830 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

LB4OMP: A Dynamic Load Balancing Library for
Multithreaded Applications

Jonas H. Muller Korndorfer™, Ahmed Eleliemy“, AliMohammed ™, and Florina M. Ciorba

Abstract—Exascale computing systems will exhibit high degrees of hierarchical parallelism, with thousands of computing nodes and
hundreds of cores per node. Efficiently exploiting hierarchical parallelism is challenging due to load imbalance that arises at multiple
levels. OpenMP is the most widely-used standard for expressing and exploiting the ever-increasing node-level parallelism. The
scheduling options in OpenMP are insufficient to address the load imbalance that arises during the execution of multithreaded
applications. The limited scheduling options in OpenMP hinder research on novel scheduling techniques which require comparison with
others from the literature. This work introduces LB4OMP, an open-source dynamic load balancing library that implements successful
scheduling algorithms from the literature. LB4AOMP is a research infrastructure designed to spur and support present and future
scheduling research, for the benefit of multithreaded applications performance. Through an extensive performance analysis campaign,
we assess the effectiveness and demystify the performance of all loop scheduling techniques in the library. We show that, for numerous
applications-systems pairs, the scheduling techniques in LB4OMP outperform the scheduling options in OpenMP. Node-level load
balancing using LB4OMP leads to reduced cross-node load imbalance and to improved MPI+OpenMP applications performance,

which is critical for Exascale computing.

Index Terms—Hierarchical parallelism, dynamic load balancing, self-scheduling, runtime library, OpenMP, multithreaded programming,

shared-memory systems

1 INTRODUCTION

N the road to Exascale, we observe that modern and

future high performance computing (HPC) systems
combine an increasing number of computing nodes and, in
particular, cores per node. For example, the top 5 systems
on the Top500 list [1] contain thousands of nodes and tens
to hundreds of cores per node.

Recent reports [2] indicate that the next update of the
Sunway TaihuLight system will include 520 cores per node,
double that of its predecessor. Such hardware parallelism
increase leads to the challenge of exposing and expressing
corresponding degrees of hierarchical parallelism in soft-
ware to efficiently exploit the hierarchical hardware
parallelism.

Load imbalance is a significant performance degradation
factor in computationally-intensive applications [3], [4], defined
as processors idling while there exist units of computation
ready to be executed that no processor has started. This results
in uneven execution progress among the parallel processing
units, which can emerge from numerous application-, algo-
rithm-, and/or systemic characteristics. Computationally-

o Jonas H. Miiller Korndorfer, Ahmed Eleliemy, and Florina M. Ciorba are
with the Department of Mathematics and Computer Science, University of
Basel, 4051 Basel, Switzerland. E-mail: {jonas.korndorfer, — ahmed.
eleliemy, florina.ciorba)@unibas.ch.

o Ali Mohammed is with the HPE's HPC/AI EMEA Research Lab (ERL),
Switzerland. E-mail: ali.mohammed@hpe.com.

Manuscript received 25 Feb. 2021; revised 15 June 2021; accepted 16 June 2021.
Date of publication 27 Aug. 2021, date of current version 15 Oct. 2021.
(Corresponding author: Florina M. Ciorba.)

Recommended for acceptance by S. Alam, L. Curfman Mclnnes, and K.
Nakajima.

Digital Object Identifier no. 10.1109/TPDS.2021.3107775

intensive applications often represent irregqular workloads
(e.g., due to boundary conditions, convergence, conditions,
and branches). Computing systems may consist of heteroge-
neous processors and may be affected by nonuniform memory
access (NUMA) times, operating system noise, and contention
due to sharing of resources. Load imbalance can be mitigated
by an efficient dynamic scheduling of computation units onto
processing units. Finding optimal schedules is NP-hard [5].
Therefore, many scheduling heuristics have been proposed
over the years [6], [7].

Scheduling and load balancing that exploit multiple lev-
els of hardware parallelism across and within computing
nodes are critical challenges for the upcoming Exascale sys-
tems [8], [9]. Dynamic self-scheduling explicitly addresses
application- and system-induced performance variations
while minimizing load imbalance and scheduling over-
head [10], [11], [12].

It has been recently shown that thread-level load imbal-
ance has a significant impact on the performance of hybrid
MPI+OpenMP applications [13]. OpenMP is the most
widely-used standard for expressing and exploiting node-
level parallelism. The OpenMP standard specifies three loop
schedule kinds: static, dynamic, and guided. These
scheduling options limit the highest achievable performance
as they do not cover the broad spectrum of applications and
systems characteristics [14], [15], [16]. Furthermore, the
absence of a comparative implementation of the multitude of
scheduling techniques from the literature hinders research
on novel scheduling techniques which typically requires
comparison with the scheduling state of the art.

This work builds on recent work on multilevel load bal-
ancing [13] by concentrating on thread-level scheduling and
deepening the analysis of its performance impact for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3014-3275
https://orcid.org/0000-0003-3014-3275
https://orcid.org/0000-0003-3014-3275
https://orcid.org/0000-0003-3014-3275
https://orcid.org/0000-0003-3014-3275
https://orcid.org/0000-0003-3258-1738
https://orcid.org/0000-0003-3258-1738
https://orcid.org/0000-0003-3258-1738
https://orcid.org/0000-0003-3258-1738
https://orcid.org/0000-0003-3258-1738
https://orcid.org/0000-0002-8465-0398
https://orcid.org/0000-0002-8465-0398
https://orcid.org/0000-0002-8465-0398
https://orcid.org/0000-0002-8465-0398
https://orcid.org/0000-0002-8465-0398
https://orcid.org/0000-0002-2773-4499
https://orcid.org/0000-0002-2773-4499
https://orcid.org/0000-0002-2773-4499
https://orcid.org/0000-0002-2773-4499
https://orcid.org/0000-0002-2773-4499
mailto:jonas.korndorfer@unibas.ch
mailto:ahmed.eleliemy@unibas.ch
mailto:ahmed.eleliemy@unibas.ch
mailto:florina.ciorba@unibas.ch
mailto:ali.mohammed@hpe.com

KORNDORFER ET AL.: LB4OMP: A DYNAMIC LOAD BALANCING LIBRARY FOR MULTITHREADED APPLICATIONS 831

multithreaded applications executing on hierarchical paral-
lel systems. Specifically, this work provides a broad range of
dynamic loop self-scheduling (DLS) techniques, imple-
mented in a unified OpenMP runtime library (RTL), called
LB4OMP [17] that can readily be used for MPI+OpenMP
applications. Aiming for a wide reach and broad impact, we
implemented LB4OMP as an extension of LLVM’s OpenMP
RTL given its widespread use (e.g., in the US DOE’s Exas-
cale Computing Project [18]), open-source nature, and high
compatibility with widely-used compilers (Intel, IBM, PGI,
GNU).

The LB4OMP library supports 14 carefully selected
dynamic (and adaptive) loop self-scheduling techniques,
ready to use in addition to those existing in the standard-
compliant OpenMP libraries. Applications using LB4OMP
benefit from improved performance due to the portfolio of
DLS techniques, of which certain techniques adapt during
execution to unpredictable variations in application and
systemic characteristics (see Section 3.1). These 14 techni-
ques are selected to cover a broad spectrum of dynamic (and
adaptive) scheduling techniques. Specifically, LB4OMP
provides:

e Five dynamic but non-adaptive self-scheduling techni-
ques: fixed size chunking (FSC) [19], factoring
(FAC) [20], the practical variant of factoring (FAC2),
tapering (TAP) [21], and the practical variant of
weighted factoring (WF2) [22];

e Seven dynamic and adaptive self-scheduling techni-
ques: Bold (BOLD) [23], adaptive weighted factoring
(AWF), its variants (AWF-B,C,D,E) [24], and adaptive
factoring (aAF) [10];

e Features for performance measurement to measure
loop-specific performance metrics for an in-depth
analysis of loop scheduling and load balancing.

LB4OMP also provides mFAC and mAF, two improved

implementations that reduce the overhead of FAC and AF.
The scheduling techniques in LB4OMP differ in the
amount of work assigned to a thread at a time, referred to
as a chunk of loop iterations. Specifically techniques with:
(1) simple chunk calculation include FSC, FAC2, and WF2;
(2) profiling-based chunk calculation include FAC, mFAC, and
TAP; and (3) adaptive (non-linear) chunk calculation include
BOLD, AWF, its variants AWF-B,C,D,E, and AF and mAF.

This work makes the following contributions:

1) A novel systematic and unified implementation of 14
dynamic (and adaptive) scheduling techniques.

2) Advanced features for performance measurement of loop
performance and loop-level load imbalance.

3) Anin-depth analysis of the performance potential and lim-
itations of the standard and newly implemented
scheduling techniques, which were so far only par-
tially known to the non-experts and/or scheduling
practitioners.

The novelty of this work lies in providing a standalone and
unified implementation of efficient scheduling techniques
from literature, which is needed to spur new research in sched-
uling and load balancing for Exascale systems. Prior to this work,
scheduling research was hindered by the absence of an envi-
ronment that supports a fair comparison with the existing

scheduling algorithms in the literature. Novel scheduling
techniques or improved versions of the techniques imple-
mented in this work can now be implemented and compared
in this unified testbed. LB4OMP enables and promotes
research on automatic selection methods to identify, during
execution, the highest performing scheduling technique for
a given application-loop-time-step configuration.

This work is significant by bridging the gap between the
state-of-the-art and the state-of-the-practice of load balanc-
ing in multithreaded applications. This will allow the large
degrees of heterogeneous node-level parallelism in today’s
pre- and upcoming Exascale systems to be efficiently
exploited for improving applications performance.

This work is organized as follows. Section 2 is a review of
the related literature highlighting the differences between
prior and the present work. Section 3 describes the LB4OMP
design and highlights the required extensions to LLVM'’s
OpenMP RTL. The use of the newly implemented schedul-
ing techniques in OpenMP applications via the LB4OMP
library is detailed in Section 3. The experimental design and
performance analysis campaign are presented and dis-
cussed in Section 4. The work is concluded in Section 5,
which also outlines directions for future work.

2 RELATED WORK

The performance potential of a small number of dynamic
and non-adaptive loop scheduling techniques (TSS, FAC2,
WF2, and RAND), implemented in the GNU OpenMP RTL,
was recently explored [15]. The authors showed cases when
applications achieve improved performance beyond the one
offered by the scheduling techniques supported in the GNU
OpenMP RTL. Another variant of FAC, called BO FSS, was
proposed and compared against STATIC, GSS, TSS, FAC2,
TAP [21], HSS [25], and BinLPT [26], in another extended
implementation in the GNU OpenMP RTL [27]. The sched-
uling techniques considered in these research efforts does
not consider dynamic and adaptive scheduling techniques. In
general, other efforts only considered extending the GNU
OpenMP RTL, which is not compatible with other com-
pilers, unlike the LLVM OpenMP RTL.

LLVM has gained considerable traction in the software
vendor community and improving the open source LLVM
compiler and runtime ecosystem is a priority for the US
DOE Exascale Computing Project [18]. The LLVM OpenMP
RTL was extended only by an implementation of FAC2 [16].
Experiments therein showed improved performance of cer-
tain workloads with the newly added DLS technique.

The present work improves over the previous related
work by (1) providing a novel systematic and unified implemen-
tation of a broader range of dynamic (and adaptive) schedul-
ing techniques. (2) providing advanced features for
performance measurement of loop performance and loop-level
load imbalance. (3) demystifying the performance potential and
limitations of the standard and the newly implemented
scheduling techniques through an in-depth performance analy-
sis campaign.

Another direction of related work includes efforts that
propose generic interfaces to allow users to implement their
own loop scheduling techniques in different runtime librar-
ies [28], [29], [30]. These efforts reduce the development

832 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

challenges associated with the direct modification to the
RTL source codes, i.e., developers can implement their
scheduling technique via simplified, and ideally, well-docu-
mented interfaces. However, these efforts do not exclude
the need for extensive scheduling libraries to validate novel
scheduling techniques and exploit the increased hardware
parallelism of modern HPC systems. Therefore, such
efforts [28], [29], [30] can be seen as potential methods that
facilitate the development of another version of the
LB4OMP scheduling library in the future.

Considering the vast amount of DLS techniques pro-
posed in the literature, the following non-trivial question
arises: What are the criteria to include a particular scheduling
technique into a unified scheduling library? A number of
research efforts attempted to answer this question [10], [20],
[21], [23], [24], [31].

Fsc [32], Tss [31], FAC [20], and TAP [21] were introduced
by separate research groups. However, the performance of
each of these techniques was compared against at least one
of three main scheduling techniques STATIC, SS [33], and
GSS [34] that nowadays correspond to schedule
(static), schedule(dynamic,l), and schedule
(guided, 1) specified in the OpenMP standard. The chunk
calculation in TSS, for instance, is simpler than the non-lin-
ear chunk calculation in GSS. Therefore, we state that the sim-
plicity of chunk calculation is an important selection criterion.

FSC, TAP, and FAC are based on probabilistic analyses
and use profiling information to calculate the chunk sizes
that achieve the most balanced load execution for a given
application with a high probability. The profiling informa-
tion is obtained prior to the applications’ execution. We
state that the profiling-based chunk calculation is another
important selection criterion.

Another set of related research efforts includes BOLD
[23], AWF-B,C,D,E [24], and AF [10]. These techniques use
profiling information obtained during applications’ execu-
tion to adapt during execution the calculated chunk sizes to
achieve the most balanced load execution for a given appli-
cation. We state that the adaptivity of chunk calculation is
another valuable selection criterion.

Based on the above criteria, FSC [32], FAC [20], TAP [21],
WF [22], BOLD [23], AWF-B,C,D,E [24], and AF [10] were
selected for implementation into the LB4OMP scheduling
library. Other scheduling techniques that meet these criteria
can also be considered for inclusion in LB4OMP. The DLS
techniques selected in this work can also be applied to
schedule OpenMP tasks and taskloops [35], [36]. The
use of LB4OMP for scheduling tasks and taskloops is
part of separate ongoing work by the authors.

3 THE LB4OMP LIBRARY

LB4OMP extends the LLVM OpenMP RTL version 8.0,
which is widely used and compatible with various com-
pilers, including Intel, IBM, GNU, and PGIL. The choice of
extending the LLVM OpenMP RTL meets important
research goals and priorities of the HPC community [18].
Fig. 1 shows the LB4OMP loop scheduling mechanism
which extends the scheduling mechanism in the LLVM
OpenMP RTL. The three main functions responsible for
the chunk calculation are implemented in the file

scheduling techniques
LB4OMP ¥
features for performance

. measurement
Worksharing

loop

:So. kmp_dispatch.cpp
A
ol N\
F» it —» next —» finish
\
ore sync j* ChUn/(
ie » »

(5 e

o) O

«

® Loop iteration
®=. Chunk of loop iterations
‘ OpenMP thread

Fig. 1. Extension of the OpenMP LLVM RTL scheduling process for
worksharing loops with LB4OMP.

kmp_dispatch.cpp. Upon initialization, each thread calls
the __kmp_dispatch_init_algorithm function inside
the kmp_dispatch.cpp file (init in Fig. 1). This function
then initializes the needed structures for the selected sched-
uling technique and calls __kmp_dispatch_next_al-
gorithm (next in Fig. 1). The logic of the chunk calculation
of all DLS techniques is implemented in the __kmp_dis-
patch_next_algorithm function. The _ kmp_dis-
patch_next_algorithm is called each time a thread
needs to obtain work. Since the threads obtain work from a
shared queue, __kmp_dispatch_next_algorithmrelies
on different synchronization operations (sync in Fig. 1)
depending on the scheduling technique in execution.
Finally, the threads call __kmp_dispatch_finish (finish
in Fig. 1) to reset variables or free allocated memory.

Significance of the Chunk Parameter. The OpenMP standard
scheduling techniques and the newly implemented schedul-
ing techniques in LB4OMP support the declaration of a
chunk parameter which bears different meanings among the
scheduling techniques. For schedule (static, chunk)
and schedule (dynamic, chunk), the chunk parameter
denotes the amount of iterations that the threads should
receive for every work request. For the other techniques, the
chunk parameter works as a threshold, in the sense that
when chunks sizes, calculated by a scheduling technique,
fall below this threshold they will be replaced by a chunk
sizes equal to the size of the chunk parameter. The chunk
parameter was introduced by the OpenMP standard to min-
imize the scheduling overhead and to improve data locality.
Declaring a proper chunk parameter improves performance
since threads perform fewer scheduling rounds than with-
out this threshold. This is confirmed by the experiments
described in Section 4.

3.1 Dynamic Loop Scheduling Techniques
LB4OMP bridges the gap between the literature and the prac-
tice in dynamic load balancing of multithreaded applica-
tions. It represents an environment for a fair comparison of
scheduling techniques and lays the ground for future
research in loop scheduling of multithreaded applications.
The loop scheduling techniques implemented in
LB4OMP are dynamic and a number of them are also adaptive
self-scheduling techniques. With self-scheduling techni-
ques, free threads request, calculate, and obtain their own

KORNDORFER ET AL.: LB4OMP: A DYNAMIC LOAD BALANCING LIBRARY FOR MULTITHREADED APPLICATIONS 833

next chunk of units of work (loop iterations) by accessing a
central shared work queue containing all iterations of a
given loop. The chunk size is calculated according to the
loop scheduling techniques in the OpenMP RTL.

Following is a brief description of each scheduling tech-
nique in LB4OMP, starting with dynamic and non-adaptive
self-scheduling techniques followed by the dynamic and
adaptive self-scheduling techniques. More details about the
various chunk calculations for these techniques can be
found in the literature [37].

Dynamic and Non-Adaptive Self-Scheduling. SS (or
dynamic, 1 in OpenMP) [33] is a dynamic self-scheduling
technique wherein the chunk size is always one loop itera-
tion. SS incurs the highest scheduling overhead due to the
largest number of chunks (equal to the number of loop itera-
tions). SS can achieve a highly load-balanced execution in
highly irregular execution environments.

FSC [19] determines an optimal chunk size that achieves
a balanced execution of loop iterations with the smallest
overhead. To calculate the optimal chunk size, FSC requires
that the variability in iteration execution times and the
scheduling overhead of assigning loop iterations are known
before applications’ execution.

GSS [34] is a trades-off between the load balancing
achievable with SS and the low scheduling overhead
incurred by STATIC. Unlike FSC, GSS assigns decreasing
chunk sizes to balance the loop execution progress among
all threads. For every work request, GSS assigns a chunk
size equal to the number of remaining loop iterations
divided by the total number of threads.

TAP [21] is based on a probabilistic analysis that repre-
sents a general case of GSS. It considers the average of loop
iteration execution times u and the standard deviation o to
achieve a higher load balance than GSs.

TSS [31] assigns decreasing chunk sizes similar to GSS.
However, TSS uses a linear function to decrement chunk
sizes. This linearity results in lower scheduling overhead in
each scheduling step compared to GSS.

FAC [20] schedules the loop iterations in batches of
equally-sized chunks. FAC evolved from comprehensive
probabilistic analyses, and assumes prior knowledge about
the average iteration execution times (x) and their standard
deviation (o). A practical implementation of FAC, denoted
FAC2, assigns half of the remaining loop iterations for every
batch. The initial chunk size of FAC2 is half of the initial
chunk size of GSS. If more time-consuming loop iterations
are at the beginning of the loop, FAC2 is expected to better
balance their execution than GSs.

WF [22] is similar to FAC, with the difference that each
processing unit executes variably-sized chunks of a given
batch according to its relative processing weights. The proc-
essing weights, IW,;, are determined prior to applications’
execution and remain constant during execution. WF2 is the
practical implementation of WF that is based on FAC2.

mFAC is our improved implementation of FAC. In the
original FAC algorithm, the first thread that starts a new
batch of iterations locks a mutex and computes the chunk
size for the current batch. The subsequent threads simply
read and reuse the already computed chunk size until the
iterations in the batch have been scheduled. This requires
mutex-based synchronization. mFAC avoids such costly

Y 25K 25K, 2K
@
*:é) GSS T FsC
ey
© 0 260 0 75 0 402
50K 50K 25K,
@
é FAC mFAC FAC2
<
© 0 58 0 58 0 200
© 25K 50K Chunk ID
@
%‘ WF2 TAP
<
© 200 0 Ta4
Chunk ID Chunk ID

Fig. 2. Progression of chunk sizes for dynamic and non-adaptive techni-
ques for scheduling the main loop (L 1) of SPHYNX with 1,000,000 loop
iterations on a 20-thread miniHPC-Broadwell node and a chunk parame-
ter of 97 loop iterations (Section 4.1). The chunk IDs are shown on the =
axis and the number of iterations per chunk on the y axis.

synchronization by involving more computation. Specifi-
cally, in mFAC, a shared counter is atomically incremented so
that threads identify the current batch number. Hence, each
thread calculates its own next chunk size depending on the
batch counter. Depending on the synchronization and com-
putation overheads in a given computing systems, one may
use either FAC or mFAC.

Fig. 2 depicts an example of the chunk sizes calculated by
the dynamic and non-adaptive scheduling techniques and
their progression over the work requests for scheduling the
iterations of the main loop (L1) of SPHYNX [38] (more
details in Section 4.1). STATIC and SS are not shown in
Fig. 2 as their chunk size progression is constant (straight
line), at the size of the chosen chunk parameter. The chunk
size progression for the dynamic non-adaptive scheduling
techniques follows a decreasing chunk size pattern, wherein
the next chunk of iterations is equal to or smaller than the
previous. One can note that not only the chunk sizes but
also the total the number of chunks allocated varies among
the scheduling techniques. A small number of large chunk
sizes may not mitigate load imbalance but incur a smaller
scheduling overhead due to fewer scheduling operations
while a greater number of smaller chunks may improve
load balancing at the cost of increased scheduling overhead.

Dynamic and Adaptive Self-Scheduling. Adaptive scheduling
techniques regularly measure execution performance during
the application execution and the scheduling decisions are taken
based on this information. The adaptive scheduling techni-
ques incur a higher scheduling overhead compared to non-
adaptive techniques but are designed to outperform the non-
adaptive ones in highly irregular execution environments.

BOLD [23] is a ‘bolder’ version of FAC and a further devel-
opment of TAP. As with TAP, it uses the mean u and the
standard deviation o of the iteration execution times as well
as an estimate of the scheduling overhead. The driving idea
behind the BOLD strategy was to increase early chunk sizes
such that scheduling overhead is reduced while considering
the risk of potentially too large chunks of iterations.

AWF [24] is similar to WF in that each thread executes vari-
ably-sized chunks of a given batch according to its relative
processing weight. The processing weight is updated dur-
ing execution based on the performance of each thread. AWF
is devised for time-stepping applications and threads proc-
essing weights are updated at the end of each time-step.
Variants of AWF, namely AWF-B and AWF-C, relaxed this

834 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

constraint by updating processing weights at the end of
every batch and chunk execution, respectively. Additional
variants of AWF, namely AWF-E and AWF-D, are similar to
AWF-B and AWF-C, respectively. In addition, AWF-E and
AWF-D take into account the overhead of scheduling in cal-
culating the relative processing weights.

AF [10] is an adaptive DLS technique derived from FAC.
In contrast to FAC, AF learns both u and o for each comput-
ing resource during application execution to ensure full
adaptability to all factors that cause load imbalance. AF
adapts the chunk size during application execution based
on the continuous updates of the mean loop iteration execu-
tion times p and their standard deviation o.

mAF is our improved implementation of AF. In the origi-
nal AF algorithm, the execution time of earlier loop itera-
tions (from the same execution) are collected to calculate the
next chunk size. The collected times only consider the exe-
cution time of the loop iterations themselves. In LB4OMP,
mAF also considers the scheduling overhead. Hence, mAF
employs a more precise performance estimation for calculat-
ing the chunk size, which is expected to lead to higher load
balance and performance.

Fig. 3 shows the chunk sizes calculated by the dynamic
and adaptive scheduling techniques and their progression
over the work requests for scheduling the iterations of the
main loop (L1) of SPHYNX (more details in Section 4.1). The
chunk sizes calculated by the adaptive scheduling techni-
ques do not strictly decrease with each work request, but
increase or decrease depending on the requesting thread’s
performance during execution. This is the quintessence of
adaptive self-scheduling and load balancing: threads which require
more time to compute receive less work while threads which com-
pute faster receive more work.

Dynamic and adaptive self-scheduling and load balancing
techniques will be critical for achieving performance on upcom-
ing Exascale systems with heterogeneous architectures in
which scheduling needs to dynamically adapt to threads exe-
cuting on slower or faster processing units. The observation
from Fig. 2 also holds true for Fig. 3 regarding the trade-off
between fewer and larger chunks and more and smaller chunks.

3.2 Features for Performance Measurement
LB4OMP provides a number of features for performance
measurements for target loops associated with the OpenMP

50K 29K 25K
@
%‘ BOLD AWF AWF-B
e
© 0 21 0 484 0 369
Y 25K 25K 25K
@
%‘ AWF-C AWF-D AWF-E
o
© 0 254 0 406 0 254
5K 5K, Chunk ID
@
%‘ | Aq | mIF
e
© o0 771 0 755
Chunk ID Chunk ID

Fig. 3. Progression of chunk sizes for dynamic and adaptive techniques
for self-scheduling the main loop (L7) of SPHYNX with 1,000,000 loop
iterations on a 20-thread miniHPC-Broadwell node and a chunk param-
eter of 97 loop iterations (Section 4.1). The chunk IDs are shown on the
x axis and number of loop iterations per chunk on the y axis.

schedule clause. These features are crucial for the analysis
of loop scheduling and load balancing.

Thread Execution Time. This feature reports the threads
execution times per loop execution instance. This informa-
tion is important for the estimation of load imbalance in a
parallel loop. This feature is enabled by defining the envi-
ronment variable KMP_TIME_LOOPS and declaring the path
where the measured performance data will be stored.

The thread execution time feature enables the calculation of
well-known load imbalance metrics such as coefficient of vari-
ation (c.0.v.) [20] and percent imbalance (p.i.) [39]. The c.0.v.
and p.i. equations are defined in Table 1, where TIZ,‘(;‘;Z’
denotes the parallel execution time of the loop. In this work,
these metrics are calculated based on the data measured
with LB4OMP for individual OpenMP loops and presented
later in Section 4.

Chunk Information. LB4OMP collects and stores the calcu-
lated chunk sizes for each thread in each scheduling round.
This functionality can be enabled by setting the environ-
ment variable KMP_PRINT_CHUNKS to 1. The collected
information is stored at the location defined in KMP_TI-
ME_LOOPS (see above).

A detailed analysis of the chunk sizes calculated by each
scheduling technique for given OpenMP loops is funda-
mental for understanding their performance. We used this
feature for the in-depth performance analysis of the impact
of the chunk parameter on all scheduling techniques
described in Sections 4.3 and 4.4.

Statistical Information About Loop Iterations Execution
Times. LB4OMP provides a profiling feature that collects the
mean of loop iterations execution times (1) and their stan-
dard deviation o. These measurements are required by the
FSC, FAC, TAP, and BOLD scheduling techniques. The profil-
ing feature relieves the (non-expert) user from the burden of
collecting such profiling information.

This feature can be enabled by defining schedule
(runtime) in the target loop, exporting OMP_SCHEDU-
LE=profiling, and setting the environment variable
KMP_PROFILE_DATA to the path where the profiling data
will be stored.

3.3 Load Balancing Applications With LB4OMP

The use of LB4OMP with an OpenMP application is
straightforward and illustrated in Fig. 4. First, one must
ensure that the target OpenMP loops in the application con-
tain the schedule (runtime) clause. If that is the case, no
other changes are required and there is no need to recom-
pile the code. Otherwise, one needs to change (or add, if the
loop structure permits) the existing scheduling clause to
runtime in all target loops and recompile the application.
Next, one needs to add the path to the compiled LB4OMP
to the environment variable that the linker uses to load
dynamic and shared libraries (e.g., LD_LIBRARY_PATH on
Linux/Unix systems). The workflow in Fig. 4 is almost inde-
pendent of the target system. The only system-related
parameter required by LB4OMP is the host CPU clock fre-
quency. This is passed to LB4OMP via the environment var-
iable KMP_CPU_SPEED as an integer variable in MHz. The
adaptive scheduling techniques in LB4OMP use low over-
head cycle counters as RDTSCP to measure the execution

KORNDORFER ET AL.: LB4OMP: A DYNAMIC LOAD BALANCING LIBRARY FOR MULTITHREADED APPLICATIONS 835

App. loops contain
schedule(runtime)?

Add schedule runtime to the target loops
C Example:

tpragma omp parallel for schedule(runtime)
for(int i = 1000; i > @; i++) {

Eea) // block of code

Compile application

y
Link application with LB4OMP
Linux example:

lexport LD_LIBRARY_PATH=LB4OMP_path

[]

Select scheduling technique
Provide the CPU clock frequency

lexport OMP_SCHEDULE=technique, chunk
lexport KMP_CPU_SPEED=CPU_clock_frequency

Execute application @

Fig. 4. Workflow for dynamic load balancing the execution of OpenMP
applications using the scheduling techniques in LB4OMP.

time of previous chunks of iterations. We use the clock fre-
quency to convert the cycles into time (which are the values
expected by the formulas of those techniques). One may argue
that the static value defined by the user in KMP_CPU_SPEED
may be inaccurate for a number of modern processors that
allow dynamic clock frequency change during execution. The
measured performance of the threads is relative to each other,
so variations in clock frequency during execution do not affect
the chunk calculation. Work is ongoing to automate the process
of collecting the clock speed for use in LB4OMP.

Applications with multiple loops may need to employ dif-
ferent scheduling techniques in different parts of the code.
LB4OMP uses the schedule (runtime) option available in
OpenMP and, therefore, the scheduling technique selected by
the user is read from the environment variable OMP_SCHED-
ULE. To select different scheduling techniques for an applica-
tion in different parts of the code, one can use the function
specified in the OpenMP standard omp_set_schedule
(omp_sched_t kind, int chunk_size) [40]. This is used
to update the scheduling technique specified with OMP_-
SCHEDULE during execution. One can also export environ-
ment variables directly from the application code to update
the configuration of LB4OMP and, if preferred, to update the
scheduling technique itself.

4 PERFORMANCE RESULTS AND DISCUSSION

We use three applications, two microbenchmarks, and three
computing node types to evaluate the performance of the
existing in LLVM OpenMP RTL and newly implemented
DLS techniques in LB4OMP (see Table 1).

The applications SPEC OMP 2012 352.nab [41],
SPHYNX, and the microbenchmark DIST [42] were selected
since they contain imbalanced and computationally-inten-
sive loops, which are the most promising optimization tar-
gets for improved performance with dynamic (and
adaptive) self-scheduling techniques [15]. The application
GROMACS [43] and the microbenchmark STREAM [44]
were selected to provide an overview of the scheduling

overhead, ccNUMA effects, and locality loss incurred by
the scheduling techniques in LB4OMP. These loops are bal-
anced, of low arithmetic intensity, and mainly perform
memory operations which stresses the possibly negative
effects of dynamic (and adaptive) self-scheduling.

We will use the following notation to specify details
regarding the applications and systems. 7" denotes number
of time-steps, L the IDs of loop with modified schedule
clauses, and 7ol the time spent by the application outside
of loops. The loops for which we modify the schedule
clause were parallel and not nested.'

4.1 Design of Factorial Experiments
Table 1 presents the design of the factorial experiments
needed for the extensive performance analysis campaign.

For SPEC OMP 2012 352.nab, part of the SPEC OMP 2012
benchmark suite, we used the reference input size. For
SPHYNX, the Evrard Collapse test case was performed with
1,000,000 particles. For GROMACS, the input size used in
the experiments was the Test Case B taken from the Unified
European Application Benchmark Suite (UEABS) [45].

The STREAM microbenchmark was executed with its
default array size of 80,000,000 elements (doubles), memory
per array 610.4 MB, which required a total of 1831.1 MB in
memory. DIST is synthetic microbenchmark used to show how
the scheduling techniques react to different statistical loop
workload distributions across iterations. Each loop of DIST fol-
lows a different workload distribution as indicated in Table 1.

Each experiment was repeated 5 times (STREAM was
repeated 20 times) and the average execution time or mem-
ory bandwidth (in MB/s) for STREAM is reported. The
applications SPEC OMP 2012 352.nab, SPHYNX, and GRO-
MACS are time-stepping simulations. The computationally-
intensive loops with modified schedule clause from each
application and microbenchmark are indicated in Table 1.
The applications and the LB4OMP library were compiled
with the Intel compiler version 19.0.1.144. The characteris-
tics of the computing systems are also indicated in Table 1.

Throughout the performance analysis campaign, all
scheduling techniques used the default chunk parameter
(1 loop iteration). We used the thread execution time LB4AOMP
feature (Section 3.2) and measured the loop execution and
threads finishing times per loop to derive load imbalance.

4.2 Performance Analysis

The goal of this performance analysis campaign is to exam-
ine which DLS technique provides the highest performance
and lowest load imbalance for each application’s loop sched-
uled with LB4OMP.

Fig. 5 shows the average parallel execution time for each
modified loop in SPEC OMP 2012 352.nab, SPHYNX, and
DIST with the default chunk parameter executing on all node
types without hyperthreading. In Fig. 5, the Best combina-
tion of scheduling techniques varies greatly between applica-
tions and systems, and outperforms every single technique in
most cases. This reinforces the need for additional scheduling
options in OpenMP [15] since the Best combination com-
monly includes the techniques implemented in LB4OMP.

1. LB4OMP can schedule nested and non-nested parallel loops with
independent iterations.

836 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

TABLE 1
Criteria Used for the Design of Factorial Experiments, Resulting in a Total of 4,826 Experiments

Factors Values

Properties

SPEC OMP 2012 352.nab

N =44,794]T =1,002 [Total loops = 13 [Modified Ioops = 7

Applications SPHYNX Evrard Collapse

N =1,000,000 | T =20 | Total Toops = 37 [Modified Ioops = 2

GROMACS

316,463 [T = 10,000 | Total Toops = 90 [Modified Toops = T

Microbenchmarks STREAM

N'=80,000,000 [T =1 Total loops = 4 [Modified Ioops = 4

copy: a(i) = b(i), bytes/iteration = 16, FLOP/iteration = 0

scale: a(i) = q * b(i), bytes/iteration = 16, FLOP /iteration = 1

add: a(i) = b(i) + (i), bytes/iteration = 24, FLOP /iteration = 1
triad: a(i) = b(i) + ¢ * (i), bytes/iteration = 24, FLOP /iteration = 2

DIST

N =1,000 [T = 1] Total loops = 5 | Modified Ioops = 5

L0 (constant): 2.3 x 10% FLOP per iteration,

L1 (uniform): [10%,7 x 10%] FLOP per iteration,

L2 (normal): 1 = 9.5 x 10% FLOP, 0 = 7 x 107 FLOP, [6 x 10%,1.3 x 10°] FLOP per iteration,
L3 (exponential): A = 1/3 x 10% FLOP, [948, 4.5 x 10°] FLOP per iteration,

L4 (gamma): k = 2, 6 = 10® FLOP, [4.1 x 10%,2.7 x 10°] FLOP per iteration,

static (STATIC)

Straightforward parallelization

Scheduling OpenMP standard guided (GSS), dynamic, 1 (SS)
techniques OpenMP non-standard | TSS Dynamic and non-adaptive self-scheduling techniques
LB4OMP FSC, FAC, FAC2, TAP, WF2, mFAC
BOLD, AWF, AWF-B, AWF-C, AWF-D, AWF-E, AF, mAF Dynamic and adaptive self-scheduling techniques

N/(2P), N/(4P), N/(8P), N/(16P), .., 1

Fewest number of chunk parameter tested:
Chunk parameter
Largest number of chunk parameter tested:

7 for SPEC OMP 2012 352.nab on node miniHPC-KNL with hyperthreading

16 for SPHYNX on node Piz Daint-Haswell without hyperthreading

For dynamic and static the chunk parameter denotes the fixed amount
of iterations in every chunk

For all others DLS techniques, the chunk parameter represents the smallest
chunk size a thread can obtain with a given self-scheduling technique

miniHPC-Broadwell

Intel Broadwell E5-2640 v4 (2 sockets, 10 cores each)
P = 20 without hyperthreading, P = 40 with hyperthreading
Pinning: OMP_PLACES=cores, OMP_PROC_BIND=close

Computing nodes miniHPC-KNL

Intel Xeon Phi KNL 7210 (T socket, 64 cores)
P = 64 without hyperthreading, P = 256 with hyperthreading
Pinning: OMP_PLACES=cores, OMP_PROC_BIND=close

Piz Daint-Haswell

Intel Xeon E5-2690 v3 (T socket, 12 cores)
P =12 without hyperthreading, P = 24 with hyperthreading
Pinning: OMP_PLACES=cores, OMP_PROC_BIND=close

Performance per loop

Parallel loop execution time 7}a2”

Metrics Load imbalance per loop

cov.=o/p

X o % 100%

From the results of the dynamic and non-adaptive scheduling
techniques in Fig. 5, we observe that FAC2 and GSS presented
fairly high performance in almost all experiments, despite the
performance for SPHYNX on node miniHPC-Broadwell and
Piz Daint-Haswell. Despite the high performance achieved by
TSS, FAC, mFAC, and TAP for DIST, these techniques achieved
low performance for the majority of other applications and
systems. With profiling information, FSC calculated a proper
chunk size achieving high performance in almost all experi-
ments, despite the performance for SPHYNX on node min-
iHPC-KNL, SPEC OMP 2012 352.nab on nodes miniHPC-
Broadwell and miniHPC-KNL, and DIST on Piz Daint-Has-
well. The highest achieved performance improvement with a
dynamic and mnon-adaptive scheduling technique was on
SPHYNX with FSC on miniHPC-Broadwell outperforming
GsSS, the best standard technique in this case, by 13.32%.

The dynamic and adaptive loop scheduling techniques nat-
urally add overhead. However, they adapt to application
and system variations and heterogeneity without requiring
profiling information. In Fig. 5, we observe that, except for
BOLD (and for AF, mAF for SPEC OMP 2012 352.nab and
DIST on miniHPC-KNL), all adaptive scheduling techni-
ques consistently achieved high performance. In numerous
cases, the adaptive scheduling techniques are included in
the Best combination. For example, AF and mAF, consis-
tently presented high performance for all results with
SPHYNYX, in which mAF is included in the Best combina-
tion for both miniHPC-KNL and Piz Daint-Haswell nodes.
The highest achieved performance improvement with a
dynamic and adaptive scheduling technique was on SPHYNX
with mAF on Piz Daint-Haswell outperforming GSsS, the best
standard technique in this case, by 10.67%.

The results for SPHYNX on node miniHPC-Broadwell
show that AF and mAF reasonably outperformed GSS by
approximately 9.28% and 9.59% respectively. SPHYNX execut-
ing on miniHPC-Broadwell node also shows that FSC

calculated a proper chunk size for both loops, obtaining the
highest overall performance, outperforming GSS by 13.32%
and mAF by 3.73%. This behavior is consistent among the
results on nodes of miniHPC-KNL and Piz Daint-Haswell
(Fig. 5). In the following Section 4.3, we further investigate the
performance of the scheduling techniques for the most time-
consuming loop of SPHYNX, L1, while varying the chunk
parameter.

Fig. 6 presents the load imbalance metrics, c.0.v. and p.i., cal-
culated for the most time-consuming loop of SPHYNX (L1)
execution on miniHPC-Broadwell node. These results show
that most scheduling techniques achieve nearly perfect load
balancing. Although these applications are computation-
ally-intensive, with few memory operations, we can
observe that almost perfect load balancing does not
directly translate to high performance due to the addi-
tional scheduling overhead and loss of data locality. For
instance, in Fig. 6, AWF-B achieved perfect load balanc-
ing while in Fig. 5 we can observe that the execution
time of SPHYNX executing on miniHPC-Broadwell node
with AWF-B was 21.40% slower than Best.

Aspects such as scheduling overhead, ccNUMA effects,
and data locality cannot directly be observed in Fig. 5, as the
scheduling overhead is absorbed by improvement in the loop
execution time due to dynamic and adaptive scheduling.
Instead, we use a computationally-inexpensive loop of a
widely used molecular dynamics application GROMACS
[43], to reveal the overhead of all scheduling techniques. This
particular loop in GROMACS has very low arithmetic inten-
sity, regular loop iterations, and initializes three vector data
structures which stresses ccNUMA effects and locality issues.

We also use the STREAM microbenchmark, a simple syn-
thetic program that measures sustainable memory band-
width, to show the memory bandwidth drop caused by
ccNUMA effects and the locality issues that arise during
dynamic and adaptive self-scheduling.

KORNDORFER ET AL.: LB4OMP: A DYNAMIC LOAD BALANCING LIBRARY FOR MULTITHREADED APPLICATIONS

Lo L2 [L6

837

LO (con) L2 (nor)/mmm L4 (gam)mmm T_ol

Lo st = T ol L1 (uni) B L3 (exp)
.1 .13 L5 . T ol
. 2,500 SPHYNX | miniHPC-Broadwell w/o HT 350 DIST | miniHPC-Broadwell w/o HT
3,500 SPEC OMP 352.nab | miniHPC-Broadwell w/o HT
— . C) K @ 300 5
23,0001 & 22,000 R~ P po
g 3 £ 2 £ 250 it
25001] 5 . z Cssbsssgss|s88588s
< 1 £ 1,500 S,00l 8585253858 aRB8I8E
520001 § & 3 Z oo geoS TS a2
9] o 02 9« o E e ® R R X
515001 § CRE 2A 2 o2 210007 Blee HEcexbescss 8150
- KX g2 2 NS DAG~N2QABORR]
L N T RO R BN © simeSaAnn2fosnemngy 2100
B 1,000 b I R T B T v 5 s < SuSpEReReSn c
ol g fpgp-- g c"cwn S 500 as A INANSQR e
5 1 L] L T LS 1 ..°II--II-|-I- &
&] L] LI L0500 50
500 11 I“““E TTITEntmn il
ol 1A% CRgARICCrEaLIoTEEy P P P TR
QuuunoYuNNToL@UoWL W £ E Wl) 41 =] 000 o
EVNQuaZIQuL IS ifu<<d £ OFLuegsFOoIs3Es Eo EVRVDIEIQLSSZudddi<Ed
Bl 0FL IZF03IELLs Ea I <2< < = <=3z «Q
E [@ = = € BTZZZ32
n . <I<g< Loop scheduling technique 1
Loop scheduling technique Loop scheduling technique
— 2,500 SPHYNX | miniHPC-KNL w/o HT 800 DIST | miniHPC-KNL w/o HT
3,500 SPEC OMP 352.nab | miniHPC-KNL w/o HT < 700
w © =z =
30001 £ w2000 & 3 £ i g8
e lss 8 £ = E E A
525001 5~ =EE % g < b PP U IO -
< e | SI§§ aq 28 £1,500] = L2 g §300) Bz xEaXAR S350
2 ? ° ° o0 5 n R ® =] NN flnAamm A Mg o g
S 2,000 e Bmmeedmer ol " a8 m e 5 el Balelie BRI
52, =g 2Ry LrEraA 3 ,Zem - 3 400 cc fsco 5
g IlSH Ilmm Im_wzn_:ﬁ ¢ dflsgonsesseag ey 9 1 — T ERE
1,500 =N | R | qu“'-~'|| 21,000 gRW 525328838 H
| HEILLE L R | B | B kR
] ° B | BEREREEEENI =
T 1,000 I ! © € 200
£ I & 500 5
&
500 I i 100 I II
! 0 !
0 YununnoluaNLoL@OOWL W & 0
VnnnoLUUNNLALOOAQWW w & FouuwogsluI a2 77 /.<<g QuuuouuNNT oL OWL LG
R S I = L £ OFwLEEIsFoIssss Ea PR3- 3-FS TR
< 0 I2FoxssLt: Ea I 1322 = © <zzz2
P € @ I € °33II
%) <z« Loop scheduling technique)
Loop scheduling technique Loop scheduling technique
3,500 X X 2,500 SPHYNX | Piz Daint-Haswell w/o HT 400 DIST | Piz Daint-Haswell w/o HT
’ SPEC OMP 352.nab | Piz Daint-Haswell w/o HT — 350 =
@ = o =
) 0 2R
@ 3,000 - @ 2,000 o = 25 e £ =
o o £ E 2300 S XX NSRRIV RI R R0
S2s00f 3 < : SE T
2" = S1s00] € 5250 gSSJfsccccfemc e,
52,0001 & BE sl 3 E]
RS T ROV DO+ g 5 £5 . <f § 200
9 SR e ¥R R XFRIAR s R 2B exrers
§1s00{ S| 88522885 NREOBRES g0 S 55 2eR5BaREhaRss S 150
o I cY-ggSs Jimemsss z < B E RS S @
ol i I! ' BEEBBE © oSS SN goaaga3ing 2
1,000 I II 5 500 [[BN N i) el £ 100
s &
&
I II 0 QuuuouloNNncoLOUoWw W 0
0 = PG il
OnwuLOUNNAALDUAWLW w « FEunounndI0LIa2) J /<<y QuuuovuNNL oLV WL L
ﬁmmﬂwiggmﬁJEmu_u_u_<<$ = OFLLLEISFOIZEEs Ea l—m(‘g‘ﬂﬁﬁgggﬁsgumu_u.<§$
Y EXISFQ<zEEz Ea &5 EEE = = a<zz=z:2 @
0 ERER Loop scheduling technique 19 <<I<
Loop scheduling technique Loop scheduling technique

Fig. 5. Average parallel execution time for each modified loop in SPEC OMP 2012 352.nab, SPHYNX, and DIST with the default chunk parameter
executing on all node types without hyperthreading. The = axis shows the DLS techniques, while the y axis presents the parallel execution time of
each modified loop (L). The most time consuming loop of each application is highlighted in the legend. The red rectangles encompassing the bars
represent the best performing scheduling technique for a given loop. On the z axis, the Best presents the shortest achievable execution time by
selecting the combination of all individually highest performing techniques per loop together. The background color highlights: in white, the OpenMP
standard DLS techniques, in gray, the non-standard technique that was already implemented in the LLVM OpenMP RTL, in green LB4OMP, and in
dark pink the Best combination of techniques. The percentages denote performance degradation due to executing the applications with a single
DLS technique versus using the Best combination. The plots highlighted in light pink will be further explored in the next sections.

Fig. 7 shows the parallel loop execution time for the loop
from GROMACS executing on node miniHPC-Broadwell
while Fig. 8 shows the memory bandwidth (in MB/s) main-
tained by each kernel from STREAM also executing on node
miniHPC-Broadwell. We use miniHPC-Broadwell since it is

0.20 .
. c.o.v. SPHYNX | miniHPC-Broadwell w/o HT . p.i
L1
2 N
0.151 3 i 2 30
0 o o S
o —3 SR S 3
s |2 S3 & g
> S| o <
s 0.10 20 .
© S8
R
0.05 8 < 10
o w© =g e © ¥ ° 2 5
R _Ro¥ R R R R Ry
o% on 2 2l o3 gk o gin 89 gW
S5 99 ©2 85 99 98 o+ g+ 24
oo oo 00 OO0 OO0 0O OO
0.00 Y —
O v uvuw VUL NNIL AL O UA WL W
EFE 0 wunwnwon <O < 32 ¢ J o5y <L
'<£ O b o Lé E = F 8 <=z =z = £
0 << < <

Loop scheduling technique

Fig. 6. Load imbalance metrics c.o.v. and p.i. for the most time consum-
ing loop of SPHYNX (L1) highlighted in Fig. 5 and calculated based on
the results obtained from miniHPC-Broadwell without hyperthreading.

a two-socket node, making ccNUMA effects and data local-
ity issues more prominent.

Three factors contribute to the scheduling overhead shown
in Fig. 7: (1) Number of scheduling rounds o,,; (2) Cost of cal-
culating a chunk size o.; and (3) Synchronization cost
between threads to obtain or to calculate a new chunk of
loop iterations og,.. Note that o., and oy, are incurred
with every scheduling round, therefore, growing with

or- It is important to note that due to the non-deterministic
and stochastic nature of dynamic and adaptive self-scheduling,
high os. potentiates the loss of data locality and the impor-
tance of ccNUMA effects, which in this case are compounded
with the overhead (compared to STATIC) seen in Fig. 7.

STATIC in Fig. 7 shows the smallest scheduling overhead,
where o, = 1, o, is a simple and deterministic division, and
0gyne = 0, since threads need no synchronization.

SS shows the largest overhead due to o5, < N, o is neg-
ligible, and o, can either be negligible if o,, < N or signif-
icant if oy, = N. In specific situations, some techniques may
show higher overhead than SS (e.g., in this case, FAC, mFAC,

838 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Lo

10.0 -
i GROMACS | miniHPC-Broadwell w/o HT
° 8z &
2 o8 Bo.x ¥ B,
= < - 8a « w{
5 L 4
o
0 0.004-7 - -
b 2 bl
T Szoll==1.11215
=0002] < s2@ SSI8 2[R
o S B | D
g g :
B o CE R e
= ;
g umem<;ho§““¢L =9
0 <=2

Loop scheduling technique

Fig. 7. Parallel loop execution time for GROMACS’ loop L0. The perfor-
mance of the dynamic and adaptive self-scheduling techniques is com-
pared to the performance of STATIC, which offers highest performance
and data locality at lowest scheduling overhead.

TAP, AWF-D, and AF). If a scheduling technique with higher
o0.s than SS calculates the same chunk size as SS it will cause
more overhead than Ss.

GSS, TSS, and FSC incur less overhead than SS due to
assigning larger chunks of loop iterations, which reduces
osr < N, increases data locality, while keeping o., and oy,
comparable by using simple chunk calculation functions
and atomic operations to synchronize the threads.

The extremely large overhead with FAC (>43,000%) is
due to the combination of high o, 0., 05 Overheads and
loss of data locality. FAC uses a complex function to calcu-
late the chunk size, requiring profiling information and a
mutex to synchronize the threads. mFAC has lower oy,
than FAC by using atomic operations, leading to lower over-
all overhead than FAC. FAC2 and WF2 outperform FAC and
mFAC in terms of o.; by using a simple chunk calculation
function, not requiring profiling information, and using
atomic operations for synchronization.

Similar to FAC and mFAC, TAP failed to calculate an
appropriate chunk size based on the profiling information
due to the very small loop iteration granularity, which
resulted in loss of data locality, high oy, and o,.

BOLD generates chunk sizes very similar to STATIC but
at a very high chunk calculation cost, therefore, incurring
high o5, and low oy, and o4,

AWF-B and AWF-D do not manage to adapt to the very
fine iteration granularity of this GROMACS’ loop and
assign very small chunks, reducing data locality and
increasing oy,, and the cost of adaptation o.. In contrast,
AWF-C and AWF-E only incur high o,,.

AF and mAF also have very high o.;. However, mAF also con-
siders o, for the chunk size calculation. Therefore, it increases
its chunk size to reduce o,,, offering improvement over AF.

In Figs. 7 and 8, one can note that SS causes high scheduling
overhead due to high o, and loss of data locality, which justifies
the low memory bandwidth shown in Fig. 8 for all STREAM
kernels. The low memory bandwidth achieved by FAC and
mFAC is justifiable since those techniques not only cause high
0¢s and o, overheads but also need to read profiling informa-
tion collected on a separate execution of the application.

For simple kernels, such as those from STREAM and L0
from GROMACS, profiling the execution of each loop itera-
tion may adversely influence execution performance, and

copy B scale add m triad

100000

STREAM | miniHPC-Broadwell w/o HT
50000 I II

Q W
£ §'<
22z

2000
1 -
0) N N O QO L
G F = 2t ® 3o 3%
Fig. 8. Memory bandwidth (MB/s) for executing STREAM with all sched-

5985593
frog F oz
Scheduling technique
uling techniques executing on miniHPC-Broadwell.

Memory bandwidth (MB/s)

STATIC

FSC
AWF-B{%
AWF-D

mAF

may lead FAC and mFAC to calculate very small chunk sizes,
increasing oy, and consequently also increasing scheduling
overhead, ccNUMA effects, and loss of data locality. This
observation is also valid for dynamic and adaptive techni-
ques which measure (during execution) the execution time
of previous chunks of iterations to determine the next chunk
size. If the loop kernel’s arithmetic intensity is low, dynamic
and adaptive techniques may measure inaccurate values
which may result in small chunk sizes, higher o,,, non-negli-
gible ccNUMA effects and loss of data locality.

4.3 Impact of Chunk Parameter Choice

We explore the performance impact of the chunk parameter
for all DLS techniques. We experimented with many differ-
ent values for the chunk parameter per DLS technique,
loop, application, and node type/configuration as indicated
in Table 1. Fig. 9 presents an overview of the results for
SPHYNX comparing the Best combination of DLS techni-
ques for loops L0 and L1 with the default value of the chunk
parameter versus the most performing combination of DLS
techniques with the best value of the chunk parameter. The
best value of the chunk parameter is identified by testing the
application performance with values of the chunk parame-
ter from N /2P down to 1 (see Table 1).

In Fig. 9, the best chunk parameter always improved the
performance of the applications. Similar colors indicate that
the performance improvement was very low. A carefully
selected chunk parameter for SS frequently achieves the high-
est performance. However, the process of finding such an opti-
mal value requires extensive experimentation (e.g., such as the
experiments presented here), and must be performed for each
loop and system that the application will execute on. Further-
more, in the case of system variation, the optimal chunk
parameter, once found, may no longer provide the highest per-
formance since it would not be adapted during execution. It is
impractical to rely exclusively on a manual and extensive
experimentation process to find an optimal chunk parameter.
This makes dynamically adaptive loop scheduling techniques a
highly promising solution, especially on upcoming Exascale
systems, which will increasingly be heterogeneous. The exist-
ing dynamic and adaptive scheduling techniques offer a first
step for performance auto-tuning on a per loop basis against
system and application variability.

Based on the results in Figs. 5 and 9, it is interesting to
examine the impact of the chunk parameter on the perfor-
mance of most time-consuming loop from SPHYNX, L1.
These results are shown in Fig. 10, wherein the parallel exe-
cution time of L1 (y-axis) is shown for different chunk
parameter values (z-axis). The chunk parameter values

KORNDORFER ET AL.: LB4OMP: A DYNAMIC LOAD BALANCING LIBRARY FOR MULTITHREADED APPLICATIONS

G

700 3

et NS PR EHIR LO: STATIC,3L0: SS,162 LO: SS,40 g
parommatne BER YRR RO L1: 55,30 L1:55,162 L1:SS,40 600 %
£

500 §

Defaul LO: FSC LO: FSC ~ LO: mAF LO: FSC %
parameter L1: FSC L1:GSS L1:FSC L1:FSC 400 2
5

&

miniHPC miniHPC

KNL w/ HT

Piz Daint
Haswell w/o HT

Piz Daint
Haswell w/ HT

miniHPC miniHPC
Broadwell w/o HT Broadwell w/ HT KNL w/o HT

Computing nodes

Fig. 9. Comparison of the parallel execution time of loops L0 and L1 for
the highest performing combination of DLS techniques with the default
chunk parameter (Best in Fig. 5) versus with the best chunk parameter.
Shown is the parallel execution time (heat-bar) of SPHYNX on various
node types/configurations (z-axis) scheduled with the Best technique
and two chunk parameters: default (chunk) versus best (chunk) (y-axis).

differ for each system since they are calculated using the
available number of threads (see Table 1).

In Fig. 10 we expect to see SS reaching or outperforming
FSC. The dynamic and adaptive loop scheduling techniques
are expected to improve the performance by reducing over-
head since with a chunk parameter they preserve improved
data locality, and are executed fewer times.

The performance of SS indeed reaches and outperforms that
of FSC with larger chunk parameters between 12 and 1,562 for
miniHPC-Broadwell, 15 and 122 for miniHPC-KNL, and 10
and 1,302 for Piz Daint-Haswell. This is due to the improved
data locality and scheduling overhead of SS with a larger
chunk parameter value. FSC is unaffected since it calculates a
chunk size slightly larger than the range of chunk parameter
values that achieve highest performance. The performance of
FSC is only affected when the chosen chunk parameter value is
larger than the chunk size calculated by the technique itself.

All results in Fig. 10 show that performance degrades
with large chunk parameter values, approximately 2,000
loop iterations. This happens since the L1 loop from
SPHYNX is irregular (see Fig. 6, L1 of SPHYNX executed
with STATIC) and, therefore, certain threads receive more
work than others resulting in poor performance due to a
load imbalanced execution. We expected that the dynamic
and adaptive loop scheduling techniques show improved

839

performance when the chunk parameter is chosen since
their overhead would be reduced while preserving data
locality. This was not the case. These results are discussed
in Section 4.4, where the progression of the chunk sizes of
each DLS technique is explored, highlighting why no
improvement can be observed for the dynamic and adaptive
loop scheduling techniques in this particular case.

4.4 Influence of Chunk Size Progression

The chunk size progression for the DLS techniques during
the scheduling of the L1 loop from SPHYNX is shown in
Fig. 11, with chunk ID on the z axis (denoting the number
of chunks produced) and their sizes on the y axis. We used
LB4OMP with KMP_PRINT_CHUNKS=1 (chunk information
feature, Section 3.2) to collect and report the chunk sizes
assigned by each DLS technique in every scheduling round.

In general, fewer chunks imply improved data locality
and a smaller scheduling overhead due to fewer scheduling
operations. Fewer chunks may also result in potentially
higher load imbalance since the chunk sizes are larger than
with fewer chunks, as observed in Fig. 10, in Section 4.3.
The results for the dynamic and adaptive loop scheduling
techniques AWF-B,C,D,E, AF, and mAF in Fig. 11, clarify
why, in this case, no performance improvements can be
observed when a chunk parameter is given. Even with a rel-
atively large value of the chunk parameter, such as 3,125,
none of the adaptive loop scheduling techniques reaches the
given value early enough to benefit from improved data
locality and the lower overhead of executing fewer schedul-
ing rounds. A much larger chunk parameter value would
not necessarily improve loop performance due to the poten-
tial of load imbalance associated with large chunks.

Apart from AF, mAF, and FSC, all scheduling techniques
follow a decreasing chunk size pattern. The dynamic and
adaptive loop scheduling techniques AWF-B,C,D,E follow a
decreasing chunk size pattern (similar to GSS and FAC2),
with the major difference of adapting to system variation by
increasing or decreasing their chunk sizes during execution.

= STATIC *- FAC e BOLD v AWF-D
=SS ¥- mFAC 4 AWF +- AWF-E « STATIC *- FAC & BOLD v AWF-D = STATIC *- FAC e BOLD v AWF-D
4 GSS FAC2 e AWF-B e AF =SS ¥ mFAC 4 AWF + AWF-E = SS v mFAC -4 AWF - AWF-E
w TSS WE2 o AWFC % mAF + GSS FAC2 e AWF-B e AF 4+ GSS FAC2 e AWF-B e AF
FsC TAP *- TSS WF2 - AWF-C ®- mAF #- TSS WF2 ® AWF-C # mAF
FSC TAP FsC TAP
@ 1,400 - _ - R
2 . - 7 1400] G 1100 275 Y
g 2 v L P
= 1.200 - = 1,200 S 1,050 2507 % .
o " c c &
-2 : Aot 3: S o 22 "
31,000+ Cmm P =1 =] L] RIS SRS T |
Q 3 1,000~ 3 1,000~ 200 T RO - il L
X 600 S88RB T 9]
3 2 600 2 600+ . PEE T TR R
M NN oo s b P A NS ®O®ONDNOOO o
a — m " A momo N
o : a a 1 - N
2 400 " g 500 5]
o] Lo 2 PS $ TR O . % % 4001 {2 L 2 L8 28 4 A4
o o]] = 400 = e
S 2004 e T SRR & © [(Y e
a e © © P 3 'V'
A MONYTONNO DN O OO A 300 o 200
] II||"“"‘<"‘7‘20\‘50\02""oo S M~ 1N O 4 N g 0 OV MY N S NN O OO HNIHNT0OMO
N N S - =1 T T A R8N TI B R NS R E R R R
S craaae L L LG AN aaa L L LggTeIaR faag LN LI en NI Ss
© N - - . oA = = = oo A A = = = = Il Pl L L LR S
© oo ww o N - - - aa = N © o - - - oA A A oo © oo - o - oA S~
MM d oS Adoos - - Q o o ¥ ¢ N © - - - oCoaaa MmO oN©O®g - - - Aaaa S S
N©O®OQOoOWMIANYSN©O®O & - 4O O N o N ®Y N © - o - MRMOaSNNO® - - - &a’
meAeS SIS dSOAS TN T N ONDNNO M A O E N NN ooO0diANS N© - - -
S5S¥5s5s5¥552s5s525+s SSsZssZssssss Cong®Iddhbddendezy
Chunk parameter = = ==2=== = ===

(a) SPHYNX - L1 - miniHPC-Broadwell

Chunk parameter

(b) SPHYNX - L1 - miniHPC-KNL

S
c
SN
=
o N
o
S
o
3N
o
Y
N,

(c) SPHYNX - L1 - Piz Daint-Haswell

Fig. 10. Parallel cumulative loop execution time for SPHYNX's L1 loop executing on miniHPC-Broadwell, miniHPC-KNL, and Piz Daint-Haswell with-
out hyperthreading. The red rectangles are zoomed in for the range of chunk parameter values that achieved high performance to show the perfor-
mance of dynamic and adaptive loop scheduling techniques AWF-B,C,D,E, AF, and mAF and the dynamic and non-adaptive loop scheduling
techniques Ss and FSC. A proper chunk parameter value for SS reduces overall overhead and improves data locality, allowing SS to reach high per-

formance or even to outperform all other techniques.

840 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

= Scheduling technique chunk size progression using chunk parameter 781
= Scheduling technique chunk size progression using chunk parameter 3125

25K 25K K, 50K
()
N
8 _I
€ GSS T FSC FAC
<
(@]
<L N
S 5 A o S S Qo 2o
NN il PO W

50K 25K, 25K, 50K,
[
N
»
E mFAC FAC2 WF2 TAP
=
[}

Q VA9 Q Q QS Q Q QS Q o) Q)

v ESHIRNS ESHIRNS NS

50K 29K 25K, 25K,
[
&
®
£ BOLD AWF AWF-B AWF-C
2
[}

N ,]/’\ Q
25K 25K
()
N
]
< AWF-D
5
<
(]
na
N © &» O AN O S® O S
NN [N 0 PO
Chunk ID Chunk ID Chunk ID Chunk ID

Fig. 11. Progression of chunk sizes with the DLS techniques in LB4OMP
for scheduling SPHYNX's L1 loop of 1,000,000 loop iterations on a 20-
thread miniHPC-Broadwell and chunk parameters N/(64P) = 781 itera-
tions (blue dotted line) and N/(16P) = 3,125 (green dotted line) itera-
tions, respectively. Chunk IDs are shown on the = axis and their sizes on
the y axis. The blue and green curves represent the progression of the
chunk sizes produced by a DLS technique instantiated either with 781 or
3,125 as chunk parameter (lower threshold for calculating a chunk size).

Each DLS technique produces a different number of
chunks (z-axis) depending on its chunk calculation method
(non-adaptive methods) and loop performance during exe-
cution (adaptive methods). As described in Section 4.2, the
number of chunks is proportional to the number of schedul-
ing rounds, o, and contributes to the scheduling overhead
associated with a technique.

The first chunks calculated by AF and mAF are small as
these DLS techniques perform a warm-up scheduling round
where they gather initial information about the loop itera-
tions performance. These first chunks sizes are hard-coded
to 10 loop iterations and are unaffected by the declaration of
the chunk parameter.

5 CONCLUSIONS AND FUTURE WORK

We introduced LB4OMP, a novel open-source library for
dynamic load balancing of multithreaded applications that
use OpenMP, implemented as an extension of LLVM’s
OpenMP RTL. This work contributes: a systematic and unified
implementation of 14 dynamic (and adaptive) loop scheduling
techniques; features for advanced performance measurement of
loop performance and load imbalance; and an in-depth analy-
sis of the performance potential and limitations of the OpenMP
standard and the newly implemented scheduling techni-
ques. Through an extensive performance analysis campaign
we showed that for numerous application-systems pairs,
the scheduling techniques in LB4OMP outperform those
from the OpenMP standard.

With this work, we bridge the gap between the state-of-
the-art and the state-of-the-practice of load balancing in
multithreaded applications. This will allow the efficient
exploitation of large degrees of heterogeneous node-level
parallelism for improving the performance of applications
on upcoming Exascale systems.

LB4OMP represents the first and necessary step for devis-
ing automated methods to dynamically select the highest
performing loop scheduling techniques during applications
execution. Devising such methods is part of ongoing work
by the authors.

A possible extension is to expand the selection criteria to
include additional DLS techniques in LB4OMP. The study
of locality-aware self-scheduling techniques is a promising
research direction. We plan to patch and up-stream the
DLS techniques implemented in LB4OMP to the main
LLVM OpenMP RTL, facilitating a broad use and impact
for OpenMP applications. Applying LB4OMP to explicit
OpenMP task scheduling is also planned as future work.

ACKNOWLEDGMENTS

The authors would ike to thank Piz Daint, Swiss National
Supercomputing Centre, Switzerland under the PASC SPH-
EXA'’s share with the project ID ¢16 and Akan Yilmaz for
the initial implementation of the scheduling techniques
explored in this work. This work was supported in part by
the Swiss National Science Foundation in the context of the
Multi-level Scheduling in Large Scale High Performance
Computers (MLS) under Grant 169123, in part by the Swiss
Platform for Advanced Scientific Computing (PASC) project
SPH-EXA: Optimizing Smoothed Particle Hydrodynamics
for Exascale Computing, and in part by DAPHNE, funded
by the European Union’s Horizon 2020 research and inno-
vation programme under Grant 957407.

REFERENCES

[1] Top500 List. Accessed: Feb. 22, 2021. [Online]. Available: https://
www.top500.org/lists /top500/2020/11/

[2] A first peek at China’s Sunway Exascale Supercomputer.
Accessed: Feb. 22, 2021. [Online]. Available: https://www.
nextplatform.com/2021/02/10/a-sneak-peek-at-chinas-sunway-
exascale-supercomputer/

[3] S.Flynn Hummel, I. Banicescu, C.-T. Wang, and J. Wein, “Load bal-
ancing and data locality via fractiling: An experimental study,” in
Proc. Lang., Compilers Run-Time Syst. Scalable Comput., 1996, pp. 85-98.

[4]]. Dongarra et al., “The international exascale software project road-
map,” Int.]. High Perform. Comput. Appl., vol. 25, no. 1, pp. 3-60, 2011.

[5] D. S. Johnson, “The NP-completeness column: An ongoing
guide,” |. Algorithms, vol. 6, pp. 434451, 1985.

[6] A.Khan, C. L. McCreary, and M. S. Jones, “A comparison of mul-
tiprocessor scheduling heuristics,” in Proc. Int. Conf. Parallel
Process., 1994, pp. 243-250.

[7] H.Izakian, A. Abraham, and V. Snasel, “Comparison of heuristics for
scheduling independent tasks on heterogeneous distributed environ-
ments,” in Proc. Int. Joint Conf. Comput. Sci. Optim., 2009, pp. 8-12.

[8] K. Bergman et al., “Exascale computing study: Technology chal-
lenges in achieving exascale systems,” Def. Adv. Research Proj.
Ag. Info. Proc. Tech. Office, Tech. Rep. 15, 2008.

[9] M. Asch et al., “Big data and extreme-scale computing: Pathways

to convergence-toward a shaping strategy for a future software

and data ecosystem for scientific inquiry,” Int. . High Perform.

Comput. Appl., vol. 32, no. 4, pp. 435-479, 2018.

L. Banicescu and Z. Liu, “Adaptive factoring: A dynamic schedul-

ing method tuned to the rate of weight changes,” in Proc. High Per-

form. Comput. Symp., 2000, pp. 122-129.

[10]

https://www.top500.org/lists/top500/2020/11/
https://www.top500.org/lists/top500/2020/11/
https://www.nextplatform.com/2021/02/10/a-sneak-peek-at-chinas-sunway-exascale-supercomputer/
https://www.nextplatform.com/2021/02/10/a-sneak-peek-at-chinas-sunway-exascale-supercomputer/
https://www.nextplatform.com/2021/02/10/a-sneak-peek-at-chinas-sunway-exascale-supercomputer/

KORNDORFER ET AL.: LB4OMP: A DYNAMIC LOAD BALANCING LIBRARY FOR MULTITHREADED APPLICATIONS

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

P. Thoman, H. Jordan, S. Pellegrini, and T. Fahringer, “Automatic
OpenMP loop scheduling: A combined compiler and runtime
approach,” in Proc. Int. Conf. OpenMP Heterogeneous World, 2012,
pp- 88-101.

Y. Wang, W. Ji, F. Shi, Q. Zuo, and N. Deng, “Knowledge-based
adaptive self-scheduling,” in Proc. Int. Conf. Netw. Parallel Comput.,
2012, pp. 22-32.

A. Mohammed, A. Cavelan, F. M. Ciorba, R. M. Cabezdn, and 1.
Banicescu, “Two-level dynamic load balancing for high perfor-
mance scientific applications,” in Proc. SIAM Conf. Parallel Process.
Sci. Comput., 2020, pp. 69-80.

E. Ayguadé et al., “Is the schedule clause really necessary in
OpenMP?,” in Proc. Int. Workshop OpenMP Appl. Tools, 2003,
pp- 147-159.

F. M. Ciorba, C. Iwainsky, and P. Buder, “OpenMP loop schedul-
ing revisited: Making a case for more schedules,” in Proc. Int.
Workshop OpenMP, 2018, pp. 21-36.

F. Kasielke ef al., “Exploring loop scheduling enhancements in
OpenMP: An LLVM case study,” in Proc. Int. Symp. Parallel Dis-
trib. Comput., 2019, pp. 131-138.

J. H. Miiller Korndorfer, A. Eleliemy, A. Mohammed, and F. M.
Ciorba, “unibas-dmi-hpc/LB4OMP: LB4OMP v1.0,” 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3872907

M. A. Heroux et al., “ECP software technology capability assess-
ment report,” Oak Ridge Nat. Lab., Oak Ridge, TN, USA, Tech.
Rep. ECP-RPT-ST-0001-2018, 2020.

C. P. Kruskal and A. Weiss, “Allocating independent subtasks on
parallel processors,” IEEE Trans. Softw. Eng., vol. SE-11, no. 10,
pp- 1001-1016, Oct. 1985.

S. Flynn Hummel, E. Schonberg, and L. E. Flynn, “Factoring: A
method for scheduling parallel loops,” Commun. ACM, vol. 35,
pp- 90-101, 1992.

S. Lucco, “A dynamic scheduling method for irregular parallel
programs,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des.
Implementation, 1992, pp. 200-211.

S. Flynn Hummel, J. Schmidt, R. N. Uma, and J. Wein, “Load-sharing
in heterogeneous systems via weighted factoring,” in Proc. Annu.
ACM Symp. Parallel Algorithms Architectures, 1996, pp. 318-328.

T. Hagerup, “Allocating independent tasks to parallel processors:
An experimental study,”]J. Parallel Distrib. Comput., vol. 47,
pp. 185-197, 1997.

I. Banicescu, V. Velusamy, and J. Devaprasad, “On the scalability of
dynamic scheduling scientific applications with adaptive weighted
factoring,” Cluster Comput., vol. 6, pp. 215-226, 2003.

A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos, “History-
aware self-scheduling,” in Proc. Int. Conf. Parallel Process., 2006,
pp. 185-192.

P. H. Penna et al., “BinLPT: A novel workload-aware loop sched-
uler for irregular parallel loops,” in Proc. Simpdsio em Sistemas
Comput. De Alto Desempenho, 2017, pp. 220-231.

K.-R. Kim, K. Youngjae, and S. Park, “A probabilistic machine
learning approach to scheduling parallel loops with Bayesian
optimization,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7,
pp- 1815-1827, Jul. 2020.

S. Bak, Y. Guo, P. Balaji, and V. Sarkar, “Optimized execution of
parallel loops via user-defined scheduling policies,” in Proc. Int.
Conf. Parallel Process., 2019, pp. 1-10.

V. Kale et al.,, “Towards a standard interface for user-defined
scheduling in OpenMP,” Int. Workshop OpenMP, Springer, Cham,
2019, pp. 186-200.

A. Santana, V. Freitas, M. Castro, L. Lima Pilla, and J.-F. Méhaut,
“ARTful: A specification for user-defined schedulers targeting
multiple HPC runtime systems,” 2020. [Online]. Available:
https:/ /hal.archives-ouvertes.fr/hal-02454426

T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: A practical
scheduling scheme for parallel compilers,” IEEE Trans. Parallel
Distrib. Syst., vol. 4, no. 1, pp. 87-98, Jan. 1993.

M. D. Durand, T. Montaut, L. Kervella, and W. Jalby, “Impact
of memory contention on dynamic scheduling on NUMA
multiprocessors,” in Proc. Int. Conf. Parallel Process., 1993,
pp- 258-262.

T. Peiyi and Y. Pen-Chung, “Processor self-scheduling for multi-
ple-nested parallel loops,” in Proc. Int. Conf. Parallel Process., 1986,
pp. 528-535.

C. D. Polychronopoulos and D. J. Kuck, “Guided self-scheduling: A
practical scheduling scheme for parallel supercomputers,” IEEE
Trans. Comput., vol. C-36, no. 12, pp. 1425-1439, Dec. 1987.

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

841

A. Duran, J. Corbalan, and E. Ayguadé, “Evaluation of OpenMP
task scheduling strategies,” in Proc. Int. Conf. OpenMP New Era
Parallelism, 2008, pp. 100-110.

J. Clet-Ortega, P. Carribault, and M. Pérache, “Evaluation of
OpenMP task scheduling algorithms for large NUMA archi-
tectures,” in Proc. Eur. Conf. Parallel Process., 2014, pp. 596-607.

A. Eleliemy and F. M. Ciorba, “A distributed chunk calculation
approach for self-scheduling of parallel applications on distributed-
memory systems,” J. Comput. Sci., vol. 51,2021, Art. no. 101284.
SPHYNX Website. Accessed: Oct. 20, 2020. [Online]. Available:
https:/ /astro.physik.unibas.ch/people/ruben-cabezon/sphynx.html
L. DeRose, B. Homer, and D. Johnson, “Detecting application load
imbalance on high end massively parallel systems,” in Proc. Eur.
Conf. Parallel Process, 2007, pp. 150-159.

Omp_Set Schedule Function. Accessed: May 20, 2020. [Online].
Available: https://www.openmp.org/spec-html/5.0/openmpsu
121.html

SPEC OpenMP 2012 352.nab Benchmark. Accessed: Oct. 16, 2020.
[Online]. Available: https://www.spec.org/omp2012/Docs/352.
nab.html

DIST Microbenchmark. Accessed: Mar. 28, 2021. [Online]. Avail-
able: https://drive.switch.ch/index.php/s/XIhieSdmoRuLcRR
D. Van Der Spoel et al., “GROMACS: Fast, flexible, and free,” J.
Comput. Chem., vol. 26, no. 16, pp. 1701-1718, 2005.

STREAM Microbenchmark. Accessed: Mar. 29, 2021. [Online].
Available: http:/ /www.cs.virginia.edu/stream/ref.html

Unified European Application Benchmark Suite (UEABS).
Accessed: Jul. 10, 2020. [Online]. Available: https:/ /repository.
prace-ri.eu/git/UEABS/ueabs

Jonas H. Miiller Korndorfer is currently working
toward the PhD degree at the Department of Mathe-
matics and Computer Science, the University of
Basel, Switzerland. His research interests include
load balancing, scheduling, and mapping of compu-
tation and communication intensive applications.

Ahmed Eleliemy received the doctoral degree in
multilevel scheduling of computations on large-
scale parallel systems from the University of
Basel, in 2021. He is currently a postdoctoral
researcher with the High Performance Computing
Group, the Department of Mathematics and
Computer Science, the University of Basel, Swit-
zerland.

Ali Mohammed received the doctoral degree in
robust scheduling for high-performance comput-
ing from the University of Basel, in 2020. From
March 2020 to April 2021, he was a postdoctoral
researcher with the High Performance Computing
group, the University of Basel, Switzerland. He is
currently a research engineer with HPE’s HPC/AI
EMEA Research Lab, Switzerland. His research
interests include scheduling, fault tolerance, and
performance simulation.

Florina M. Ciorba is an associate professor of
high-performance computing with the University
of Basel, Switzerland. Her research interests
include exploiting multilevel/hierarchical parallel-
ism, dynamic and adaptive load balancing and
scheduling, robustness, resilience, scalability, repro-
ducibility, and benchmarking.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

https://doi.org/10.5281/zenodo.3872907
https://hal.archives-ouvertes.fr/hal-02454426
https://astro.physik.unibas.ch/people/ruben-cabezon/sphynx.html
https://www.openmp.org/spec-html/5.0/openmpsu121.html
https://www.openmp.org/spec-html/5.0/openmpsu121.html
https://www.spec.org/omp2012/Docs/352.nab.html
https://www.spec.org/omp2012/Docs/352.nab.html
https://drive.switch.ch/index.php/s/XIhieSdmoRuLcRR
http://www.cs.virginia.edu/stream/ref.html
https://repository.prace-ri.eu/git/UEABS/ueabs
https://repository.prace-ri.eu/git/UEABS/ueabs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

