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Abstract—The ever-expanding scale of cloud datacenters necessitates automated resource provisioning to best meet the requirements
of low latency and high energy-efficiency. However, due to the dynamic system states and various user demands, efficient resource
allocation in cloud faces huge challenges. Most of the existing solutions for cloud resource allocation cannot effectively handle the
dynamic cloud environments because they depend on the prior knowledge of a cloud system, which may lead to excessive energy
consumption and degraded Quality-of-Service (QoS). To address this problem, we propose an adaptive and efficient cloud resource
allocation scheme based on Actor-Critic Deep Reinforcement Learning (DRL). First, the actor parameterizes the policy (allocating
resources) and chooses actions (scheduling jobs) based on the scores assessed by the critic (evaluating actions). Next, the resource
allocation policy is updated by using gradient ascent while the variance of policy gradient is reduced with an advantage function, which
improves the training efficiency of the proposed method. We conduct extensive simulation experiments using real-world data from
Google cloud datacenters. The results show that our method can obtain the superior QoS in terms of latency and job dismissing rate
with enhanced energy-efficiency, compared to two advanced DRL-based and five classic cloud resource allocation methods.
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1 INTRODUCTION

C LOUD computing has rapidly developed as one of the
most prevailing computing paradigms [2]. In cloud

computing, resource allocation is regarded as a process of
allocating computing, storage, and networking resources
to meet the requirements of both users and cloud service
providers (CSPs). Many problems in cloud resource allo-
cation have emerged with the ever-increasing scale and
dynamics of cloud datacenters, such as irrational resource
provisioning and slow response to changes. These problems
not only degrade the Quality-of-Service (QoS) but also cause
high energy consumption and maintenance overheads [3].
Therefore, it has been a high-priority objective to design
an adaptive and efficient solution for resource allocation in
cloud datacenters. However, it is a highly challenging task
due to the dynamic system states and various user demands
in cloud computing [4], as described below.

• The complexity of cloud datacenters. There are a large
number of different types of servers in cloud data-
centers, which provide various computing and storage
resources including central processing units (CPUs),
memories, and storage units. Therefore, it is challeng-
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ing to manage and coordinate such heterogeneous re-
sources efficiently in cloud computing [5].

• The diversity of demands from users. Jobs coming
from different users demand heterogeneous resources
(e.g., CPUs, memories, and storage units) and different
durations (e.g., minutes, hours, and days) [6]. Such
diversity of user demands intensifies the difficulty of
resource allocation in cloud datacenters.

• The excessiveness of energy consumption. Large en-
ergy consumption not only causes huge operation over-
heads but also results in extensive carbon emissions
[7]. In Google cloud datacenters, the average CPU
utilization of servers is only around 20% [8]. Such
energy waste occurs when irrational resource allocation
schemes are used. However, it is hard to satisfy diverse
user demands while maintaining cloud datacenters
with high energy-efficiency.

• The dynamics of cloud systems. In cloud datacen-
ters, system states such as resource usage and requests
are changing frequently. Effective resource allocation
is expected to continuously meet the requirements of
user jobs under such dynamic cloud environments.
However, it is difficult to build an accurate model
for resource allocation in response to dynamic cloud
environments. Therefore, these dynamics have caused
huge challenges to adaptive resource allocation in cloud
datacenters [9].

Many classic solutions for cloud resource allocation are
based on rules [10], heuristics [11], and control theory [12].
Although these solutions can solve the problem of cloud
resource allocation to some extent, they commonly use the
prior knowledge of cloud systems (e.g., state transitions,
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demand changes, and energy consumptions) to develop
corresponding strategies of resource allocation. Thus, these
solutions might work well in a specific application scenario,
but they are unable to fully fit in the cloud environment with
dynamic system states and user demands. For example,
job scheduling can be easily executed by using rule-based
strategies for meeting instant user demands. However, they
only consider the current job characteristics (e.g., resource
demands and job durations) to obtain short-term benefits.
Therefore, they are unable to adaptively fulfill the dynamic
demands of user jobs with a long-term perspective, and it
might result in excessive job latency and serious resource
wastes due to irrational resource allocation. Besides, numer-
ous iterations may be needed to find feasible resource alloca-
tion plans with these solutions, which leads to high compu-
tational complexity and resource overheads. Therefore, they
are unable to effectively address the complicated problem of
resource allocation in dynamic cloud environments.

Reinforcement learning (RL) [13] has emerged as a
promising approach for handling resource allocation prob-
lems with high-adaptiveness and low-complexity. However,
traditional RL-based methods suffer from the problem of
high-dimensional state space when dealing with complex
cloud environments [14]. To address this problem, deep
reinforcement learning (DRL) [15] was proposed to extract
low-dimensional representations from high-dimensional
state spaces using deep neural networks (DNNs) [16]. Al-
though there are some DRL-based methods focused on
the problem of cloud resource allocation [17], [18], [19],
[20], most of them use the value-based DRL (e.g., deep Q-
networks (DQN) [15] and double Q-learning (DQL) [21]),
which may lead to low training efficiency when dealing with
a large action space. This is because the value-based DRL
learns a deterministic policy by calculating the probability of
each action. However, in a cloud datacenter, jobs may arrive
constantly and thus the action space may be considerably
large to continuously meet the requirements of scheduling
jobs. Therefore, it could be hard for the value-based DRL
to approach the optimal policy with quick convergence. By
contrast, the policy-based DRL (e.g., policy gradient (PG)
[13]) learns a stochastic policy and can better deal with
the large action space in a cloud datacenter by directly
outputting actions with the probability distribution, but it
might reduce the training efficiency caused by the high
variance generated when estimating the policy gradient.

As a synergy of value-based and policy-based DRL al-
gorithms, advantage actor-critic (A2C) [13] was designed
to address the above issues. In A2C, the actor chooses
actions based on the scores assessed by the critic, where the
variance of policy gradient is reduced with an advantage
function. However, the A2C adopts a single-thread training
manner and thus underutilizes computational resources.
Meanwhile, strong data correlation may occur when using
the A2C because similar training samples are generated
when there is only a single DRL agent interacting with
the environment, which would cause unsatisfactory training
results. To address these problems with A2C, an asyn-
chronous advantage actor-critic (A3C) algorithm with low-
variance and high-efficiency was proposed in [22]. The A3C
uses multiple DRL agents to interact with the environment
simultaneously, making full use of computational resources

and thus improving the learning speed. Meanwhile, the data
collected by different DRL agents are independent of each
other, and thus the A3C breaks the data correlation.

In light of the A3C algorithm’s advantages, we develop
an A3C-based resource allocation scheme for cloud datacen-
ters with heterogeneous resources, diverse user demands,
large energy consumption, and dynamic environments. The
main contributions of this paper are summarized as follows.
• A unified model of resource allocation is designed for

a cloud datacenter with dynamic system states and
heterogeneous user demands. In the proposed model,
the QoS (job latency and dismissing rate) and energy-
efficiency (average energy consumption of jobs) are
regarded as optimization goals. Furthermore, the state
space, action space, and reward function for cloud
resource allocation are defined and formulated as a
Markov decision process (MDP), which are used in the
proposed DRL-based cloud resource allocation scheme.

• An actor-critic DRL (A3C) based resource allocation
method is proposed to efficiently approach the optimal
policy of job scheduling in a cloud datacenter. Specifi-
cally, DNNs are utilized to handle the problem of high-
dimensional state space in a cloud datacenter. More-
over, the training efficiency of the proposed method
is greatly improved with the asynchronous update of
policy parameters among multiple DRL agents.

• The extensive simulation experiments using real-world
trace data from Google cloud datacenters are conducted
to validate the effectiveness of the proposed method.
The simulation results demonstrate that the proposed
method can achieve the better QoS, higher energy-
efficiency, and faster convergence compared to five clas-
sic resource allocation algorithms and two advanced
DRL-based resource allocation methods.

The rest of this paper is organized as follows. In Section
2, the related work is introduced. Section 3 describes the
system model of resource allocation in a cloud datacenter. In
Section 4, the proposed A3C-based cloud resource allocation
method is presented in detail. In Section 5, the proposed
method is evaluated by simulation experiments with real-
world datasets. Section 6 concludes this paper.

2 RELATED WORK

Resource allocation in cloud computing has attracted much
research attention, while many studies have contributed to
solving this important problem. In this section, we review
the related work from two aspects, including the classic and
DRL-based solutions for cloud resource allocation.

2.1 Classic Approaches for Cloud Resource Allocation

Resource allocation problem is omnipresent in cloud com-
puting and many methods have been proposed to enhance
resource utilization with rational resource provisioning and
effective cost control. For example, Zahid et al. [10] pro-
posed a ruled-based language for CSPs, in order to improve
the QoS compliance of high-performance computing (HPC)
clouds. Through using probabilistic thresholds, a system
model was designed in [23] for accomplishing the switch-
ing between different operating levels of cloud services.



CHEN et al.: ADAPTIVE AND EFFICIENT RESOURCE ALLOCATION IN CLOUD DATACENTERS USING ACTOR-CRITIC DEEP REINFORCEMENT LEARNING 3

Johnson’s rule and genetic algorithm were combined in
[24] for solving the multiprocessor scheduling problem in
cloud datacenters. By using a rule-based control approach,
a power-aware job scheduler was designed in [25] for im-
proving power-efficiency and meeting power constraints.
Wang et al. [25] also compared the pros and cons of baseline
scheduling algorithms, such as the longest job first (LJF),
shortest job first (SJF), and round-robin (RR). Furthermore,
Samal and Mishra [26] analyzed the variants of RR algo-
rithms for load balancing in cloud computing. Based on the
heuristics, the problem of cloud resource reservation was
solved in [11] for meeting user demands while reducing
resource costs. Grandl et al. [27] designed Tetris, a cluster
scheduler with packing heuristics, in order to match task
requirements with resource availability and improve clus-
ter efficiency. Avgeris et al. [12] proposed a hierarchical
resource allocation framework with an admission control
mechanism, and it can support mobile users to choose edge
servers for executing their tasks with less response time and
computational costs. Haratian et al. [28] designed an adap-
tive resource management framework for meeting the QoS
requirements, where the decision-making of cloud resource
allocation was executed by a fuzzy controller in each itera-
tion of control cycles. Through utilizing the feedback-control
theory, a Big-Data MapReduce system was developed in [29]
for reducing the costs of cluster reconfigurations.

Overall, most of these work focused on rule-based strate-
gies, heuristics, and control theory for cloud resource alloca-
tion. The rule-based strategies or heuristics need to establish
different rules for fulfilling dynamic system states and user
demands in cloud datacenters. Thus, not only the applica-
tion scopes of them are limited but also high overheads of
rule settings are generated. Besides, the control-theory based
solutions require numerous feedback iterations, and thus
they usually lead to high computational complexity and
unnecessary resource overheads. To address these important
challenges, DRL has emerged as an adaptive and efficient
decision-making method for solving the complicated prob-
lem of cloud resource allocation.

2.2 DRL-based Methods for Cloud Resource Allocation

Deep reinforcement learning (DRL) combines reinforcement
learning (RL) and DNNs, and it emphasizes the decision-
making process of choosing actions according to different
system states in the dynamic environments, in order to
maximize the long-term rewards. Two great milestones have
witnessed the vigorous development of DRL-based algo-
rithms. One is the application of deep Q-networks (DQN)
on the Atari 2600 platform [15]. The other is the Alpha Go
that defeated the Go world champion by integrating Monte
Carlo Tree Search (MCTS) with DNNs [30]. Moreover, DRL-
based methods have recently been applied to the problem of
resource allocation in cloud computing. For instance, Tong
et al. [17] combined the Q-learning algorithm with DNNs
to handle the scheduling problem of directed acyclic graph
(DAG) tasks in the cloud environment. The DQN algorithm
was adopted in [18] to allocate compute-intensive jobs, in or-
der to reduce the energy consumption of cloud datacenters.
By using the DQN algorithm, a hierarchical framework was
designed in [19] for adaptive resource allocation, aiming

to reduce power consumption in cloud datacenters. Also,
Zhang et al. [31] adopted the DQN algorithm, in order to
achieve adaptive provisioning and configuration for cloud
resources. Different from these work using value-based
DRL algorithms, Mao et al. [20] leveraged a policy-based
DRL algorithm (i.e., policy gradient (PG)) to handle the
resource allocation problem in cloud datacenters. Subject to
resource constraints in wireless systems, Eisen et al. [32]
utilized a PG-based method to find the near-optimality of
resource allocation. Based on the PG algorithm, a QoS-aware
scheduler was developed in [33], aiming to improve the
QoS when scheduling DNN inference workloads in cloud
computing. Moreover, a PG-based actor-critic approach for
user scheduling and resource allocation was designed in
[34], aiming to maximize the energy-efficiency in heteroge-
neous networks. Besides, an actor-critic based DRL method
for cloud resource allocation was developed in our pre-
vious work [1] that only considered the optimization of
job latency but not energy-efficiency. Moreover, the train-
ing efficiency of these actor-critic based DRL methods can
still be improved because they did not take advantage of
asynchronous update mechanism.

In general, most of these work depends on value-based
DRL methods for cloud resource allocation. It is difficult
for them to approach the accurate optimal policy when
dealing with a large action space. Although there exists a
small amount of research using policy-based DRL methods
to address this problem, the high variance is generated
when they estimate the policy gradient. Besides, the above
DRL-based methods reveal drawbacks in training efficiency,
thus numerous iterations are needed for optimizing the
scheduling policy. To address these essential problems, we
propose an A3C-based resource allocation method in cloud
datacenters. Different from the GA3C [35] that aims to en-
hance the performance of the A3C algorithm by leveraging
the GPU computational power, our method focuses on the
adaptation and application of the A3C algorithm in cloud
resource allocation.

3 SYSTEM MODEL

A unified model of resource allocation is designed, aiming
to improve the QoS and energy-efficiency in dynamic envi-
ronments of cloud datacenters with various user demands
and ever-changing system states. For the clarity of presen-
tation, we consider the scenario of a single cloud datacenter
with a set of servers, donated by V = {v1, v2, ..., vm}, where
m indicates the number of servers. Each server provides
multiple types of resources (e.g., CPUs, memories, and
storage units), donated by Res = {r1, r2, ..., rn}, where
n indicates the number of resource types. As shown in
Fig. 1, a DRL-based resource controller is embedded in
the resource allocation system (RAS). The RAS generates
policies of job scheduling based on the resource requests of
different user jobs and current state information of the cloud
datacenter (e.g., number of servers, resource usage, and
energy consumption). According to the policies delivered
by the DRL-based resource controller, the job scheduler
assigns jobs from the job sequence to servers. Specifically,
the jobs are generalized as data processing jobs [36], such
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as the training jobs of deep learning (DL) models for im-
age processing and speech recognition. For different jobs,
they exhibit various resource requests according to their
purposes. Therefore, each job consists of a specific job
duration (e.g., minutes, hours, or days) and the request
for different types of resources (e.g., CPUs and memories).
During the process of resource allocation, the information
collector records the usage of different resources and current
energy consumption (measured by an energy agent) in the
cloud datacenter. Referring to the above information, the
DRL-based resource controller will generate policies of job
scheduling accordingly. The major notations involved in the
proposed model are listed in Table 1.

Assigning Jobs

Time

Resource
Usage

…

Cloud Datacenter

Servers

…

Resource
Requests

Job Sequence

Time

Job 1Job 2Job 3Job n
Job

Scheduler

DRL-based Resource Controller

Information
Collector

Energy
Agent

Resource Allocation System (RAS)

State Information

Policy Integrated Information

Fig. 1. Model of resource allocation in a cloud datacenter.

Considering that there are a set of all jobs that are ex-
pected to be processed, denoted by Jtotal = {j1, j2, ..., jp},
where p indicates the total number of jobs, a set of jobs
that are waiting in the job sequence, denoted by Jseq =
{j1, j2, ..., jq}, where q indicates the number of jobs waiting
in the job sequence, and q ≤ p. When a job from Jtotal
arrives, it will first enter Jseq . If the available resources are
enough, this job can be processed immediately. Otherwise,
this job will wait in the job sequence for scheduling. Follow-
ing the first-in-first-out (FIFO) policy, the jobs in Jseq will
be dropped when the job sequence is full. Therefore, the
actual completion time of a job is obtained by calculating
the time interval from entering the job sequence to the end
of processing, denoted by T jfinish − T

j
enter . Fig. 2 illustrates

an example of job scheduling. We assume that there is a
server with 100 computing units of CPU resources. The jobs
j1, j2, and j3 request 50, 30, and 40 units of CPU resources,
respectively, which arrive at timesteps t1, t2, and t3, and are
completed at timesteps t4, t5, and t6. In the proposed model,
the time instances (i.e., timesteps) are the arrival times and
completion times of jobs at servers. Whenever a job arrives
or is completed, a state transition occurs. More specifically,
when j1 and j2 arrive, there are enough CPU resources to

TABLE 1
Major notations used in the proposed model

Notation Definition

V Set of servers in a cloud datacenter
Res Types of resources in a cloud datacenter
Jtotal Set of all jobs that are expected to be processed
Jseq Set of jobs waiting in the job sequence

T j
finish Timestep when a job is finished

T j
enter Timestep when a job enters the job sequence

Lnormal Normalized average job latency
dj Duration of a job

seqLen Length of job sequence
disRate Job dismissing rate
Etotal Total energy consumption of a cloud datacenter

k Fraction of energy consumption for an idle server
Pmax Maximum energy consumption of a server
Ures
t Resource usage of all servers by timestep t

Ejob Average energy consumption of completed jobs
st State of a cloud datacenter by timestep t

Ores
t Occupancy request of all arrived jobs by timestep t

Djob
t Durations of all arrived jobs by timestep t

at Action adopted by job scheduler at timestep t

Rt Total rewards at timestep t

RQoS
t Rewards of the QoS at timestep t

Renergy
t Rewards of the energy-efficiency at timestep t

T j,wait
t Waiting time of job j by timestep t

T j,work
t Execution time of job j by timestep t

T j,miss
t Time consumption when job j is dismissed by timestep t

Ej,exec
t Energy consumption of executing job j by timestep t

process these two jobs immediately. Therefore, the actual
completion time of j1 and j2 (i.e., t4−t1 and t5−t2) are equal
to their expected job durations (i.e., d1 and d2). However, j3
can only be processed until j1 is completed because the CPU
resources are currently inadequate. Therefore, the actual
completion time of j3 (i.e., t6−t3) is longer than its expected
job duration (i.e., d3).

C
PU

(u
ni
ts
) 100

50

0

Timesteps
t0 t1 t2 t3 t4 t5 t6

j1

j2

j3

Fig. 2. An example of job scheduling.

The numerical discrepancy among different values of
job latency may lead to excessive computation time during
gradient descent, therefore, the normalization is used to im-
prove the training speed and convergence of the algorithm.
Therefore, Lnormal is defined as the normalized average job
latency, which normalizes the job latency of all successfully
completed jobs and then takes their average.

Lnormal =

∑
j∈completed jobs

((
T jfinish − T

j
enter

)
/dj
)

Number of completed jobs
,

(1)
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where Lnormal ≥ 1 and dj is the duration of a job.
Moreover, a constraint is added on the length of the job

sequence Jseq , denoted by seqLen, which is used to avoid
the QoS degrading caused by the excessive number of jobs
that are staying in the waiting status. Therefore, disRate is
defined as the job dismissing rate, which calculates the rate
of dismissed jobs when the job sequence is full.

disRate = 1− Number of completed jobs

Total number of jobs
, (2)

where 0 ≤ disRate ≤ 1.
Besides, the energy consumption generated in cloud

datacenters commonly depends on their resource usage, and
thus it is a feasible way to reduce energy consumption by
enhancing this metric. This is because fewer servers tend to
be switched on when the existing servers have high resource
usage. Through experimental measurements, existing stud-
ies [19], [37], [38] have shown that the energy consumption
of a server is proportional to its resource usage. Based
on these studies, the total energy consumption of a cloud
datacenter is formulated as

Etotal =
T∑
t=0

∑
v∈V

(k · Pmax + (1− k) · Pmax · Urest ) , (3)

where Pmax is the maximum energy consumption of a
server when it is fully utilized, the fraction k is used to
calculate the energy consumption of an idle server, Urest is
the resource usage of all servers by timestep t, and T is the
timestep when the last job is completed.

Different from most of the existing work that regards
the total energy consumption as a performance metric, we
consider the energy-efficiency during the job scheduling
process, which is measured by the average energy consump-
tion of all successfully completed jobs as

Ejob =
Etotal

Number of completed jobs
. (4)

To improve the QoS (i.e., Lnormal and disRate) and
energy-efficiency (i.e., Ejob), a DRL-based resource alloca-
tion method is proposed to execute the job scheduling in a
cloud datacenter. Specifically, we regard the RAS as a DRL
agent and the cloud datacenter as the environment. At each
timestep, the DRL agent chooses an action of scheduling
jobs by interacting with the environment. Accordingly, the
state space, action space, and reward function in DRL are
defined as follows.

State space: In the state space S, the state st ∈ S consists
of the resource usage of all servers and resource requests
of all arrived jobs by timestep t. On one hand, Urest =
[[u1,1, u1,2, ..., u1,n], [u2,1, u2,2, ..., u2,n], ..., [um,1, um,2, ...,
um,n]] indicates the usage of different types of resources on
all servers by timestep t, where um,n is the usage of the n-th
resource type on the server vm. On the other hand, Orest =
[[o1,1, o1,2, ..., o1,n], [o2,1, o2,2, ..., o2,n], ..., [oj,1, oj,2, ..., oj,n]]
indicates the occupancy requests of all arrived jobs for
different types of resources by timestep t, where oj,n is
the occupancy request of the latest arrived job j for the
n-th resource type, and Djob

t = [d1, d2, ..., dj ] denotes the
durations of all arrived jobs by timestep t. Therefore, the
state of a cloud datacenter by timestep t is defined as

st = [sVt , s
J
t ] = [Urest , [Orest , Djob

t ]], (5)

where sVt = Urest and sJt = [Orest , Djob
t ] are used to repre-

sent the states of all servers and arrived jobs for the clarity
of presentation. The state space changes when jobs arrive or
are completed, and the dimension of the state space depends
on the situation of servers and arrived jobs, calculated by
(mn+z(n+1)), wherem, n, and z are the number of servers,
resource types, and arrived jobs, respectively.

Action space: At timestep t, the action at adopted by the
job scheduler is to select and execute jobs from the job se-
quence, according to a policy of job scheduling delivered by
the DRL-based resource controller. The policy is generated
based on the current system state, and the job scheduler
assigns jobs to a specific server for execution. Once a job
is scheduled to an appropriate server, the server will auto-
matically allocate corresponding resources according to the
resource request of this job. Therefore, the action space only
indicates whether a job will be processed by a server or not,
which is defined as

A = {at|at ∈ {0, 1, 2, ...,m}}, (6)

where at ∈ A. When at = 0, the job scheduler does not
assign the job at timestep t and the job needs to wait in
the job sequence. Otherwise, the job will be processed by a
specific server.

State-transition probability matrix: The matrix indi-
cates the probabilities of the transition between two states.
Taking Fig. 2 as an example, at timestep t0, there is no
job to be processed and the initial state s0 = [0, [[0], [0]]],
where the three ”0” items represent the CPU usage of
the server, occupancy requests of jobs, and job durations,
respectively. At t1, the job j1 is scheduled immediately
since the available resources are sufficient. After taking this
action, the state evolves to s1 = [50, [[50], [d1]]], where the
first ”50” item indicates the CPU usage of the server, the
second ”50” item represents the occupancy request of j1
for CPU resources, and d1 is the duration of j1. Similarly,
after taking the action of scheduling j2 at t2, the state
evolves to s2 = [80, [[50, 30], [d1, d2]]]. Specifically, the state-
transition probability matrix is denoted as P(st+1|st, at),
which indicates the probabilities of transiting to the next
state st+1 when taking an action at at the current state st.
The values of the transition probabilities are obtained by
running the DRL algorithm, which outputs the probabilities
of taking different actions at a state.

Reward function: The reward function is used to guide
the DRL agent (RAS) to learn better policies of job schedul-
ing with higher discounted long-term rewards, aiming to
improve the system performance of cloud resource alloca-
tion. Therefore, at timestep t, the total rewards Rt consist
of two parts including the rewards of the QoS (denoted
by RQoSt ) and the energy-efficiency (denoted by Renergyt ),
which is defined as

Rt = RQoSt +Renergyt . (7)

Specifically, RQoSt reflects the penalties (hence negative)
for different types of latency at timestep t including T j,waitt ,
T j,workt , and T j,misst (as described in Table 1), which is
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defined as

RQoSt = −
∑
j∈Jseq

(
w1 ·

T j,waitt + T j,workt

dj
+ w2 · T j,misst

)
,

(8)
where w1 and w2 are used to weight the penalties. Since
RQoSt is a negative value, a job that has a longer duration
tends to wait for a shorter time. This is sensible for a cloud
system with the objective of profit maximization as a job
with a longer duration can lead to higher profits [39].

Moreover, Renergyt reflects the penalty for energy con-
sumption at timestep t, which is defined as

Renergyt = −w3 ·
∑
j∈Jseq

Ej,exect , (9)

where Ej,exect is the energy consumption of executing a job
by timestep t, and w3 is used to weight the penalty.

During the optimization process of cloud resource allo-
cation, the DRL agent first chooses an action at (scheduling
jobs) under the current system state st (resource usage and
resource requests) of the environment (cloud datacenter).
Next, the DRL agent receives rewards Rt (the QoS and
energy-efficiency) and steps to the next state st+1. This
process is illustrated by an MDP, as shown in Fig. 3.

st-1 st st+1… …

at-1 at

Rt-1 Rt

Fig. 3. An example of the MDP process modeling cloud resource alloca-
tion.

Due to the uncertainty of system states, the problem
of cloud resource allocation is formulated with model-free
DRL. Based on the discrete-time-based MDPs with a large
action space, an A3C algorithm is utilized to explore adap-
tive and efficient resource allocation in dynamic environ-
ments of cloud datacenters.

4 ADAPTIVE AND EFFICIENT RESOURCE ALLOCA-
TION USING A3C IN CLOUD DATACENTERS

This section presents the proposed effective resource allo-
cation method based on the asynchronous advantage actor-
critic (A3C), which can achieve superior QoS and energy-
efficiency in cloud datacenters. The proposed method
adopts an actor-critic based DRL framework with asyn-
chronous update (A3C) to accelerate the training process.
Specifically, the A3C-based method incorporates both value-
based and policy-based DRL algorithms. On one hand, the
value-based DRL determines the value function by using
function approximators and adopts the ε-greedy to balance
the exploration and exploitation. Therefore, the DRL agent
utilizes existing experiences to choose good actions of job
scheduling whilst exploring new actions. On the other
hand, the policy-based DRL parameterizes the policy of job
scheduling and directly outputs actions with probability
distributions during the learning process without storing

their Q-values. Thus, the DRL agent can efficiently choose
actions under a large action space.

The key steps of the proposed A3C-based cloud resource
allocation method are shown in Algorithm 1. Based on the
definitions of state space (in Eq. (5)), action space (in Eq. (6)),
and reward function (in Eq. (7)), the actor’s network V πθ

and critic’s network Qπθ are first initialized with weights
and biases. Next, the actor’s and critic’s learning rate γa
and γc, and the TD error discount factor β are initialized.

Algorithm 1: The A3C-based resource allocation in
cloud datacenters
1 Initialize: The actor’s network V πθ and critic’s

network Qπθ with weights and biases.
2 Initialize: The actor’s and critic’s learning rate γa

and γc, reward decay rate λ, TD error discount
factor β, counter temp = 0, and update step u.

3 for each training epoch n = 0, 1, 2, ..., N do
4 Receive the initial state s0, where

s0 = env.observe();
5 for t = 0, 1, 2, ..., T do
6 Select the action at of scheduling jobs based

on the current system state st of the cloud
datacenter, where st = [sVt , s

J
t ] (defined in

Eq. (5)) and at ∈ A (defined in Eq. (6)):
at = actor.choose action(st);

7 Execute the scheduling action at, receive the
reward Rt (QoS and energy-efficiency) and
the next state st+1, where
Rt = RQoSt +Renergyt (defined in Eq. (7)):
Rt, st+1 = env.step(at);

8 Calculate the discounted long-term rewards:
Rdisc = R0 + λR1 + ...+ λt−1Rt−1;

9 Calculate the advantage function in the critic,
where Qw(st, at) = Rdisc + λtV πθt (st+1):
Aπθt (st, at) = Qw(st, at)− V πθt (st);

10 Minimize the TD error:
δπθt = Rt + βV πθt (st+1)− V πθt (st);

11 Update the state-action value function
parameter:
wt+1 ← wt + γcδ

πθt
t ∇wQw(st, at);

12 Calculate the policy gradient in the actor by
using the advantage function: ∇θtJ(θt) =
Eπθt [∇θt logπθt(st, at)A

πθt (st, at)];
13 Update the scheduling policy:

θt+1 ← θt + γa∇θtJ(θt);
14 Update the state: st = st+1;
15 Update the counter: temp = temp+ 1;
16 if temp % u == 0 then
17 Call Algorithm 2 to asynchronously

update policy parameters in each DRL
agent;

18 end
19 end
20 end

The optimization objective of the proposed A3C-based
resource allocation method is to obtain the most rewards.
Therefore, the instant reward Rt (defined in Eq. (7)) is
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accumulated by using a probability distribution as

J(θt) =
∑
st∈S

dπθt (st)
∑
at∈A

πθt(st, at)Rt, (10)

where dπθt (st) is the stationary distribution of MDPs mod-
eling cloud resource allocation under the current policy πθt
of job scheduling.

After the initialization, the training process for optimiz-
ing cloud resource allocation begins. To improve the opti-
mization objective, the policy parameters of job scheduling
are updated continuously.

In one-step MDPs, the policy gradient of the objective
function is defined as

∇θtJ(θt) = Eπθt [∇θt logπθt (st, at)Rt]. (11)

When it comes to multi-step MDPs, the instant reward
Rt is replaced by the long-term value Qπθt (st, at), and the
policy gradient theorem is defined as
Theorem 1. Policy Gradient Theorem [13]: For any differ-
entiable policy πθt(st, at) and any policy objective functions,
the corresponding gradient is defined as

∇θtJ(θt) = Eπθt [∇θt logπθt(st, at)Q
πθt (st, at)]. (12)

Based on this theorem, a Temporal Difference (TD)
learning [13] is adopted, which estimates the state-values
accurately and guides the update of policy parameters.

Fig. 4 illustrates the framework of the proposed A3C-
based cloud resource allocation method. Through taking
advantage of both policy-based and value-based DRL, the
proposed method is able to handle a large action space and
reduce the variance when estimating gradient.

Actor’s Network

Critic’s Network

DRL Agent 1
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(Cloud datacenter) TD error

State (Resource

Action (Scheduling jobs)

Reward (QoS and energy-efficiency)
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usage and requests)
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Fig. 4. Framework of the A3C-based cloud resource allocation method.

In each DRL agent, the critic’s network estimates the
state-action value function Qw(st, at) ≈ Qπθt (st, at) and
updates parameter w. Moreover, the actor’s network guides
the update of policy parameters θt of the job scheduling
policy πθt based on the evaluated values from the critic’s
network. The corresponding policy gradient is defined as

∇θtJ(θt) = Eπθt [∇θt logπθt(st, at)Qw(st, at)]. (13)

Next, a state-value function V πθt (s) is used to reduce
the variance when estimating the gradient, which is only

related to the state and does not change the gradient. Thus,
the policy gradient is redefined as

∇θtJ(θt) = Eπθt [∇θt logπθt(st, at)A
πθt (st, at)], (14)

where Aπθt (st, at) = Qπθt (st, at) − V πθt (st) is the advan-
tage function. Moreover, V πθt (s) is updated by the TD
learning, where the TD error is defined as

δπθt = Rt + βV πθt (st+1)− V πθt (st). (15)

To improve the training efficiency, multiple DRL agents
work simultaneously and update their policy parameters of
job scheduling asynchronously, as shown in Algorithm 2.
Specifically, a certain number of DRL agents are initialized
with the same local parameters of neural networks (i.e., the
scheduling policy) and interact with their corresponding
environments of cloud datacenters. For each DRL agent,
the gradients are accumulated periodically in the actor’s
and critic’s networks and the asynchronous update is ex-
ecuted for the parameters in the global network by using
gradient ascent via RMSProp optimizer [22]. Next, each
DRL agent pulls the latest parameters of the actor’s and
critic’s networks from the global network and uses them
to replace the local parameters. Based on the updated local
parameters, each DRL agent will continue to interact with
its corresponding environment and independently optimize
its local parameters of scheduling policy. Note that there is
no coordination among these DRL agents during the local
training process. The A3C-based method will be kept train-
ing by using the asynchronous update mechanism among
multiple DRL agents until the results converge.

Algorithm 2: The asynchronous update of policy
parameters of job scheduling in each DRL agent

1 Initialize: The global and local parameters (θ and θ′)
for actor’s networks, the global and local
parameters (w and w′) for critic’s networks.

2 for i = temp− u, temp− u+ 1, ..., temp do
3 Accumulate gradients in the actor:

dθ ← dθ +∇θ′ logπθ′(si, ai)(Ri − Vw(si));
4 Accumulate gradients in the critic:

dw ← dw + ∂(Ri − Vw(si))2/∂w′;
5 end
6 Update global parameters by using gradient ascent

via RMSProp: θ = θ + γadθ, w = w + γcdw;
7 Synchronize local parameters: θ′ = θ, w′ = w;
8 Reset gradients: dθ ← 0, dw ← 0;

5 PERFORMANCE EVALUATION

In this section, we first describe the settings and datasets in
our simulation experiments. Next, we evaluate the perfor-
mance of the proposed method and conduct comparative
experiments with other baselines.

5.1 Settings and Datasets

The proposed model of cloud resource allocation is imple-
mented based on the TensorFlow 1.4.0. A cloud datacenter is
simulated with 50 heterogeneous servers, where the fraction
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k of energy consumption for an idle server is set to 70%
and the maximum energy consumption Pmax of a server
is set to 250 W [37]. Therefore, the energy consumption
of a server is distributed between 175 W and 250 W with
the increase of resource usage from 0% to 100%. Moreover,
the real-world trace data from Google cloud datacenters [8]
is used as the input of our proposed model. The datasets
contain the resource usage data of different jobs over 125,000
servers in Google cloud datacenters during May 2011. More
specifically, 50 servers are first randomly extracted from
Google datasets over 29 days, where each server consists
of around 100,000 job traces. Next, several essential metrics
are extracted from each job trace, including machine ID, job
ID, start time, end time, and the corresponding resource
usage. For example, Figs. 5 and 6 depict the per-day and
per-minute resource (CPU and memory) usage of a server,
and they reflect the ever-changing resource demands of jobs
at different times. The job duration is assumed to be known
before the scheduling. This assumption is reasonable be-
cause users commonly specify the requirements of their jobs
(including resource usage and job duration) when they want
to utilize cloud resources to execute their jobs, which enables
cloud datacenters to allocate the resources correspondingly.
In addition, the length of job sequence is set to 1000.

During the training process, 10 DRL agents are used to
implement the asynchronous update of policy parameters.
In each DRL agent, the job trace data is fed in the proposed
model by batches, where the batch size is set to 64. As for the
design of DNNs, two fully-connected hidden layers are built
with 200 and 100 neurons, respectively. Moreover, we set
the maximum number of epochs as 1000, the reward decay
rate λ as 0.9, and the critic’s learning rate γc as 0.01. Based
on the above settings, extensive simulation experiments are
conducted to evaluate the performance of the proposed
A3C-based cloud resource allocation method.
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(b) Per-minute CPU demands.

Fig. 5. Varying CPU demands of jobs at different times.
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(a) Per-day memory demands.
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(b) Per-minute memory demands.

Fig. 6. Varying memory demands of jobs at different times.

To analyze the effectiveness and advantage of the pro-
posed method for cloud resource allocation, extensive com-
parative experiments are conducted. On one hand, the per-
formance of two advanced DRL-based methods (i.e., PG [20]
and DQL [21]) are assessed. On the other hand, five classic
algorithms are also evaluated as follows.
• Random. Jobs are executed by a random order of job

durations.
• Longest job first (LJF) [25]. Jobs are executed by a

decreasing order of job durations.
• Shortest job first (SJF) [25]. Jobs are executed by an

increasing order of job durations.
• Round-robin (RR) [26]. Jobs are executed fairly in a

circular order, where time slices are employed and
assigned to each job in equal portions.

• Tetris [27]. Jobs are executed based on their resource
demands and the availability of system resources at the
moment they arrive.

5.2 Convergence Results
To evaluate the convergence of the proposed A3C-based
cloud resource allocation method, the impact of two es-
sential parameters is investigated, including the TD error
discount factor β and the actor’s learning rate γa.
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Fig. 7. Convergence versus different TD error discount factors.

First of all, the value of TD error discount factor β is
changed with the constant actor’s learning rate γa = 0.001.
As shown in Fig. 7, higher total rewards and faster con-
vergence (around 400 training epochs) are achieved when
β is set to 0.9. This is because the proposed method with
β = 0.9 makes better use of recent rewards to guide the
actor’s network and thus better actions are chosen along
with the right direction for higher total rewards. Therefore,
β = 0.9 will be used in the following experiments.

Next, the constant TD error discount factor β = 0.9 is
used to analyze the convergence of our proposed method
with the different values of actor’s learning rate γa. As
shown in Fig. 8, when γa is set to a large value (e.g.,
0.1 or 0.01), high total rewards can be obtained in few
training epochs. However, the algorithm converges to the
local optimum in this case, and thus it can no longer learn a



CHEN et al.: ADAPTIVE AND EFFICIENT RESOURCE ALLOCATION IN CLOUD DATACENTERS USING ACTOR-CRITIC DEEP REINFORCEMENT LEARNING 9

more optimized policy. By contrast, when γa is set to 0.001,
it only takes around 400 training epochs to achieve higher
total rewards than the above two cases. When γa decreases
to 0.0001, the learning curve always fluctuates strongly with
the increase of training epochs, and it is hard to reach a
smooth convergence in this case. Thus, γa = 0.001 is more
suitable for the next experiments than other values.
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Fig. 8. Convergence versus different actor’s learning rates.

5.3 Comparison under Single-Objective Optimization
In this subsection, the proposed A3C-based cloud resource
allocation method is first evaluated by several performance
metrics, including the total rewards, QoS (normalized av-
erage job latency and job dismissing rate), and energy-
efficiency (average energy consumption of jobs), under dif-
ferent cases with various average system loads. Next, the
proposed method is compared with some classic resource
allocation methods, including LJF, Tetris, SJF, and RR, under
single-objective (QoS) optimization.

As shown in Fig. 9, the total rewards (represent the QoS)
generally declines with the increase of average system load.
In this case, the proposed method can always achieve higher
total rewards than other methods even if the average system
load becomes higher. By contrast, other classic methods
present comparable performance only when the average
system load is less than 1.2. Especially, when the average
system load is over 2.0, the performance of these classic
methods is only slightly better than the random scheme. The
LJF method even performs worse than the random scheme
when the average system load is over 2.4. This is because
that a large number of jobs are waiting to be processed when
the average system load is high but the LJF method always
schedules the job with the longest job duration in priority,
which results in the excessive waiting of many jobs and seri-
ously degrades the scheduling performance. By contrast, the
proposed method always maintains excellent performance.
The results verify the advantage of the proposed method in
scheduling jobs under complicated environments with high
system loads.

As shown in Fig. 10(a) and (c), the proposed method
obtains both the lowest normalized average job latency and
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Fig. 9. Total rewards of different resource allocation methods with vari-
ous system loads under single-objective optimization.

job dismissing rate among all these methods. Especially, the
performance gap becomes larger with the increase of aver-
age system load. This also verifies the strong adaptiveness of
our proposed method in dynamic cloud environments with
changeable average system loads. Besides, the average job
energy consumption is also measured in this case, and the
comparisons are conducted among these methods under the
case of single-objective optimization. As shown in Fig. 10(b),
the proposed method leads to the higher average energy
consumption of jobs when the average system load stays
low (i.e., less than 2), although more energy consumption
can be reduced when the average system load is over 2.

5.4 Comparison under Multi-Objective Optimization
In this subsection, the comparative experiments are con-
ducted between the proposed method and other classic
methods for cloud resource allocation under multi-objective
(QoS and energy-efficiency) optimization. As shown in Fig.
11, the total rewards (represent the weighted sum of the
QoS and energy-efficiency) degrade with the increase of
average system load. This is because the growing and
changeable demands from user jobs increase the complexity
of cloud resource allocation. In this case, the proposed
method obtains much higher total rewards than other classic
resource allocation methods when the average system load
is high. Especially, when the average system load is over
1.6 with more complicated system states, the performance
improvement achieved by the proposed method becomes
more obvious. This is because the proposed method is of
good ability to find a better trade-off between the QoS and
energy-efficiency during the job scheduling process.

As shown in Fig. 12(a) and (c), the proposed method out-
performs other resource allocation methods in terms of both
normalized average job latency and job dismissing rate. This
verifies that the proposed method has the excellent stability
of maintaining the superior QoS in the cases of both single-
objective and multi-objective optimizations. Moreover, Fig.
12(b) depicts the energy-efficiency of different resource
allocation methods, where the proposed method can al-
ways attain the lowest average energy consumption of jobs
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(a) Normalized job latency.
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(b) Average energy consumption of jobs.
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(c) Job dismissing rate.

Fig. 10. Comparison of performance metrics among different resource allocation methods under single-objective optimization.
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Fig. 11. Total rewards of different resource allocation methods with
various system loads under multi-objective optimization.

among these methods with the increase of average system
load. Thus, the proposed method makes up for the defects
that occur in Fig. 10(b) under the case of single-objective
optimization. This is because that the energy-efficiency is
integrated in our DRL-based scheduling method, and thus
both the QoS and energy-efficiency are well considered
during the job scheduling. The above results demonstrate
the advantageous performance of our proposed method in
improving the QoS and energy-efficiency.

5.5 Comparison among Different DRL-Based Methods
In this subsection, the performance comparison between the
proposed A3C-based method and two advanced DRL-based
methods for cloud resource allocation is conducted under
multi-objective optimization, where the average system load
is 1.2. As shown in Fig. 13, the proposed method can
always achieve higher total rewards than the other two
DRL-based methods during the training process of resource
optimization. Moreover, the learning curve of the proposed
method tends to converge after around 200 training epochs.
However, the PG-based and DQL-based methods respec-
tively require around 800 and 400 training epochs to reach a
relatively-smooth convergence. As shown from Figs. 14(a) to

(d), the proposed method can achieve the better QoS (nor-
malized average job latency and job dismissing rate) and
higher energy-efficiency (average energy consumption of
jobs) compared to the other two DRL-based methods. There-
fore, the above results demonstrate the excellent perfor-
mance and high training efficiency of the proposed method.
This is because the proposed method is able to effectively
avoid large variance by using the advantage function when
estimating the policy gradient. Meanwhile, the efficient con-
vergence can be achieved by using the asynchronous update
mechanism among different DRL agents.

Finally, the detailed performance metrics of the proposed
A3C-based method and other classic methods for cloud
resource allocation are exhibited when the average system
load is 1.2. As shown in Table 2, the proposed method
reduces over 3% normalized average job latency and 27%
job dismissing rate than the DQL-based DRL method,
which performs best among other methods in terms of
these two metrics. The PG-based DRL method results in
the worst energy-efficiency (average energy consumption
of jobs) among all these methods. This is because the PG-
based DRL generates high variance when estimating the
policy gradient. Therefore, it cannot achieve a good load
balancing among different servers. Consequently, it will
result in high loads and low utilization on servers, causing
excessive energy consumption. By contrast, around 9% of
the average energy consumption is saved by using the
proposed method compared to the RR method, which leads
to the lowest average energy consumption of jobs among
other methods. Moreover, the proposed method can achieve
excellent QoS and energy-efficiency simultaneously. This is
because that the training efficiency of the proposed method
is greatly improved by using the asynchronous update of
policy parameters among multiple DRL agents. Therefore,
the proposed method can efficiently approach the global
optimal and well guarantee the QoS and energy-efficiency
simultaneously.

6 CONCLUSION

In this paper, we first formulate the resource allocation issue
in cloud datacenters as a model-free DRL problem with
dynamic system states and various user demands. Next,
we propose an A3C-based resource allocation method to
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(a) Normalized job latency.
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(b) Average energy consumption of jobs.
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(c) Job dismissing rate.

Fig. 12. Comparison of performance metrics among different resource allocation methods under multi-objective optimization.
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Fig. 13. Total rewards of different DRL-based methods under multi-
objective optimization when the average system load = 1.2.

TABLE 2
Performance metrics (normalize average job latency, average energy
consumption of jobs, and job dismissing rate) with average load = 1.2

Methods
Performance metrics

Latency Energy (kWh) Dismissing Rate

Random 7.3448 19.7431 0.0643
LJF 8.4531 14.9273 0.0757

Tetris 5.7844 14.6598 0.0707
SJF 4.2325 14.4228 0.0686
RR 3.9226 14.1897 0.0676

PG-based DRL 3.1296 74.6051 0.0335
DQL-based DRL 3.0583 14.2016 0.0310
A3C-based DRL 2.9659 12.9542 0.0224

effectively schedule jobs for improving the QoS and energy-
efficiency in cloud datacenters. The extensive simulation
experiments using real-world trace data from Google cloud
datacenters demonstrate the effectiveness of the proposed
method in achieving adaptive and efficient resource alloca-
tion. More specifically, the proposed method outperforms
the classic resource allocation methods (i.e., LJF, Tetris,

SJF, RR, PG, and DQL) in terms of the QoS (normalized
average job latency and job dismissing rate) and energy-
efficiency (average energy consumption of jobs). Moreover,
the proposed method works better than the others with the
increase of average system load, and it can achieve higher
training efficiency (faster convergence) than two advanced
DRL-based methods (i.e., PG and DQL). The simulation
results show the great value of the proposed method for
improving resource allocation in cloud datacenters.

In our future work, we plan to first extend the proposed
model to consider the jobs’ priority order. Specifically, we
will need to redefine the state space, action space, and
reward function, taking into account the jobs’ priority order.
For example, the actions of scheduling the high-priority
jobs can lead to better rewards, thus guiding the algorithm
to learn scheduling policies considering the jobs’ prior-
ity order. Next, we intend to design a new query-aware
database parameter tuning method using an advanced DRL
model built on this work. Through feeding the features of
query information, the DRL model could learn the relations
among database states, queries, and configurations to realize
the automatic parameter tuning. Moreover, we will try
to improve the generalization of the proposed DRL-based
resource allocation scheme by developing an automatic data
augmentation technique, which aims to regularize policies
and value functions with respect to various state transitions
and thus allows the DRL agent to capture task invariances
and learn useful behaviors when the environment changes.
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