
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 1

Parallel and Asynchronous Smart Contract
Execution

Jian Liu, Peilun Li, Raymond Cheng, N. Asokan, Fellow, IEEE, Dawn Song, Fellow, IEEE,

Abstract—Today’s blockchains suffer from low throughput and high latency, which impedes their widespread adoption of more
complex applications like smart contracts. In this paper, we propose a novel paradigm for smart contract execution. It distinguishes
between consensus nodes and execution nodes: different groups of execution nodes can execute transactions in parallel; meanwhile,
consensus nodes can asynchronously order transactions and process execution results. Moreover, it requires no coordination among
execution nodes and can effectively prevent livelocks. We show two ways of applying this paradigm to blockchains. First, we show how
we can make Ethereum support parallel and asynchronous contract execution without hard-forks. Then, we propose a new public,
permissionless blockchain. Our benchmark shows that, with a fast consensus layer, it can provide a high throughput even for complex
transactions like Cryptokitties gene mixing. It can also protect simple transactions from being starved by complex transactions.

Index Terms—Blockchain, smart contract, parallel execution, asynchronous execution.

✦

1 INTRODUCTION

Blockchains make digital transactions possible without re-
lying on a central authority. One issue that hinders the
wider deployment of blockchain-based applications such as
cryptocurrencies [31] and smart contracts [11], is their low
throughput and high latency. This is partially due to the fact
that all blockchain nodes are required to reach consensus on
the order of transactions and execute them.

With the progress of the blockchain consensus algo-
rithms [10], [21], [22], [26], [27], [34], transaction execution
will soon become a bottleneck. For example, CryptoKit-
ties [38], a popular game built on Ethereum blockchain,
has clogged the network due to its complex genetic algo-
rithm. This problem will be amplified by the computational
demands of future smart contract applications. A straight-
forward way to get rid of this bottleneck is dividing the
blockchain nodes into groups (or shards) to process transac-
tions in parallel [5], [7], [16], [28], [30], [36], [41]. However,
existing approaches usually require extensive coordination
but still suffer from congestion within the same group. They
also require a large group size, i.e., 3f ′ + 1 (or 2f ′ + 1 [7])
nodes to tolerate f ′ faults in each group. Additionally, they
incur livelocks for smart contracts (cf. Section 3).
Scalable execution. In this paper, we propose Saber, a novel
paradigm for scalable smart contract execution, by improv-
ing a traditional Byzantine fault-tolerance (BFT) architec-
ture, called “separating execution from consensus” [40]:

• Jian Liu is with Zhejiang University,
Raymond Cheng is with University of San Francisco,
Peilun Li is with Tsinghua University,
N. Asokan is with University of Waterloo,
Dawn Song is with University of California, Berkeley.
E-mail: liujian2411@zju.edu.cn
lpl15@mails.tsinghua.edu.cn
me@raymondcheng.net
asokan@acm.org
dawnsong@cs.berkeley.edu

1) Parallel execution. It distinguishes between consensus
nodes and execution nodes. For simple transactions like
cryptocurrency payments, consensus nodes confirm
them directly; for complex transactions that involve
expensive execution, consensus nodes order them and
assign them to different subsets of execution nodes
(execution groups) for parallel execution. This can be
seen as multiple instances of [40] running in parallel.

2) Asynchronous execution. When complex transactions
are executed by execution nodes, consensus nodes can
keep processing simple transactions in a non-blocking
way. This can effectively protect simple transactions
from being starved by complex transactions.

Compared with existing blockchain parallelization
paradigms, Saber has the following advantages. First
of all, it supports asynchronous execution for smart
contracts. Secondly, unlike prior sharding paradigm which
requires extensive coordination among execution nodes,
Saber allows each individual execution node to execute the
ordered transactions directly and independently. Thirdly, it
only requires 2f ′ + 1 nodes in each execution group, which
can significantly reduce the group size1. Lastly, to the best
of our knowledge, it is the first parallelization paradigm
that is livelock-free for smart contracts.

We propose two ways to put Saber into practice: on
the existing Ethereum blockchain, and as a standalone
blockchain.
Saber for Ethereum. We apply Saber to Ethereum [11]
and show that we can make Ethereum support parallel
and asynchronous contract execution without introducing
any hard-fork. For a transaction that invokes a smart con-
tract with expensive execution, the consensus nodes (all
Ethereum miners collectively serve as consensus nodes)
simply put it into the ledger without executing it, but
they lock the states associated with this transaction and

1. It only requires 70 nodes to reach a group failure probability of less
than 10−6, whereas sharding schemes require 600 nodes.

ar
X

iv
:2

30
6.

05
00

7v
1

 [
cs

.C
R

]
 8

 J
un

 2
02

3

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 2

designate an execution group for the execution. Once this
transaction is confirmed, execution nodes in the designated
group execute it off-chain and put the result into the ledger
by making another transaction. All these rules are enforced
by the smart contracts themselves without changing the
underlying consensus.
Saber for a standalone blockchain. Following the Saber
paradigm, we propose a new public and permissionless
blockchain called SaberLedger. It leverages the state-of-
the-art distributed randomness generation protocol [35] to
select a (rotating) committee of consensus nodes which
run a Byzantine consensus. The same randomness is
used to construct groups of execution nodes. Furthermore,
SaberLedger stores the whole blockchain into a distributed
storage maintained by all nodes in the system, to support
“state sharding”.

Our contributions are summarized as follows:
• We propose Saber, a paradigm for parallel and asyn-

chronous smart contract execution. It supports a small
group size of 2f ′ + 1 execution nodes and it requires
no coordination among execution nodes and prevents
(adversarial) livelocks. (Section 4)

• We show how Saber make Ethereum support parallel
and asynchronous execution without introducing any
hard-fork. (Section 5)

• We propose SaberLedger, a new public, permissionless
blockchain based on our proposed paradigm. It sup-
ports “state sharding” by further separating storage
from consensus. (Section 6)

• We implement a prototype of SaberLedger and de-
ploy it on a network of 3,467 nodes across 15 regions
and 5 continents. The results show that it can achieve
a high throughput even for complex transactions like
Cryptokitties gene mixing, and it can effectively protect
simple transactions from being starved by complex
transactions. (Section 7)

2 BACKGROUND AND PRELIMINARIES

2.1 Blockchains and smart contracts
Blockchain technology has fueled a number of innovations
such as cryptocurrencies [31] and smart contracts [11]. In
particular, smart contracts permit execution of arbitrary
code on top of blockchains. However, blockchains introduce
large overheads compared with traditional architectures.
For example, Bitcoin [31] can only handle ∼7 transactions
per second and each transaction requires one hour to be
confirmed. Another reason is that every node in the system
is required to execute all transactions.

Blockchains are usually permissionless, i.e., any node
can join and leave at any time. Therefore, they need to
be able to prevent sybil attacks. PoW naturally provides
sybil-resistant identities, since the number of sybils that an
adversary can spawn is limited by its computing resources.
Another solution for sybil-resistant identities is proof-of-
stake (PoS), which limits adversary’s power by its wealth.

Since blockchains are maintained in a distributed way, an
upgrade to the blockchain-based software may lead to hard-
forks: nodes running the old version software may see the
transactions adhering to the new version as invalid. During
a recent hard-fork in Bitcoin, the network was divided into

two separate parts [14]: Bitcoin and Bitcoin Cash [14]. There-
fore, hard-forks have the risks of partitioning the committee.

2.2 Separating execution from consensus
Byzantine fault tolerant (BFT) state machine replication is
a service where its state is replicated across n servers and
it can handle clients’ requests as a single server. One
approach to build such services is practical byzantine fault
tolerance (PBFT) [13], which requires n = 3f + 1 servers to
tolerate f faults. In PBFT, one server, the primary, decides
the order for clients’ requests and forwards them to the
other servers. Then, all servers agree on the order via a
two-phase agreement to generate a commit certificate (CC),
execute the requests and reply to the clients. Clients wait for
f + 1 consistent replies to complete its request.

Yin et al. propose to split all servers in a BFT protocol
into two clusters: an agreement cluster and an execution
cluster [40]. The agreement cluster’s job is to order clients’
requests via a standalone BFT protocol (e.g., PBFT), send the
ordered requests to the execution cluster, and relay replies
to the clients. In the execution cluster, 2f ′ + 1 servers are
required to tolerate f ′ faults, which is independent of the f
faults in the agreement cluster.

2.3 Multisignatures and message aggregation
A multisignature scheme allows multiple signers to produce
a compact and joint signature on common input via an
Aggre operation. Any verifier that holds the aggregated
public key can verify the signature in constant time. In prac-
tice, Aggre also outputs a bit map indicating which signers
have (not) participated in the signing process, so that Verify
can compute the aggregated public key correspondingly. For
the sake of brevity, we do not explicitly mention the bit map
in the rest of the paper.

Multisignatures provide a useful property for message
aggregation, which was used in ByzCoin [27] to improve
the scalability of PBFT. Alternatively, hardware-assisted
secret sharing [29] can achieve the same goal with smaller
overhead but requires TEEs.

2.4 Randomness beacon
Many recent blockchain consensus algorithms [10], [21],
[26], [28], [39] rely on a random beacon to generate random-
ness that is unbiasable, unpredictable and third-party verifiable.
Such a random beacon is typically simulated by a dis-
tributed randomness generation protocol. Suppose there are
n nodes in the system and at most f of them are malicious.
A commit-then-reveal [26], [28], [35] approach can be used
to simulate a random beacon. An alternative approach
is based on threshold signatures [39], but it requires dis-
tributed key generation whenever the membership changes.

3 PROBLEM STATEMENT

3.1 System setting and assumptions
We target the setting of permissionless blockchains. There
are two types of entities in the system: clients and nodes.
Clients issue transactions to transfer funds or run smart con-
tracts. Nodes process clients’ transactions via a blockchain

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 3

consensus protocol. Notice that clients can play the role
of nodes and vice versa. Each entity has a public/private
key pair (pk, sk) for digital signatures, and its identity is
represented by its pk. Following prior work [20], [28], [30],
to against selfish mining attacks, we assume that at most
25% nodes can fail at any time point. We also assume that
messages can be delivered within a certain bound ∆. All
notations in this paper are listed in Table 1.

Notation Description
C client
S server
CN consensus node
EN execution node
TX transaction
ST state
B transaction block
R result block
n number of consensus nodes
f number of faulty consensus nodes
m number of execution groups
n′ number of execution nodes in each group
f ′ number of faulty execution nodes
v view number
sn sequence number
H() cryptographic hash function
pk/sk public / private key

Sign()/Verify() signature generation / verification
Aggre() signature aggregation

σ signature
Table 1

Summary of notations

3.2 Parallel and asynchronous execution
Blockchain protocols are usually running in a sequential
and blocking manner: a complex transaction (e.g., genetic
algorithm in CryptoKitties) can congest the network so that
simple transactions (e.g., cryptocurrency payments) cannot
be confirmed on time. Asynchronous execution has been ex-
tensively used in web applications to improve performance
and enhance responsiveness. It enables some tasks to be
executed separately from the main task and notify the main
thread when the execution is completed [3] In blockchain
settings, parallel and asynchronous execution should satisfy the
following requirements:

1) complex transactions should be executed in parallel;
2) avoid blocking simple transactions by complex ones.

Blockchain researchers have already begun to investi-
gate the possibility of integrating parallel execution with
blockchains [5], [16], [28], [30], [41]. They divide the
blockchain nodes into different groups to process transac-
tions in parallel. However, these solutions require extensive
coordination among blockchain nodes: they require BFT
within each group, and two-phase lock/commit among
different groups. Specifically, transactions that involve data
objects in different groups must be committed in two-
phases: lock the data first and access them afterwards. If
a transaction fails to acquire any of the locks, it releases all
previously acquired locks and aborts. For each step of this
two-phase protocol, every involved group needs to reach a
Byzantine consensus.

Adversarial livelocks. Even though the above approach can
prevent deadlocks, it raises the rate of aborted transactions
due to lock contention (called livelocks), because transac-
tions will abort when they compete for the same lock. Even
worse, this problem also opens a channel for denial-of-
service attacks: an adversary can easily abort other trans-
actions by competing for locks. For example, two clients
Alice and Bob share data objects o1 and o2 which are in
two different groups G1 (near Alice) and G2 (near Bob)
respectively. Suppose Bob wants to make a transaction TXB

to update both o1 and o2 (TXB will first lock o2 and then
lock o1). If Alice wants to make TXB fail, she just needs to
make a transaction TXA to first lock o1 and then lock o2. In
this case, both TXA and TXB will fail and Alice wins. We
name this attack adversarial livelocks.
Group size. As each group runs a BFT protocol, they
require 3f ′ + 1 nodes to tolerate f ′ faults (in each group).
Based on the analysis in [28], each group requires at least
600 nodes to tolerate 25% adversarial power: Suppose all
execution groups are randomly chosen from an infinite pool
of potential ENs. We use binomial distribution to calculate
the probability that an execution group is not controlled by
the adversary:

P [f ′ < ⌊n
3
⌋] =

⌊n
3 ⌋−1∑
f ′=0

(
n

f ′

)
αf (1− α)n−f ′

(1)

where α=25% is the adversarial power in the whole
blockchain. In order to get a system failure probability that
is less than 10−6, it requires at least 600 ENs in each group.
The group failure probability is independent of the number
of blocks being added to the chain. After a group being
constructed, with a probability of 10−6, it is a “faulty group”
(i.e., the number of failures is larger than f). This probability
will stay the same even with more blocks being added to the
chain.
Design goals. To this end, we want to design a paradigm for
parallel and asynchronous smart contract execution with
the following properties:

1) minimized size for each execution group;
2) no coordination among execution nodes;
3) no (adversarial) livelocks.

1

Consensus nodes (CNs)

(1.1) simple
transaction

(2.1) complex
transaction

(0) contract

(1.2) (2.2)

…Entity

Protocol

Storage

validity check

ordering

lock unlock

(1.3)

(2.3)

Execution nodes (ENs)

Group1 Group2

(2.4) (2.5)

(2.6)

Developer

Client

Client

Figure 1. Overview and workflow of Saber.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 4

4 SABER: PARALLEL AND ASYNCHRONOUS
SMART CONTRACT EXECUTION

In existing blockchains, transaction execution is tightly cou-
pled with consensus. We suggest that execution should be
separated from consensus, which leads to Saber, a robust
(e.g., livelock-free) and efficient paradigm for parallel and
asynchronous smart contract execution. Fig. 1 shows the
basic architecture and workflow of Saber. We distinguish
between consensus nodes (denoted as CNs) and execution
nodes (denoted as ENs); and we also distinguish between
simple transactions (e.g., cryptocurrency payments) and
complex transactions (e.g., smart contract execution):

• For a simple transaction, CNs
(1.1) check its validity,
(1.2) agree on its order,
(1.3) execute it (if needed) and update the blockchain;

• For a complex transaction, CNs
(2.1) check its validity,
(2.2) agree on its order,
(2.3) lock its associated states,
(2.4) assign it to an execution group and wait for the

results, (they can keep processing simple transactions
while waiting)

(2.5) collect the execution results,
(2.6) unlock the states and update the blockchain.

Notice that validity checking, transaction ordering and state
locking can be done by CNs within one round of the under-
lying consensus protocol.

We leave it to the contract developers to decide whether
a certain transaction should be simple or complex. A basic
rule could be based on its execution time. Let t1 be the
latency of one consensus round, t2 be the execution time
of this transaction, k be the number of transactions being
batched in one consensus round (cf. Section 6), and m be
the number of execution groups. If

t1 > k
m · t2,

ENs will keep waiting for CNs. In this case, it is better to
treat this transaction as a “simple” one.

Next, we explain how Saber works. Recall that Saber is a
paradigm instead of a comprehensive protocol. We simplify
some details (e.g., we use transactions instead of blocks) for
the ease of understanding. A comprehensive protocol for
permissionless blockchains is discussed in Section 6.

4.1 Consensus nodes

The main job for CNs is to order transactions. We as-
sume that there are m groups of ENs (selected by an
unbiased randomness, cf. Section 6). CNs maintain a sep-
arate and independent sequence number for each of them:
⟨sn1, . . . , snm⟩. After gathering m complex transactions,
CNs randomly assign each transaction to an execution
group and increase the corresponding sequence number
sni. Then, all CNs run the blockchain consensus to agree
on ⟨⟨TX1, sn1⟩, . . . , ⟨TXm, snm⟩⟩; and send each ⟨TXi, sni⟩
to the ith execution group. After execution, each execution
group returns the execution result resi. In the end, CNs
put ⟨⟨TX1, res1, sn1⟩, . . . , ⟨TXm, resm, snm⟩⟩ into the ledger.

Notice that for simple transactions, CN directly put them into
the ledger after ordering.

Other than ordering, CNs have three additional jobs:
State maintenance. The global state of the data ledger is
maintained by CNs. Namely, CNs run a Byzantine consen-
sus protocol to ensure the consistency and availability of
the data ledger. Meanwhile, CNs leave the execution to
ENs and update the state based on the execution results.
ENs can execute any transaction assigned to them, so that
any transaction can be confirmed by one execution group
within one round, instead of being divided into multiple
transactions [28], [41]. This allows us to easily handle more
complex transactions such as a smart contract calling other
smart contracts. On the other hand, this requires every EN
has access to the data ledger as well. We solve this issue
in Section 6. Notice that the transactions and results are
only written to the data ledger once. The structure of the
ledger is the same as other blockchain protocols like Bitcoin
or Ethereum.
Lock handling. There may be multiple transactions aiming
to access the same state. If these transactions are assigned
to different execution groups in one round, the state will
diverge. We solve this problem by locking the state. Specif-
ically, during the consensus round, CNs lock the states that
this transaction wants to read/write. The locks are released
only when the execution of this transaction is done. Other
transactions that want to access these locks need to wait for
the next round. Since all the locks are handled by CNs, there
are no livelocks in our paradigm. A transaction locking all
required objects gets executed and the locks will be released
afterwards, i.e., no transaction can lock the acquired objects
forever. A fundamental difference between livelocks and
our locking scheme is: livelocks cause all related transac-
tions fail and the attacker pays no transaction fee; in our
case, an attacker locks all required objects can cause all
other transactions fail, but she has to pay transaction fee.
Monetary penalty is a common way to prevent denial-of-
service attack. With monetary penalty, a malicious client
with resources to waste can still cause damage to the system.
We remark that denial-of-service attack can happen in any
smart contract system if the attacker is willing to waste
resources. For example, in Ethereum, a malicious client with
a fast network connection and willing to pay the gas fee,
can always successfully call a smart contract and make
other competing transactions fail. However, its consistency
property will always be maintained. In this aspect, our
scheme is equal to Ethereum.

The locks are specified by the contract developers (cf.
Section 5). In particular, Fig. 4 shows how consensus nodes
find the objects touched by a transaction without executing
it. Developers are incentivized to reduce the gas consump-
tion of their contracts. However, it is clearly useful if we can
provide assistants for lock handling at the compiler level,
so that it is easier for the developers to develop their smart
contracts. We leave this as future work.
Validity checking. CNs are also responsible for checking
the validity of the gathered transactions, e.g., whether a
client has enough balance to make a payment, whether the
required state of a transaction is locked etc. A transaction
will be ignored if it cannot pass the validity checking. An
alternative way of separation is to leave the validity check-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 5

ing to ENs. However, this leads to a denial-of-service attack
which is similar to livelocks. Suppose Bob wants to make a
transaction TXB to update an object oB and he is the only
one who has write permissions. Alice has a faster network
connection and wants to delay the execution of TXB for
k rounds. Then, Alice just needs to issue k transactions to
update oB in front of TXB . In each round, only one of these
k transactions will be forwarded to ENs and the rest will
be cached. In this case, TXB has to wait for k rounds until
all Alice’s transactions got rejected. In contrast, if we have
CNs check the validity, they will immediately find all these
k transactions are invalid and reject them in one round.

4.2 Execution nodes
It is enough to have ENs execute TXi directly if sni is
sequential to the sequence numbers they have seen. This
is based on the fact that, for each execution group, CNs
can never assign the same sequence number to different
transactions due to the underlying consensus. Therefore, we
only need to make sure that the execution results returned
by ENs are correct. However, in each execution group, some
ENs may be faulty and they may return results that are
different from the ones returned by correct ENs. In this case,
CNs need to resolve this dispute and decide which result to
follow. In the rest of this section, we will introduce several
existing solutions as well as our solution, and we will also
provide a comparison.
Verifiable computation. Verifiable computation allows a del-
egator to outsource the execution of a complex function
to some workers, and the delegator verifies the correctness
of the returned result while performing less work than
executing the function itself. The state-of-the-art solution for
verifiable computation in cryptography is based on succinct
non-interactive argument of knowledge (SNARK) [8], [32]. It
allows the worker to provide a constant-size proof for the
correct evaluation of a circuit. In these cases, each execution
group only requires (f ′+1) ENs (workers), because each EN
can only crash but cannot return wrong results. However,
such solutions usually require a trusted setup, and the
overhead for generating and verifying the proof is still too
large to use in practice.
Trusted execution environments (TEEs). Another solution
for verifiable computation is via TEEs [2] (such as ARM
TrustZone [1] and Intel’s SGX [24]), which provide protected
memory and isolated execution so that adversaries can nei-
ther control nor observe the data being stored or processed
inside them. SGX also allows remote verifiers to ascertain
the current configuration and behavior of a device via remote
attestation. Therefore, we can assume that each EN has a
TEE and CNs only trust the results that are executed and
signed by TEEs. Same as the zk-SNARK based solution, each
execution group requires (f ′ + 1) ENs.
Interactive verification. This solution was initially proposed
by Canetti et al. [12]; later adopted by TrueBit [37] and
Arbitrum [25]. If two ENs return different results, all CNs
will collectively run as a judge and launch an interactive
verification game where they have one EN act as a solver
and the other as a challenger. The game proceeds in a
series of rounds and each round narrows down the range
of the execution in this dispute. In each round, the chal-
lenger challenges a subset of the solver’s execution, and it

challenges a subset of that set in the next round, until the
judge can make a final decision on whether the challenge
was justified. In the end, either the cheating solver will be
discovered and punished or the challenger will compensate
for the resources consumed by the false alarm. This solution
introduces logarithmical number of rounds in terms the
complexity of the function, and each round requires CNs
to reach a consensus. It requires at least one correct EN (and
f ′ + 1 in total) in each execution group to be the challenger.
Majority voting. We adopt the simplest way for dispute
resolution. Assuming honest majority (2f ′ + 1) in each exe-
cution group, if more than half of ENs in each group return
the same result, this result must be correct. Notice that CNs
plus a single execution group exactly match the architecture
proposed by Yin et al. [40]: CNs correspond to the agreement
cluster, and the group corresponds to the execution cluster.
Even though we have multiple “execution clusters”, the
“agreement cluster” maintains a separate sequence number
for each of them and there is no co-ordination among them.
Therefore, this system can be considered as m instances of
the system proposed in [40] running in parallel. Following
the analysis in Section 2.2 (equation 3), it requires 70 ENs in
each execution group to reach a failure probability of 10−6.

5 ASYNCHRONOUS EXECUTION FOR ETHEREUM

In this section, we show how we can add parallel and
asynchronous execution to Ethereum without any hard-forks.
We follow the architecture of Saber (Fig. 1): there are con-
sensus nodes CNs and execution nodes ENs. We design a
standard Ethereum smart contract for the Saber execution
management. Any Ethereum developer who wants to make
their contract support our paradigm needs to include this
contract and use the functionality exposed via its inter-
face for their contract development. CNs are the original
Ethereum miners collectively, and they are also allowed to
register with the execution management contract and run
as ENs. That means the separation is only in logic. CNs run
the standard Ethereum protocol as they are and the contract
code will handle the execution. Since we only require 70 ENs
to execute a transaction, the gas usage is much lower. Notice
that the inputs and outputs of transactions are recorded
in the blockchain state, and the code of smart contract is
also publicly available. Therefore, new nodes that want to
download and validate the entire chain can simply take the
inputs, feed them into the contract code, and check if the
execution results are consistent with those executed by ENs.

5.1 Execution management

Fig. 2 shows the pseudocode of the execution management
contract. We use a pk list to record the identities of the
nodes that have been registered with this contract as ENs
(line 2). Recall that each node is identified by its pk. and we
assume that the pks can be used to verify multisignatures
(line 19). The gas consumption for signature verification
is constant, independent of the complexity of the smart
contract. So using signature verification instead of execution
is worthwhile for complex smart contracts.

Any Ethereum node can register as an EN by calling the
Register function (line 8). For sybil-resistance, we require EN

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 6

to deposit some Ether to this contract account: misbehaving
ENs will get punished in the same way as in proof-of-stake;
otherwise they will get some transaction fees as the miners.
ENs are stored in the pk list in an order according to the
deposit they put, i.e., the one who deposits most will be in
the head of the list.

ENs are uniformly and periodically assigned to different
execution groups (line 3) via the Shuffle function (line 12).
After every epoch (e.g., 1,000 confirmations), all ENs (or a
subset of them) jointly run a distributed randomness gen-
eration protocol off-chain to generate an unbiased random
number r. Then, they input r to the Shuffle function, which
verifies r first (recall that one property of this randomness is
third-party verifiable), re-assigns each EN to an execution
group based on pk and r (line 15). Note that ENs who
deposit more will also be assigned in the head of each
execution group, i.e., groups[i][0] is the leader of groups[i].
Recall that each execution group requires (2f ′ + 1) ENs
due to the requirement for majority voting. In Bitcoin or
Ethereum, CNs not only make money from mining, but also
from transactions fees. In our paradigm, we can distribute
the transaction fees to ENs.

1: contract ExecutionManager
2: pk[] ENs
3: pk[][] groups
4: TX[][] tasks
5: int sid ▷ initialized as 0
6: int m ▷ number of execution groups
7:
8: function Register()
9: add caller’s pk to ENs

10: end function
11:
12: function Shuffle(r)
13: verify r; empty groups
14: for each EN in ENs
15: i← H(r,EN) mod m; add EN to groups[i]
16: end function
17:
18: function multisignature verify(i, M, σ̃)
19: return Verify(groups[i], σ̃,M)
20: end function
21:
22: function signature verify(i, j, M, σ)
23: return Verify(groups[i][j], σ,M)
24: end function
25: end contract

Figure 2. Execution management for Ethereum.

5.2 Running example: CryptoKitties
We take CryptoKitties as a running example to explain
how to use Saber for parallel and asynchronous Ethereum
contract execution without hard-forks. CryptoKitties is a
popular game built on the Ethereum blockchain [15], which
allows players to buy, collect, breed and sell digital cats.
Fig. 3 shows the pseudocode of its contract with only a
giveBirth function (adapted from [18]), which runs an ex-
pensive gene mixing algorithm to create a new cat (line 7).
This complex genetic algorithm has clogged the Ethereum
network recently: the number of unconfirmed transactions
has remained consistently above 15,000 [38]. Next, we show
how to improve the throughput by executing the giveBirth
function in a parallel and asynchronous manner.

1: contract CryptoKitties
2: Kitty[] kitties
3:
4: function giveBirth(matronID)
5: matron← kitties[matronID]; check matron’s validity
6: sireID← matron.siringWithID; sire← kitties[sireID]
7: childGenes← mixGenes(matron.genes, sire.genes) ▷ expensive

operation
8: kitten← creatKitty(childGenes); add kitten to kitties
9: end function

10: end contract

Figure 3. Original CryptoKitties.

Fig. 4 shows the Saber-version of CryptoKitties contract.
It has a variable called em, which is initialized with the
contract address of ExecutionManager (line 2). Therefore, we
can directly use the ExecutionManager contract via em. A
transaction TX calling the giveBirth function will call the
giveBirth lock function instead (line 6). CNs first check if
the targeted matron has been locked (line 7), i.e., being
accessed by other transactions. If not, they check matron’s
validity (line 10), e.g., whether it is a valid cat, whether
it is pregnant, and whether its time has come. Then, they
designate an idle execution group for the execution of TX
(line 10). They also record the current block number, i.e.,
height of the current blockchain (line 12). Next, they lock
this matron by putting ⟨matronID, groupID, blockNum,TX⟩
into the locks array (line 13), and put TX into the tasks array
of the designated execution group (line 14). Finally, they
put this transaction into the ledger and update the state, as
normal Ethereum miners.

Once TX is confirmed on the blockchain, each ENi in
the designated execution group runs the mixGenes func-
tion off-chain, signs the result childGenes, and sends the
signature σi to the group leader groups[i][0]. The group
leader combines the received 2f ′+1 signatures into a single
multisignature σ̃, and issues another transaction TX′ calling
the giveBirth unlock function. If other ENs in groups[i] did
not see TX′ after a timeout, they send σis to the second
leader groups[i][1], so on and so forth, until TX′ appears.

Upon receiving TX′, CNs first check if TX has been
confirmed and verify the multisignature σ̃ (line 22). Then,
they add the new kitten to the kitties array (line 23), unlock
matronID (line 24) and remove TX from tasks (line 25). Recall
that all ENs are acting as CNs as well. So all ENs’ states
converge at this point even though they are in different
execution groups.

6 SABERLEDGER

In this section, we propose a new public and permissionless
blockchain called SaberLedger. Its overview is shown in
Fig. 5. Labels show the workflow: the client first sends
transactions to CNs (1.1); CNs forward the transactions to
ENs (1.2); ENs read the state from the distributed storage
(1.3) and return the execution results to CNs (1.4). After an
epoch, CNs run randomness beacon the rotate CNs as well
as ENs (2.1); ENs write back their cached sate to the storage
(2.2). Overall, SaberLedger follows the Saber paradigm
with the following augmentations:

1) batch processing by putting transactions into blocks;

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 7

1: contract SaberCryptoKitties
2: ExecutionManager em ▷ initialized with the contract address
3: Kitty[] kitties
4: ⟨int, int, int⟩[] locks ▷ ⟨kittyID, groupID, blockNum⟩
5:
6: function giveBirth lock(matronID)
7: if matronID is in locks
8: cache TX; return ▷ TX is the calling transaction
9: else

10: check kitties[matronID]’s validity; groupID := em.sid
11: em.sid := (em.sid + 1) mod em.m
12: blockNum := current block number
13: add ⟨matronID, groupID, blockNum⟩ to locks
14: add TX to em.tasks[groupID]
15: end function
16:
17: ▷ Nodes in groups[groupID] execute TX off-chain and generate a

multisignature σ̃ for ⟨childGenes,TX⟩
18:
19: function giveBirth unlock(matronID, childGenes, σ̃)
20: if matronID is in locks
21: get groupID, blockNum and TX from locks
22: return if (current block number) - blockNum < 13 or

em.multisignature verify(groupID, ⟨childGenes,TX⟩, σ̃) is false
23: kitten← creatKitty(childGenes); add kitten to kitties
24: remove ⟨matronID, groupID, blockNum⟩ from locks
25: remove TX from em.tasks[groupID]
26: end function
27: end contract

Figure 4. CryptoKitties in Saber paradigm.

2) proof-of-stake (PoS) for sybil-resistant identities;
3) BFT for the underlying consensus;
4) epoch transitions via a randomness beacon;
5) “state sharding” via a distributed storage.

1

Consensus nodes (CNs)
(1.1)

(1.2)

…

BFT

Execution nodes (ENs)

clientEntity

Protocol

Storage

Group1
Cache

Group2
Cache

(1.4)

Randomness Beacon

Sybil-resistant identities

Identity ledger

Distributed Storage

Epoch
transition

(1.3)

(2.2)

(2.1)

Figure 5. Overview of SaberLedger.

6.1 Identity management and epoch transitions

All nodes maintain a separate ledger called identity ledger
to record the sybil-resistant identities. One can get all the
required pks from the identity ledger. This ledger can be
implemented as a smart contract that is similar to Fig. 2.
Any user can participate in SaberLedger (i.e., become a
sybil-resistant identity) by generating a key pair locally
and making a deposit to this contract. Their identities are
recorded in a pk list. The identity ledger also has a separated
pk lists to record CNs and groups of ENs for all epochs.

We assume that an initial set of CNs was chosen in
the bootstrapping phase of the system, and they run a

distributed randomness generation protocol (i.e., random-
ness beacon, cf. Section 2) to generate an unbiased random
number to build m execution groups, each of which has
n′ = 2f ′ + 1 ENs. All participants are ranked according
to the deposit they put, and the execution groups are built
in the same way as in Section 5 (line 15 in Fig. 2). Each
execution group has a leader which is the one who deposits
most in that group.

To prevent an adaptive adversary from compromising
more than a threshold number of CNs, as well as ENs in each
execution group, we need to periodically rotate them from
the underlying sybil-resistant identities. After an epoch, CNs
run the randomness generation protocol again to rotate
CNs and ENs. The duration for each epoch depends on the
required time for an adaptive adversary to compromise a
node. Following OmniLedger [28], we only rotate a subset
of nodes to minimize the chances of a temporary loss of
liveness. After rotating, they move to the next epoch.

6.2 “State sharding” via a distributed storage

SaberLedger further shards state by storing the blockchain
in a distributed storage maintained by all nodes in the
system. Specifically, all nodes run a distributed storage (e.g.,
IPFS [9]) that only supports read and write operations. CNs
need to keep track of the version numbers and hashes of the
last write operation for each state.

Upon receiving a complex transaction associated with
some states ST (e.g., matron in Fig. 3), CNs only forward
TX and the version numbers of ST to ENs, who read ST
from the distributed storage and make sure the version
numbers match. Then ENs execute the transaction and write
the updated states ST′ back to the distributed storage, which
accepts ST′ only if it has been signed by all ENs in that
execution group. ENs will notify CNs when the writing is
done. After receiving the notification from ENs, CNs check
the version numbers of the states from the storage and
unlock the states if the version numbers are correct.

To reduce write frequency, ENs cache all the updated
states and write them to the storage once. Naively, after
execution, the execution nodes need to write back the state
to the storage immediately so that followup transactions
access this state can be executed. However, this requires the
execution nodes read and write the state very frequently,
introducing a large overhead. To avoid this, we have the ex-
ecution nodes cache the state, and have the consensus nodes
forward the followup transactions to the execution group
holding the corresponding state. In this case, CNs keep track
of which ST have been assigned to which execution group,
and keep forwarding the transactions that are associated to
that ST to the same execution group. This works except that
there is a transaction that is associated to ST and ST’ which
have been assigned to two different execution groups. In
this case, CN will notify these two groups to write back ST
and ST’ to the storage.

6.3 Consensus and execution

As in BFT, clients send transactions to the primary
consensus node CNp (cf. Section 2). If their transactions did
not appear on the blockchain (in the distributed storage)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 8

after a timeout, they send those transactions again to all
CNs.

After gathering enough transactions, CNp puts the valid
ones into transaction blocks. For simple transactions like cryp-
tocurrency payments, CNp put them into a single transaction
block B. Then, all CNs together run BFT to put B into the
distributed storage.

For each complex transaction TXi, CNp finds all its
associated states STi and locks them (in a way as shown
in Fig. 4). Other transactions requiring STi have to either
be assigned to the same execution group or wait for the
next round. Then, CNp puts all transactions arbitrarily and
uniformly into m transaction blocks ⟨B1, . . . , Bm⟩ and as-
signs a sequence number sni to each Bi. Recall that CNs
maintain a separate and independent sequence number for
each execution group.

CNp sends ⟨⟨B1, sn1⟩ . . . , ⟨Bm, snm⟩⟩ to all other CNs,
who will check the validity of all ⟨TXi, STi⟩s and also
check if there are multiple transactions in different blocks
accessing the same state. Then all CNs run BFT to agree on
the proposal. In the end of the BFT round, they generate a
commit certificate CC (cf. Section 2) for each ⟨Bi, sni⟩.

Next, CNp sends each ⟨Bi, sni, CC⟩ to all ENs in the ith
execution group. To distribute the loads, the leader in each
execution group coordinates the communication between
CNp and ENs. Specifically, CNp only sends ⟨Bi, sni, CCi⟩
to the group leader, who further distributes them to all
ENs in that group. Then, each EN reads the states from
the distributed storage and executes the transactions in Bi

following the same order as they are being put into Bi,
updates the corresponding states, and puts the updated
states into a result block Ri. It also generates a signature for
⟨Ri, sni⟩. The group leader gathers signatures from ENs and
returns ⟨Ri, sni, σ̃i⟩ to all ENs, where σ̃i is a multisignature
signaling that ⟨Ri, sni⟩ has been output by all ENs in
that execution group. ENs write ⟨Ri, sni, σ̃i⟩ back to the
distributed storage or their local cache, and notify CNp.

Recall that we follow the same architecture as [40]:
the agreement job of consensus nodes is to order clients’
requests via a standalone BFT protocol (e.g.,PBFT), send the
ordered requests to the execution nodes, and relay replies to
the clients. Then, CNp is exactly the BFT primary in [40], and
the view change procedure of BFT works for CN as well.

7 IMPLEMENTATION AND EVALUATION

7.1 Experimental setup

In order to systematically evaluate the performance of
SaberLedger, we build a simulation framework allowing us
to easily define the conditions and control the experiments.

First, we setup a cluster of 3,467 Amazon EC2 t2.micro
VMs across 15 regions and 5 continents to introduce real
network latency. Each VM contains 1 2.3GHz vCPU, 1 GB
memory and runs Amazon Linux 2.

Second, we assign 70 ENs to each execution group, which
leads to a group failure probability of less than 10−6, base
on the analysis in [28]. As a comparison, existing sharding
protocols require ∼600 nodes to reach the same failure
probability, because they require at least 3f ′ + 1 nodes in
each shard. We only require 2f ′ + 1 nodes in each group.

We can easily change the group size to make a trade-off
between robustness and efficiency.

Third, we run SputnikVM [17] – a blockchain virtual
machine for Ethereum – on each EN, so that we can test
SaberLedger with different types of Ethereum transactions
ranging from simple cryptocurrency payments to Cryp-
toKitties gene mixing algorithm. Furthermore, we store the
blockchain state in IPFS [9], but we cache the state as we
discussed in Section 6.2.

Last, recall that the bottleneck of SaberLedger is its
consensus layer. To this end, we make the consensus layer
as a parameter as well. We simulate the consensus layer by
having it agree on a 1 MB block for every consensus round,
with different rates:

• 0.1 rounds/s, which corresponds to the performance of
current PoW-based or PoS-based consensus.

• 1 rounds/s, which corresponds to the performance of
current BFT consensus, e.g., PBFT [13], Byzcoin [27].

• 10 rounds/s, which conjectures the future of consensus
protocols, e.g., EOS [23] and others.

Assuming 1 MB block contains 2,000 transactions (following
Bitcoin and OmniLedger [28]), these consensus layers cor-
respond to different throughputs of 200 TX/s, 2,000 TX/s
and 20,000 TX/s2 respectively. The advantage of this setup
allows us to easily use different consensus layers.

To better compare SaberLedger with previous state-of-
the-art, we set three baselines for our benchmarks:

• Throughput of current Ethereum, i.e., 30 TX/s at most.
• Throughput of Ethereum-like systems with different

consensus layers, i.e., 200 TX/s, 2,000 TX/s and 20,000
TX/s respectively (for simple transactions).

• Throughput of current sharding protocols with differ-
ent consensus layers, i.e., 200 TX/s, 2,000 TX/s and
20,000 TX/s respectively (for simple transactions).

Our evaluation captures the setting with failures: if crash
nodes is fewer than f ′, performance is unaffected. If it is
more (or if a group cannot be formed), consensus nodes just
stop forwarding requests to that group and wait for the next
epoch to rotate groups. This only results in fewer groups.
The worst case performance can be shown from the results
of only one execution group. However, we assume this case
rarely happens because faulty nodes will get punished.

7.2 Evaluation results

Performance with complex transactions. We first assume
that all the workloads are complex transactions (i.e., Cryp-
tokitties gene mixing), which gives us an estimate on the
lower bound performance of SaberLedger. We run the
experiments with a varying number of execution groups
and measure the peak throughput (TX/s) when the system
is saturated. Note that each EN will receive a transaction
block of size 1

m MB, where m is the number of execution
groups. Intuitively, the workload for each EN decreases
as m increases. The results shown in Fig. 6(a) validate
this conjecture: as more execution groups being added, the

2. Notice that this throughput cannot be achieved by current public
blockchains. For example, current CPU can only verify ∼3,500 ECDSA
signatures per second. However, this figure is used to conjecture the
future of consensus protocols.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 9

100 101 102

0

2,000

4,000

6,000

8,000

Number of execution groups

G
en

e
m

ix
in

g
TX

/s
SaberLedger with 20,000 TX/s
SaberLedger with 2,000 TX/s
SaberLedger with 200 TX/s
Sharding with 20,000 TX/s

Ethereum

(a) Throughput for gene mixing transactions vs. number of execution
groups. (2,000 transactions in 1MB block).

0 10 20 30 40

0

2,000

4,000

6,000

Number of execution groups

Si
m

pl
e

&
co

m
pl

ex
TX

/s

SaberLedger with 20,000 TX/s
SaberLedger with 2,000 TX/s
SaberLedger with 200 TX/s
Sharding with 20,000 TX/s

Ethereum

0 10 20 30 40

0

2,000

4,000

6,000

Number of execution groups

Si
m

pl
e

&
co

m
pl

ex
TX

/s

SaberLedger with 20,000 TX/s
SaberLedger with 2,000 TX/s
SaberLedger with 200 TX/s
Sharding with 20,000 TX/s

Ethereum

(b) Throughput for real-world workloads with a mix of simple and
complex transactions vs. number of execution groups. (2,000 transac-
tions in 1MB block)

0 10 20 30 40

101

102

103

104

Number of execution groups

Pr
oc

es
si

ng
ti

m
e

(s
)

SaberLedger with 20,000 TX/s
SaberLedger with 2,000 TX/s
SaberLedger with 200 TX/s

Ethereum

(c) Processing time for 50,000 mixed transactions vs. number of
execution groups. (2,000 transactions in 1MB block)

2,000 4,000 6,000 8,000

0

1,000

2,000

3,000

4,000

Number of transactions in a 1MB block

G
en

e
m

ix
in

g
TX

/s

SaberLedger with 10 rounds/s
SaberLedger with 1 rounds/s

SaberLedger with 0.1 rounds/s
Sharding with 10 rounds/s (5 shards)

Ethereum

(d) Throughput for gene mixing transactions vs. batch sizes (44
execution groups).

Figure 6. Evaluation results.

performance of SaberLedger keeps increasing until reaching
the bottleneck of the consensus layer. Specifically, for a fast
consensus layer (20,000 TX/s, blue line), the throughput
of SaberLedger increases until reaching a throughput of
8,100 TX/s, after which the signature verification becomes
a bottleneck. For a medium consensus layer (2,000 TX/s,
red line), its throughput increases linearly until it reaches
the bottleneck of its consensus layer when the number of
the execution groups is 20. For a slow consensus layer (200
TX/s, brown line), its throughput is almost the same as its
consensus layer. As a baseline, we also show the throughput
of Ethereum, which is below 30 TX/s. In principle, the
throughput of Ethereum should be similar with the brown
line. However, in Ethereum, each block on average only
batches 100 transactions due to the total gas limit for each
block. In SaberLedger, we can set a much higher gas limit
and batch more transactions in one block, since each EN is
only required to execute a subset of transactions. Remarks:

• SaberLedger can achieve a high throughput even for com-
plex transactions like Cryptokitties gene mixing.

• When there is no separation (the case of one execution
group), even if the consensus layer is fast (20,000 TX/s),
the throughput is still very low (100 TX/s).

• Recall that sharding protocols require 600 nodes in each
shard. With 3,467 nodes (5 shards), sharding protocols can
reach a throughput of at most ∼500 TX/s, even with a
fast consensus layer (20,000 TX/s). With the same number
of nodes and consensus layer, SaberLedger can reach a
throughput of 4,201 TX/s. This demonstrates the prominent
advantages of separating execution from consensus.

Performance with mixed workloads. In SaberLedger, sim-
ple transactions like cryptocurrency payments are con-
firmed asynchronously, independent of complex transac-
tions. Therefore, the advantage of SaberLedger will become
more prominent if we consider real-world workloads that
mix simple transactions with complex transactions. To this

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 10

end, we retrieve around 50,000 transactions of recent 500
Ethereum blocks (from height 5,998,827 to 5,999,326) from
Etherscan [19], and run these transactions on SaberLedger.
To be conservative, we treat all contract invocations as
complex transactions and assign them to different execution
groups; and we treat cryptocurrency payments as simple
transactions and confirm them directly in consensus layer.
We check if the sender or receiver address is a contract
address by querying Etherscan’s API. Among these transac-
tions, 47% of them are simple and 53% of them are complex.
Furthermore, we treat two transactions as “conflict” as long
as they are invoking the same contract, and one of them will
be cached for the next round. Fig. 6(b) shows that the peak
throughput of SaberLedger for mixed transactions is signif-
icantly higher than only considering complex transactions
(in Fig. 6(a)). For example, when the number of execution
groups is 32, SaberLedger can process another 1,000 simple
transactions in addition to 3,200 complex transactions (for
fast consensus). Fig. 6(c) shows that it takes 7s-7min for
SaberLedger to process all these 50,000 transactions de-
pending on the number of execution groups and consensus
layer. As a comparison, by inspecting the timestamps on the
Ethereum blockchain, we found Ethereum requires 2 hours
to finish processing these transactions. Remarks:

• Asynchronous execution can effectively protect simple trans-
actions from being starved by complex transactions, thus
significantly improving the throughput.

• In Ethereum-like systems or sharding protocols, complex
transactions can block the processing of simple transactions.
In the worst case, simple transactions have to wait until all
complex transactions to be executed (at least 53 seconds).

Performance with a varying number of transactions in
one 1MB block. As we mentioned, SaberLedger can have
a higher gas limit and batch more transactions in one block.
In principle, 1MB block can include around 9,000 Ethereum
transactions3. So the throughput of SaberLedger can be
improved if we batch more transactions in every block.
To this end, we set both the number of execution groups
and the group size as constants (44 execution groups) and
run experiments with different batch sizes. Fig. 6(d) shows
that, for a slow consensus layer (200 TX/s, brown line), its
throughput increases linearly as the batch size increases.
For a medium consensus layer (2,000 TX/s, red line), its
throughput increases linearly until it reaches the bottle-
neck of its execution layer (around 4,400 TX/s). For a fast
consensus layer (20,000 TX/s, blue line), the throughput
of SaberLedger is exactly the same as its execution layer.
Remarks:

• As the throughput for consensus layer increases, the execu-
tion layer becomes a bottleneck. However, we conjecture that
the blockchain network will become larger in the future. So
we can introduce more execution groups.

• For Ethereum-like systems and sharding protocols, increas-
ing the batch size have no significant effect on throughput, as
execution is the bottleneck and it blocks the processing.

3. For example, a Cryptokitties gene mixing transaction is 115 bytes.

8 RELATED WORK

Hybrid consensus Another solution to avoid having all
nodes execute all transactions is hybrid consensus [4], [27],
[33], which uses a slow permissionless blockchain protocol
to bootstrap a fast permissioned blockchain protocol. For
example in [27], a committee is elected by sliding a fixed-
size window over a permissionless blockchain. Then, nodes
in the committee run a BFT protocol to agree on the order of
transactions and execute them, and other nodes just follow
the results. They achieve Visa-level throughput for cryp-
tocurrency payments. However, execution is still a bottle-
neck for smart contracts that require expensive executions.
HyperLedger Fabric Researchers in IBM propose an
execute-order-validate paradigm for their permissioned
blockchains [7]. In their paradigm, clients send transactions
to multiple execution nodes (called endorsers, which is spec-
ified by the smart contracts) first. The endorsers execute
the transactions independently and return the signed re-
sults (called endorsement) to the clients. Each client collects
endorsements until reaching the endorsement policy, and
then submits them to a BFT-based ordering service, which
establishes a total order on all endorsements and atomically
broadcasts them. Compared with our consensus nodes, their
ordering service is more generic: only does ordering but
leaves the validation and ledger updates to the receivers.
This paradigm supports parallel execution, but suffers from
the same livelock issues as the sharding approaches: dif-
ferent endorsers may execute the same set of transactions
in different order, in which case, all transaction fail as it
requires multiple endorsers to produce the same result.
ParBlockchain Amiri et al. [6] propose a similar order-
execute paradigm called OXII, based on which, they pro-
pose a permissioned blockchain called ParBlockchain. How-
ever, they do not have multiple execution groups, instead,
all execution nodes execute all transactions (cf. Figure 2 and
3 of [6]). As a result, SaberLedger has a much higher level of
parallelism. Furthermore, in ParBlockchain, each execution
nodes needs to multicast the execution results to all others,
which introduce O(n2) communication complexity, whereas
we have O(n) communication complexity.
TrueBit and Arbitrum TrueBit [37] and Arbitrum [25] also
target the execution issues for smart contracts. They also
delegate the execution to a set of execution nodes and use
interactive verification to resolve dispute (cf. Section 4.2).
As we discussed, the dispute resolution strategy in Saber
requires much less communication as well as coordination
between consensus nodes and execution nodes. In addition,
Saber further considers lock handling, which was ignored
in TrueBit and Arbitrum. Table 2 summarizes the compar-
isons between SaberLedger and related work.

9 LIMITATIONS

Regardless of the various benefits brought by our paradigm,
we have to admit that it has two limitations. First, it changes
the coding paradigm of smart contracts: the contract de-
velopers need to enumerate all dependencies when they
develop the contract. It is clearly useful if we can provide
assistants for lock handling at the compiler level, so that it
is easier for the developers to develop their smart contracts.
We leave this as future work. The second limitation is that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 11

No
livelocks

No intra-shard
co-ordination

No inter-shard
co-ordination

BFT
rounds

Sharding
[36] [28] [5] X X X 3

HyperLedger
[7] X

√ √
1

ParBlockchain
[6] -

√
- 1

TrueBit/Arbitrum
[37] [25] -

√
- logarithm

SaberLedger √ √ √
1

Table 2
Comparison with related work.

the monetary counter-incentive can only alleviate denial-of-
service attacks, instead of totally eliminating them.

10 CONCLUSION

In this paper, we propose a novel paradigm for parallel and
asynchronous smart contract execution. It neither requires
extensive coordination nor suffers from (adversarial) live-
locks, and it requires a small group size. We propose two
ways to put this paradigm into practice. We first apply it to
Ethereum and show that we can make Ethereum support
parallel and asynchronous execution without any hard-
forks. Then, we propose a new public and permissionless
blockchain SaberLedger, and show its performance by im-
plementing a prototype.

ACKNOWLEDGMENTS

The work was supported in part by Zhejiang Key R&D Plans
(Grant No. 2021C01116, 2019C03133), National Natural Sci-
ence Foundation of China (Grant No. 62002319, U20A20222)
as well as a grant from China Zheshang Bank.

REFERENCES

[1] AMD Secure Processor. http://www.amd.com/en-us/
innovations/software-technologies/security.

[2] GlobalPlatform: Device specifications for trusted execution en-
vironment. http://www.globalplatform.org/specificationsdevice.
asp.

[3] When to Use (and Not to Use) Asynchronous Programming. https:
//stackify.com/when-to-use-asynchronous-programming/.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and
Alexander Spiegelman. Solida: A blockchain protocol based on
reconfigurable byzantine consensus. Cryptology ePrint Archive,
Report 2017/1118, 2017. https://eprint.iacr.org/2017/1118.

[5] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave
Hrycyszyn, and George Danezis. Chainspace: A sharded smart
contracts platform. In NDSS, 2018.

[6] M. J. Amiri, D. Agrawal, and A. El Abbadi. Parblockchain:
Leveraging transaction parallelism in permissioned blockchain
systems. In ICDCS, 2019.

[7] Elli Androulaki and et al. Hyperledger fabric: A distributed
operating system for permissioned blockchains. In EuroSys, 2018.

[8] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer,
and Madars Virza. Snarks for c: Verifying program executions
succinctly and in zero knowledge. In Ran Canetti and Juan A.
Garay, editors, CRYPTO, 2013.

[9] Juan Benet. IPFS - content addressed, versioned, p2p file system.
[10] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow White: Provably

secure proofs of stake. IACR Cryptology ePrint Archive, 2016:919,
2016.

[11] Vitalik. Buterin. A next-generation smart contract and decentral-
ized application platform, 2014. https://github.com/ethereum/
wiki/wiki/White-Paper.

[12] Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation
of computation using multiple servers. In CCS, 2011.

[13] Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance. In OSDI, 1999.

[14] Coindesk. Bitcoin cash hard forks in bid to ease mining difficulties.
[15] Cryptokitties. Cryptokitties: collect and breed digital cats. https:

//www.cryptokitties.co.
[16] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien

Chang, Qian Lin, and Beng Chin Ooi. Towards scaling blockchain
systems via sharding. In SIGMOD, 2019.

[17] ETCDEVTeam. SputnikVM: A blockchain virtual machine. https:
//github.com/ETCDEVTeam/sputnikvm.

[18] Etherscan. Cryptokitties source code. https://etherscan.io/
address/0x06012c8cf97bead5deae237070f9587f8e7a266d#code.

[19] Etherscan. Etherscan - The Ethereum Block Explorer. https://
etherscan.io.

[20] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Robbert Van
Renesse. Bitcoin-NG: A scalable blockchain protocol. In NSDI,
2016.

[21] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and
Nickolai Zeldovich. Algorand: Scaling byzantine agreements for
cryptocurrencies. In SOSP, 2017.

[22] G. Golan Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. Reiter, D. Seredinschi, O. Tamir, and A. Tomescu. Sbft: A
scalable and decentralized trust infrastructure. In DSN, 2019.

[23] Ian Grigg. EOS - An Introduction, 2017. https://software.intel.
com/sites/default/files/managed/48/88/329298-002.pdf.

[24] Intel. Software Guard Extensions (Intel SGX) Programming
Reference, 2013. https://software.intel.com/sites/default/files/
managed/48/88/329298-002.pdf.

[25] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Wein-
berg, and Edward W. Felten. Arbitrum: Scalable, private smart
contracts. In USENIX Security, 2018.

[26] Aggelos Kiayias, Alexander Russell, Bernardo David, and Ro-
man Oliynykov. Ouroboros: A provably secure proof-of-stake
blockchain protocol. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO, 2017.

[27] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Is-
mail Khoffi, Linus Gasser, and Bryan Ford. Enhancing bitcoin
security and performance with strong consistency via collective
signing. In USENIX Security), 2016.

[28] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 583–598, May 2018.

[29] J. Liu, W. Li, G. Karame, and N. Asokan. Scalable byzantine
consensus via hardware-assisted secret sharing. IEEE Transactions
on Computers, pages 1–1, 2018.

[30] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja,
Seth Gilbert, and Prateek Saxena. A secure sharding protocol for
open blockchains. In CCS. ACM, 2016.

[31] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
2009. http://www.bitcoin.org/bitcoin.pdf.

[32] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly
practical verifiable computation. In SP, 2013.

[33] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus
in the permissionless model. In 31 International Symposium on
Distributed Computing, page 6, 2017.

[34] Rafael Pass and Elaine Shi. Thunderella: Blockchains with opti-
mistic instant confirmation. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT, 2018.

[35] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford. Scalable bias-resistant distributed
randomness. In SP, 2017.

[36] The ZILLIQA Team. The ZILLIQA technical whitepaper. https:
//docs.zilliqa.com/whitepaper.pdf.

[37] Jason Teutsch and Christian Reitwießner. A scalable verification
solution for blockchains. 2017. https://people.cs.uchicago.edu/
teutsch/papers/truebit.pdf.

[38] Themerkle. Cryptokitties is clogging the
ethereum network. https://themerkle.com/
cryptokitties-is-clogging-the-ethereum-network/.

[39] Mahnush Movahedi Timo Hanke and Dominic Williams.
DFINITY technology overview series consensus system.
https://dfinity.org/pdf-viewer/pdfs/viewer?file=../library/
dfinity-consensus.pdf.

http://www.amd.com/en-us/innovations/software-technologies/security
http://www.amd.com/en-us/innovations/software-technologies/security
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
https://stackify.com/when-to-use-asynchronous-programming/
https://stackify.com/when-to-use-asynchronous-programming/
https://eprint.iacr.org/2017/1118
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.cryptokitties.co
https://www.cryptokitties.co
https://github.com/ETCDEVTeam/sputnikvm
https://github.com/ETCDEVTeam/sputnikvm
https://etherscan.io/address/0x06012c8cf97bead5deae237070f9587f8e7a266d#code
https://etherscan.io/address/0x06012c8cf97bead5deae237070f9587f8e7a266d#code
https://etherscan.io
https://etherscan.io
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://www. bitcoin.org/bitcoin.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://people.cs.uchicago.edu/teutsch/papers/truebit.pdf
https://people.cs.uchicago.edu/teutsch/papers/truebit.pdf
https://themerkle.com/cryptokitties-is-clogging-the-ethereum-network/
https://themerkle.com/cryptokitties-is-clogging-the-ethereum-network/
https://dfinity.org/pdf-viewer/pdfs/viewer?file=../library/dfinity-consensus.pdf
https://dfinity.org/pdf-viewer/pdfs/viewer?file=../library/dfinity-consensus.pdf

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2020 12

[40] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo
Alvisi, and Mike Dahlin. Separating agreement from execution
for byzantine fault tolerant services. In SOSP, 2003.

[41] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova.
Rapidchain: Scaling blockchain via full sharding. In CCS, 2018.

Jian Liu is a ZJU100 Young Professor at Zhe-
jiang University. Before that, he was a post-
doctoral researcher at UC Berkeley. He got his
PhD in July 2018 from Aalto University. His re-
search is on Applied Cryptography, Distributed
Systems, Blockchains and Machine Learning.
He is interested in building real-world systems
that are provably secure, easy to use and inex-
pensive to deploy.

Peilun Li received the BE degree from the In-
stitute for Interdisciplinary Information Sciences,
Tsinghua University, China, in 2015. He is cur-
rently working towards the PhD degree in the
Institute for Interdisciplinary Information Sci-
ences, Tsinghua University, China. His current
research interests include distributed systems
and blockchains.

Raymond Cheng is an Adjunt Faculty in the
Department of Computer Science at the Univer-
sity of San Francisco. Before that, he was a Co-
Founder and CTO of Oasis Labs and a post-
doctoral researcher at UC Berkeley. He got his
PhD from University of Washington and M.Eng
and B.S. from MIT. He has contributed novel
research papers in the areas of distributed sys-
tems and security, most recently in the area
of privacy-preserving systems that give users
better control over their data and spread digital

freedom of speech and information to citizens around the world.

N. Asokan is a Professor of Computer Science
at the University of Waterloo (since 2019) where
he holds a David R. Cheriton Chair. He is also
an adjunct professor at Aalto University. He was
a Professor of Computer Science at Aalto Uni-
versity from 2013 to 2019 and at the University
of Helsinki from 2012 to 2017. Between 1995
and 2012, he worked in industrial research labo-
ratories designing and building secure systems,
first at the IBM Zurich Research Laboratory as
a Research Staff Member and then at Nokia

Research Center, most recently as Distinguished Researcher. He is an
ACM Fellow and an IEEE Fellow.

Dawn Song is a Professor in the Department
of Electrical Engineering and Computer Science
at UC Berkeley. Her research interest lies in AI
and deep learning, security and privacy. She
is the recipient of various awards including the
MacArthur Fellowship, the Guggenheim Fellow-
ship, the NSF CAREER Award, the Alfred P.
Sloan Research Fellowship, the MIT Technology
Review TR-35 Award, and Best Paper Awards
from top conferences in Computer Security and
Deep Learning. She is an ACM Fellow and an

IEEE Fellow. She is ranked the most cited scholar in computer security
(AMiner Award). She obtained her Ph.D. degree from UC Berkeley. Prior
to joining UC Berkeley as a faculty, she was a faculty at Carnegie Mellon
University from 2002 to 2007. She is also a serial entrepreneur and has
been named on the Female Founder 100 List by Inc. and Wired25 List
of Innovators.

	Introduction
	Background and Preliminaries
	Blockchains and smart contracts
	Separating execution from consensus
	Multisignatures and message aggregation
	Randomness beacon

	Problem Statement
	System setting and assumptions
	Parallel and asynchronous execution

	Saber: Parallel and Asynchronous Smart Contract Execution
	Consensus nodes
	Execution nodes

	Asynchronous Execution for Ethereum
	Execution management
	Running example: CryptoKitties

	SaberLedger
	Identity management and epoch transitions
	``State sharding'' via a distributed storage
	Consensus and execution

	Implementation and Evaluation
	Experimental setup
	Evaluation results

	Related Work
	Limitations
	Conclusion
	References
	Biographies
	Jian Liu
	Peilun Li
	Raymond Cheng
	N. Asokan
	Dawn Song

