps: 

 
Fig. 2. Relative error comparing ROI iteration (average value) to 
global execution. Error was estimated for three different perfor-
mance metrics: IPC, L1D Hit rate and Branch predictor accuracy.  
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• ROI identification: the application is profiled to iden-
tify those functions consuming the largest fraction of 
execution time. 

• Loop labeling: previous functions are analyzed look-
ing for the outer loop structure. Code is annotated to 
measure the fraction of time spent in that loop, con-
sidering only applications returning values over 70%. 

• Variability analysis: several performance metrics are 
measured for every loop iteration. Variability is meas-
ured to find out the sample size (number of iterations) 
required for a pre-defined error and confidence inter-
val. 

• Execution time: the time required to execute the num-
ber of iterations calculated previously is estimated. 
Only those applications with a value below a certain 
threshold (in this case the maximum ROI is set to 20 
seconds) are eligible. Total time required to perform 
the measurement is highly sensitive to this parameter 
(and hence, the chosen threshold is relatively small). 

To gain insight into this process, we will walk through a 
specific example in detail. Figure 3 describes the steps for 
the 505.mcf application, corresponding to the SPEC 
CPU2017 benchmark. 
The process starts with hot code-paths exploration (ROI 
candidates). Stack traces are captured to generate their 
associated call-graph (calling relations between code 
functions) and the later profiling can be performed with 
the scripting tools provided with perf (stackcollapse) or by 
generating a graphical representation called Flame Graph 
[18]. Both solutions provide alternative representations of 
equivalent information. Figure 3 shows the Flame Graph 
for 505.mcf (Step 1), where we can identify the function 
chain consuming the largest fraction of execution time. It 
corresponds to the following stack: main→ global_opt→ 
primal_net_simplex→ master→ primal_bea_mpp→ 
spec_qsort. This part of the process, automated in 
BenchCast, finishes by locating the source code files 
where these functions are defined. The information gen-
erated in this process facilitates the manual annotation 
performed in the next step. 
Main loop identification is the only supervised action in 
this process. This search is performed from bottom to top 
of the flame graph (the bottom functions in Figure 3 are 
those consuming a larger fraction of time). Every function 
is examined looking for the outermost loop structure. In 
this case, main and global_opt functions can be found in 
the same file, mcf.c. It is easy to identify a while declara-
tion inside global_opt consuming about 90% of the execu-
tion time. Once located, it is necessary to verify that this 
loop consumes a significant fraction of total execution 
time. In our experiments, only those loops consuming 
more than 70% of total execution time are considered as a 
suitable ROI. The loop code is annotated to measure both 
execution time and performance metrics for every itera-
tion. As Figure 3 (Step 2) shows, we make use of the PAPI 
C interface to obtain a precise event count every iteration. 
Once identified as a valid ROI loop, the next step consists 
of a variability analysis of performance metrics across 
loop iterations. The mean and standard deviation of IPC, 

Bpred accuracy and L1Cache hit rate values are obtained 
(Step 3). Making use of these values, the sample size 
(number of iterations to be executed) can be estimated for 
a pre-defined error rate and confidence level.  

Previous evaluations [11] show that a 10% Error with a 
95% confidence interval is enough to ensure the repre-
sentativeness of the workloads generated. In the 505.mcf 
application, the required number of iterations is 2 (the 
maximum of the three Ns obtained). As a final step, the 
execution time required to run N iterations is calculated, 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Graphic description of the profiling process required for every 
application to be part of BenchCast workloads (exemplified with 
505.mcf). 
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and only when this value is below the 20-second thresh-
old, the application is included as part of BenchCast. 

A similar process to the one described here was done for 
every application in Figure 2. The values in Table 1 sum-
marize the results of this profiling process, showing in-
formation about ROI fraction of total execution time (sec-
ond column), per-iteration average and standard devia-
tion of main performance metrics (IPC, L1D, L1I, Bpred 
columns) and N-iterations execution time (last column). 

The literature does not provide a formal definition of 
which fraction of execution is required to establish that a 
portion of code makes up a ROI. To select an appropriate 
value for this threshold, we decided to guarantee that the 
IPC measured for the whole ROI and the whole applica-
tion should have a relative error below 5%. A 70% ROI 
keeps the applications listed in Figure 2 below this error 
rate. Similarly, the 20-second threshold for ROI execution 
fulfills two conditions. First, it is small enough to ensure 
an evaluation process at least one order of magnitude 
faster than a whole one (in this case, the average execu-
tion time of whole applications is ~300 seconds). Second, 
it is large enough to fulfill the representativeness error 
and confidence interval margins for most applications. 
For some applications, a large variability was observed 
between iterations (high Stdev values), caused mainly by 
a variable ROI behavior across different execution phases. 
In many of these cases we observed that phases respond 
to simple patterns, it being feasible to split the application 
into multiple workloads, one for each phase [11]. 
After this analysis, only 5 applications were ruled out. 
Three of them with a ROI execution fraction below the 
70% limit (538, 704, 806) and the remaining two exceeding 
the 20-second threshold imposed for ROI execution (510, 
710). Relative error and 20-second ROI are mutually relat-
ed. Relaxing error-related values could lead to a smaller 
number of discarded applications if ROI length is main-
tained or to an even shorter ROI execution for the same 
applications. 

3.2 ROI Annotation & Synchronization 
Once the ROI of the selected application is known, heter-
ogeneous workloads will be defined. This will increase 
the available number of samples on our evaluation mech-
anism. All applications running in any workload will be 
executing their region of interest simultaneously. Each 
application should execute at least one iteration of the 
main loop. To achieve this, we create a master application 
launcher that executes each application of the workload 
and synchronizes them at the beginning of their ROI. 
BenchCast uses a POSIX thread barrier mapped onto a 
shared memory region through a POSIX shared memory 
object. The barrier and the shared memory object are 
created by BenchCast master launcher. We append barrier 
calls within the ROI annotation code located in the previ-
ous section. The BenchCast master launcher then creates 
child processes for each application to be executed in the 
workload, attaching each process to a different core (or 
hardware context) of the system under evaluation, using 
Linux sched setaffinity system call. BenchCast master and 
the applications wait at the same barrier until all the ap-
plications reach their ROI. This process can be repeated as 
many times as needed, and in our experiments, work-
loads usually begin after all applications have executed at 
least one ROI loop (so the workload starts the second time 
the barrier is reached). Then, the barrier is raised and 
disabled, and measurements can begin with all the appli-
cations executing their ROI concurrently. 
BenchCast comes with code annotations for SPEC17, 
PARSEC and NPB applications. BenchCast includes the 

TABLE 1. APPLICATION PROFILING RESULTS 
  

IPC L1D L1I Bpred 
 

App ROI Mean Stdev Mean Stdev Mean Stdev Mean Stdev TEVAL 

503.1 99.3 1.649 0.733 93.4 2.578 100.0 0.001 99.8 0.036 25.36 

503.2 99.5 1.511 0.616 92.9 2.178 100.0 0.001 99.9 0.031 18.62 

503.3 99.3 1.559 0.670 93.0 2.420 100.0 0.001 99.8 0.025 19.86 

505 100.0 0.935 0.103 81.8 5.258 100.0 0.003 92.1 2.220 18.41 

507 99.1 1.367 0.008 78.0 0.025 91.4 0.028 99.9 0.003 3.46 

508 100.0 2.689 0.005 95.5 0.022 100.0 0.002 95.2 0.260 3.68 

510 79.0 1.934 0.058 90.4 0.674 99.9 0.139 98.0 0.227 71.05 

511 99.5 2.416 0.152 93.1 1.422 95.0 1.906 99.2 0.279 29.11 

519 99.3 1.836 0.004 84.1 0.239 100.0 0.000 99.7 0.003 0.08 

520 99.3 0.741 0.021 88.5 0.268 98.8 0.252 96.8 0.114 1.06 

521 99.0 1.235 0.112 95.1 0.315 99.0 0.236 98.9 0.059 0.57 

525.1 96.7 2.796 0.329 97.9 1.180 97.8 1.143 94.3 2.934 0.05 

525.2 99.7 3.269 0.153 98.8 1.368 97.2 0.580 97.1 0.635 0.20 

525.3 97.1 3.244 0.137 98.9 0.249 97.7 0.649 97.4 0.702 0.27 

526 92.5 0.907 0.092 91.6 0.524 8.3 7.331 99.3 0.540 3.43 

527 93.3 1.847 0.054 91.9 1.503 96.5 0.566 97.9 0.254 4.59 

531 99.8 1.836 0.081 99.0 0.151 97.6 1.530 95.1 0.614 1.80 

538 38.9 1.970 0.023 100.0 0.001 100.0 0.000 98.9 0.120 0.07 

541 99.8 1.264 0.059 98.3 0.381 99.9 0.068 86.1 1.818 0.61 

544 97.4 1.622 0.148 96.3 0.684 100.0 0.003 98.8 2.286 1.68 

548 99.5 2.145 0.102 100.0 0.001 99.5 0.417 98.3 0.306 3.13 

549 96.9 1.095 0.063 88.8 0.007 100.0 0.005 99.9 0.018 0.20 

554 99.5 1.920 0.028 92.0 0.367 99.9 0.010 99.8 0.021 2.56 

557.1 88.0 0.775 0.056 92.8 0.609 100.0 0.003 91.7 0.292 5.33 

557.2 96.1 2.133 0.049 95.8 0.699 100.0 0.006 98.2 0.132 4.44 

557.3 95.6 1.428 0.281 96.3 0.675 100.0 0.020 93.8 1.625 10.28 

701 85.8 1.726 0.000 99.6 0.003 100.0 0.001 99.4 0.001 1.19 

703 73.9 0.260 0.012 68.7 0.694 99.9 0.009 91.0 0.876 0.02 

704 45.2 1.821 0.013 97.7 0.018 97.8 0.726 94.1 0.087 3.36 

705 99.5 2.603 0.006 97.3 0.011 97.2 0.066 98.7 0.029 2.80 

706 99.4 1.492 0.114 95.6 1.575 99.8 7.833 95.3 0.555 0.10 

707 99.5 1.976 0.232 98.8 0.264 100.0 0.000 94.2 1.367 0.51 

708 96.6 1.897 0.230 97.9 0.731 99.7 5.443 97.3 2.116 0.52 

709 75.1 2.353 0.012 99.7 0.005 100.0 0.003 88.7 0.170 0.64 

710 79.9 0.853 0.001 95.8 0.007 100.0 0.000 99.5 0.095 80.80 

711 99.1 2.349 0.006 98.4 0.047 100.0 0.002 98.2 0.015 1.58 

712 96.5 2.082 0.111 94.7 1.905 88.9 1.424 91.7 3.393 0.20 

801 89.5 2.762 0.002 93.2 0.000 100.0 0.000 99.4 0.020 4.01 

802 94.5 1.061 0.001 61.4 0.000 100.0 0.000 99.6 0.000 2.41 

805 65.8 2.597 0.001 66.6 0.000 100.0 0.000 99.8 0.001 7.27 

806 20.4 2.233 0.001 87.2 0.001 100.0 0.000 100 0.000 0.47 

807 92.1 2.064 0.002 88.9 0.001 100.0 0.000 99.5 0.006 2.11 

808 73.5 2.390 0.003 88.6 0.013 100.0 0.000 99.6 0.000 2.00 

809 92.8 2.239 0.002 84.7 0.000 100.0 0.000 99.5 0.000 1.10 

810 99.6 1.846 0.003 94.8 0.071 100.0 0.002 98.0 0.046 1.79 
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necessary information to launch the applications of these 
benchmarks as well as the PATH to the local installation. 
To add a new application to the pool (provided it com-
plies with the previous section’s requirements), some 
information must be provided to the master launcher 
program, such as the PATH to the new application and its 
launch command. 

3.3 Workload Generation and Execution 
BenchCast both creates workloads and evaluates their 
behavior during execution. Making use of the PAPI li-
brary and attaching PAPI events to the applications exe-
cuting on the system, BenchCast can measure any perfor-
mance counter available through the PAPI interface. The 
PAPI library and PAPI event initialization is performed 
by the BenchCast master launcher, and the event list is 
provided through an easy to modify configuration file. 
Examples for top-down analysis and basic performance 
analysis configuration files are provided. 
To perform an evaluation using BenchCast, we dynamical-
ly generate sufficient variety of workloads so the results 
are statistically significant. Workloads are generated 
choosing randomly among the available applications in 
the pool (SPEC2017, PARSEC and NPB out of the box). By 
default, BenchCast launches one application per available 
core in the system under test. If the number of selected 
applications is fewer than the number of available cores, 
multiple copies of each application are launched until all 
hardware contexts are allocated. 
Once the applications reach the synchronization point, at 
the beginning of their ROIs, they start running simultane-
ously. The master launcher then starts the PAPI meas-
urement, for the duration of at least one loop of the ROI 
(at least 20 seconds). Once the execution completes, 
BenchCast stops the measurement and stops all the appli-
cations, so the next workload execution can be initiated. 
The results obtained through the performance counters 
are written in a results file when each workload ends. 
Among others, BenchCast provides the following parame-
ters to perform an evaluation of a system: 
• Number of cores: number of cores to use on the sys-

tem. By default, the number of cores available, but a 
lower number can be provided and some of the cores 
of the system under test will not be used for the eval-
uation. These include simultaneous multithreading 
hardware contexts. 

• Number of applications: number of different applica-
tions that will be used in each workload. Multiple cop-
ies of each application are launched until the selected 
number of cores has one application each. 

• Number of workloads: number of different workloads 
that will be generated for the complete evaluation. 

• Event list: A file containing the list of PAPI events that 
will be measured for each application in each work-
load. 

• Measurement time: the execution time each applica-
tion runs for the evaluation. Typically, 20 seconds, to 
guarantee at least one iteration of the ROI loop. 

3.4 Methodology Validation 
For the experiment in this section, we used a desktop-like 
computer configuration, an Intel i5-7500 4-Core chip run-
ning at 3.4GHz with 6MB of cache and a main memory of 
16GB. The software stack corresponds to Debian 9 distri-
bution (Linux kernel 4.9.0). 1000 random combinations 
are generated, enough to guarantee that variables follow 
a normal distribution. For TOTAL workloads, each core 
runs a single application of the combination in an “infi-
nite loop” and execution is terminated when every appli-
cation completes at least one execution. BenchCast results 
are obtained executing 20 seconds of their synchronized 
ROIs. For this number of applications and execution-time 
values (20 sec. ROI vs. 300 seconds average app execution 
time), BenchCast can reduce the computational cost from 
more than a week to only 20 hours. These savings remain 
constant for each experiment performed, meaning that all 
the data included in this paper were obtained in less than 
7 days, in contrast to the multiple months that would 
have been necessary without the proper methodology. 

Figure 4 shows the IPC histogram for both experiments. 
The degree of similarity between the two measurements, 
suggests that the performance figures of BenchCast are 
equivalent to full application, at a fraction of the compu-
tational cost. This postulation is statistically supported 
through a two-sample Kolmogorov-Smirnov (henceforth 
KS) test [19]. This is a nonparametric test used to compare 
the equality (probability distribution fit test) of two data 
samples. The KS statistic is based on the largest vertical 
difference between the cumulative distribution function 
(CDF) of both samples and is defined as, 

𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑖𝑖≤𝑁𝑁|𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖) − 𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖)| 

where CDFITER and CDFTOTAL are the samples under test 
and N the number of observations. This KS statistic is 
meant for testing the (null) hypothesis of both samples 
coming from a common distribution. The hypothesis 
regarding the distributional form is rejected if the test 
statistic D is greater than a critical value obtained from a 
table [19]. In this case, with a number of samples larger 
than 40 and a 1% significance level, the critical value can 
be calculated as, 

𝐶𝐶 =
1.63
√𝑁𝑁

 

According to the data collected for both samples, the 
maximum difference is 0.0109, which is less than the criti-

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Distribution comparison with a 1000-workload sample. Histo-
grams for ITER (BenchCast) and TOTAL executions. 
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cal value. Therefore, we would accept, at the 1% signifi-
cance level, the hypothesis that both sample distributions 
come from the same population.  

To gain even more insight into similarity we evaluate the 
random variable e(w) defined as 

𝑒𝑒(𝑤𝑤) = 1 −
𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤)
𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑤𝑤)

 

In words, e(w) is the per-workload IPC relative error be-
tween TOTAL and ITER results. Both IPCsample and IPCtotal 
can be approximated by a normal distribution [11], and as 
results in Figure 5 show, the generated error variable e(w) 
seems to fit into a similar kind of distribution. As can be 
seen, the average value of error distribution is 0.0012, 
while the standard deviation is 0.014. These values mean 
that error remains below 5% (4.374% exactly) with a 99% 
confidence level. 

4 SYSTEM EVALUATION THROUGH BENCHCAST 
In this section, we will describe the versatility of the 
BenchCast methodology to carry out alternative perfor-
mance evaluations. It should be noted that all these eval-
uations would also be possible running complete applica-
tions, but at a prohibitive computation cost. 
The flexibility of hardware performance counters enables 
the evaluation of many events, which provides not only 
performance metrics, but also enables the analysis of the 
hidden architectural causes explaining these results. For 
this reason, each of the experiments presented provides 
both the raw performance numbers and additional infor-
mation about microarchitectural behavior, which leads to 
a much more consistent discussion of results. 
The number of potential experiments is nearly as large as 
the number of events available in the performance moni-
toring unit. In this work we limit the content to three 
basic experiments that provide a reasonable idea of the 
strengths of our tool. These experiments are described in 
the next three subsections. 

4.1 System-wide Performance 
The first experiment will compare two alternative com-
mercial processors using the proposed methodology. 
Basic performance evaluation with BenchCast is carried 
out measuring the total number of instructions retired 
during the 20-second ROI interval (IPC is not a valid la-
tency metric in this case due to the different frequency of 
operation in the processors evaluated and potential pow-

er scaling across measurements). Two similar servers 
with AMD and Intel processors will be used. The first 
server configuration is a two-socket with two Intel Xeon 
Silver 4216 chips running at 2.10 GHz, with 22MB of 
cache and a main memory of 110GB. The counterpart 
server configuration corresponds to a two-socket AMD 
EPYC 7352 with a 24-Core processor per socket (48 cores 
in total) at 1.5 GHz (up to 3.2 GHz) with 128MB of cache 
and 110GB of main memory. The software stack is the 
same in both systems. The same 1000 workloads are gen-
erated, executed and profiled to obtain final results in 
both systems. Our performance results are compared to 
the SPECrate metrics collected through the “official” pro-
cedure described in the “Run and Reporting Rules” sec-
tion of SPECCPU documentation [6]. 

Both SPECrate (above) and BenchCast (below) results are 
presented in Figure 6. In both cases, the performance 
metrics are represented with a frequency histogram (bars) 
and its estimated probability distribution function (lines). 
Results are normalized to Intel’s Average value. As ob-
served in Figure 6.above, SPECrate evaluation estimates a 
2.33 times better average performance of the AMD server 
compared to the Intel one. With 1.5 times the core count 
(32 vs. 48), AMD seems to obtain a better per-core per-
formance than its counterpart. Unfortunately, the small 
number of workloads employed by SPECrate provides 
two probability distributions with a large standard devia-
tion, reducing the confidence interval below 50%, which 
is far from statistical standards. 
Comparing SPECrate results to BenchCast ones, we ob-
serve two significant differences. First, the number of 
workloads evaluated with BenchCast enables a drastic 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Histogram and estimated normal distribution for the “relative 
error” random variable.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Execution comparison of AMD-based and Intel-based server 
configurations. (Above) SPECrate methodology and (Below) 
BenchCast methodology.  

0.00

0.01

0.02

0.03

0.04

-0
.1

-0
.0

92
-0

.0
84

-0
.0

76
-0

.0
68

-0
.0

6
-0

.0
52

-0
.0

44
-0

.0
36

-0
.0

28
-0

.0
2

-0
.0

12
-0

.0
04

0.
00

4
0.

01
2

0.
02

0.
02

8
0.

03
6

0.
04

4
0.

05
2

0.
06

0.
06

8
0.

07
6

0.
08

4
0.

09
2

Fr
eq

ue
nc

y 
H

is
to

gr
am

IPC Relative Error (ITER vs. TOTAL)

HISTOGRAM
NORMAL

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
05

0.
25

0.
45

0.
65

0.
85

1.
05

1.
25

1.
45

1.
65

1.
85

2.
05

2.
25

2.
45

2.
65

2.
85

3.
05

3.
25

3.
45

3.
65

3.
85

Fr
eq

ue
nc

y 
H

ist
og

ra
m

Performance (Normalized to Intel results)

Intel
AMD
Intel Normal Dist
AMD Normal Dist

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
05

0.
25

0.
45

0.
65

0.
85

1.
05

1.
25

1.
45

1.
65

1.
85

2.
05

2.
25

2.
45

2.
65

2.
85

3.
05

3.
25

3.
45

3.
65

3.
85

Fr
eq

ue
nc

y 
H

ist
og

ra
m

Performance (Normalized to Intel results)

Intel
AMD
Intel Normal Dist
AMD Normal Dist



8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, SUBMITTED FOR REVIEW 

 

reduction in standard deviation. Second, the margin of 
AMD is reduced from 2.33 to 1.62 in this case. This result 
indicates that when a large, heterogeneous number of 
workloads is evaluated, per-core performance becomes 
nearly equal in both server configurations and the only 
advantage of the AMD server comes from the number of 
cores. This substantial difference between the two evalua-
tion methodologies could be a determining factor in a 
tradeoff metric such as performance-cost in certain mul-
titenancy environments, such as cloud providers. 

BenchCast enables us to move one step further in the per-
formance comparison process. Thanks to event counting 
tools, we can explore in detail the divergence observed in 
SPECrate and BenchCast results. To do so, we will explore 
the per-core performance of both processors defining the 
random variable D(w) as: 

𝐷𝐷(𝑤𝑤) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) 
D(w) is the Performance difference between AMD-based 
and Intel-based servers running the same workload w. 
Since both performance variables can be approximated by 
a normal distribution [11], D(w) is also normal. Since we 
are interested in the performance of a single core (not a 
hardware context, SMT is disabled for this experiment), 
we divide the performance results by the number of cores 
of each processor chip. We show the results in Figure 7. In 
this graph, the x-axis indicates which processor performs 
better (Intel for positives, AMD for negatives), confirming 
the similar behavior pointed out in Figure 6 (BenchCast). 
The estimated distribution mean is -0.01, which repre-
sents a marginal advantage of AMD cores over Intel ones. 
With this value, we can conclude that on average, both 
cores perform similarly, and AMD-server benefit is de-
rived nearly exclusively form core count. 
Despite the near-zero mean, the standard deviation indi-
cates the presence of many non-zero values where pro-
cessors perform differently. This dataset can be useful to 
continue obtaining relevant performance information, 
dividing workloads executed into two groups, depending 
on their side of the x-axis. Thus, we could determine 
whether the workloads from each side have different 
features which could indicate the strengths and weak-
nesses of each processor microarchitecture.  
For this group analysis we will employ a performance 
analysis methodology known as Top-Down [12]. It is a 
practical method to identify true bottlenecks in out-of-

order processors, built on top of existing performance 
counters in Intel microarchitectures. From total pipeline 
slots (number of instructions that can be issued/retired 
per cycle), Top-Down estimates which fraction is utilized 
by “good instructions” and which fraction remains empty 
due to stalls from different parts of the processor pipeline. 
Processor stalls are classified following a hierarchical 
approach. At the top of this hierarchy four major 
categories are defined:  
• Frontend Bound: fraction of slots wasted because the 

frontend undersupplies instructions to the backend, 
fetching and decoding issues mainly  

• Backend Bound: fraction of slots wasted because no 
uops are delivered at the issue pipeline, due to a lack 
of required resources, memory hierarchy or functional 
unit issues. 

• Bad Speculation: fraction of slots wasted due to 
incorrect speculations associated with branch 
prediction.  

• Retiring: issued uops that get retired. Slots utilized by 
“good instructions” (a 100% Retire corresponds to the 
maximal IPC of the given microarchitecture).  

In this experiment we will evaluate the behavior of the 
two application groups (x-axis sides) analyzing whether 
Top-Down results differ. We limit this evaluation to the 
Intel server, which is enough to provide a preliminary 
idea about what makes each processor core better/worse 
from a software perspective. For the same number of 
workloads employed throughout this section we obtained 
the probability distribution function of each of the four 
categories, shown in Figure 8. With one graph per 
category, we pair the results of both groups, in order to 
check for any observable difference. Both Frontend Bound 
and Bad Speculation categories seem to obtain quite similar 
results, which means that no particular difference is noted 
for these parts of the pipeline between both groups. In 
contrast, there is a significant difference in the Backend 
Bound category, where we can observe that those 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Per-core Performance difference between Intel and AMD 
servers. Frequency histogram.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 8. Frequency histogram for each Top-Down First Level Catego-
ry. AMD-winning vs. Intel-winning workloads.  
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applications with a more relevant bottleneck in the 
backend seem to behave better in intel processors than in 
AMD. Those applications pressuring core backend seem 
to be better suited to the Intel-based server. To 
understand the source of inefficiencies of the AMD 
backend, this exploration should analyze the lower levels 
of top-down hierarchy. However, this is beyond the scope 
of this work, which is limited to demonstrating that this 
kind of systematic analysis is feasible through the 
BenchCast tool. 

4.2 Simultaneous Multithreading 
Simultaneous Multithreading (SMT) is a performance 
enhancement technique present in almost every modern 
general-purpose processor. It basically consists of the 
splitting of a physical core into multiple (usually two) 
virtual cores known as hardware threads or hardware 
contexts. This organization allows two instruction 
streams to run simultaneously through the same pipeline, 
improving aggregate ILP by improving processor re-
source utilization (especially if some of the threads have a 
clear bottleneck in some of the stages of the execution 
pipeline). Final performance improvement is usually far 
from the theorical upper limit of adding the IPC of each 
thread in the aggregate thanks to the second thread. The 
hardware resources available are shared with a “rival” 
and this has significant impact, which is dependent on the 
nature of each thread (even to the point of being detri-
mental under certain scenarios or resource sharing poli-
cies). Using BenchCast it is possible to estimate the actual 
benefit of enabling SMT in a general scenario, as well as 
understanding how each shared resource can impact on 
performance. 

For this exploration, we limit our experiments to the Intel-
based server configurations employed in the previous 
section. 1000 randomly generated applications were exe-
cuted, first with SMT activated, then deactivating SMT 
through EFI settings. The results of both executions are 
shown in Figure 9, represented by a frequency histogram 
(bars) and its estimated probability distribution function 
(lines). Performance values were normalized to NoSMT 
results (mean=1 for NoSMT distribution). According to 
the graph, SMT improves raw processor performance by 
25% on average. The SMT measured benefit is far below 
the theoretical upper limit, which means that vCPUs per-
form 40% worse than physical cores. 

As mentioned previously, the access to every perfor-
mance counter available allows us to look for the multiple 
sources of inefficiency and their contribution to the ob-
served performance gap. Concerning SMT, we can distin-
guish between two kinds of shared resources: core-level 
and processor-level resources. Core-level resources corre-
spond to those shared inside each physical core, such as 
L1 cache, branch prediction, issue queue, etc. Processor-
level resources are those shared among all cores, such as 
Last Level Cache or memory bandwidth. Through the 
appropriate selection of hardware events, BenchCast ena-
bles the fast exploration of the performance effect of SMT 
on different Core-level and processor-level resources. For 
this work we limit our experiments to the most perfor-
mance sensitive elements, branch prediction and cache 
hierarchy (Both L1 and LLC). 

First, we evaluate the different behavior of three core-
level resources in the presence and absence of SMT: 
branch predictor, L1 data and instruction caches. Results 
for these metrics are presented in Figure 10, as the cumu-
lative frequency graph of misses/misspredictions per kilo 
instruction (MPKI). In this kind of graph, the x-axis repre-
sents the parameter under test while the y-axis indicates 
the fraction of workloads that are below that MPKI value. 
The presence of two instruction streams doubles, on aver-
age, the number of misses per kilo-instruction. Contrary 
to the intuitive idea of sharing the instruction cache be-

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. Performance effect of SMT. IPCT histogram and estimated 
normal distribution.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 10. SMT Effect (cumulative frequency distribution) on different 
hardware resources: Branch Prediction (above), L1I MPKI (mid) and 
L1D MPKI (below). 
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tween two threads, the final impact of this degradation on 
overall performance seems to be insignificant, because in 
both cases very low miss rates are observed. The negative 
impact of SMT is more subtle on both branch prediction 
and L1D performance. In the case of branch prediction, 
the low values on the x-axis indicate that degradation 
might have a minimal impact on performance. In con-
trast, L1D MPKI results are one order of magnitude larg-
er, which could indicate that the pressure on it has more 
impact on performance results. 

Concerning uncore resources, we close this section ana-
lyzing the impact of SMT on L3 performance. As can be 
seen in Figure 11, SMT produces a similar degradation to 
that observed in L1D. While LLC capacity remains con-
stant, the number of active working-sets doubles with 
SMT, increasing the number of misses per kilo instruc-
tion. The exploration enabled by event counting in 
BenchCast allows us to conclude that the pressure im-
posed by application datasets on the memory hierarchy 
has a more noticeable effect on performance than dou-
bling Instruction working sets or branch patterns. 

4.3 Hardware Prefetching 
The last BenchCast use-case example is focused on Hard-
ware prefetching, which is a fundamental technique to 
tolerate cache miss latency in state-of-the-art processors 
[20][21]. Proactively fetching data from slower locations 
to a faster cache level in advance might significantly re-
duce average memory access time. Nearly every modern 
processor includes some hardware prefetching support, 
exploiting simple and regular access patterns. This is the 
case of many Intel microarchitectures (starting with Ne-
halem), where four different types of data prefetchers are 
implemented in hardware. Two of these prefetchers, 
known as DCU, are associated with L1 Data cache, where 
prefetching is triggered by load instructions when certain 
conditions are met [22]. The streaming prefetcher is trig-
gered by an ascending access to recent loads, assuming 
that it is part of a streaming algorithm, automatically 
fetching the next line. A PC-based prefetcher keeps track 
of individual load instructions looking for a regular 
stride. When found, a prefetch is sent to the next address 
which is the sum of the current address and the stride. 
The two remaining prefetchers are associated with L2 
cache. The L2 Spatial Prefetcher strives to complete every 
cache line fetched to the L2 cache with the pair line that 
completes it to a 128-byte aligned chunk. The L2 Streamer 
prefetcher monitors read requests (loads, stores, L1 
prefetches and code fetches) from the L1 cache for ascend-

ing and descending sequences of addresses. When a 
stream of requests is detected, the anticipated cache lines 
are prefetched. 
Again, the purpose of this section is to demonstrate the 
versatility of BenchCast, carrying out a detailed analysis 
of the performance effect of prefetching. The Model Spe-
cific Register (MSR) with address 0x1A4 will be used to 
control the activation/deactivation of these prefetchers. 
We define different combinations of enabled/disabled 
prefetchers, analyzing performance metrics for each of 
them. Figure 12 shows the IPC distribution of every 
prefetcher enabled (ALL), L1 prefetching disabled and L2 
enabled (L2), L2 disabled and L1 enabled (L1) and every 
prefetcher disabled (NONE). In this graph, all perfor-
mance values were normalized to NONE mean.  

As expected, the absence of prefetching has a negative 
effect on performance, and the average IPC decreases 
from 1.6 to 1.29, which corresponds to a 20% performance 
degradation. Another observable result is the unbalanced 
contribution of L1 and L2 prefetchers to performance 
improvement. The activation of prefetching at each level 
has a positive effect in both cases but seems to be more 
relevant in the case of L2. The reason for this result might 
be the large penalty of LLC misses and the larger LLC 
cache size minimizing the negative pollution effects 
caused by prefetching. A noteworthy result is that when 
both prefetchers are combined, there is no benefit when 
compared to L2 only prefetching. 
In order to establish which fraction of workloads undergo 
a performance degradation caused by prefetching, we 
also define the following performance-difference varia-
bles: 

𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) 
𝐿𝐿2 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿2(𝑤𝑤) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) 
𝐿𝐿1 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿1(𝑤𝑤) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) 

The normal distribution of these three variables is shown 
in Figure 12. In this graph, all values below zero represent 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 12. (above) Performance effect of prefetching. IPCT distribu-
tion, normalized to NONE mean value. (below) Performance differ-
ence observed after prefetching activation, normal distribution. 

 
 
 
 
 
 
 
 
 

 
Fig. 11. SMT Effect (cumulative frequency distribution) on L3 MPKI. 
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those workloads with poorer performance after prefetch-
ing activation. As can be seen, the activation of both or L2 
prefetchers improves performance in a consistent way. 
According to measured mean (0.296, 0.27) and stdev 
(0.117, 0.105), less than 1% applications will suffer from 
performance degradation. In the case of L1 prefetch, this 
fraction grows to 3% applications (0.151 mean, 0.068 
stdev). It still represents a small fraction, but combined 
with the lower IPC improvement on average, explains its 
worse results when compared to L2 prefetching. 

Again, the access to event counting allows us to get a 
sense of the result. In this case, we analyzed how different 
hierarchy levels react to the changes in the prefetcher. As 
an initial step, we focused our attention on the L2 Cache, 
as it is the closest-to-processor level where prefetches are 
stored [22]. Figure 13 shows the cumulative frequency 
distribution of the MPKI for each prefetcher combination. 
These results are consistent with the performance ones, 
showing a MPKI improvement as more prefetchers are 
activated. This result shows that L2 MPKI improvement 
has a direct impact on performance, a similar tendency 
being observed for both metrics. Despite seeming very 
obvious, we highlight this conclusion because, as we will 
see next, this relationship is not as straightforward for 
every metric, and in some cases a closer look is necessary. 
Next, focusing the attention on LLC metrics, we obtained 
the MPKI results shown in Figure 14 (above). As can be 
seen, in this case we obtained an evolution of MPKI in-
consistent with performance results. The best MPKI re-
sults were obtained when no prefetcher was activated 
and they degraded progressively as they were activated. 
This apparently contradictory behavior has a simple ex-
planation: if the raw LLC access numbers are analyzed, it 
can be immediately observed that the activation of hard-
ware prefetching doubles the number of LLC accesses on 
average. If we move to alternative events and measure 
Miss rate in LLC (see Figure 14 (below)), we can observe 
how, in this case, the results are consistent with perfor-
mance results and also with the expected prefetching 
behavior. 

5 RELATED WORK 
The search for tools and methodologies targeting com-
puter performance evaluation has been constant over 
time. However, both hardware and (mainly) software 
heterogeneity have increased the complexity of this task. 
Consequently, many benchmark suites are currently 
available, representative of multiple environments where 

computing systems can be found. Thus, hardware envi-
ronments such as image processing (GPUs) or High-
Performance Computing (HPC) employ specific bench-
mark suites. Some examples of GPU benchmarking tools 
are Rodinia [23], Parboil [24] and Lonestar [25]. In con-
trast, HPC employs suites such as NAS Parallel Bench-
mark [3] (parallel performance measurement developed 
by NASA), High-Performance Linpack [26] (CPU’s FP 
performance, employed for setting up the Top-500 rank), 
High-Performance Conjugate Gradients [27](HPCG) as an 
alternative to HPL and HPCC suite [28]. 

From a software perspective, emerging environments 
such as Big Data, Cloud Computing or Deep Learning 
have generated the necessity of new benchmarking tools 
to allow a representative evaluation for these computing 
fields. Some of the most representative examples of 
benchmark suites targeting these environments are MLP-
erf [29], CloudSuite [30], BigDataBench [31], YCSB [4] or 
HiBench [32] . 
General purpose hardware relies on heterogeneous 
benchmark suites such as PARSEC [7] or SPEC [6], in an 
attempt to be representative of a computing environment 
where applications cover a wide spectrum. Focused on 
the evaluation of commercial CPUs, the initial public 
release of BenchCast already includes workloads generat-
ed from applications from these two suites, as well as 
from the NAS Parallel Benchmark. However, BenchCast 
was designed to be a sort of meta-benchmarking frame-
work, like Google’s PerfKit Benchmarker [33]. The rules 
for including new applications are simple and new 
benchmarks can be easily added. 
Some performance evaluation processes are not suitable 
for the aforementioned benchmarks. This is the case of 
detailed architectural simulation [34], where the execu-
tion time required to run a complete application makes it 
unaffordable in practice. In those cases, many studies 
have focused on alternative solutions to reduce the com-

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 14. LLC Cache Misses per Kilo Instruction (up) and Miss Rate 
(down). Cumulative frequency distribution for different Prefetching 
configurations. 

 
 
 
 
 
 
 
 
 

 
Fig. 13. L2 Cache Misses per Kilo Instructions. Cumulative frequen-
cy distribution for different Prefetching configurations.  
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putational cost required for evaluation. One of the most 
common techniques is known as simulation sampling 
[15][16][13], where the evaluation process is limited to 
only a small relevant fraction of each application. Sim-
Points [35] is a well-known sampling methodology that 
automatically identifies long, repetitive execution phases 
in benchmarks, and limits simulations to a few instances 
of these phases. Similarly, [36] and [37] make use of statis-
tical tools to evaluate the representativeness of a bench-
mark. This means limiting the execution of an application 
to a reduced number of instructions, able to maintain 
representativeness. With a similar objective, Craeynest 
and Eeckhout [9] analyze the problem of the limited va-
lidity of current practices in multi-core simulation. Ve-
lazques et al. [8] carried out a benchmark selection, which 
was as small as possible, also analyzing alternative sam-
pling methods and Singh and Awasthi [38] evaluated the 
accuracy of characterizing the SPEC CPU2017 bench-
marks using SimPoints methodology. Loop-dominant 
programs are targeted in [39]. For each loop found, the 
authors define a signature, creating a signature vector for 
each application. Through the similarity scores process, 
they reduced the representative score and created micro-
benchmarks for emulating the original one. 
In a similar way, our work also looks for a subset of in-
structions able to resemble a whole application. In con-
trast, targeting real hardware execution, we have much 
more flexibility to choose sample size. This enabled the 
definition of a single sample per application, as well as its 
precise labeling for synchronization purposes. These two 
features enabled an easy, uniform and statistically sound 
evaluation process for multicore architectures running 
heterogeneous workloads. Runtime sampling makes the 
synchronization process more difficult, and the large 
number of samples defined by simulation tools makes it 
nearly impossible to build BenchCast on top of existing 
simulation sampling techniques. Alternative application 
modifications such as iteration or working set reduction 
were discarded. Reducing iterations is not always possi-
ble, as some applications presentconvergent algorithms 
without a predefined number of iterations. Similarly, 
reducing the working set to non-realistic inputs could 
reduce the execution time, but modifies the micro-
architectural behavior. 

6 CONCLUSIONS 
In this work we presented a processor evaluation meth-
odology suitable for both performance and microarchitec-
tural analyses. Taking advantage of some basic execution 
features present in many applications, we identified, la-
beled and synchronized the execution of their ROIs. This 
process was standardized to include applications from 
different benchmarks, starting with the three (SPEC, 
PARSEC, NPB) already provided in the public release of 
the tool. The number of combinations (and therefore 
workloads) was large enough to provide statistically-
sound results. Additionally, we demonstrated that a 
small fraction of the ROI is, in most cases, representative 
of the whole-program execution, which significantly re-
duces the computational effort required for evaluation. 

The experiments that previously required several days 
can now be finished within hours. 
The accuracy of 20-second ROI execution was amply 
validated, demonstrating its suitability when statistical 
analysis is required. Hybrid workloads, where different 
applications run simultaneously on the same system, 
enabled the exploration of alternative performance met-
rics such as fairness. Finally, the utilization of hardware 
events for evaluation enabled the exploration of multiple 
microarchitectural parameters (as many as were available 
in the PMU of the system under evaluation). 
We defined and presented three simple experiments that 
demonstrate the flexibility of BenchCast. We carried out a 
deep performance comparison of two commercial proces-
sors, providing more accurate results than existing meth-
odologies and establishing the architectural implications 
on performance. We also extended the evaluation process 
to configurable hardware features, such as SMT or 
prefetching. We encourage readers to adapt the tools to 
the huge number of possibilities provided. All the code 
generated for this work is open access, with the intention 
of facilitating its utilization by the research community. 
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