
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, SUBMITTED FOR REVIEW 1

Fast, Accurate Processor Evaluation through
Heterogeneous, Sample-based

Benchmarking
Pablo Prieto, Pablo Abad, Jose Angel Gregorio, Valentin Puente

Abstract— Performance evaluation is a key task in computing and communication systems. Benchmarking is one of the most
common techniques for evaluation purposes, where the performance of a set of representative applications is used to infer
system responsiveness in a general usage scenario. Unfortunately, most benchmarking suites are limited to a reduced number
of applications, and in some cases, rigid execution configurations. This makes it hard to extrapolate performance metrics for a
general-purpose architecture, supposed to have a multi-year lifecycle, running dissimilar applications concurrently. The main
culprit of this situation is that current benchmark-derived metrics lack generality, statistical soundness and fail to represent
general-purpose environments. Previous attempts to overcome these limitations through random app mixes significantly
increase computational cost (workload population shoots up), making the evaluation process barely affordable. To circumvent
this problem, in this paper we present a more elaborate performance evaluation methodology named BenchCast. Our proposal
provides more representative performance metrics, but with a drastic reduction of computational cost, limiting app execution to
a small and representative fraction marked through code annotation. Thanks to this labeling and making use of synchronization
techniques, we generate heterogeneous workloads where every app runs simultaneously inside its Region Of Interest, making a
few execution seconds highly representative of full application execution.

Index Terms— C.1 Processor Architectures, C.4 Performance of Systems, C.4.c Measurement techniques, C.4.g
Measurement, evaluation, modeling, simulation of multiple-processor systems.

——————————  ——————————

1 INTRODUCTION
EACHING nowadays the 50th anniversary of the
commercialization of the first CPU-on-a-chip [1], we

have witnessed technology evolution that has turned
computing devices into the core component of nearly any
activity in our everyday life. Currently, despite the recent
emergence of domain-specific processors [2] (led by GPU
computing for deep-learning applications), the general-
purpose computing model still constitutes a relevant
fraction of the semiconductor market. In this computing
model, the processor runs applications (often concurrent-
ly) with quite dissimilar characteristics. Under these con-
ditions, measuring (and defining) the expected processor
behavior (performance) is challenging. Each piece of ap-
plication code can interact in a different way with proces-
sor microarchitecture and concurrency might introduce
“unwanted” cross-effects, affecting overall system behav-
ior negatively.
Benchmarking is the predominant methodology em-
ployed for performance evaluation, providing a standard-
ized way to measure and compare alternative processors.
A meticulous selection process is usually performed in
order to define a reduced set of applications that are suf-
ficiently representative of a much broader usage scenario,
corresponding to a specific target environment (scientific
[3], NoSQL serving [4], Machine Learning [5], etc.) or one
closer to the “general purpose” scenario [6][7]. Unfortu-
nately, many of these benchmarking suites present two

important drawbacks. First, the number of applications
under evaluation is usually limited to a few tens. Even
when considered a representative sample, if we want to
model performance as a random variable, the available
number of values is usually below the recommended
limit to reach a reasonable confidence margin in the eval-
uation process. Second, most of the CPU market share
corresponds to environments (desktop, cloud computing)
where there is limited control of the kind of applications
that run on the same processor chip simultaneously. Cur-
rent benchmarking metrics (latency, rate-mode through-
put) might not suffice to gain insight into the consequenc-
es of this resource sharing. Therefore, this makes the re-
design of the “representative workload” and “representa-
tive metric” concepts necessary.
A straightforward technique to increase the benchmark
size (and hence the statistical soundness of the results),
targeting both heterogeneous and concurrent environ-
ments, consists of a random mix of benchmark applica-
tions running in parallel inside the same computer
[8][9][10]. To the best of our knowledge, this technique is
usually employed with a single benchmark suite, and
parallel execution relies merely on launching every appli-
cation in a synchronous way. Despite partly solving tradi-
tional benchmarking limitations, this methodology signif-
icantly increases the computational cost of the evaluation
process (to the point of being impractical in certain condi-
tions). Relying on the same principle of random mixing,
in this paper we propose a much more elaborate method-
ology to avoid these increased costs through the follow-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
All Authors are with the Computer Engineering Group of the University of
Cantabria, Av. de los Castros SN, 39005, Santander, Spain. E-mail: [prietop,
abadp, monaster, vpuente]@ unican.es.

R

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, SUBMITTED FOR REVIEW

ing features:
• Computational resource usage is limited to a small

fraction of application code, belonging to its Region of
Interest (ROI). Our preliminary explorations demon-
strate that many applications from different bench-
marks show a similar loop-based ROI structure that
has repetitive behavior from the microarchitectural
viewpoint.

• To ensure that every application runs its ROI while
performance is being measured a fine-grain synchro-
nization process is used. Additionally, automated
hardware event counting during evaluation increases
the variety of information available about execution,
given the profuse list of events available in state-of-
the-art processors.

• The methodology is generalized to any application,
independently of its benchmark suite. This allows a
sort of Meta-benchmarking methodology to be creat-
ed, which can increase metric coverage. To do this, we
formally define the code and execution conditions that
must be met by a new application to be part of the
random mixes.

Following the proposed methodology, we can increase
performance metric representativeness, yet under con-
strained time. This enables the concurrent exploration of
alternative performance metrics (such as fairness) and the
study of diverse microarchitectural behaviors.
This work expands on previous work [11] by generalizing
our methodology to multiple benchmark suites and en-
hancing evaluation features. In this work, we make the
following contributions:
• We develop a multi-benchmark tool for exhaustive

and accurate system evaluation. Thanks to the auto-
mated workload generation, execution and monitor-
ing process, the user will gain insight into perfor-
mance issues transparently and in a feasible amount of
time.

• We define and standardize the process to add new
benchmarks to the initial application pool. Conditions
that must be met by any candidate application are de-
fined. Around 50 applications have been profiled and
employed in this work to test the methodology.

• We carry out a raw performance evaluation of two
counterpart server architectures from the two main
CPU vendors, AMD and Intel. Our evaluation is com-
pared to a “conventional” one, such as the one per-
formed through the SPEC CPU17 benchmark [6].

• Direct access to hardware counters during the ROI
execution enables elaborate performance evaluation
methodologies such as Top-Down [12] and more sub-
tle microarchitectural analysis. We extend processor
evaluation of micro-architectural parametrization
(SMT and hardware prefetching), to prove that the
technique is suitable to enhance understanding of the
effect of these techniques.

2 MOTIVATION
As mentioned in the previous section, computational cost
can hinder the evaluation process when it moves from a
few workloads to several hundreds. This problem has

been widely addressed for simulation-based research,
where the entire execution of an application is, in most
cases, unattainable. To circumvent the problem, sampling
techniques (i.e., measuring performance only in a relevant
fraction of the original application) are usually employed
[13][14][15]. Our proposal follows the same approach in a
different context: evaluation of real systems when the
number of workloads to be considered is impractical for
full execution.
The core operation of BenchCast is based on a well-known
observation about the execution structure found in many
programs. As described in [16], computationally bound
applications go through different stages of execution.
They usually start with an initialization phase where data
structures are set up, moving next to a stage correspond-
ing to the bulk of the execution and ending up with a
phase devoted to presenting the application’s results. The
central stage of the three described is usually labeled as
the Region of Interest (ROI), because it corresponds to the
largest fraction of execution time and is devoted to the
resolution of the main tasks. For this reason, a program’s
ROI is the most relevant stage in terms of performance.
This stage usually has a marked periodical behavior [16]
because it tends to be implemented as a set of hierarchical
procedures contained in a main loop. Analyzed in detail,
this arrangement implies non-uniform behavior from a
performance viewpoint, making it difficult to find an
execution phase that is representative of the whole pro-
gram’s execution.

Figure 1 shows an example of this time-varying behavior
for the 505.mcf application from the SPEC CPU 2017
benchmark [6]. In both graphs, we measured the temporal
evolution of alternative performance metrics (instructions
per cycle, branch prediction accuracy and L1D Cache
miss rate) making use of two different granularities. In
the upper graph, performance metrics were collected
through the Linux perf command [17], with a fixed period

Fig. 1. Time-varying behavior for the SPEC17 application 505.mcf.
Results are shown for IPC, BPRED accuracy, L1D miss rates. (up)
100ms X-axis interval, (down) X-axis interval 1 loop iteration.

0

20

40

60

80

100

0

0.5

1

1.5

2

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1
10

01
11

01
12

01
13

01
14

01
15

01
16

01
17

01
18

01
19

01
20

01
21

01
22

01
23

01
24

01

Bp
re

d/
L1

D
 M

is
s

R
at

e

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Execution runtime (100ms intervals)

IPC BPRED L1D-miss-rate

0

20

40

60

80

100

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Bp
re

d/
L1

D
 M

is
s

R
at

e

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Execution runtime (ROI loop iterations)

IPC L1D Miss Rate Bpred Miss Rate

PABLO PRIETO ET AL.: BENCHCAST 3

of 100 milliseconds. In contrast, for the lower graph,
events were measured at the end of each ROI iteration
(variable period), modifying source code to perform this
task.
The obvious differences between the two graphs reveal a
special feature of the aforementioned periodic behavior.
When the sampling period is “randomly” selected as a
constant time interval, the high variability makes it hard
to find a single representative execution phase. In con-
trast, when the sampling period is somehow adapted to
the internal structure of the program (fitting in this case
the length of a ROI iteration), the performance metrics
become much steadier, and average metrics are close to
the global ones. According to this observation, we hy-
pothesize that the execution of a single ROI iteration can
represent the whole application with accuracy.

The next step in this process consisted of the exploration
of a large set of applications to verify our hypothesis. We
extended this kind of analysis (see Section 3.4 for system
configuration) to all the applications from three different
benchmarks focused on stressing the system’s processor
and memory subsystem: SPEC CPU17 [6], Parsec [7] and
NAS Parallel Benchmark [3]. SPEC CPU is an industry-
standardized suite with 23 benchmarks (rate mode) orga-
nized in two different suites (int and float), representative
of very different application areas (from desktop to scien-
tific). Similarly, the Parsec suite contains 13 applications

focused on emerging fields (computer vision, animation
physics, financial analytics, etc.), attempting to be repre-
sentative of next-generation software. Finally, the eight
workloads from the NAS Parallel Benchmarks have a
more specific target, all of them being derived from com-
putational fluid dynamics.
Figure 2 summarizes the results obtained in our explora-
tion. We were able to identify a loop-based ROI in 47 out
of 50 applications (94%). For each of these 47 applications,
we measured performance values for each ROI iteration,
calculating average and standard deviation of each metric
dataset. Next, average values were compared to full-
execution results, calculating their relative error, which
was the value represented by the horizontal bars in Fig-
ure 2. The relative error of each performance metric
formed the graph and, as can be seen, almost every appli-
cation presented a total value below 10%.
Therefore, in most cases, it seems accurate to consider
that a single iteration of the main loop inside the ROI
represents the whole execution with a high degree of
confidence. This means it could be possible to reduce the
computational effort required to evaluate heterogeneous
workloads. If ROI execution can be sychronized, then
simply running one (or a few) iteration of the ROI loop of
each application simultaneously would be enough to
characterize system performance for each workload. This
is the cornerstone of the proposed methodology, mixing
smart sampling and synchronization to build a computa-
tionally feasible and statistically sound evaluation meth-
odology. Through the rest of the paper the proposal is
thoroughly described (Section 3) and alternative evalua-
tion procedures are presented (Section 4). To facilitate
access to the tool by other researchers and simplify the
adoption of their own modifications, a public source code
repository and project management tools have been made
available (https://github.com/prietop/BenchCast).

3 METHODOLOGY (BENCHCAST)
The three main features of BenchCast are described in
detail in the following subsections.

3.1 Application Profiling & ROI Evaluation
Despite being found in most applications analyzed, not
every workload code corresponds to the loop-ROI struc-
ture, or the observed steady state between iterations. For
this reason, every new application proposed as part of
BenchCast must fulfill the set of requirements defined in
this section. The profiling process was standardized to
guarantee minimal deviation between the fraction of ROI
executed and the whole application. Unfortunately, given
the heterogeneous nature of the methodology (multi-
language, multi-benchmark, etc.), the complete automati-
zation of this profiling process was nearly impossible,
and minimal manual work was required to identify and
label the ROI.
In summary, this preliminary process involves the follow-
ing steps:

Fig. 2. Relative error comparing ROI iteration (average value) to
global execution. Error was estimated for three different perfor-
mance metrics: IPC, L1D Hit rate and Branch predictor accuracy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

IS[NPB] 806

bwaves[SPEC] 503.3

DC[NPB] 803

bwaves[SPEC] 503.1

bwaves[SPEC] 503.4

bwaves[SPEC] 503.2

CG[NPB] 802

dedup[PARSEC] 704

raytrece[PARSEC] 709

blender[SPEC] 526

nab[SPEC] 544

canneal[PARSEC] 703

mcf[SPEC] 505

lbm[SPEC] 519

x264[SPEC] 525.1

omnetpp[SPEC] 520

leela[SPEC] 541

freqmine[PARSEC] 708

ferret[PARSEC] 706

exchange2[SPEC] 548

povray[SPEC] 511

xz[SPEC] 557.1

imagick[SPEC] 538

x264[PARSEC] 712

blackscholes[PARSEC] 701

deepsjeng[SPEC] 531

xz[SPEC] 557.2

parest[SPEC] 510

MG[NPB] 808

EP[NPB] 804

cam4[SPEC] 527

xz[SPEC] 557.3

x264[SPEC] 525.2

facesim[PARSEC] 705

fluidanimate[PARSEC] 707

cactuBSSN[SPEC] 507

x264[SPEC] 525.3

swaptions[PARSEC] 711

fotonik3d[SPEC] 549

bodytrack[PARSEC] 702

FT[NPB] 805

LU[NPB] 807

SP[NPB] 809

namd[SPEC] 508

roms[SPEC] 554

streamcluster[PARSEC] 710

UA[NPB] 810

BT[NPB] 801

IPC

L1D-Hit

Bpred

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, SUBMITTED FOR REVIEW

• ROI identification: the application is profiled to iden-
tify those functions consuming the largest fraction of
execution time.

• Loop labeling: previous functions are analyzed look-
ing for the outer loop structure. Code is annotated to
measure the fraction of time spent in that loop, con-
sidering only applications returning values over 70%.

• Variability analysis: several performance metrics are
measured for every loop iteration. Variability is meas-
ured to find out the sample size (number of iterations)
required for a pre-defined error and confidence inter-
val.

• Execution time: the time required to execute the num-
ber of iterations calculated previously is estimated.
Only those applications with a value below a certain
threshold (in this case the maximum ROI is set to 20
seconds) are eligible. Total time required to perform
the measurement is highly sensitive to this parameter
(and hence, the chosen threshold is relatively small).

To gain insight into this process, we will walk through a
specific example in detail. Figure 3 describes the steps for
the 505.mcf application, corresponding to the SPEC
CPU2017 benchmark.
The process starts with hot code-paths exploration (ROI
candidates). Stack traces are captured to generate their
associated call-graph (calling relations between code
functions) and the later profiling can be performed with
the scripting tools provided with perf (stackcollapse) or by
generating a graphical representation called Flame Graph
[18]. Both solutions provide alternative representations of
equivalent information. Figure 3 shows the Flame Graph
for 505.mcf (Step 1), where we can identify the function
chain consuming the largest fraction of execution time. It
corresponds to the following stack: main→ global_opt→
primal_net_simplex→ master→ primal_bea_mpp→
spec_qsort. This part of the process, automated in
BenchCast, finishes by locating the source code files
where these functions are defined. The information gen-
erated in this process facilitates the manual annotation
performed in the next step.
Main loop identification is the only supervised action in
this process. This search is performed from bottom to top
of the flame graph (the bottom functions in Figure 3 are
those consuming a larger fraction of time). Every function
is examined looking for the outermost loop structure. In
this case, main and global_opt functions can be found in
the same file, mcf.c. It is easy to identify a while declara-
tion inside global_opt consuming about 90% of the execu-
tion time. Once located, it is necessary to verify that this
loop consumes a significant fraction of total execution
time. In our experiments, only those loops consuming
more than 70% of total execution time are considered as a
suitable ROI. The loop code is annotated to measure both
execution time and performance metrics for every itera-
tion. As Figure 3 (Step 2) shows, we make use of the PAPI
C interface to obtain a precise event count every iteration.
Once identified as a valid ROI loop, the next step consists
of a variability analysis of performance metrics across
loop iterations. The mean and standard deviation of IPC,

Bpred accuracy and L1Cache hit rate values are obtained
(Step 3). Making use of these values, the sample size
(number of iterations to be executed) can be estimated for
a pre-defined error rate and confidence level.

Previous evaluations [11] show that a 10% Error with a
95% confidence interval is enough to ensure the repre-
sentativeness of the workloads generated. In the 505.mcf
application, the required number of iterations is 2 (the
maximum of the three Ns obtained). As a final step, the
execution time required to run N iterations is calculated,

Fig. 3. Graphic description of the profiling process required for every
application to be part of BenchCast workloads (exemplified with
505.mcf).

PABLO PRIETO ET AL.: BENCHCAST 5

and only when this value is below the 20-second thresh-
old, the application is included as part of BenchCast.

A similar process to the one described here was done for
every application in Figure 2. The values in Table 1 sum-
marize the results of this profiling process, showing in-
formation about ROI fraction of total execution time (sec-
ond column), per-iteration average and standard devia-
tion of main performance metrics (IPC, L1D, L1I, Bpred
columns) and N-iterations execution time (last column).

The literature does not provide a formal definition of
which fraction of execution is required to establish that a
portion of code makes up a ROI. To select an appropriate
value for this threshold, we decided to guarantee that the
IPC measured for the whole ROI and the whole applica-
tion should have a relative error below 5%. A 70% ROI
keeps the applications listed in Figure 2 below this error
rate. Similarly, the 20-second threshold for ROI execution
fulfills two conditions. First, it is small enough to ensure
an evaluation process at least one order of magnitude
faster than a whole one (in this case, the average execu-
tion time of whole applications is ~300 seconds). Second,
it is large enough to fulfill the representativeness error
and confidence interval margins for most applications.
For some applications, a large variability was observed
between iterations (high Stdev values), caused mainly by
a variable ROI behavior across different execution phases.
In many of these cases we observed that phases respond
to simple patterns, it being feasible to split the application
into multiple workloads, one for each phase [11].
After this analysis, only 5 applications were ruled out.
Three of them with a ROI execution fraction below the
70% limit (538, 704, 806) and the remaining two exceeding
the 20-second threshold imposed for ROI execution (510,
710). Relative error and 20-second ROI are mutually relat-
ed. Relaxing error-related values could lead to a smaller
number of discarded applications if ROI length is main-
tained or to an even shorter ROI execution for the same
applications.

3.2 ROI Annotation & Synchronization
Once the ROI of the selected application is known, heter-
ogeneous workloads will be defined. This will increase
the available number of samples on our evaluation mech-
anism. All applications running in any workload will be
executing their region of interest simultaneously. Each
application should execute at least one iteration of the
main loop. To achieve this, we create a master application
launcher that executes each application of the workload
and synchronizes them at the beginning of their ROI.
BenchCast uses a POSIX thread barrier mapped onto a
shared memory region through a POSIX shared memory
object. The barrier and the shared memory object are
created by BenchCast master launcher. We append barrier
calls within the ROI annotation code located in the previ-
ous section. The BenchCast master launcher then creates
child processes for each application to be executed in the
workload, attaching each process to a different core (or
hardware context) of the system under evaluation, using
Linux sched setaffinity system call. BenchCast master and
the applications wait at the same barrier until all the ap-
plications reach their ROI. This process can be repeated as
many times as needed, and in our experiments, work-
loads usually begin after all applications have executed at
least one ROI loop (so the workload starts the second time
the barrier is reached). Then, the barrier is raised and
disabled, and measurements can begin with all the appli-
cations executing their ROI concurrently.
BenchCast comes with code annotations for SPEC17,
PARSEC and NPB applications. BenchCast includes the

TABLE 1. APPLICATION PROFILING RESULTS

IPC L1D L1I Bpred

App ROI Mean Stdev Mean Stdev Mean Stdev Mean Stdev TEVAL

503.1 99.3 1.649 0.733 93.4 2.578 100.0 0.001 99.8 0.036 25.36

503.2 99.5 1.511 0.616 92.9 2.178 100.0 0.001 99.9 0.031 18.62

503.3 99.3 1.559 0.670 93.0 2.420 100.0 0.001 99.8 0.025 19.86

505 100.0 0.935 0.103 81.8 5.258 100.0 0.003 92.1 2.220 18.41

507 99.1 1.367 0.008 78.0 0.025 91.4 0.028 99.9 0.003 3.46

508 100.0 2.689 0.005 95.5 0.022 100.0 0.002 95.2 0.260 3.68

510 79.0 1.934 0.058 90.4 0.674 99.9 0.139 98.0 0.227 71.05

511 99.5 2.416 0.152 93.1 1.422 95.0 1.906 99.2 0.279 29.11

519 99.3 1.836 0.004 84.1 0.239 100.0 0.000 99.7 0.003 0.08

520 99.3 0.741 0.021 88.5 0.268 98.8 0.252 96.8 0.114 1.06

521 99.0 1.235 0.112 95.1 0.315 99.0 0.236 98.9 0.059 0.57

525.1 96.7 2.796 0.329 97.9 1.180 97.8 1.143 94.3 2.934 0.05

525.2 99.7 3.269 0.153 98.8 1.368 97.2 0.580 97.1 0.635 0.20

525.3 97.1 3.244 0.137 98.9 0.249 97.7 0.649 97.4 0.702 0.27

526 92.5 0.907 0.092 91.6 0.524 8.3 7.331 99.3 0.540 3.43

527 93.3 1.847 0.054 91.9 1.503 96.5 0.566 97.9 0.254 4.59

531 99.8 1.836 0.081 99.0 0.151 97.6 1.530 95.1 0.614 1.80

538 38.9 1.970 0.023 100.0 0.001 100.0 0.000 98.9 0.120 0.07

541 99.8 1.264 0.059 98.3 0.381 99.9 0.068 86.1 1.818 0.61

544 97.4 1.622 0.148 96.3 0.684 100.0 0.003 98.8 2.286 1.68

548 99.5 2.145 0.102 100.0 0.001 99.5 0.417 98.3 0.306 3.13

549 96.9 1.095 0.063 88.8 0.007 100.0 0.005 99.9 0.018 0.20

554 99.5 1.920 0.028 92.0 0.367 99.9 0.010 99.8 0.021 2.56

557.1 88.0 0.775 0.056 92.8 0.609 100.0 0.003 91.7 0.292 5.33

557.2 96.1 2.133 0.049 95.8 0.699 100.0 0.006 98.2 0.132 4.44

557.3 95.6 1.428 0.281 96.3 0.675 100.0 0.020 93.8 1.625 10.28

701 85.8 1.726 0.000 99.6 0.003 100.0 0.001 99.4 0.001 1.19

703 73.9 0.260 0.012 68.7 0.694 99.9 0.009 91.0 0.876 0.02

704 45.2 1.821 0.013 97.7 0.018 97.8 0.726 94.1 0.087 3.36

705 99.5 2.603 0.006 97.3 0.011 97.2 0.066 98.7 0.029 2.80

706 99.4 1.492 0.114 95.6 1.575 99.8 7.833 95.3 0.555 0.10

707 99.5 1.976 0.232 98.8 0.264 100.0 0.000 94.2 1.367 0.51

708 96.6 1.897 0.230 97.9 0.731 99.7 5.443 97.3 2.116 0.52

709 75.1 2.353 0.012 99.7 0.005 100.0 0.003 88.7 0.170 0.64

710 79.9 0.853 0.001 95.8 0.007 100.0 0.000 99.5 0.095 80.80

711 99.1 2.349 0.006 98.4 0.047 100.0 0.002 98.2 0.015 1.58

712 96.5 2.082 0.111 94.7 1.905 88.9 1.424 91.7 3.393 0.20

801 89.5 2.762 0.002 93.2 0.000 100.0 0.000 99.4 0.020 4.01

802 94.5 1.061 0.001 61.4 0.000 100.0 0.000 99.6 0.000 2.41

805 65.8 2.597 0.001 66.6 0.000 100.0 0.000 99.8 0.001 7.27

806 20.4 2.233 0.001 87.2 0.001 100.0 0.000 100 0.000 0.47

807 92.1 2.064 0.002 88.9 0.001 100.0 0.000 99.5 0.006 2.11

808 73.5 2.390 0.003 88.6 0.013 100.0 0.000 99.6 0.000 2.00

809 92.8 2.239 0.002 84.7 0.000 100.0 0.000 99.5 0.000 1.10

810 99.6 1.846 0.003 94.8 0.071 100.0 0.002 98.0 0.046 1.79

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, SUBMITTED FOR REVIEW

necessary information to launch the applications of these
benchmarks as well as the PATH to the local installation.
To add a new application to the pool (provided it com-
plies with the previous section’s requirements), some
information must be provided to the master launcher
program, such as the PATH to the new application and its
launch command.

3.3 Workload Generation and Execution
BenchCast both creates workloads and evaluates their
behavior during execution. Making use of the PAPI li-
brary and attaching PAPI events to the applications exe-
cuting on the system, BenchCast can measure any perfor-
mance counter available through the PAPI interface. The
PAPI library and PAPI event initialization is performed
by the BenchCast master launcher, and the event list is
provided through an easy to modify configuration file.
Examples for top-down analysis and basic performance
analysis configuration files are provided.
To perform an evaluation using BenchCast, we dynamical-
ly generate sufficient variety of workloads so the results
are statistically significant. Workloads are generated
choosing randomly among the available applications in
the pool (SPEC2017, PARSEC and NPB out of the box). By
default, BenchCast launches one application per available
core in the system under test. If the number of selected
applications is fewer than the number of available cores,
multiple copies of each application are launched until all
hardware contexts are allocated.
Once the applications reach the synchronization point, at
the beginning of their ROIs, they start running simultane-
ously. The master launcher then starts the PAPI meas-
urement, for the duration of at least one loop of the ROI
(at least 20 seconds). Once the execution completes,
BenchCast stops the measurement and stops all the appli-
cations, so the next workload execution can be initiated.
The results obtained through the performance counters
are written in a results file when each workload ends.
Among others, BenchCast provides the following parame-
ters to perform an evaluation of a system:
• Number of cores: number of cores to use on the sys-

tem. By default, the number of cores available, but a
lower number can be provided and some of the cores
of the system under test will not be used for the eval-
uation. These include simultaneous multithreading
hardware contexts.

• Number of applications: number of different applica-
tions that will be used in each workload. Multiple cop-
ies of each application are launched until the selected
number of cores has one application each.

• Number of workloads: number of different workloads
that will be generated for the complete evaluation.

• Event list: A file containing the list of PAPI events that
will be measured for each application in each work-
load.

• Measurement time: the execution time each applica-
tion runs for the evaluation. Typically, 20 seconds, to
guarantee at least one iteration of the ROI loop.

3.4 Methodology Validation
For the experiment in this section, we used a desktop-like
computer configuration, an Intel i5-7500 4-Core chip run-
ning at 3.4GHz with 6MB of cache and a main memory of
16GB. The software stack corresponds to Debian 9 distri-
bution (Linux kernel 4.9.0). 1000 random combinations
are generated, enough to guarantee that variables follow
a normal distribution. For TOTAL workloads, each core
runs a single application of the combination in an “infi-
nite loop” and execution is terminated when every appli-
cation completes at least one execution. BenchCast results
are obtained executing 20 seconds of their synchronized
ROIs. For this number of applications and execution-time
values (20 sec. ROI vs. 300 seconds average app execution
time), BenchCast can reduce the computational cost from
more than a week to only 20 hours. These savings remain
constant for each experiment performed, meaning that all
the data included in this paper were obtained in less than
7 days, in contrast to the multiple months that would
have been necessary without the proper methodology.

Figure 4 shows the IPC histogram for both experiments.
The degree of similarity between the two measurements,
suggests that the performance figures of BenchCast are
equivalent to full application, at a fraction of the compu-
tational cost. This postulation is statistically supported
through a two-sample Kolmogorov-Smirnov (henceforth
KS) test [19]. This is a nonparametric test used to compare
the equality (probability distribution fit test) of two data
samples. The KS statistic is based on the largest vertical
difference between the cumulative distribution function
(CDF) of both samples and is defined as,

𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑖𝑖≤𝑁𝑁|𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖) − 𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖)|

where CDFITER and CDFTOTAL are the samples under test
and N the number of observations. This KS statistic is
meant for testing the (null) hypothesis of both samples
coming from a common distribution. The hypothesis
regarding the distributional form is rejected if the test
statistic D is greater than a critical value obtained from a
table [19]. In this case, with a number of samples larger
than 40 and a 1% significance level, the critical value can
be calculated as,

𝐶𝐶 =
1.63
√𝑁𝑁

According to the data collected for both samples, the
maximum difference is 0.0109, which is less than the criti-

Fig. 4. Distribution comparison with a 1000-workload sample. Histo-
grams for ITER (BenchCast) and TOTAL executions.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

3.
1

3.
3

3.
5

3.
7

3.
9

Fr
eq

ue
nc

y
H

is
to

gr
am

Instructions Per Cycle

TOTAL SAMPLE

PABLO PRIETO ET AL.: BENCHCAST 7

cal value. Therefore, we would accept, at the 1% signifi-
cance level, the hypothesis that both sample distributions
come from the same population.

To gain even more insight into similarity we evaluate the
random variable e(w) defined as

𝑒𝑒(𝑤𝑤) = 1 −
𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤)
𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑤𝑤)

In words, e(w) is the per-workload IPC relative error be-
tween TOTAL and ITER results. Both IPCsample and IPCtotal
can be approximated by a normal distribution [11], and as
results in Figure 5 show, the generated error variable e(w)
seems to fit into a similar kind of distribution. As can be
seen, the average value of error distribution is 0.0012,
while the standard deviation is 0.014. These values mean
that error remains below 5% (4.374% exactly) with a 99%
confidence level.

4 SYSTEM EVALUATION THROUGH BENCHCAST
In this section, we will describe the versatility of the
BenchCast methodology to carry out alternative perfor-
mance evaluations. It should be noted that all these eval-
uations would also be possible running complete applica-
tions, but at a prohibitive computation cost.
The flexibility of hardware performance counters enables
the evaluation of many events, which provides not only
performance metrics, but also enables the analysis of the
hidden architectural causes explaining these results. For
this reason, each of the experiments presented provides
both the raw performance numbers and additional infor-
mation about microarchitectural behavior, which leads to
a much more consistent discussion of results.
The number of potential experiments is nearly as large as
the number of events available in the performance moni-
toring unit. In this work we limit the content to three
basic experiments that provide a reasonable idea of the
strengths of our tool. These experiments are described in
the next three subsections.

4.1 System-wide Performance
The first experiment will compare two alternative com-
mercial processors using the proposed methodology.
Basic performance evaluation with BenchCast is carried
out measuring the total number of instructions retired
during the 20-second ROI interval (IPC is not a valid la-
tency metric in this case due to the different frequency of
operation in the processors evaluated and potential pow-

er scaling across measurements). Two similar servers
with AMD and Intel processors will be used. The first
server configuration is a two-socket with two Intel Xeon
Silver 4216 chips running at 2.10 GHz, with 22MB of
cache and a main memory of 110GB. The counterpart
server configuration corresponds to a two-socket AMD
EPYC 7352 with a 24-Core processor per socket (48 cores
in total) at 1.5 GHz (up to 3.2 GHz) with 128MB of cache
and 110GB of main memory. The software stack is the
same in both systems. The same 1000 workloads are gen-
erated, executed and profiled to obtain final results in
both systems. Our performance results are compared to
the SPECrate metrics collected through the “official” pro-
cedure described in the “Run and Reporting Rules” sec-
tion of SPECCPU documentation [6].

Both SPECrate (above) and BenchCast (below) results are
presented in Figure 6. In both cases, the performance
metrics are represented with a frequency histogram (bars)
and its estimated probability distribution function (lines).
Results are normalized to Intel’s Average value. As ob-
served in Figure 6.above, SPECrate evaluation estimates a
2.33 times better average performance of the AMD server
compared to the Intel one. With 1.5 times the core count
(32 vs. 48), AMD seems to obtain a better per-core per-
formance than its counterpart. Unfortunately, the small
number of workloads employed by SPECrate provides
two probability distributions with a large standard devia-
tion, reducing the confidence interval below 50%, which
is far from statistical standards.
Comparing SPECrate results to BenchCast ones, we ob-
serve two significant differences. First, the number of
workloads evaluated with BenchCast enables a drastic

Fig. 5. Histogram and estimated normal distribution for the “relative
error” random variable.

Fig. 6. Execution comparison of AMD-based and Intel-based server
configurations. (Above) SPECrate methodology and (Below)
BenchCast methodology.

0.00

0.01

0.02

0.03

0.04

-0
.1

-0
.0

92
-0

.0
84

-0
.0

76
-0

.0
68

-0
.0

6
-0

.0
52

-0
.0

44
-0

.0
36

-0
.0

28
-0

.0
2

-0
.0

12
-0

.0
04

0.
00

4
0.

01
2

0.
02

0.
02

8
0.

03
6

0.
04

4
0.

05
2

0.
06

0.
06

8
0.

07
6

0.
08

4
0.

09
2

Fr
eq

ue
nc

y
H

is
to

gr
am

IPC Relative Error (ITER vs. TOTAL)

HISTOGRAM
NORMAL

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
05

0.
25

0.
45

0.
65

0.
85

1.
05

1.
25

1.
45

1.
65

1.
85

2.
05

2.
25

2.
45

2.
65

2.
85

3.
05

3.
25

3.
45

3.
65

3.
85

Fr
eq

ue
nc

y
H

ist
og

ra
m

Performance (Normalized to Intel results)

Intel
AMD
Intel Normal Dist
AMD Normal Dist

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
05

0.
25

0.
45

0.
65

0.
85

1.
05

1.
25

1.
45

1.
65

1.
85

2.
05

2.
25

2.
45

2.
65

2.
85

3.
05

3.
25

3.
45

3.
65

3.
85

Fr
eq

ue
nc

y
H

ist
og

ra
m

Performance (Normalized to Intel results)

Intel
AMD
Intel Normal Dist
AMD Normal Dist

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, SUBMITTED FOR REVIEW

reduction in standard deviation. Second, the margin of
AMD is reduced from 2.33 to 1.62 in this case. This result
indicates that when a large, heterogeneous number of
workloads is evaluated, per-core performance becomes
nearly equal in both server configurations and the only
advantage of the AMD server comes from the number of
cores. This substantial difference between the two evalua-
tion methodologies could be a determining factor in a
tradeoff metric such as performance-cost in certain mul-
titenancy environments, such as cloud providers.

BenchCast enables us to move one step further in the per-
formance comparison process. Thanks to event counting
tools, we can explore in detail the divergence observed in
SPECrate and BenchCast results. To do so, we will explore
the per-core performance of both processors defining the
random variable D(w) as:

𝐷𝐷(𝑤𝑤) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤)
D(w) is the Performance difference between AMD-based
and Intel-based servers running the same workload w.
Since both performance variables can be approximated by
a normal distribution [11], D(w) is also normal. Since we
are interested in the performance of a single core (not a
hardware context, SMT is disabled for this experiment),
we divide the performance results by the number of cores
of each processor chip. We show the results in Figure 7. In
this graph, the x-axis indicates which processor performs
better (Intel for positives, AMD for negatives), confirming
the similar behavior pointed out in Figure 6 (BenchCast).
The estimated distribution mean is -0.01, which repre-
sents a marginal advantage of AMD cores over Intel ones.
With this value, we can conclude that on average, both
cores perform similarly, and AMD-server benefit is de-
rived nearly exclusively form core count.
Despite the near-zero mean, the standard deviation indi-
cates the presence of many non-zero values where pro-
cessors perform differently. This dataset can be useful to
continue obtaining relevant performance information,
dividing workloads executed into two groups, depending
on their side of the x-axis. Thus, we could determine
whether the workloads from each side have different
features which could indicate the strengths and weak-
nesses of each processor microarchitecture.
For this group analysis we will employ a performance
analysis methodology known as Top-Down [12]. It is a
practical method to identify true bottlenecks in out-of-

order processors, built on top of existing performance
counters in Intel microarchitectures. From total pipeline
slots (number of instructions that can be issued/retired
per cycle), Top-Down estimates which fraction is utilized
by “good instructions” and which fraction remains empty
due to stalls from different parts of the processor pipeline.
Processor stalls are classified following a hierarchical
approach. At the top of this hierarchy four major
categories are defined:
• Frontend Bound: fraction of slots wasted because the

frontend undersupplies instructions to the backend,
fetching and decoding issues mainly

• Backend Bound: fraction of slots wasted because no
uops are delivered at the issue pipeline, due to a lack
of required resources, memory hierarchy or functional
unit issues.

• Bad Speculation: fraction of slots wasted due to
incorrect speculations associated with branch
prediction.

• Retiring: issued uops that get retired. Slots utilized by
“good instructions” (a 100% Retire corresponds to the
maximal IPC of the given microarchitecture).

In this experiment we will evaluate the behavior of the
two application groups (x-axis sides) analyzing whether
Top-Down results differ. We limit this evaluation to the
Intel server, which is enough to provide a preliminary
idea about what makes each processor core better/worse
from a software perspective. For the same number of
workloads employed throughout this section we obtained
the probability distribution function of each of the four
categories, shown in Figure 8. With one graph per
category, we pair the results of both groups, in order to
check for any observable difference. Both Frontend Bound
and Bad Speculation categories seem to obtain quite similar
results, which means that no particular difference is noted
for these parts of the pipeline between both groups. In
contrast, there is a significant difference in the Backend
Bound category, where we can observe that those

Fig. 7. Per-core Performance difference between Intel and AMD
servers. Frequency histogram.

Fig. 8. Frequency histogram for each Top-Down First Level Catego-
ry. AMD-winning vs. Intel-winning workloads.

0

0.04

0.08

0.12

0.16

0.2

-1
-0

.9
-0

.8
-0

.7
-0

.6
-0

.5
-0

.4
-0

.3
-0

.2
-0

.1 0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Fr
eq

ue
nc

y
H

ist
og

ra
m

Performance Difference

Intel-AMD Histogram

Normal

0

200

400

0 0.1 0.2 0.3 0.4

Fr
eq

ue
nc

y
H

ist
og

ra
m

Fraction of total slots

FE BOUND
Intel wins
Intel looses

0

200

400

0 0.1 0.2 0.3 0.4
Fr

eq
ue

nc
y

H
ist

og
ra

m

Fraction of total slots

BAD SPEC

Intel wins
Intel looses

0

100

200

0.2 0.4 0.6 0.8

Fr
eq

ue
nc

y
H

ist
og

ra
m

Fraction of total slots

BE BOUND
Intel wins

Intel looses

0

200

400

0 0.2 0.4 0.6 0.8

Fr
eq

ue
nc

y
H

ist
og

ra
m

Fraction of total slots

RETIRE Intel wins

Intel looses

PABLO PRIETO ET AL.: BENCHCAST 9

applications with a more relevant bottleneck in the
backend seem to behave better in intel processors than in
AMD. Those applications pressuring core backend seem
to be better suited to the Intel-based server. To
understand the source of inefficiencies of the AMD
backend, this exploration should analyze the lower levels
of top-down hierarchy. However, this is beyond the scope
of this work, which is limited to demonstrating that this
kind of systematic analysis is feasible through the
BenchCast tool.

4.2 Simultaneous Multithreading
Simultaneous Multithreading (SMT) is a performance
enhancement technique present in almost every modern
general-purpose processor. It basically consists of the
splitting of a physical core into multiple (usually two)
virtual cores known as hardware threads or hardware
contexts. This organization allows two instruction
streams to run simultaneously through the same pipeline,
improving aggregate ILP by improving processor re-
source utilization (especially if some of the threads have a
clear bottleneck in some of the stages of the execution
pipeline). Final performance improvement is usually far
from the theorical upper limit of adding the IPC of each
thread in the aggregate thanks to the second thread. The
hardware resources available are shared with a “rival”
and this has significant impact, which is dependent on the
nature of each thread (even to the point of being detri-
mental under certain scenarios or resource sharing poli-
cies). Using BenchCast it is possible to estimate the actual
benefit of enabling SMT in a general scenario, as well as
understanding how each shared resource can impact on
performance.

For this exploration, we limit our experiments to the Intel-
based server configurations employed in the previous
section. 1000 randomly generated applications were exe-
cuted, first with SMT activated, then deactivating SMT
through EFI settings. The results of both executions are
shown in Figure 9, represented by a frequency histogram
(bars) and its estimated probability distribution function
(lines). Performance values were normalized to NoSMT
results (mean=1 for NoSMT distribution). According to
the graph, SMT improves raw processor performance by
25% on average. The SMT measured benefit is far below
the theoretical upper limit, which means that vCPUs per-
form 40% worse than physical cores.

As mentioned previously, the access to every perfor-
mance counter available allows us to look for the multiple
sources of inefficiency and their contribution to the ob-
served performance gap. Concerning SMT, we can distin-
guish between two kinds of shared resources: core-level
and processor-level resources. Core-level resources corre-
spond to those shared inside each physical core, such as
L1 cache, branch prediction, issue queue, etc. Processor-
level resources are those shared among all cores, such as
Last Level Cache or memory bandwidth. Through the
appropriate selection of hardware events, BenchCast ena-
bles the fast exploration of the performance effect of SMT
on different Core-level and processor-level resources. For
this work we limit our experiments to the most perfor-
mance sensitive elements, branch prediction and cache
hierarchy (Both L1 and LLC).

First, we evaluate the different behavior of three core-
level resources in the presence and absence of SMT:
branch predictor, L1 data and instruction caches. Results
for these metrics are presented in Figure 10, as the cumu-
lative frequency graph of misses/misspredictions per kilo
instruction (MPKI). In this kind of graph, the x-axis repre-
sents the parameter under test while the y-axis indicates
the fraction of workloads that are below that MPKI value.
The presence of two instruction streams doubles, on aver-
age, the number of misses per kilo-instruction. Contrary
to the intuitive idea of sharing the instruction cache be-

Fig. 9. Performance effect of SMT. IPCT histogram and estimated
normal distribution.

Fig. 10. SMT Effect (cumulative frequency distribution) on different
hardware resources: Branch Prediction (above), L1I MPKI (mid) and
L1D MPKI (below).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
05

0.
25

0.
45

0.
65

0.
85

1.
05

1.
25

1.
45

1.
65

1.
85

2.
05

2.
25

2.
45

2.
65

2.
85

3.
05

3.
25

3.
45

3.
65

3.
85

Fr
eq

ue
nc

y
H

is
to

gr
am

Instructions Per Cycle (normalized to NoSMT results)

NoSMT
SMT
NoSMT Normal Dist
SMT Normal Dist

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-

ax
is

 v
al

ue

Branch Misspredictions per Kilo-instruction

SMT NoSMT

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-

ax
is

 v
al

ue

L1I Misses per Kilo-instruction

SMT NoSMT

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-

ax
is

 v
al

ue

L1D Misses per Kilo-instruction

SMT NoSMT

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, SUBMITTED FOR REVIEW

tween two threads, the final impact of this degradation on
overall performance seems to be insignificant, because in
both cases very low miss rates are observed. The negative
impact of SMT is more subtle on both branch prediction
and L1D performance. In the case of branch prediction,
the low values on the x-axis indicate that degradation
might have a minimal impact on performance. In con-
trast, L1D MPKI results are one order of magnitude larg-
er, which could indicate that the pressure on it has more
impact on performance results.

Concerning uncore resources, we close this section ana-
lyzing the impact of SMT on L3 performance. As can be
seen in Figure 11, SMT produces a similar degradation to
that observed in L1D. While LLC capacity remains con-
stant, the number of active working-sets doubles with
SMT, increasing the number of misses per kilo instruc-
tion. The exploration enabled by event counting in
BenchCast allows us to conclude that the pressure im-
posed by application datasets on the memory hierarchy
has a more noticeable effect on performance than dou-
bling Instruction working sets or branch patterns.

4.3 Hardware Prefetching
The last BenchCast use-case example is focused on Hard-
ware prefetching, which is a fundamental technique to
tolerate cache miss latency in state-of-the-art processors
[20][21]. Proactively fetching data from slower locations
to a faster cache level in advance might significantly re-
duce average memory access time. Nearly every modern
processor includes some hardware prefetching support,
exploiting simple and regular access patterns. This is the
case of many Intel microarchitectures (starting with Ne-
halem), where four different types of data prefetchers are
implemented in hardware. Two of these prefetchers,
known as DCU, are associated with L1 Data cache, where
prefetching is triggered by load instructions when certain
conditions are met [22]. The streaming prefetcher is trig-
gered by an ascending access to recent loads, assuming
that it is part of a streaming algorithm, automatically
fetching the next line. A PC-based prefetcher keeps track
of individual load instructions looking for a regular
stride. When found, a prefetch is sent to the next address
which is the sum of the current address and the stride.
The two remaining prefetchers are associated with L2
cache. The L2 Spatial Prefetcher strives to complete every
cache line fetched to the L2 cache with the pair line that
completes it to a 128-byte aligned chunk. The L2 Streamer
prefetcher monitors read requests (loads, stores, L1
prefetches and code fetches) from the L1 cache for ascend-

ing and descending sequences of addresses. When a
stream of requests is detected, the anticipated cache lines
are prefetched.
Again, the purpose of this section is to demonstrate the
versatility of BenchCast, carrying out a detailed analysis
of the performance effect of prefetching. The Model Spe-
cific Register (MSR) with address 0x1A4 will be used to
control the activation/deactivation of these prefetchers.
We define different combinations of enabled/disabled
prefetchers, analyzing performance metrics for each of
them. Figure 12 shows the IPC distribution of every
prefetcher enabled (ALL), L1 prefetching disabled and L2
enabled (L2), L2 disabled and L1 enabled (L1) and every
prefetcher disabled (NONE). In this graph, all perfor-
mance values were normalized to NONE mean.

As expected, the absence of prefetching has a negative
effect on performance, and the average IPC decreases
from 1.6 to 1.29, which corresponds to a 20% performance
degradation. Another observable result is the unbalanced
contribution of L1 and L2 prefetchers to performance
improvement. The activation of prefetching at each level
has a positive effect in both cases but seems to be more
relevant in the case of L2. The reason for this result might
be the large penalty of LLC misses and the larger LLC
cache size minimizing the negative pollution effects
caused by prefetching. A noteworthy result is that when
both prefetchers are combined, there is no benefit when
compared to L2 only prefetching.
In order to establish which fraction of workloads undergo
a performance degradation caused by prefetching, we
also define the following performance-difference varia-
bles:

𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑤𝑤) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤)
𝐿𝐿2 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿2(𝑤𝑤) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤)
𝐿𝐿1 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿1(𝑤𝑤) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑤𝑤)

The normal distribution of these three variables is shown
in Figure 12. In this graph, all values below zero represent

Fig. 12. (above) Performance effect of prefetching. IPCT distribu-
tion, normalized to NONE mean value. (below) Performance differ-
ence observed after prefetching activation, normal distribution.

Fig. 11. SMT Effect (cumulative frequency distribution) on L3 MPKI.

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2

Fr
eq

ue
nc

y
H

is
to

gr
am

Instructions per Cycle (normalized to NONE)

NONE L1 L2 ALL

0

0.1

0.2

0.3

0.4

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

 D
is

tr
ib

ut
io

n

Performance Difference

L2-NONE

L1-NONE

ALL-NONE

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-

ax
is

 v
al

ue

LLC Misses per Kilo-instruction

SMT NoSMT

PABLO PRIETO ET AL.: BENCHCAST 11

those workloads with poorer performance after prefetch-
ing activation. As can be seen, the activation of both or L2
prefetchers improves performance in a consistent way.
According to measured mean (0.296, 0.27) and stdev
(0.117, 0.105), less than 1% applications will suffer from
performance degradation. In the case of L1 prefetch, this
fraction grows to 3% applications (0.151 mean, 0.068
stdev). It still represents a small fraction, but combined
with the lower IPC improvement on average, explains its
worse results when compared to L2 prefetching.

Again, the access to event counting allows us to get a
sense of the result. In this case, we analyzed how different
hierarchy levels react to the changes in the prefetcher. As
an initial step, we focused our attention on the L2 Cache,
as it is the closest-to-processor level where prefetches are
stored [22]. Figure 13 shows the cumulative frequency
distribution of the MPKI for each prefetcher combination.
These results are consistent with the performance ones,
showing a MPKI improvement as more prefetchers are
activated. This result shows that L2 MPKI improvement
has a direct impact on performance, a similar tendency
being observed for both metrics. Despite seeming very
obvious, we highlight this conclusion because, as we will
see next, this relationship is not as straightforward for
every metric, and in some cases a closer look is necessary.
Next, focusing the attention on LLC metrics, we obtained
the MPKI results shown in Figure 14 (above). As can be
seen, in this case we obtained an evolution of MPKI in-
consistent with performance results. The best MPKI re-
sults were obtained when no prefetcher was activated
and they degraded progressively as they were activated.
This apparently contradictory behavior has a simple ex-
planation: if the raw LLC access numbers are analyzed, it
can be immediately observed that the activation of hard-
ware prefetching doubles the number of LLC accesses on
average. If we move to alternative events and measure
Miss rate in LLC (see Figure 14 (below)), we can observe
how, in this case, the results are consistent with perfor-
mance results and also with the expected prefetching
behavior.

5 RELATED WORK
The search for tools and methodologies targeting com-
puter performance evaluation has been constant over
time. However, both hardware and (mainly) software
heterogeneity have increased the complexity of this task.
Consequently, many benchmark suites are currently
available, representative of multiple environments where

computing systems can be found. Thus, hardware envi-
ronments such as image processing (GPUs) or High-
Performance Computing (HPC) employ specific bench-
mark suites. Some examples of GPU benchmarking tools
are Rodinia [23], Parboil [24] and Lonestar [25]. In con-
trast, HPC employs suites such as NAS Parallel Bench-
mark [3] (parallel performance measurement developed
by NASA), High-Performance Linpack [26] (CPU’s FP
performance, employed for setting up the Top-500 rank),
High-Performance Conjugate Gradients [27](HPCG) as an
alternative to HPL and HPCC suite [28].

From a software perspective, emerging environments
such as Big Data, Cloud Computing or Deep Learning
have generated the necessity of new benchmarking tools
to allow a representative evaluation for these computing
fields. Some of the most representative examples of
benchmark suites targeting these environments are MLP-
erf [29], CloudSuite [30], BigDataBench [31], YCSB [4] or
HiBench [32] .
General purpose hardware relies on heterogeneous
benchmark suites such as PARSEC [7] or SPEC [6], in an
attempt to be representative of a computing environment
where applications cover a wide spectrum. Focused on
the evaluation of commercial CPUs, the initial public
release of BenchCast already includes workloads generat-
ed from applications from these two suites, as well as
from the NAS Parallel Benchmark. However, BenchCast
was designed to be a sort of meta-benchmarking frame-
work, like Google’s PerfKit Benchmarker [33]. The rules
for including new applications are simple and new
benchmarks can be easily added.
Some performance evaluation processes are not suitable
for the aforementioned benchmarks. This is the case of
detailed architectural simulation [34], where the execu-
tion time required to run a complete application makes it
unaffordable in practice. In those cases, many studies
have focused on alternative solutions to reduce the com-

Fig. 14. LLC Cache Misses per Kilo Instruction (up) and Miss Rate
(down). Cumulative frequency distribution for different Prefetching
configurations.

Fig. 13. L2 Cache Misses per Kilo Instructions. Cumulative frequen-
cy distribution for different Prefetching configurations.

0

0.5

1

0 0.5 1 1.5 2
Fr

ac
tio

n
of

 a
pp

s b
el

ow
 x

-a
xi

s
va

lu
e

Misses per Kilo-Instruction

LLC MPKI

NONE
L1
L2
ALL

0

0.5

1

0 0.5 1 1.5 2

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-a

xi
s

va
lu

e

Miss Rate

LLC Miss Rate

NONE
L1
L2
ALL

0

0.5

1

0 1 2 3 4 5 6

Fr
ac

tio
n

of
 a

pp
s b

el
ow

 x
-a

xi
s

va
lu

e

Misses per Kilo-Instruction

L2 MPKI

NONE

L1

L2

ALL

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, SUBMITTED FOR REVIEW

putational cost required for evaluation. One of the most
common techniques is known as simulation sampling
[15][16][13], where the evaluation process is limited to
only a small relevant fraction of each application. Sim-
Points [35] is a well-known sampling methodology that
automatically identifies long, repetitive execution phases
in benchmarks, and limits simulations to a few instances
of these phases. Similarly, [36] and [37] make use of statis-
tical tools to evaluate the representativeness of a bench-
mark. This means limiting the execution of an application
to a reduced number of instructions, able to maintain
representativeness. With a similar objective, Craeynest
and Eeckhout [9] analyze the problem of the limited va-
lidity of current practices in multi-core simulation. Ve-
lazques et al. [8] carried out a benchmark selection, which
was as small as possible, also analyzing alternative sam-
pling methods and Singh and Awasthi [38] evaluated the
accuracy of characterizing the SPEC CPU2017 bench-
marks using SimPoints methodology. Loop-dominant
programs are targeted in [39]. For each loop found, the
authors define a signature, creating a signature vector for
each application. Through the similarity scores process,
they reduced the representative score and created micro-
benchmarks for emulating the original one.
In a similar way, our work also looks for a subset of in-
structions able to resemble a whole application. In con-
trast, targeting real hardware execution, we have much
more flexibility to choose sample size. This enabled the
definition of a single sample per application, as well as its
precise labeling for synchronization purposes. These two
features enabled an easy, uniform and statistically sound
evaluation process for multicore architectures running
heterogeneous workloads. Runtime sampling makes the
synchronization process more difficult, and the large
number of samples defined by simulation tools makes it
nearly impossible to build BenchCast on top of existing
simulation sampling techniques. Alternative application
modifications such as iteration or working set reduction
were discarded. Reducing iterations is not always possi-
ble, as some applications presentconvergent algorithms
without a predefined number of iterations. Similarly,
reducing the working set to non-realistic inputs could
reduce the execution time, but modifies the micro-
architectural behavior.

6 CONCLUSIONS
In this work we presented a processor evaluation meth-
odology suitable for both performance and microarchitec-
tural analyses. Taking advantage of some basic execution
features present in many applications, we identified, la-
beled and synchronized the execution of their ROIs. This
process was standardized to include applications from
different benchmarks, starting with the three (SPEC,
PARSEC, NPB) already provided in the public release of
the tool. The number of combinations (and therefore
workloads) was large enough to provide statistically-
sound results. Additionally, we demonstrated that a
small fraction of the ROI is, in most cases, representative
of the whole-program execution, which significantly re-
duces the computational effort required for evaluation.

The experiments that previously required several days
can now be finished within hours.
The accuracy of 20-second ROI execution was amply
validated, demonstrating its suitability when statistical
analysis is required. Hybrid workloads, where different
applications run simultaneously on the same system,
enabled the exploration of alternative performance met-
rics such as fairness. Finally, the utilization of hardware
events for evaluation enabled the exploration of multiple
microarchitectural parameters (as many as were available
in the PMU of the system under evaluation).
We defined and presented three simple experiments that
demonstrate the flexibility of BenchCast. We carried out a
deep performance comparison of two commercial proces-
sors, providing more accurate results than existing meth-
odologies and establishing the architectural implications
on performance. We also extended the evaluation process
to configurable hardware features, such as SMT or
prefetching. We encourage readers to adapt the tools to
the huge number of possibilities provided. All the code
generated for this work is open access, with the intention
of facilitating its utilization by the research community.

ACKNOWLEDGMENT
The authors wish to thank Jose Angel Herrero for his
valuable assistance with the computing resources within
the datacenter 3Mares. This work was supported by the
Spanish Government (Agencia Estatal de Investigacion)
under grant PID2019-110051GB-I00.

REFERENCES
[1] F. Faggin, “The Making of the first microprocessor,” IEEE

Solid-State Circuits Mag., vol. 1, no. 1, pp. 8–21, 2009, doi:
10.1109/MSSC.2008.930938.

[2] J. Dean, D. Patterson, and C. Young, “A New Golden Age
in Computer Architecture: Empowering the Machine-
Learning Revolution,” IEEE Micro, vol. 38, no. 2, pp. 21–29,
2018, doi: 10.1109/MM.2018.112130030.

[3] H. Jin, M. Frumkin, and J. Yan, “The OpenMP
implementation of NAS parallel benchmarks and its
performance,” Natl. Aeronaut. Sp. Adm. (NASA), Tech. Rep.
NAS-99-011, Moffett Field, USA, no. October, 1999, Accessed:
Oct. 07, 2011. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.65.1321&rep=rep1&type=pdf.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with
YCSB,” in Proceedings of the 1st ACM symposium on Cloud
computing - SoCC ’10, Jun. 2010, p. 143, doi:
10.1145/1807128.1807152.

[5] V. J. Reddi et al., “MLPerf Inference Benchmark,” 2020, doi:
10.1109/ISCA45697.2020.00045.

[6] “SPEC CPU 2017,” 2017. https://www.spec.org/.
[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC

benchmark suite,” in Proceedings of the 17th international
conference on Parallel architectures and compilation techniques -
PACT ’08, 2008, p. 72, doi: 10.1145/1454115.1454128.

[8] R. A. Velasquez, P. Michaud, and A. Seznec, “Selecting
benchmark combinations for the evaluation of multicore
throughput,” in ISPASS 2013 - IEEE International Symposium
on Performance Analysis of Systems and Software, 2013, pp.
173–182, doi: 10.1109/ISPASS.2013.6557168.

[9] K. Van Craeynest and L. Eeckhout, “The multi-program
performance model: Debunking current practice in multi-

PABLO PRIETO ET AL.: BENCHCAST 13

core simulation,” in Proceedings - 2011 IEEE International
Symposium on Workload Characterization, IISWC - 2011, 2011,
pp. 26–37, doi: 10.1109/IISWC.2011.6114194.

[10] M. Van Biesbrouck, L. Eeckhout, and B. Calder,
“Representative multiprogram workloads for
multithreaded processor simulation,” in Proceedings of the
2007 IEEE International Symposium on Workload
Characterization, IISWC, 2007, pp. 193–203, doi:
10.1109/IISWC.2007.4362195.

[11] P. Prieto, P. Abad, J. A. Herrero, J. A. Gregorio, and V.
Puente, “SPECcast: A Methodology for Fast Performance
Evaluation with SPEC CPU 2017 Multiprogrammed
Workloads,” 2020, doi: 10.1145/3404397.3404424.

[12] A. Yasin, “A Top-Down method for performance analysis
and counters architecture,” 2014, doi:
10.1109/ISPASS.2014.6844459.

[13] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program
behavior,” in Tenth international conference on architectural
support for programming languages and operating systems -
ASPLOS ’02, 2002, p. 45, doi: 10.1145/605397.605403.

[14] T. M. Conte, M. A. Hirsch, and K. N. Menezes, “Reducing
state loss for effective trace sampling of superscalar
processors,” 1996, doi: 10.1109/iccd.1996.563595.

[15] T. Lafage and A. Seznec, “Choosing Representative Slices of
Program Execution for Microarchitecture Simulations: A
Preliminary Application to the Data Stream,” in Workload
Characterization of Emerging Computer Applications, 2001.

[16] T. Sherwood, E. Perelman, and B. Calder, “Basic Block
Distribution Analysis to find periodic behavior and
simulation points in applications,” 2001, doi:
10.1109/pact.2001.953283.

[17] A. C. de Melo, “The New Linux ‘perf’ Tools,” 17
International Linux System Technology Conference.
Nuremberg, 2010, [Online]. Available: http://www.linux-
kongress.org/2010/slides/lk2010-perf-acme.pdf.

[18] B. Gregg, “The flame graph,” Commun. ACM, 2016, doi:
10.1145/2909476.

[19] F. J. Massey, “The Kolmogorov-Smirnov Test for Goodness
of Fit,” J. Am. Stat. Assoc., vol. 46, no. 253, pp. 68–78, 1951,
doi: 10.1080/01621459.1951.10500769.

[20] S. Mittal, “Survey of recent prefetching techniques for
processor caches,” ACM Comput. Surv., 2016, doi:
10.1145/2907071.

[21] B. Falsafi and T. F. Wenisch, “A primer on hardware
prefetching,” Synth. Lect. Comput. Archit., 2014, doi:
10.2200/S00581ED1V01Y201405CAC028.

[22] I. Corporation, “Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3 (3A, 3B & 3C): System
Programming Guide,” vol. 3, no. 253665, pp. 1–1386, 2013,
[Online]. Available:
papers3://publication/uuid/B767D5D8-AF4B-46BB-9893-
D8046A5460AB.

[23] S. Che et al., “Rodinia: A benchmark suite for
heterogeneous computing,” in 2009 IEEE International
Symposium on Workload Characterization (IISWC), Oct. 2009,
pp. 44–54, doi: 10.1109/IISWC.2009.5306797.

[24] J. A. S. C. Rodrigues et al., “Parboil: A Revised Benchmark
Suite for Scientific and Commercial Throughput
Computing,” IMPACT Tech. Rep., 2012.

[25] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative
study of irregular programs on GPUs,” in 2012 IEEE
International Symposium on Workload Characterization
(IISWC), Nov. 2012, pp. 141–151, doi:
10.1109/IISWC.2012.6402918.

[26] J. J. Dongarra, P. Luszczek, and A. Petite, “The LINPACK
benchmark: Past, present and future,” Concurr. Comput.
Pract. Exp., vol. 15, no. 9, pp. 803–820, 2003, doi:
10.1002/cpe.728.

[27] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-

performance conjugate-gradient benchmark: A new metric
for ranking high-performance computing systems,” Int. J.
High Perform. Comput. Appl., 2016, doi:
10.1177/1094342015593158.

[28] P. R. Luszczek et al., “The HPC Challenge (HPCC)
benchmark suite,” in Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC’06, 2006, pp. 213-es, doi:
10.1145/1188455.1188677.

[29] P. Mattson et al., “MLPerf Training Benchmark,” arXiv, Oct.
2019, [Online]. Available: http://arxiv.org/abs/1910.01500.

[30] M. Ferdman and E. Al., “Clearing the Clouds: A Study of
Emerging Scale-out Workloads on Modern Hardware,” in
ASPLOS’12, 2012, vol. 40, no. Asplos, pp. 37–48, doi:
10.1145/2189750.2150982.

[31] L. Wang et al., “BigDataBench: A big data benchmark suite
from internet services,” in Proceedings - International
Symposium on High-Performance Computer Architecture, 2014,
pp. 488–499, doi: 10.1109/HPCA.2014.6835958.

[32] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The
HiBench benchmark suite: Characterization of the
MapReduce-based data analysis,” in Lecture Notes in
Business Information Processing, 2011, vol. 74 LNBIP, pp.
209–228, doi: 10.1007/978-3-642-19294-4_9.

[33] google, “PerfKit Benchmarker.”
https://github.com/GoogleCloudPlatform/PerfKitBenchm
arker (accessed May 31, 2021).

[34] J. Lowe-Power et al., “The gem5 Simulator: Version 20.0+∗
A new era for the open-source computer architecture
simulator,” arXiv, 2020, [Online]. Available:
https://arxiv.org/abs/2007.03152.

[35] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood,
and B. Calder, “Using SimPoint for accurate and efficient
simulation,” ACM SIGMETRICS Perform. Eval. Rev., vol. 31,
no. 1, pp. 318–319, 2003, doi: 10.1145/885651.781076.

[36] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe,
“SMARTS: Accelerating microarchitecture simulation via
rigorous statistical sampling,” in Conference Proceedings -
Annual International Symposium on Computer Architecture,
ISCA, 2003, pp. 84–95, doi: 10.1109/isca.2003.1206991.

[37] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John,
“Measuring program similarity: Experiments with SPEC
CPU benchmark suites,” 2005, doi:
10.1109/ISPASS.2005.1430555.

[38] S. Singh and M. Awasthi, “Efficacy of Statistical Sampling
on Contemporary Workloads: The Case of SPEC CPU2017,”
2019, doi: 10.1109/IISWC47752.2019.9042114.

[39] E. M. Shaccour and M. M. Mansour, “A Loop-Based
Methodology for Reducing Computational Redundancy in
Workload Sets,” IEEE Access, vol. 6, pp. 9570–9584, 2018,
doi: 10.1109/ACCESS.2017.2788921.

Pablo Prieto received his BS, MS and PhD degree
from the University of Cantabria, Spain, in 2005 and
2014 respectively. He currently works as an associate
professor of Computer Architecture at the same
University. His research interests are focused on
Cache Hierarchies and Memory Controller design.

Pablo Abad received his BS, MS and PhD degree
from the University of Cantabria, Spain, in 2003 and
2010 respectively. He is currently an associate pro-
fessor of Computer Architecture for the Department of
Computers and Electronics at the same University.
His research interests are focused on performance
evaluation of chip multiprocessors.

Jose-Angel Gregorio received the BS, MS and
PhD in Physics (Electronics) from the University of
Cantabria, Spain, in 1978 and 1983 respectively. He
is currently a professor of Computer Architecture in
the Department of Computers and Electronics at the

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, SUBMITTED FOR REVIEW

same University. His main research interests focus on chip multipro-
cessors (CMPs) with special emphasis on the memory subsystem,
interconnection network and coherence protocol of these systems.

Valentin Puente received the BS, MS and PhD
degree from the University of Cantabria, Spain, in
1995 and 2000 respectively. He is currently a Profes-
sor of Computer Architecture in the Department of
Computers and Electronics at the same University.
His research interests focus on Memory Hierarchy
design and the impact that upcoming technology

changes might have on it.

	1 Introduction
	2 Motivation
	3 Methodology (BenchCast)
	3.1 Application Profiling & ROI Evaluation
	3.2 ROI Annotation & Synchronization
	3.3 Workload Generation and Execution
	3.4 Methodology Validation

	4 System Evaluation through BenchCast
	4.1 System-wide Performance
	4.2 Simultaneous Multithreading
	4.3 Hardware Prefetching

	5 Related Work
	6 Conclusions
	Acknowledgment
	References

