
Cooperative Scheduling Schemes for
Explainable DNN Acceleration in Satellite

Image Analysis and Retraining
Woo-Joong Kim ,Member, IEEE and Chan-Hyun Youn , Senior Member, IEEE

Abstract—The deep learning-based satellite image analysis and retraining systems are getting emerging technologies to enhance the

capability of the sophisticated analysis of terrestrial objects. In principle, to apply the explainable DNNmodel for the process of satellite

image analysis and retraining, we consider a newacceleration schedulingmechanism. Especially, the conventional DNN acceleration

schemes cause serious performance degradation due to computational complexity and costs in satellite image analysis and retraining. In

this article, to overcome the performance degradation, we propose cooperative scheduling schemes for explainable DNN acceleration in

analysis and retraining process. For the purpose of it, we define the latency and energy cost modeling to derive the optimized processing

time and cost required for explainable DNN acceleration. Especially, we show aminimum processing cost considered in the proposed

scheduling via layer-level management of the explainable DNN on FPGA-GPU acceleration system. In addition, we evaluate the

performance using an adaptive unlabeled data selection scheme with confidence threshold and a semi-supervised learning driven data

parallelism scheme in accelerating retraining process. The experimental results demonstrate that the proposed schemes reduce the

energy cost of the conventional DNN acceleration systems by up to about 40%while guaranteeing the latency constraints.

Index Terms—Cooperative satellite image analysis and retraining, DNN acceleration, distributed deep learning

Ç

1 INTRODUCTION

FOR automating reliable remote sensing and improving
the analysis speed of human supervisors, it is necessary

to design a satellite image analysis and retraining system
based on explainable DNN. The explainable DNN generates
a description of its prediction, and the human supervisors
return feedbacks, such as corrections or new label annota-
tions, for retraining [1], [2]. However, the retraining system
still has several bottlenecks.

First, explainable DNN, which achieves high accuracy for
reliable satellite image analysis, requires high computational
complexity. In general, higher inference accuracy can be
achieved with a deeper and wider network containing a
greater number of network layers and channels [3]. These fea-
tures significantly increase the computing complexity and
memory access complexity that sophisticated hardware accel-
erators are required to address. Furthermore, DNN tasks
computationally have a high workload with massive input
data (e.g., large high-definition images, etc.)

Second, the labeling task by supervisors is cost-expensive
and slow. Especially, the labeling speed is relatively too
slow compared to the input data generation and explainable
DNN based analysis speed. Since the image data is gener-
ated in real-time and delivered to human supervisors, the
partial data is discarded without labeling. It causes overfit-
ting on explainable DNN retraining due to scarcity of
human annotations [2].

For these reasons, the analysis and model retraining pro-
cess suffers from drastically long processing time and slow
convergence speed [2]. To solve these bottlenecks, the con-
ventional DNN acceleration systems attempt to schedule
the DNN process for acceleration, using a large-scale accel-
erator cluster. However, their scheduling schemes have sev-
eral problems to successfully implement DNN acceleration
in the analysis and model retraining process.

Heterogeneity of Accelerator Environment. Heterogeneous
accelerators, described in Table 1, should be considered for
accelerating DNN processing tasks. Both GPUs and FPGAs
have been deployed and utilized in datacenter infrastructure
at a reasonable scale [8], [9], [10], to process a given DNN
workload quickly and energy-efficiently. Current generation
DNNs depend heavily on dense floating-point matrix multi-
plication, which is well mapped to GPUs [4]. For this reason,
GPUs are widely used for DNN acceleration [6]. Meanwhile,
several recent studies have attempted to configure the HPC
environment with FPGA to reduce the energy cost of a large-
scale DNN process by using its high processing efficiency
per energy [5]. Unlike other processors that operate with a
combination of predefined sets of operations, the FPGA can
specify functionality at the gate level. Depending on the
design method, FPGA can implement compressed neural
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networks with weight quantization to accelerate certain
operations.

Computational Complexity in Explainable DNN. Fig. 1 shows
a typical scheduling with explainable DNN in satellite image
analysis and retraining. The explainable DNN delivers object
detection or classification results and their visual explanation
to the human supervisor. And then, the human supervisor
returns feedbacks for retraining [2]. Since labeling satellite
images is time-consuming and its cost is expensive,many pre-
vious works adopt Active Learning (AL) to optimally select
the data samples to be labeled from an unlabeled data pool to
achieve the highest accuracy within a fixed labeling budget
[17]. In general, explainable DNN is a large-scale DNN for
high reliability. Thus, network layers of an explainable DNN
have various computing complexity and memory demands.
Explainable DNN model is composed of several components
such as convolutional layer(CL), fully connected layer(FC)
and region proposal network(RPN) [21]. These components
have different processing time and energy cost performance
depending onwhat type of accelerator is allocated.

In this paper, to overcome these problems, we design new
explainable DNN acceleration scheduling schemes. We pro-
pose the cooperative scheduling schemes utilizing the layer-
level management of the explainable DNN in image analysis
as well as the confidence level criteria and data parallelism
in retraining process. Ourwork has following contributions.

� First, we define the latency and energy cost model-
ing to derive the optimized processing time and cost

required for explainable DNN acceleration in cooper-
ative satellite image analysis and retraining. Espe-
cially, we propose a cooperative scheduling scheme
via layer-level management of explainable DNN on
FPGA-GPU to accelerate analysis process and achieve
aminimumprocessing cost.

� In addition, we propose a confidence threshold based
adaptive unlabeled data selection scheme and a semi-
supervised learning driven data parallelism scheme
for accelerating retraining process.

� Last, we evaluate the proposed system using a large-
scale aerial image dataset for object detection or clas-
sification, such as DOTA and AID. The experimental
results demonstrate that the proposed schemes effec-
tively reduce the retraining cost compared to the
conventional DNN acceleration systems, while
guaranteeing the latency constraints.

2 A MODEL DESCRIPTION ON COOPERATIVE

SCHEDULING FOR EXPLAINABLE DNN
ACCELERATION IN SATELLITE IMAGE ANALYSIS

AND RETRAINING

In this section, we present some limitations in applying the
conventional DNN acceleration schemes to the explainable
DNN acceleration in satellite image analysis and retraining.
Especially, to overcome these limitations, we discuss new
explainable DNN acceleration scheduling schemes.

2.1 Design of Cooperative Scheduling for
Explainable DNN Acceleration

In satellite image analysis and retraining, the workload of
human supervisors is still a big bottleneck (i.e., high labeling
cost and slow labeling speed). To address this issue, we adopt
AL on unlabeled data and semi-supervised learning-based
retraining. Most unlabeled samples are typically ignored in
AL [23]. AL selects only a few of themost informative samples
(e.g., samples with very low predictive reliability) for labeling

TABLE 1
Specification of Heterogeneous GPU Devices

(NVIDIA Products)[6], [7]

Spec GTX 1060 GTX 1080 Quadro M2000

FLOPS 4375 GFLOPS 8873 GFLOPS 1812 GFLOS
Memory 6 GB 8 GB 4 GB
Bandwidth 192.2 GB/sec 320.3 GB/sec 105.8 GB/sec
Power 120 W 180 W 75 W

Fig. 1. Satellite image analysis and retraining with explainable DNN.
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at each training stage. It is difficult to fine-tune the DNNwith
these few samples of information to obtain appropriate func-
tional representations. In semi-supervised learning, unla-
beled data (oftenmuch cheaper to obtain) is also used to train
DNNs [24]. Unlabeled data can be used to train somedistribu-
tions, which is helpful to create more sophisticated and effec-
tive regularization. To overcome the bottleneck of human
supervisor’s workload, we apply AL on unlabeled data and
semi-supervised learning, which considers labeled and unla-
beled data together, to the cooperative scheduling in satellite
image analysis and retraining. Based on them, we organize
data selection scheme on unlabeled data and semi-supervised
learning based retraining scheduling scheme.

2.2 Limitation of Conventional DNN Acceleration
Schemes for Explainable DNN Acceleration

Several systems are proposed to achieve optimal perfor-
mance and cost-effective scheduling for DNN acceleration
in an HPC environment. To perform task scheduling, execu-
tion, and visualization, the systems set up a highly-tuned
computing pool by distributed resources with a common
interface to an auto-run environment that can typically be
applied to various types of DNN processes. Their goals are
to coordinate DNN tasks on a distributed set of resources
while minimizing energy costs and ensuring processing
time constraints. S3DNN [12] simultaneously optimizes two
conflicting objectives: new supervised streaming and sched-
uling frameworks, real-time accuracy and throughput that
optimize the execution of DNN workloads on GPU in a
real-time multitasking environment. Fang, Zhou, et al. [13]
proposes QoS-aware effective heuristic scheduling of het-
erogeneous GPU clusters for DNN inference.

Especially, Nexus [28] is a GPU cluster engine to achieve
high DNN inference throughput with latency constraints

[28], as shown in Fig. 2. It balances DNN workloads and
maximizes GPU utilization by performing DNN model
placement, profiles based bin packing, and scheduling
batching aware DNN inference execution.

However, Nexus [28] only considers the GPU as an accel-
erator. It assumes the type of accelerators in the HPC envi-
ronment is homogeneous and has identical performance
characteristics in terms of throughput or latency and energy
consumption. Also, it processes a DNN model as a unit of a
task without considering the variety of computational com-
plexity within a DNN.

When FPGA and GPU process Resnet [25], which consists
of CL and FC, respectively, their throughput/watt perform-
ances vary on each layer. FPGA offers better throughput/
watt over GPU for processing CL, since the power of GPU is
usually higher than those of FPGA and the throughput of
FPGA is comparable for those of GPU [5]. However, in the
case of FC, GPU offers better throughput/watt over FPGA,
because the memory of FPGA is insufficient to process FC. It
causes a bottleneck and results in a sharp drop in computing
performance.

In heterogeneous accelerator environment, where FPGA
and GPU exists, the cooperative scheduling on FPGA-GPU
with layer-levelmanagement utilizing the variety of complex-
ity in explainable DNN inference, can reduce not only the
energy consumption, but also the processing time. The reason
is that this scheduling can maximally utilize the energy effi-
ciency of FPGA by allocating more CL tasks to FPGA and
avoid the inefficiency by allocating less FC tasks to FPGA. The
conventional DNN acceleration makes an inefficient decision
to allocate more FC tasks to FPGA because the DNN tasks are
assigned on accelerators in units of oneDNNmodel.

By using or expanding the functions of Nexus, this optimal
performance cannot be achieved in the target heterogeneous

Fig. 2. Architecture and limitations of Nexus[28]. Nexus balances DNN workloads and maximizes GPU utilization by performing DNN model place-
ment, profiles-based bin packing, and scheduling batching aware DNN inference execution. It use a linear model to fit the batched latency. Its
batched throughput model, derived from its linear latency model, shows about 8% performance degradation with GPU(RTX 2080). In addition, differ-
ent types of GPUs have different batched latency and throughput performance even with the same model (Faster RCNN).
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HPC environment. It is necessary to newly design a DNN
acceleration system with cooperative scheduling schemes
based on the layer-levelmanagement on FPGA-GPU. Besides,
Nexus only focus on DNN inference, not DNN training
required after completing DNN inference in the retraining
system.

3 A PROPOSED COOPERATIVE SCHEDULING FOR

EXPLAINABLE DNN ACCELERATION IN

SATELLITE IMAGE ANALYSIS AND RETRAINING

SYSTEM

In this section, we describe a cooperative scheduling for
explainable DNN acceleration in satellite image analysis
and retraining. Then, we define the problems for the analy-
sis and retraining process and resolve them by cooperative
scheduling schemes.

3.1 System Model and Key Features

Fig. 3 shows our target HPC environment and explainable
DNN based retraining framework in satellite image acquisi-
tion scenario. A high-resolution remote sensing image (e.g.,
30k � 30k) is generated and cropped to image patches in
the satellite on-board system. In order to analyze the image

patches, the satellite on-board system periodically trans-
mits the image patches to the HPC ground station. We
assume that the image patches, of which total size is D
(Bytes), are transmitted and already queued in the begin-
ning of each period. This framework processes the given
image patches within a period in order to keep the
queue stable.1

Our cooperative scheduling for explainable DNN accel-
eration performs the following three steps.

Step 1) Explainable DNN Based Analysis Process. It aims to
allocate the analysis inference tasks to the heterogeneous
accelerator(FPGA/GPU) with respect to energy cost minimi-
zation. The images are applied as input to the target explain-
able DNN model, which takes object recognition and has an
explainable functionality such as Grad-CAM [11]. In order
to assist human supervisors in satellite image analysis,
the HPC ground station system performs the target model
inference (i.e., DNN Model + Grad-CAM) that acts as an AI
supervisor and delivers classification results and visual
explanations for satellite images to human supervisors. It
assists human supervisor’s detection ability and improves
their reading speed. Faster processing on the target model

Fig. 3. Overall procedure of the proposed cooperative scheduling for satellite image analysis and retraining.

1. The length of a period can be a latency constraints.
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inference can speed up the reading of human supervisors
withmore visual explanations.

Step 2) Confidence Threshold Based Adaptive Data Selection.
It aims to select the training samples (including unlabeled
samples) satisfying the thresholded confidence, which
sends to the human supervisor. Training samples selected
by data selection process are labeled by human supervisors.
From the total input data pool, it aims to automatically and
progressively select the most informative data that human
supervisors need to label. It organizes the training data Dtr

including labeled images DL
tr as well as unlabeled images

DU
tr. Using some of the initial labeled data, the model begins

incremental learning with the data which has not yet been
labeled and is informative to learn. The model will gradu-
ally be upgraded through a cycle of learning progress.

Step 3) Semi-Supervised Learning Based Retraining Process. It
aims to schedule the available accelerators to achieve ser-
vice deadline for retraining with minimal energy cost. With
the training data Dtr composed of the newly labeled sam-
ples DL

tr and unlabeled training samples DU
tr, semi-super-

vised learning is performed.
Heterogeneous HPC Environment With FPGA-GPU. The

HPC environment is a cluster composed of M accelerator
nodes, and each accelerator node is composed of a CPU and
a plurality of heterogeneous accelerators such as GPU and
FPGA. The data is exchanged between the host main mem-
ory and the accelerator global memory over a PCIe link. Its
bandwidth is denoted by BWpci (Bytes/sec). We assume that
the PCIe bandwidths are same in all nodes, since the PCI
express bandwidth is considerably high compared to the
throughput of each accelerator. The ith accelerator node is
denoted by si, and consists ofNi heterogeneous accelerators.

3.2 Acceleration Scheduling With Layer-Level
Management of Explainable DNN (ASLM) on
FPGA-GPU

In step 1 of the HPC ground station system, the ASLM
scheme schedules the total input images D for invoking the
target explainable DNNmodel inference tasks efficiently. Its
objective is to achieve the minimum energy cost while satis-
fying latency constraints, denoted asLInf . To do this, it deter-
mines how to allocate the accelerator nodes in the cluster and
distribute the input imagesD to them for invoking and proc-
essing the target model inference tasks.

Structure of Explainable DNN. A target explainable DNN
model inference task consists of one pre-processing compo-
nent andKmodel components, to be processed sequentially.
The pre-processing component, denoted as DL0, represents
the pre-processing tasks, such as image I/O, decoding, and
batching, to be performed in the CPU before executing the
explainable DNN model in the accelerators [14]. The model
components, denoted as fDL1; . . . ;DLk; . . . ;DLKg, repre-
sent the individual layers of the target model to be per-
formed in the accelerators such as FPGA or GPU. Due to
the nature of the explainable DNN model, there are depen-
dencies between the model components, so the next com-
ponent proceeds after the current component is processed.
For example, Resnet [25] is composed of the pre-process-
ing component, DL0, the model component DL1, CL for
feature extraction, and the model component DL2, FC for
classification.

Acceleration Node Allocation. The ASLM scheme deter-
mines the acceleration node allocation strategy, denoted as
X ¼ ½x1; . . . ; xi; . . . ; xM �, to process the input data D. xi indi-
cates whether to use ith accelerator node or not
(xi ¼ f0; 1g). And then, it determines the data assignment to
the nodes, D ¼ ½D1; . . . ; Di; . . . ; DM �. The data assignment to
each accelerator node will be the maximum amount of data
that the accelerator node can process within a given latency
service-level objective LInf .

For the data assignment Di, the accelerator node si

processes each component, fDL0; DL1; . . . ; DLk; . . . ; DLKg,
sequentially. In this process on Di, the input and output
data of the component DLk are defined as Di

k and D̂i
k,

respectively. Di is input to the pre-processing component
DL0. That is, Di ¼ Di

0. Since the target model structure is
fixed, Di

k=D̂
i
k ¼ sk is fixedly determined. sk is output data

unit per input data in the component DLk. Since Di
kþ1 is

dependent toDi
k, note that D̂

i
k ¼ Di

kþ1.
For the input data Di

0, the pre-processing component
DL0 is processed in the CPU. In the accelerator node si,
the CPU throughput for the component DL0 is denoted by
Thi

0. Besides, the idle and active power of CPU for the
component DL0 in node si are denoted by Pi;0

idl and Pi;0
act,

respectively.
For the model component DLk, the input data Di

k is dis-
tributed to the Ni accelerators

2 via PCIe and is processed in
them. The data assignment to the Ni accelerators is denoted
as ½Di;1

k ; . . . ; Di;j
k ; . . . ; D

i;Ni
k �. This satisfies Di

k ¼
P

j2½Ni�D
i;j
k

The accelerator throughput for the components DLk of Ni

accelerators in the node si is denoted by ½Thi;1
k ; Thi;j

k ; Th
i;Ni
k �.

Since we only consider two types of accelerator, GPU and
FPGA, each accelerator is one of both. The throughput of
each accelerator on DLk is defined as the maximum
throughput with the optimal batch size, referring to [28].
Therefore, the throughput of a certain GPU is Thi;GPU

k ¼
b��Dimg

l
i;GPU
k

ðb�Þ
, where b� is the optimal size and li;GPU

k ðb�Þ is the

latency of the GPU on DLk with b� and Dimg is the data size
of a single input image. The throughput of a certain FPGA

is Thi;FPGA
k ¼ 1�Dimg

l
i;FPGA
k

ð1Þ
, where li;FPGA

k ð1Þ is the latency of the

FPGA onDLk with a single input image. FPGA usually pro-
cesses a single input image without batching so its batch
size is 1. Besides, the active powers of a certain GPU and a
certain FPGA in the node si are denoted by Pi;GPU

k;act and
Pi;FPGA
k;act , respectively. For simplicity, the idle powers of

accelerators are ignored since their idle powers are negligible
compared to their active powers. It is usually known that the
power of GPU, Pi;GPU

k;act , is higher than those of FPGA, Pi;FPGA
k;act ,

and especially, the throughput/watt of FPGA is higher than
those of GPU [5] when themodel componentDLk is a convo-
lutional layer. To simplify the notations, hereinafter we will
omit FPGA or GPU from the throughput and power notation
and replace it with the index of an accelerator.

The processing time of the Ni accelerators is denoted

as ½cli;1k ; . . . ; cli;jk ; . . . ; cl
i;Ni
k �, cli;jk ¼

D
i;j
k

Th
i;j
k

. This satisfies Di
k ¼P

j2½Ni�D
i;j
k And then, The output data D̂i

k from the Ni accel-
erators is transmitted to the host main memory via PCIe.

2. The target explainable DNN model is already loaded in all
accelerators.
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With D̂i
kð¼ Di

kþ1Þ, processing the next model component
DLkþ1 is proceeded.

Latency Modeling of an Accelerator Node. The processing
time pti for data Di in the accelerator node si is defined as
follows:

pti ¼ pti0 þ
X
k2½K�

ptik ¼
Di

0

Thi
0

þ
X
k2½K�

ptik: (1)

pti0 is the pre-processing time for the explainable DNN
model Inference task Di

0 in the accelerator node si. ptik is the
processing time for the explainable DNN model Inference
taskDi

k in the accelerator node si.

Definition 1. Processing Time of Model Component in an
Accelerator Node. The processing time of the model compo-
nent DLk for the input data size Di

k in the accelerator node si

is defined as the sum of the input data transmission time tiik,
the processing time of clik and the output data transmission
time toik

ptik ¼ tiik þ clik þ toik ¼
Di

k

BWpci
þmaxj2½Ni �ðcl

i;j
k Þ þ

D̂i
k

BWpci
:

(2)

Let BWpci be the PCI express bandwidth of si. The latency
model of si is described in Fig. 4. The minimum processing
time is denoted as pt�ik and its optimal data distribution is
denoted as ½D�i;1k ; . . . ; D�i;jk ; . . . ; D

�i;Ni
k �. clik is the maximum

processing time among accelerators, denoted as cli;jk .

Lemma 1. The minimum processing time pt�ik has the following
relationship with the optimal data distribution ½D�i;1k ; . . . ;
D�i;jk ; . . . ;D

�i;Ni
k � to minimize the maximum latency of accelera-

tors ðpt�ik � cl�ik ¼ min maxjcl
i;j
k Þ

pt�ik � cl�ik ¼
D�i;1k

Thi;1
k

¼ � � � ¼ D�i;jk

Thi;jk
¼ � � � ¼ D

�i;Ni
k

Th
i;Ni
k

: (3)

Proof. If we assume that the optimal solution D
0i;j
k ,which

does not hold Eq. (3) and holds D�i;jk > D
0i;j
k , exists, D

0i;r
k ,

which holds D�i;rk < D
0i;r
k , exists based on the condition

Di
k ¼ Sj2½Ni �D

i;j
k . That is, D

0i;j
k is not the optimal solution

and leads to a contradiction since pt�ik ¼
D
�i;r
k

Th
i;r
k

< pt0k
i ¼ D

0i;r
k

Th
i;r
k

.tu

Based on Lemma 1, we prove that the minimum process-
ing time pt�ik , can be achieved with the optimal data distri-
bution, in which the processing time of each accelerator
becomes equal.

Theorem 1. For the input image Di and the target explainable
DNN model, the minimum processing time pti of the accelera-
tor node si exists and is derived as follows:

pti � Di 1

Thi
0

þ
P

k2½K� skP
j2½Ni � Th

i;j
k

 !
: (4)

Proof. Based on Lemma 1, the optimal input data ofD�i;jk for
the model Component k of Accelerator j is D�i;jk ¼
cl�ik � Th

i;j
k . Since Di

k ¼
P

j2½Ni�D
�i;j
k ¼

P
j2½Ni� cl

�i
k � Th

i;j
k ¼

cl�ik
P

j2½Ni � Th
i;j
k , cl�ik ¼

Di
kP

j2½Ni �
Th

i;j
k

. For the input image Di
k

and the component DLk, the PCI express bandwidth
BWpci is considerably higher compared to the throughput

of accelerators. The processing time ptik of the accelerator

node si can be approximated by clik

if Thi;j
k � BWpci; 8j 2 ½Ni�; ptik � clik: (5)

Fig. 4. Illustration of Latency model for DNN Inference in an accelerator node. For the data assignment Di, the accelerator node si process each
component, fDL0; DL1; . . . ; A; . . . ; DLKg, sequentially. For example, Resnet[25] is composed of the pre-processing component, DL0, the model
component DL1, CL for feature extraction, and the model component DL2, FC for classification. The input and output data of the component DLk

are defined asDi
k and D̂i

k, respectively.
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Each clik is the largest value among the processing time
of each accelerator. As a result, the total minimal process-
ing time pti of the accelerator node si on the input dataDi

derived as follows:

pti ¼ pti0 þ
X
k2½K�

pt�ik �
Di

0

Thi
0

þ
X
k2½K�

Di
kP

j2½Ni � Th
i;j
k

¼ Di

 
1

Thi
0

þ
P

k2½K� skP
j2½Ni� Th

i;j
k

!
:

(6)

Since the target model structure is fixed, sk ¼ Di
k=D̂

i
k

is fixedly determined. tu

Based on Theorem 1, we model the minimum processing
time of the accelerator node si on the target model and the
maximum input data size to be processed within latency
constraints Linf .

Energy Cost Modeling of an Accelerator Node. For the com-
ponent DLk, the energy consumption in accelerator node si
is defined as follows:

Ei � Pi;0
act � pti0 þ

X
k2½K�

Pi;0
idl � pt�ik þ

X
k2½K�

X
j 6¼0

Pi;j6¼0
k;act � cl

i;j
k ;

(7)

where, Pi;0
act is active power of CPU for pre-processing in

node si [15], [16].Pi;0
idl is idle power of CPU for pre-processing

in node si. Pi;j6¼0
k;act is active power of j-th accelerator (FPGA or

GPU) for inferencing in node si. pti0 is pre-processing time on
CPU in node si. pt�ik is processing time on accelerators in
node si. cli;jk is main processing time on jth accelerator in
node si.

Hence, the total energy consumption in all the nodes is
defined as

E ¼
X
i

Ei � xi; (8)

where xi is the variable ofX.
ASLM Scheme on FPGA-GPU. In the explainable DNN

model inference process for the total input image sizeD, the
goal of the adaptive scheduler is to achieve the minimum
energy cost while satisfying the latency constraints LInf .

The decision variable is X ¼ ½x1; . . . ; xi; . . . :; xM � and the
objective function is defined as follows:

P1 : minimize
X ;D

E (9)

subject to C1 : pti 	 LInf ; 8i 2 ½M�: (10)

The constraints C1 means that The processing time pti for
data Di in the accelerator node si does not exceed the
latency constraints LInf .

This problem is a mixed-integer linear programming
(MILP) problem with integer variables, the allocation strat-
egy X ¼ ½x1; . . . ; xi; . . . ; xM �, and real variables, the data
assignment D ¼ ½D1; . . . ; Di; . . . ; DM �. We can solve it with
some optimization methods, such as branch and cut and
simplex algorithm , provided by CPLEX [22].

However, this MILP problem is NP-hard, so we propose a
simple and intuitive heuristic algorithm that finds the near-
optimal solution. In the performance evaluation Section 4,

we will show that our heuristic algorithm achieves almost
near-optimal solutions.

First, C1 can be removed by assuming the data assign-
ment to each accelerator node is the maximum data size
that the accelerator node can handle until the latency con-
straints LInf . That is pt�i ¼ LInf ; 8i.

Based on Eq. (11), the data assignment to the nodes,
½D1; . . . ; Di; . . . ; DM �, is determined

Di :¼ LInf

1
Thi

0

þ
P

k2½K� skP
k2½K� Th

i;j
k

; 8i 2 ½M�: (11)

Second, it constructs the ranked ratio of energy cost per
maximum data size,denoted as S, for every accelerator node

u ¼ argmini
Ei

Di
; where

LInf

1
Thi

0

þ
P

k2½K� skP
k2½K� Th

i;j
k

: (12)

Last, the accelerator nodes with low-efficiency are allo-
cated one by one until the given input D can be processed
within the latency constraints LInf

X
i2½M�

Di � xi < D: (13)

The entire process of the ASLM scheme is described in
Algorithm 1.

Algorithm 1. Acceleration Scheduling Scheme With
Layer-Level Management of Explainable DNN on FPGA-
GPU

Input:
Ei : Energy consumption in accelerator node si,
Di : Data assignment to accelerator node si
Output:
S : Ranked ratio of “energy cost per maximum data size”
Function ConstructRatio(Ei;Di):
S  ;
T  M ¼ ½M�
Repeat
u ¼ argmini

Ei

Di ; where LInf

1
Thi

0

þ

P
k2½K�

skP
k2½K�

Th
i;j
k

S  ðS [ fugÞ
T  T 
 fug

Until T ¼ ;
End Function
Input:
S : Ranked ratio of “energy cost per maximum data size”
Output:
X : Acceleration Node Allocation Strategy
Function NodeAssignment(S):
X  0
Repeat
xS½0�  1
S  S 
 S½0�

Until
P

i2½M�D
i � xi < D

End Function
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3.3 Adaptive Unlabeled Data Selection (AUDS) With
Confidence Threshold for DNN Retraining Cost
Reduction

In step 2 of the HPC ground station system, we adopt the
algorithm, proposed in [23], for the AUDS scheme which
selects the most informative unlabeled data on retraining.
The selected data is passed to human supervisors for label-
ing. The total input data pool of m classes and n samples is
denoted by I ¼ fxij8i 2 ½n�g. The label of xi is denoted as yi.
If xi is in the jth class, yi ¼ j; j 2 ½M�. While the data scale
continues to grow, almost all data cannot be unlabeled due to
high labeling cost and slow labeling speed. Utilizing informa-
tive unlabeled data is important to accelerate the retraining.
Therefore, the AUDS scheme organizes the training data Dtr

composed of unlabeled imagesDU
tr and labeled imagesDL

tr.
The DNN retraining problem is defined as follows:

P1 : min
W;yi;i2Dtr


 1

n

Xn
i¼1

Xm
j¼1

1ðyi ¼ jÞlog pðyi ¼ jjxi;WÞ;

(14)

where 1ð�Þ is the function that 1ðtrueÞ ¼ 1 and 1ðfalseÞ ¼
0, andW is the model parameters. pðyi ¼ jjxi;WÞ is the soft-
max output of the modelW on xi for the jth class.

First, the AUDS scheme sorts the total input data pool
according to the AL criteria that uncertain samples are often
the most informative for model update. And then, those
most uncertain samples are manually labeled by human
supervisors and added into labeled training data DL

tr. Those
most certain samples are pseudo-labeled and added into
unlabeled training dataDU

tr.
For xi, the model predicts its label as a probability vector

pðyi ¼ jjxi;WÞ 2 ½0; 1�jmj. Let sðxÞ be the confidence of xi.
Measuring the maximum confidence that the model has in
any class

sðxÞ ¼ maxjðpðyi ¼ jjxi;WÞÞ: (15)

Definition 2. Configuration Threshold. Let u be the confi-
dence threshold of sðxÞ, described in Fig. 5. The high confidence

threshold on pðyi ¼ jjxi;WÞ is often the most beneficial for
model updating

sðxÞ > u: (16)

The high-confidence samples are selected from the total
input data pool, whose sðxÞ is higher than the threshold u,
and added into unlabeled training data DU

tr [23]. The AUDS
scheme predicts their pseudo-labels, yi, defined as

j� ¼ argmaxjpðyi ¼ jjxi;WÞ: (17)

yi ¼
j�; if sðxÞ > u

0; if otherwise

�
: (18)

The initial threshold u is set to the best empirical value to
assign high reliability to a pseudo-label.

In the progressive learning process, the high-confidence
samples are selected with improved model accuracy. It
decreases incorrect pseudo-labeling. To ensure the reliable
sample selection, at each iteration t, the AUDS scheme
updates the threshold u adaptively as follows:

u ¼ u þ � � t; (19)

where � is the threshold growth rate [23].
Referring to [23], we fix the growth rate � to 0.0033 and

the threshold u to 0.05. Wang, Keze, et al. [23] show that
these parameters do not substantially affect the overall sys-
tem performance. The entire process of the AUDS scheme is
described in Fig. 6.

3.4 Retraining Acceleration Scheduling (RAS)
Based on Semi-Supervised Learning With
Data Parallelism

In step 3 of the HPC ground station system, the RAS scheme
schedules the retrainingwith the training dataDtr composed
of unlabeled imagesDU

tr and labeled imagesDL
tr. Its objective

is to achieve the minimum energy cost while satisfying
latency constraints, denoted as Ltr. To do this, it determines
how to allocate the accelerators in the cluster and distribute
the training dataDtr to them for invoking the target explain-
able DNNmodel retraining tasks Structure of Semi-Supervised
Learning Based Retraining. The retraining task is based on

Fig. 5. An example of confidence threshold for informative data selection.

Fig. 6. Adaptive unlabeled data selection scheme for DNN retraining cost
reduction[23].
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Synchronous SGD, which is one of the data parallelism(DP)
methods [18]. The DP reduces one iteration time by dividing
the mini-batch size into the allocated accelerators [19]. The
mini-batch size of ith GPU is denoted as bitr. The total batch
size is B ¼

P
i b

i
tr in an iteration. The batch B is randomly

sampled from the training dataDtr. The number of iterations
in an epoch is given to Iter ¼ D

B and the number of epochs ep
is determined by system operators. We cannot use Synchro-
nous SGD directly because of the presence of unlabeled data.
As described in Section 3.3, we utilize the informative unla-
beled data to accelerate the retraining and overcome the bot-
tleneck due to high labeling cost and slow labeling speed.
Therefore, we adopt the semi-supervised learning method,
Label Guessing [24], whichmakes pseudo-labels by invoking
the target model inference regarding unlabeled dataDU

tr.
GPU Resource Allocation. For retraining, we use GPUs.

The available GPUs after GPU allocation for inference in
step 1 are denoted as Xtr, which is the allocation vector on
GPUs for retraining, as follows:

Xtr ¼ fx1
tr; . . . ; x

i
tr; . . . ; x

C
trg; where xi

tr ¼ f0; 1g; (20)

where C is the number of available GPUs. xi
tr ¼ 1 means

that the GPU i is allocated for retraining and otherwise
xi
tr ¼ 0.
Latency Modeling in Retraining Process. For batch size B,

the retraining latency with allocation Strategy Xtr is defined
as follows:

ltr ¼ lfb � Iter � epþ llg; (21)

where lfb is the label guessing latency.
According to unlabeled training images DU

tr, the label
guessing latencywith allocation StrategyXtr is defined given
by Eq. (22)

llg ¼
DU

trP
i2½C� Th

i
tr � xi

tr

; (22)

where Thi
tr is the throughput of i th-GPU. We show the label

guessing latency through Theorem 1.
Based on themechanismof Synchronous SGD as described

in Fig. 7, an iteration executes one Feed-Forward and Back-
propagation (FB) with the batch B of training data Dtr on C
GPUs. The RAS scheme determines the optimal mini-batch bi

to be processed by eachGPU for training onB in each FB

btr ¼ ðb1tr; . . . ; bitr; . . . ; bCtrÞ; then B ¼
X
i

bitr: (23)

The FB Latency at ith GPU consists of the processing time
lipðbitrÞ for mini-batch bitr and the transfer time lic to send the
gradient to the parameter server and receive updated mod-
els from the parameter server, respectively [20]

lifbðbitrÞ ¼ lipðbitrÞ þ lic: (24)

The processing time lipðbitrÞ is defined with the parameters
ai and bi implying the performance of ith GPU [20]

lipðbitrÞ ¼ ai � bitr þ bi: (25)

In the heterogeneous accelerator environment, each GPU
has different processing speed characteristics per batch, so

if the same mini-batch is determined, straggler occurs and
FB operations are getting slow down [20]. bitr is adjusted to
minimize the FB Latency of the accelerator with maximum
FB Latency to obtain the minimized FB performance time lfb
and mini-batch of each accelerator. It is given to Eq. (26)

min
btr

max
i

lifbðbitrÞ: (26)

If bitr is a continuous variable, the optimal solution of
Eq. (26) on the FB latency is derived as follows:

lfb ¼
Bþ

P
ið
biþlic
ai
Þ � xi

trP
ið 1aiÞ � x

i
tr

�
Bþ

P
ið
bi

ai
Þ � xi

trP
ið 1aiÞ � x

i
tr

þ lc (27)

lp ¼
Bþ

P
ið
bi

ai
Þ � xitrP

ið 1aiÞ � x
i
tr

(28)

bitr ¼
lfb 
 bi 
 lic

ai
; 8i; (29)

where we assume that the communication latencies of Xtr

are same as lc.
Energy Cost Modeling in Retraining Process. During retrain-

ing process, the active processing time and power in GPU
are given to lifb � Iter � epþ llg and Pi

act, and the idle time
and power spent on transmission in GPU are lC � Iter � ep
and Pi

idl. Pipelining between processing and transmission
cannot be applied because the training can be continued for
the next batch B after synchronization has been established.

For batch size B and training data Dtr, the retraining
energy with allocation Strategy Xtr is defined as processing
time (Etr) [15], [16]

Etr ¼
X
i2½C�

Ei
tr � xitr (30)

Ei
tr ¼ Pi

act � lfb � Iter � epþ Pi
idl � lC � Iter � epþ Pi

act � llg:
(31)

RAS Scheme Based on Semi-Supervised Learning With Data
Parallelism. In the retraining process for the training data
Dtr, the goal of the RAS scheme is to achieve the minimum
energy cost while satisfying the latency constraints Ltr.

The decision variables are an accelerator allocation strat-
egyXtr ¼ ½x1

tr; . . . ; x
i
tr; . . . :; x

C
tr� and a confidence threshold u.

Fig. 7. Retraining mechanism with training dataD and C GPUs[20].
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First, the RAS scheme determines the confidence threshold
u adjusting several iterations(Iter) with the training dataDtr

Iter ¼ Dtr

B
¼ fxjsðxÞ > u; x 2 Ig

B
: (32)

The initial confidence threshold is obtained using the
best empirical value. If the training data Dtr selected by u

cannot be processed within Ltr with whole available GPUs,
the RAS scheme reducesDtr and Iter

ltr ¼ lfbðXtrÞ � IterðuÞ � epþ llg > Ltr;

where xi
tr ¼ 1; 8i 2 ½C�:

(33)

The RAS scheme increases the initial confidence thresh-
old u to reduce the training data size Dtr calculated in the
AL process (step 2) until Ltr is satisfied.

(a) Increase Threshold of Uncertainty

Dinc ¼ ltr 
 Ltr (34)

unew ¼ u þ " � Dinc ¼ u þ " � ðltr 
 LtrÞ: (35)

(b) Reduce Training Data Size

Dtr #¼ fxjsðxÞ > u; x 2 Ig: (36)

(c) Reduce the number of iterations and Epoch Latency

Iter #¼ Dtr

B
: (37)

(d) Repeat Until

ltr <¼ Ltr: (38)

Contrary, if the training data Dtr selected by u can be
processed within Ltr with whole available GPUs, the RAS
scheme additionally reduces retraining cost Etr with the
latency constraints Ltr by controlling the accelerator alloca-
tion strategy Xtr ¼ ½x1

tr; . . . ; x
i
tr; . . . :; x

C
tr� and the objective

function is defined as follows:

P2 : minimize
Xtr

Etr

subject to C1 : ltr 	 Ltr
(39)

P02 : minimize
Xtr

X
i2½C�

Ei
tr � xi

tr

¼
 X

i2½C�
Pi
act � xi

tr

!
ðltrÞ þ

 X
i2½C�

Pi
idl � xi

tr

!
� ðlC � Iter � epÞ

subject to C1 : ltr < Ltr:

(40)

However, since it is hard to solve (NP-hard problem), we
propose a heuristic algorithm to reduce computational com-
plexity. The objective function P02 to find the optimal
retraining cost can be configured in the form of GPU active
Power (

P
i2½C� P

i
act � xi

tr) � One Iteration Latency (ltr). For
simplicity, the GPU idle power is ignored. We propose a
heuristic on accelerator allocationXtr.

First, it starts with setting all items of Xtr as 1. It means
that we consider using all of available GPUs.

Second, it obtains the energy cost reduction for the proc-
essing time increase, when one GPU among Xtr is decided
not to use

DEtr

Dltr
¼ E 6¼jtr 
Etr

l 6¼jtr 
 ltr
: (41)

Third. it excludes one inefficient GPU which has the
highest value on DEtr

Dltr
. If the GPU-i is chosen, it set as xi

tr ¼
0. It repeats this process right before the latency constraints
Ltr is exceeded. This algorithm is finished and uses the
result of Xtr as a solution to problem P2. The entire process
of the RAS scheme is described in Algorithm 2.

Algorithm 2. Semi-Supervised Learning Based Retraining
Acceleration Scheduling SchemeWith Data Parallelism

Input:
Dtr : Input Retraining Data,
B : Batch Size,
C : Available GPUs
Outut:
Xtr : GPU Allocation Strategy
Function:
if ltr > Ltr then
Xtr  f1g
Repeat
Dinc ¼ ltr 
 Ltr

unew ¼ u þ � � Dinc

Dtr #¼ fxjsðxÞ > u; x 2 Ig
Iter #¼ Dtr

B

Until ltr <¼ Ltr

else
Repeat
Calculate DEtr

Dltr
¼

Etr
6¼j
E

tr

l 6¼j
ltr
Exclude the GPU of the highest DEtr

Dltr
value

Until ltr > Ltr

end
ReturnXtr

End Function

4 PERFORMANCE EVALUATION AND DISCUSSION

In this section, we evaluate the processing time and energy
cost of the proposed cooperative scheduling schemes for
explainable DNN acceleration in satellite image analysis and
retraining, comparing with the conventional DNN accelera-
tion schemes. The proposed schemes optimize the pre-proc-
essing component as well, reflecting the heterogeneity of CPU,
and the evaluation results of the proposed schemes definitely
include the effect of the pre-processing tasks. However, we
focus on the processing time and energy consumption perfor-
mance of the main model components processed in accelera-
tors such as CL or FC since the heterogeneity of CPU in our
experimental environment is negligible compared to the het-
erogeneity of accelerators. In this evaluation, the scheduling
scheme of Nexus [28] is used as the conventional scheme for
satellite image analysis and Homogeneous DP [18] and Het-
erogeneous DP [20] are used as the conventional schemes for
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satellite image retraining. The inference scheduling schemes of
Nexus, assuming a homogeneous HPC environment, pack the
workload each accelerator maximally and it minimize the
resource usage considering the latency constraints. Homoge-
neous DP is the training scheme distributing data evenly
across all of available resource [18]. Heterogeneous DP is the
training scheme distributing data optimally across all of avail-
able resources for stragglermitigation [20].

In addition, we also compare with the optimal solution of
our problems, derived from the MILP optimization algo-
rithm provided by CPLEX [22], and show how close the
proposed schemes are to the optimal result.

For the testbed establishment, we implement the proposed
cooperative scheduling schemes, as shown in Fig. 8. We
build the heterogeneous HPC environment with 7 accelerator
nodes, each of which contains multiple heterogeneous
CPUs, memory, and accelerators(FPGA-GPU) (Geforce series,
GTX1080/GTX1080Ti/RTX2080Super, FPGA, Arria 10 GX) as

shown in Table 2. The ASLM, AUDS, and RAS schemes deter-
mine the best accelerator node, data selection, andGPU alloca-
tion, respectively, for a given workload with input images D
in a certain period. After the images D are analyzed with the
ASLM scheme, the delay occurred from the AUDS scheme
and the supervisor’s labeling are ignored in this experiment.
We assume that the training data Dtr composed of unlabeled
imagesDU

tr and labeled imagesDL
tr is generated without delay

and is directly applied to the RAS scheme for retraining of the
target explainable DNN model. Besides, We build a monitor-
ing module for each accelerator node using Nvidia-smi [31]
and Xilinx xbutil tool [32] to monitor the GPU and FPGA
power usage periodically in real-time.

For evaluation, we use two models as a target explainable
DNN model; Resnet-152 (classification) [25], and Faster-
RCNN (Object Detection) [21] (but, to evaluate the RAS
scheme, we only use Resnet-152). Also, we attach Grad-CAM
on the models for visual explanation. We use large-scale
image datasets such as DOTA [26] and AID [27], as shown in
Fig. 9. We run Pytorch for deep learning framework [29]. We
use CUDA 9.0 and cuDNN 7.0 [30] to accelerate the DNN
inference speed based on GPU. We measure two metrics:
processing time (sec) and energy consumption (J). The proc-
essing time means the total time to complete the given work-
load and the energy consumption means the total energy
consumption in the accelerator nodes during processing.

4.1 Experimental Results and Analysis

Figs. 10 and 11 shows the results of the ASLM scheme on
Resnet-152 and Faster-RCNN, respectively, in terms of proc-
essing time (sec) and energy consumption (J) with various
workloads. The workloads are set as [3200, 4800, 6400, 8000]
(Number of Requests). A request is composed of an input
image to invoke the target model inference. The latency con-
straints Linf is set as 20s for Resnet-152 and 70s for Faster-
RCNN, respectively.

In Figs. 10 and 11, the ASLM scheme shows better perfor-
mance on energy consumption compared to the conventional

Fig. 8. Implemented cooperative scheduling schemes for explainable DNN acceleration in satellite image analysis and retraining.

TABLE 2
Detailed Specification of Associated Nodes

Node Specification

1 CPU(i7-6700, 3.40GHz), MEM(16GB),
Acc(GTX 1080)

2 CPU(i7-2600 @ 3.4GHz), MEM(16GB),
Acc(GTX 1080, Arria 10 GX)

3 CPU(i7-4790 @ 3.6GHz), MEM(16GB),
Acc(GTX 1080 Ti, RTX2080 Super)

4 CPU(Xeon(R) Silver 4214R @ 2.4GHz *
2EA), MEM(256GB), Acc(RTX 2080 Super)

5
CPU(Xeon(R) Silver 4108 @ 1.80GHz *
2EA), MEM(64GB), Acc(GTX 1080,

GTX 1080Ti)

6 CPU(i7-8700K @ 3.70GHz), MEM(32GB),
Acc(RTX 2080 Super)

7 CPU(Xeon(R) Silver 4110 @ 2.10GHz),
MEM(64GB), Acc(GTX 1080 Ti)
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schemes in every cases while guaranteeing the latency con-
straints, 20s and 70s. Especially, in Fig. 10, the ASLM scheme
reduces energy consumption by {39, 29, 22, 10}% over work-
loads compared to Nexus. As the workload gets bigger, its
effectiveness decreases because the options it can choose to
reduce energy consumption become smaller. In the sameway,
in Fig. 11, it reduces energy consumption by {5.72, 4.36, 3.09,
1.28}% over workloads compared to Nexus while guarantee-
ing the latency constraints. Its effectiveness becomes smaller
than the results on Resnet-152, because theworkload of Faster-
RCNN is larger than that of Resnet-152.

Last, the ASLM scheme nearly achieves the optimal result
on processing time and energy consumption, derived from
theMILP optimization algorithm provided by CPLEX [22].

The results show that the ASLM scheme effectively opti-
mizes the analysis performance with the latency and energy
cost modeling, Eqs. (1) and (7), reflecting the heterogeneity
of accelerator environment. Especially, its layer-level man-
agement on explainable DNN with the latency and energy
cost modeling removes the inefficiency of Nexus. Nexus
packs the workload into each accelerator as much as

possible within the given latency constraints in order to
minimize the number of used accelerators. However, the
modeling of Nexus, which do not consider the energy con-
sumption of accelerators and assumes the accelerators are
homogeneous, makes the inefficient decisions to use the
bad throughput/watt accelerators. In addition, since it pro-
cesses a DNN model as a unit of a task, it cannot avoid allo-
cating FC to FPGA and causes performance degradation.

Fig. 12 shows the results of the RAS scheme on retraining
Resnet-152, in terms of processing time (sec) and energy con-
sumption (J)with various batch sizes. For simplicity,we shows
the average result of an iteration. Also, in this evaluation, we
do not consider the label guessing latency because it is negligi-
ble in the retraining latency. The batch sizes are set as [64, 128,
256]. The latency constraints Ltr, the training dataDtr and the
number of epochs ep are set as 300s, 6400 and 40, respectively.
Then, the latency constraints on an iteration is set as 0.3s.

In the same way with the ASLM scheme’s evaluation, the
RAS scheme shows better performance on energy consump-
tion in retraining compared to the conventional schemes

Fig. 9. Selected Grad-CAM visualization results of AID[27] test dataset. The Grad-CAM visualization is computed for the output of the last
convolutional layer.

Fig. 10. Comparision results of the ASLM scheme on Resnet-152 in
terms of processing time (sec) and energy consumption (J) with various
workloads.

Fig. 11. Comparision results of the ASLM scheme on Faster-RCNN in
terms of processing time (sec) and energy consumption (J) with various
workloads.

1616 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 7, JULY 2022



entirely while guaranteeing the latency constraints, 0.3s. In
Fig. 12, the RAS scheme reduces energy consumption by
{41.54, 15.83, 2.8}% over batch sizes compared to Heteroge-
neous DP. Homogeneous DP and Heterogeneous DP just
use all of available accelerators and decide the data distribu-
tion to minimize the processing time. They do not consider
the remaining time within the latency constraints which can
be utilized to save the energy consumption. Meanwhile, the
RAS scheme additionally reduces the accelerator usage to
minimize the energy consumption, utilizing the remaining
time within the latency constraints. It effectively optimizes
the retraining performance with the latency and energy cost
modeling, Eqs. (33) and (30), considering the heterogeneity
of accelerator environment.

Fig. 13 shows the results of the AUDS scheme in terms of
accuracy (%) and Number of Training Data (#) and elapsed
time(sec). In this experiment, we fix the number of labeled data
as 1000 and the unlabeled data might be input into the AUDS
scheme in an incremental way. We evaluate it with respect to
random sampling based on the fixed threshold. The AUDS
scheme achieves competitive accuracy with a smaller number
of training samples in comparison to the fixed threshold
approach. It provides higher accuracy with the same number of
training samples in comparison to the fixed threshold approach.

5 CONCLUSION

In this paper, we addressed the limitations of the conventional
DNN acceleration systems which cause serious performance
degradation on energy cost in satellite image analysis and
retraining. To overcome these problems, we discussed new
explainable DNN acceleration scheduling schemes. Utilizing
the latency and energy costmodeling that reflects the layer-level
management of explainableDNNin analysis and the confidence

level criteria and data parallelism in retraining, we propose
cooperative scheduling schemes to minimize the analysis or
retraining cost and guarantee the latency constraints. We imple-
mented the cooperative scheduling for explainable DNN accel-
eration in heterogeneous HPC environment based on FPGA-

Fig. 12. Comparision results of the RAS scheme on Resnet-152 in terms
of processing time (sec) and energy consumption (J) with various batch
sizes.

Fig. 13. Comparision results of the AUDS scheme on Resnet-152 in
terms of accuracy (%) and Number of Training Data and elapsed time
(sec), respectively.
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GPU and conducted real satellite image analysis and retraining
experiments with a large-scale aerial image dataset, such as
DOTA and AID. In these experiments, the results showed that
the ASLM and RAS schemes provide the optimized processing
time and cost performance with respect to explainable DNN
acceleration, utilizing the latency and energy cost modeling
reflecting the heterogeneity of accelerator environment. In the
cases of Resnet-152, the ASLM and RAS schemes reduced the
energy cost of their conventional schemes by up to about 40%
while guaranteeing the latency constraints. Furthermore, the
results showed that the AUDS scheme achieved competitive
accuracywith a smaller number of training samples in compari-
son to the fixed threshold approach.We showed that the AUDS
scheme alleviated the bottleneck of supervisors workload and
realize the fast processing and convergence of explainable DNN
in satellite image analysis and retraining.
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