
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 1

CoPA: Cold Page Awakening to Overcome
Retention Failures in STT-MRAM Based I/O

Buffers
Mostafa Hadizadeh1, Elham Cheshmikhani1, Maysam Rahmanpour1,

Onur Mutlu2, and Hossein Asadi1

Abstract—Performance and reliability are two prominent factors in the design of data storage systems. To achieve higher performance,
recently storage system designers use Dynamic RAM (DRAM)-based buffers. The volatility of DRAM brings up the possibility of data
loss and data inconsistency. Thus, a part of the main storage is conventionally used as the journal area to be able of recovering
unflushed data pages in the case of power failure. Moreover, periodically flushing buffered data pages to the main storage is a
common mechanism to preserve a high level of reliability. This scheme, however, leads to a considerable increase in storage write
traffic, which adversely affects the performance. To address this shortcoming, recent studies offer a small Non−V olatile Memory

(NVM) as the Persistent Journal Area (PJA) along with DRAM as an efficient approach to overcome DRAM vulnerability against
power failure while effectively reducing storage write traffic. This approach, named NVM−Backed Buffer (NVB-Buffer), features
from advantages of NVMs and addresses DRAM shortcomings. In this paper, we employ the most promising technologies for PJA
among the emerging technologies, which is Spin−Transfer Torque Magnetic Random Access Memory (STT-MRAM) to meet
the requirements of efficient PJA by providing high endurance, non-volatility, and DRAM-like latency. Despite these advantages, STT-
MRAM faces major reliability challenges, i.e. Retention Failure, Read Disturbance, and Write Failure, which have not been addressed
in previously suggested NVB-Buffers. In this paper, we first demonstrate that the retention failure is the dominant source of errors in
NVB-Buffers as it suffers from long and unpredictable page idle intervals (i.e., the time interval between two consecutive accesses to
a PJA page). Then, we propose a novel NVB-Buffer management scheme, named, Cold Page Awakening (CoPA), which predictably
reduces the idle time of PJA pages. To this aim, CoPA employs Distant Refreshing to periodically overwrite the vulnerable PJA
page contents by opportunistically using their replica in DRAM-based buffer. We compare CoPA with the state-of-the-art schemes over
several well-known storage workloads based on physical journaling. Our evaluations show that CoPA significantly reduces the maximum
page idle time, which leads to three orders of magnitude lower failure rate with negligible performance degradation (1.1%) and memory
overhead (1.2%).

Index Terms—Data Storage Systems, Persistent Journal Area, STT-MRAM, Retention Failure

F

1 INTRODUCTION

Storage systems use Dynamic Random Access Memory
(DRAM)-based buffers to mitigate the considerable latency
gap between storage and main memory [1–4]. DRAM ben-
efits from low access time, high density, and unlimited
lifetime, which makes it a suitable candidate for these appli-
cations. However, data loss due to power failure is the major
drawback of DRAM-based buffers because of its volatility.
Thus, DRAM-based buffers exploit mechanisms such as
periodic flush [2, 5] and/or partial use of main storage as
the journal area [6–10] to recover data in the case of power
failure. Nevertheless, these techniques significantly increase
storage write traffic.

Thanks to emerging Non-Volatile Memories (NVMs) [11–
19], a recent approach to design an efficient buffer is to use
a relatively small NVM as the journal area [2, 8] along with

1. Mostafa Hadizadeh, Elham Cheshmikhani, Maysam Rahmanpour, and
Hossein Asadi (corresponding author) are with the Department of Computer
Engineering, Sharif University of Technology, Tehran 11155-11365, Iran.
Emails: mhadizadeh@ce.sharif.edu, elham.cheshmikhani@sharif.edu, rahman-
pour@ce.sharif.edu, asadi@sharif.edu
2. Onur Mutlu is with the Department of Computer Science, ETH Zurich,
Switzerland. Email: omutlu@gmail.com

DRAM-based buffer. This approach is referred to as NVM-
Backed Buffer (NVB-Buffer) in this study. In this approach,
the buffer takes advantage of NVM persistency to reliably
store dirty data pages, beside low latency of DRAM for
fast accesses. To this end, NVM is recognized as Persistent
Journal Area (PJA) where a copy of all dirty data pages is
stored in NVM. In this case, there always exists a persistent
valid copy of the DRAM data page. Thus, NVB-Buffer can
use PJA data pages for data recovery in the case of power
failure while considerably reducing storage write traffic [2].

Previous studies attempt to use Phase Change Memory
(PCM) technology in NVB-Buffer [9, 20, 21]. PCM, how-
ever, suffers from limited endurance, poor write perfor-
mance, and considerable write power [22–26], which makes
it an ineffective candidate for NVB-Buffers. Moreover, ex-
isting NVM candidates such as Flash, Ferroelectric RAM
(FeRAM), 3D-Xpoint, and Resistive RAM (ReRAM) either
suffer from high write latency (3D-XPoint, ReRAM, and
Flash) or limited lifetime (3D-XPoint, Flash, and FeRAM)
[17, 27–30]. Fig. 1 illustrates the existing memory technolo-
gies with respect to PJA requirements. Among these can-
didates, Spin-Transfer Torque Magnetic Random Access Mem-
ory (STT-MRAM) technology meets the PJA requirements

ar
X

iv
:2

20
2.

13
40

9v
1

 [
cs

.A
R

]
 2

7
Fe

b
20

22

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 2

Ideal Candidate
Space

Endurance
W

ri
te

 L
at

en
cy

ReRAM

FeRAM

Limited-Lifetime
Alternative Space

Slow Alternative
Space

STT-MRAM

Flash

PCM/
3D-Xpoint

Commercially Used in
Storage Subsystems

× 108- 1010
×

1
0

-4
- 1

0
-5

FeRAM: Cypress Semi.,
Fujitsu

ReRAM: 4DS Memory,
Panasonic, Sony, SanDisk,
Fujitsu, Micron

STT-MRAM: Everspin,
Honeywell, IBM, Numem

Flash (SSD): Samsung,
Micron, Intel, SK Hynix

PCM/3D-Xpoint: Micron,
STMicroelectronics, Intel,
SK Hynix

Fig. 1: Overview of existing NVMs with respect to ideal PJA
requirements [17, 27–40]

of non-volatility [17], high endurance [31], and DRAM-
comparable performance [17], as well as high density and
negligible leakage current [32]. Therefore, compared to
the other PJA candidates, STT-MRAM is considered as
one of the most promising technologies for NVB-Buffers
[14, 17, 28–31].

Despite STT-MRAM advantages, it faces three reliability
challenges such as Retention Failure, Write Failure, and Read
Disturbance. Bit errors in a PJA page due to these challenges
lead to data loss in the case of power failure, as there is
no valid copy of the page in the main storage. Moreover,
previous studies mainly aim to enhance performance or
reduce journaling overhead [2, 7, 9, 41]. To our knowledge,
none of the prior studies considers the reliability of STT-
MRAM based NVB-Buffers, while the previous schemes to
overcome STT-MRAM retention failure are either expensive
or not applicable as they increase the probability of read
disturbance or cause performance degradation [44–47].

In this paper, we first investigate existing NVB-Buffer
schemes using several well-known storage workloads to
explore their vulnerability to STT-MRAM error sources. Our
extensive set of experiments on Microsoft Research Cambridge
(MSRC) traces [48] show that PJA pages in NVB-Buffer suf-
fer from long idle time, varying from 34.5 to 100.8 minutes,
which makes them highly vulnerable to retention failure.
Moreover, technology downscaling makes retention failure
more severe [32, 42]. Based on our experiments, retention
failure is the dominant source of PJA failures in recent
technology nodes, as the probability of data loss due to
retention failure is five orders of magnitude higher than
write failure, on average [32, 42]. However, read disturbance
is not a serious challenge in PJA as the PJA pages are
inherently used for data residency (pages are just read in
the case of data recovery due to power failure).

We then propose a novel management scheme for NVB-
Buffers, named, Cold Page Awakening (CoPA) to efficiently
reduce the idle time of PJA pages. CoPA reduces idle inter-
vals using Distant Refreshing, where it overwrites PJA pages
using error-free replicas in DRAM-based buffers. CoPA also
differentiates PJA pages based on their vulnerabilities to
retention failure and prevents recently written pages from
refreshing. To show the effectiveness of Distant Refreshing,
we examine and compare the proposed scheme against the
conventional refreshing. Our experiments show that Distant

Refreshing reduces the failure rate by 89.9%, on average,
compared to conventional refreshing. Conventional refresh-
ing employs read-correct-write approach, which increases
the probability of read disturbance and, consequently, leads
to increase in total failure rate.

CoPA aims at providing different levels of reliability and
can be tuned depending on the application requirements.
Our experimental evaluations based on the physical jour-
naling [5, 6] are performed across twelve storage workloads
from MSRC [48]. CoPA is tuned to guarantee an upper
bound for maximum idle time of PJA pages in such a way
that reduces the maximum idle time of PJA pages by an
average of 53.5× (up to 66.9×) compared to the state-of-the-
art NVB-Buffer management schemes [2, 9, 10]. CoPA results
in three orders of magnitude failure rate reduction, with
negligible performance (an average of 1.1%) and memory
(1.2%) overhead. We also compare CoPA with the conven-
tional periodic flush-enabled scheme, which provides high
reliability at the cost of considerable storage write traffic.
Tuning CoPA in favor of reliability leads to an average of
43% (up to 81.9%) response time reduction.

The main contributions of this paper are as follows:
• This is the first study that investigates the reliability of

STT-MRAM based NVB-Buffers. We examine the state-
of-the-art schemes and show that retention failure is
the main contributor to PJA errors. PJA pages suffer
from long page idle times, which significantly degrades
NVB-Buffer reliability due to high probability of reten-
tion failure.

• We propose a novel NVB-Buffer management scheme
called CoPA, aims at reducing the idle time of PJA
pages to mitigate their vulnerability to retention fail-
ure. It overwrites PJA pages by employing their valid
replica in DRAM while categorizes PJA pages based
on their vulnerability to retention failure and prevents
from overwriting of recently-written pages.

• Our evaluations show that CoPA can be tuned accord-
ing to the application reliability requirements, while
considerably improves performance compared to the
conventional reliable schemes.

• We extensively evaluate CoPA in terms of failure rate
and reliability. The results illustrate that CoPA sig-
nificantly reduces the error rate by three orders of
magnitude with very negligible performance and mem-
ory overhead compared to the state-of-the-art schemes
(1.1% and 1.2% on average, respectively).

2 BACKGROUND

2.1 NVM-Backed Buffer
Buffering I/O requests is one of the conventional solutions
for performance improvement due to reducing storage write
traffic and buffer hits in storage systems [3]. In addition to
performance improvement, in high-performance Solid-State
Drive (SSD)-equipped storage systems, reducing storage
write traffic leads to the lifetime improvement, as Flash-
based SSDs suffer from limited endurance [49–51]. DRAM-
based buffers, however, face with unrecoverable data loss in
case of power failure due to volatile characteristic of DRAM.
To address this challenge, several techniques such as a) pe-
riodically flushing buffered pages to the main storage [2, 5]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

H
m

_
1

M
d

s
_

0

P
ro

j_
3

P
rx

y
_

0

R
s

rc
h

_
0

S
tg

_
1

T
s

_
0

U
s

r_
0

W
d

e
v

_
0

S
rc

2
_

1

P
ro

j_
0

U
s

r_
2N
o

rm
a

li
z
e

d
 S

to
ra

g
e

 T
ra

ff
ic

 0.95

 0.96

 0.97

 0.98

 0.99

 1

H
m

_
1

M
d

s
_

0

P
ro

j_
3

P
rx

y
_

0

R
s

rc
h

_
0

S
tg

_
1

T
s

_
0

U
s

r_
0

W
d

e
v

_
0

S
rc

2
_

1

P
ro

j_
0

U
s

r_
2

N
o

rm
a

li
z
e

d
 H

it
 R

a
ti

o

Workloads

Fig. 2: Hit ratio and storage traffic of NVB-Buffer normalized
to Hyb-Buffer

and b) partial use of the main storage as the journal area
[6–10] are exploited for data recovery in the case of power
failure. Nevertheless, these techniques lead to a considerable
increase in storage write traffic [2].

Taking advantage of NVMs persistency along with
DRAM performance is one of the promising schemes for
designing efficient buffers [1, 2]. NVM-Backed Buffer (NVB-
Buffer) is one of the recent schemes that provides effi-
cient I/O buffers. In this scheme, DRAM-based buffer is
equipped with a relatively small NVM as a Persistent Journal
Area (PJA), which only tracks the dirty data pages of DRAM.
In NVB-Buffers, the NVM pages are only read in the case
of data recovery while in other scenarios, the accesses to
NVM are only writing dirty pages. NVM pages are flushed
whether NVM becomes full or their corresponding pages in
volatile buffer are evicted. Thus, DRAM pages always have
a persistent copy that prevents data loss in case of power
failure.

We analyze the efficiency of NVB-Buffer compared to
the conventional One-tier Hybrid Buffer (Hyb-Buffer) to un-
derstand the impact of adding NVM space to operational
buffer capacity on system performance. In Hyb-Buffers,
DRAM and NVM are managed as a single tier, where the
dirty data pages are redirected to both memories to prevent
data loss in the case of power failure. Also, evicted data
pages from DRAM are admitted to the NVM while NVM
hit leads to migration of the page to the DRAM (if the
page is dirty, NVM still buffers its copy). Fig. 2 shows the
hit ratio and storage traffic of NVB-Buffer normalized to
the Hyb-Buffer. The evaluations are performed based on a
buffer consists of 8GB DRAM and 512MB NVM. Although
both schemes provide the same performance behavior in
workloads with working set smaller than the buffer ca-
pacity, NVB-Buffer significantly reduces storage traffic in
workloads with working set greater than the buffer capacity.
NVB-Buffer alleviates storage traffic by 47.4%, 43.9%, and
49.4% in Stg 1, Src2 1, and Usr 2, respectively. Hyb-Buffer,
however, provides slightly higher hit ratio in the same set of
workloads (up to 1.4%).

The traffic reduction is achieved by providing more
presence time for dirty data pages in the buffer. Inserting the

W
o

rld

L
in

e

Source
Line

Bit Line
(a)

MgO

(b)

Logical 0

MgO

(c)

Logical 1

Parallel Anti-ParallelSense
Amplifier

R
ef

er
en

ce

Reference
Layer

Barrier

Free Layer

Fig. 3: a) STT-MRAM cell structure, b) parallel state, and c)
anti-parallel state [17, 52]

evicted data pages from DRAM to the NVM increases the
number of NVM evictions. If the evicted page from NVM
is dirty, as a DRAM dirty page should have a persistent
copy, the page is written to the main storage and the status
of its corresponding page in DRAM is changed to clean.
Thus, even if the page still resides in the buffer, it is already
flushed to the main storage. We also evaluate the scenario
where NVM tracks dirty pages even after the eviction of
their corresponding copy from DRAM to provide less stor-
age traffic and more chance for buffer hit. The improvement
of this scenario, however, is less than 0.01%, at the best case.

2.2 STT-MRAM Basics
The most promising technology among emerging NVMs is
STT-MRAM, which can be used in NVB-Buffers. An STT-
MRAM cell consists of an access transistor and a Magnetic
Tunnel Junction (MTJ), which is responsible for data storage,
shown in Fig. 3-a. MTJ is made of an insulating layer
(Magnesium Oxide), and two magnetic layers named Free
Layer and Reference Layer. The magnetic field direction of the
reference layer is fixed while the direction of the free layer
can be changed and determine the constructed resistance
value. If the free layer is paralleled with the reference layer
in the case of flowing write current (Iwrite) from the free
layer to the reference layer, MTJ will be in low resistance
state, which is the logical ‘0’ value (Fig. 3-b). An anti-parallel
pattern between the spin directions of the free layer and the
reference layer is due to Iwrite flowing from the reference
layer to the free layer, which results in high MTJ resistance
and logical ‘1’ value (Fig. 3-c) [17, 52].

STT-MRAM provides promising features in terms of en-
durance, performance, power consumption, and scalability.
It is expected that STT-MRAM partly replaces technologies
such as NOR Flash, Static RAM (SRAM), and DRAM, while
it is estimated that standalone Magnetic RAM (MRAM) and
STT-MRAM baseline revenues reach $3.8B in 2029 [53].
However, STT-MRAM is threatened by three types of fail-
ures. To read the stored data in an STT-MRAM cell, a small
current is applied to the free layer to recognize high or low
resistance level. It is probable that this small current leads to
a bit flip in the cell, which is called Read Disturbance. To write
data, a write current is applied to change the magnetic field

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 4

22nm15nm11nm8nm

Write Failure Read Disturbance Retention Failure

1

10-2

10-4

P
ro

b
ab

il
it

y
o

f
C

h
ip

 F
ai

lu
re

Technology Node

Fig. 4: Footprint of each error type on the probability of STT-
MRAM failure [42, 43]

direction of the free layer. Nevertheless, the cell content may
not change during the write pulse, which leads to a Write
Failure. Moreover, stochastic characteristics of STT-MRAM
leads to inadvertent bit flip, as the stored data would be
changed, without applying any current to the MTJ, and
leads to a Retention Failure. To make STT-MRAM a widely
commercialized replacement for conventional technologies
to be used in NVB-Buffers, it is a must to address its
reliability challenges.

3 MOTIVATION

3.1 Reliability Challenges of STT-MRAM Based PJA

Any candidate technology to be used in PJA needs to pro-
vide three features, a) non-volatility: PJA must be capable
of retaining data even in the case of power failure to be used
for data recovery, b) high endurance: due to extreme write
pressure on PJA and its relatively small size (compared to
DRAM), it should be able to endure a high number of writes
without lifetime degradation, and c) DRAM-comparable
write latency: to prevent inconsistency in reading data from
PJA and the buffer (because of large difference between their
write performance), PJA delay should be less or equal to
DRAM buffers.

Among emerging technologies, STT-MRAM is the most
suitable for PJA. PCM, 3D-Xpoint, and Flash neither can
provide PJA endurance nor its performance requirements
[27–30]. Although FeRAM offers high endurance, its write
latency is considerably higher than STT-MRAM [17, 28, 29].
ReRAM is another possible PJA candidate, which provides
promising performance feature. ReRAM-based PJA suffers
from limited lifetime [17, 28, 29, 31]. Therefore, due to STT-
MRAM high endurance and low write latency (compared
to FeRAM, PCM, Flash, and 3D-Xpoint), it is the most
promising PJA candidate. On the other hand, STT-MRAM
provides lower write energy compared to the mentioned
technologies [29]. However, to provide an efficient NVB-
Buffer, the aforementioned reliability challenges of STT-
MRAM should be carefully addressed.

Fig. 4 shows the footprint of each error type on the total
failure rate of a 32MB STT-MRAM cache [42]. The probabil-
ity of write failure is considerably reduced by technology
downsizing, while the probability of read disturbance is in-
creased. Although read disturbance is still a serious concern
in processor cache levels and main memory [44, 55, 56],

Write
A

Write
B

Read
A

Write
C

Read
D

Read
A

Read
E

Read
F

B
F

lu
sh

ed

Application I/O
1 2 3 4 5 6 7 8

Buffer Space
(DRAM)

PJA
(STT-MRAM)

C

F
lu

sh
ed

Dirty Page

Clean Page
Only Valid
Version of

A

Sequence

A

A

A

B

A

B

A

B

A

B A

C

A

C A

C

A

C

A

A

C

A

C

A

C

A

C

A

A

B

B

D

B

D

D

E

D

E

F

Fig. 5: An example of NVB-Buffer access pattern impact on
PJA page idleness

from the PJA perspective, read disturbance is not the main
challenge as PJA is inherently exploited for data residency.
Thus, the stored data in PJA is only read for the sake of data
recovery due to power failure or system crash (once during
its lifetime). By technology node downsizing, however, re-
tention failure becomes the dominant source of STT-MRAM
errors [13, 42, 43, 57] and leads to a significant reduction
in STT-MRAM Mean Time To Failure (MTTF), as shown in
Fig. 4 [32]. Therefore, PJA data pages could only be valid
for a very short time intervals. Increasing the probability of
retention failure is one of the main challenges of employing
STT-MRAM as PJA, since it threatens data retaining, which
is essential for PJA.

3.2 Impact of NVB-Buffer Accesses on PJA Page Idle
Time

To examine the idle time of PJA pages, which is the main
contributor of retention failure rate, a motivational example
of how NVB-Buffer access pattern affecting the PJA page
idleness is provided as shown in Fig. 5. It is assumed that
the buffer and PJA capacity are four and two pages (for the
sake of visibility), respectively, while both use Least Recently
Used (LRU) replacement policy and physical journaling [6] is
employed. 1st and 2nd accesses lead to the insertion of A and
B in the buffer and PJA (as both requests are write-requests).
The 3rd access leads to reading A, which calls to update both
queues. However, A is read from the buffer and the page A
in PJA is not either read or refreshed, so it is still idle in PJA.
At 4th access, C is written, which leads to eviction of B from
PJA. Thus, B is written to the main storage and interpreted
as a clean page.

From the 5th access to the 7th access, the buffer is filled,
A is redirected to the Most Recently Used (MRU) position,
and B is evicted from NVB-Buffer. In the 8th access, F is
inserted into the buffer leading to the eviction of C from
the buffer. As C is a dirty page, it is redirected to the main
storage and its corresponding page is also evicted from PJA.
A is admitted to the NVB-Buffer at the 1st access and then
is read multiple times, which prevents A from redirecting
to the main storage. In the case of system crash or power
failure, the only dirty page that should be recovered is A,
which is exposed to retention failure due to its long idle
time.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 5

This instance demonstrates the access sequences on a
small scale. As it shows, a long idle time can be caused for a
page after a while, during the access sequences. In this case,
long durations should be shortened to decrease the retention
failure rate. Therefore, a reliable NVB-Buffer management
scheme should seriously consider mechanisms to alleviate
the vulnerability of pages such as A.

3.3 Impact of Various Error Types on PJA Failures

We provide an illustration about the contribution of reten-
tion failure in PJA failures compared to other reliability
challenges. We set up an experiment to investigate the
impact of each error type on the failure of PJA pages. NVB-
Buffer consists of 8GB DRAM and 512MB STT-MRAM based
PJA, while employing physical journaling with 4KB page
size.

3.3.1 Formulation
Retention failure depends on the idle intervals and the
probability of its occurrence for a cell is according to (1)
[42]:

Prfcell(t) = 1 − e
−t
e∆ , (1)

where t and ∆ represent idle time and thermal stability
factor, respectively. Suppose that each STT-MRAM page
consists of 512 64-bit word, and each word is protected by
a Single Error Correction-Double Error Detection (SEC-DED)
code. The probability of data loss due to retention failure of
a page for idle time equal to t is according to (2):

Pdl rfpage(t) = 1 − [(1 − Prfcell(t))
k+

k × (1 − Prfcell(t))
k−1 × (Prfcell(t))]

W , (2)

where k is the number of bits in a word and W is the number
of words in a page, which are 64 and 512, respectively.

The probability of data loss of a page for all idle intervals
is according to (3):

Pdl rfall intervals = 1 −
n∏
i=1

(1 − Pdl rfpage(ti)), (3)

where n is the number of intervals while ti represents the
page idle time during interval i.

Write failure is another error type that is likely to happen
in PJA pages. The probability of write failure for an STT-
MRAM cell is according to (4) :

Pwfcell = e
−twrite×2×µβ×p×(Iwrite−ICo)

c+(e×m×(1+p2))×ln(π2×∆/4) , (4)

where twrite represents the width of write pulse, µβ is
Bohr magneton, p is the tunneling spin polarization, and
Iwrite represents write pulse width, while c and m are
Euler constant and magnetic momentum of the free layer,
respectively.

The probability of data loss due to write failure for a
SEC-DED protected page is according to (5):

Pdl wfpage = 1 − [[(1 − Pwfcell)
k+

k × (1 − Pwfcell)
k−1 × (Pwfcell)]

W]N , (5)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

H
m

_
1

M
d

s
_

0

P
ro

j_
3

P
rx

y
_

0

R
s

rc
h

_
0

S
tg

_
1

T
s

_
0

U
s

r_
0

W
d

e
v

_
0

S
rc

2
_

1

P
ro

j_
0

U
s

r_
2

A
v

e
ra

g
e

N
o

rm
a
li
z
e
d

 F
a
il
u

re
 R

a
te

Workloads

Write Failure Retention Failure

Fig. 6: Impact of each STT-MRAM error type on PJA failures

 30

 45

 60

 75

 90

 105

H
m

_
1

M
d

s
_

0

P
ro

j_
3

P
rx

y
_

0

R
s

rc
h

_
0

S
tg

_
1

T
s

_
0

U
s

r_
0

W
d

e
v

_
0

S
rc

2
_

1

P
ro

j_
0

U
s

r_
2

A
v

e
ra

g
eM

a
x

im
u

m
 I

d
le

 T
im

e
 (

M
in

u
te

s
)

Workloads

Fig. 7: Maximum page idle time of PJA

where k is the number of bits in a word, W is the number
of words in a cell, and N represents the number of writes
committed to a page. In NVB-Buffer, since PJA content is just
read once for data recovery upon power failure, the impact
of read disturbance on PJA failure is highly negligible.

3.3.2 PJA Failure Characterization

To investigate the probability of PJA data loss due to each
STT-MRAM error type in recent technology nodes, we as-
sume the probability of an erroneous write is 10−8 for an
STT-MRAM cell [32, 42, 56]. The probability of data loss for
each error type is calculated based on equations (1)-(5). Note
that read disturbance is not a major concern in PJA as it is
only probable in case of data recovery where each PJA page
is read once.

Fig. 6 shows the probability of PJA data loss, normalized
to data loss due to write failure. Retention failure is the
dominant source of failure as its footprint is drastically
higher than write failure (an average of five orders of
magnitude). Besides technology node characteristics, long
and undetermined idle time of PJA pages is one of the
main contributors to the data failure due to retention failure.
Fig. 7 shows the maximum page idle time of PJA pages.
Neglecting page idleness as one of the design parameters
of NVB-Buffer management scheme leads to pages with
maximum idle time for an average of 75 minutes (up to 100.8
minutes), which makes them more vulnerable to retention
failure.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 6

 10

 100

 1000

 10000

 100000

H
m

_
1

M
d

s
_

0

P
ro

j_
3

P
rx

y
_

0

R
s

rc
h

_
0

S
tg

_
1

T
s
_

0

U
s

r_
0

W
d

e
v
_

0

S
rc

2
_

1

P
ro

j_
0

U
s

r_
2

A
v

e
ra

g
e

N
o

rm
a
li
z
e
d

 E
rr

o
r

R
a
te

(a)

Error Rate

No−pdflush Baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

H
m

_
1

M
d

s
_

0

P
ro

j_
3

P
rx

y
_
0

R
s
rc

h
_

0

S
tg

_
1

T
s

_
0

U
s

r_
0

W
d

e
v

_
0

S
rc

2
_

1

P
ro

j_
0

U
s

r_
2

A
v

e
ra

g
e

Workloads

N
o

rm
a
li
z
e
d

 S
to

ra
g

e
 W

ri
te

 T
ra

ff
ic

(b)

Write Traffic

No−pdflush Baseline

Fig. 8: Impact of periodic flushing on a) error rate and b) storage write traffic: No-pdflush (eliminated periodic flush) vs.
Baseline

One of the conventional approaches that can reduce page
idle time in PJA is periodic flush, the same approach as
Linux pdflush function. In this approach, the dirty pages
of NVB-Buffer are flushed to the main storage, based on a
predetermined time period. Using periodic flush, an upper
bound is set for maximum idle time of PJA pages as data
is written to the main storage and PJA data pages can be
discarded. Despite reducing page idle time, employing pe-
riodic flush considerably increases the storage write traffic
[2].

Fig. 8 shows the impact of using (Baseline) and elimi-
nating periodic flush (No-pdflush) on PJA reliability and
storage write traffic. In the baseline, dirty pages of NVB-
Buffer are monitored and the flushing procedure is invoked
every five seconds to flush the pages with 30-seconds idle
time. Enabling periodic flush in the baseline reduces the
failure rate by three orders of magnitude (940×, on average)
compared to No-pdflush by preventing long page idle time
and guaranteeing an upper bound for data pages (depicted
in Fig. 8-a). Nevertheless, employing the baseline signifi-
cantly increases storage write traffic (as shown in Fig. 8-b).
Although using No-pdflush increases the probability of data
loss, it reduces storage write traffic by an average of 66.7%
(up to 93.9% in Rsrch 0), as it provides more chance of re-
accessing for dirty data pages in NVB-Buffer.

Designing an efficient NVB-Buffer needs approaches that
address long idle time of PJA pages with respect to the
storage write traffic. However, none of the prior studies
address the reliability challenges of STT-MRAM based PJA.
Moreover, existing schemes for mitigating retention failure
at circuit- and/or architecture-level are either expensive or
inefficient and optimized for processor cache or main mem-
ory [44, 59]. Based on these observations, we investigate that
there is a need for a system-level scheme to enhance the
reliability of STT-MRAM based NVB-Buffers, which is the
motivation of this work.

4 PROPOSED SCHEME

A commercialized STT-MRAM based NVB-Buffer needs to
reconcile its retention failure challenge. To this end, we
propose a novel NVB-Buffer management scheme named
Cold Page Awakening (CoPA) to reduce the idle time of PJA
pages. Fig. 9 shows the overall structure of CoPA. While
the buffer regularly performs its conventional functions

such as a) admission of read/write requests to NVB-Buffer,
b) handling buffer hits, and c) metadata management, it
also aims at preventing retention failure using NVB-Buffer
characteristics. CoPA employs Distant Refreshing instead of
conventional refreshing [45] mechanism to overcome the
large idle time of PJA pages. Regarding the features of recent
technologies and NVB-Buffer structure, Distant Refreshing
aims at refreshing PJA pages based on their corresponding
replica in buffer space without increasing the probability of
read disturbance.

CoPA controls the refreshing procedure by tracking the
metadata of PJA pages using two queues and a simple 2-
bits counter (bits are indicated as QI and DC in Fig. 9) to
differentiate between recently-written and idle pages. Con-
sequently, CoPA reduces the probability of retention failure
by time-based refreshing of idle pages, without intensifying
the probability of read disturbance. The rest of this section
details Distant Refreshing mechanism and its benefits over
conventional refreshing (Section 4.1), then provides a step-
by-step depiction of page awakening procedure (Section
4.2), and finally presents the flow of CoPA for each request
(Section 4.3).

4.1 Page Awakening Procedure
4.1.1 Refreshing Aggression
NVB-Buffer can provide a valid replica of each PJA page,
which is necessary for Distant Refreshing. However, em-
ploying Distant Refreshing faces several challenges such

Buffer Space
(DRAM)

I/O

HDD

Application

Q1

HDD HDD HDD SSD SSD SSD

PJA
(STT-MRAM)

Q2 QI DC

Refresh

Write Request

Buffer
Hit

M
ai

n

St
o

ra
ge

NVB-Buffer

Storage
Subsystem

Eviction

MetdataQueue
Manager

Buffer
Manager

Read Miss

Fig. 9: Overview of CoPA

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 7

Read Data is
corrupted?

W
ri

te

STT-MRAM
STT-MRAMDRAM

W
ri

te

W
ri

te
W

ri
te

(a) (b)

Yes

Updating no matter data
is corrupted

ECC-based
correction

Increasing the
probability of read

disturbance

No

1

2

3

Fig. 10: Refresh approaches: a) conventional refreshing, and
b) distant refreshing

as the length of refreshing intervals (Refresh Period) or the
way to select some pages for refreshing. In an aggressive
approach, all PJA pages are refreshed with a short refresh
period. This approach suffers from performance overhead
and higher probability of write failure (because of successive
write operations). Short refresh period along with refreshing
all of PJA pages lead to reading a considerable amount of
data from DRAM and writing them to STT-MRAM. More-
over, re-writing pages every few seconds in the aggressive
refreshing method can increase the total data failure proba-
bility, as it imposes more write failure. Aggressive refreshing
also increases the temperature due to extensively reading
from DRAM and writing to STT-MRAM, which increases
the total probability of failure [32]. Therefore, aggressive
refreshing is not an efficient approach for NVB-Buffers due
to not only its reliability side effects, but also imposing
significant memory overhead.

In a conservative refresh approach, the refresh period
takes longer, while specific pages are refreshed. However,
a long refresh period increases the probability of retention
failure. Moreover, detecting proper pages for refreshing is
another challenge of the conservative approach. A simple

 1

 3

 9

H
m

_
1

M
d

s
_

0

P
ro

j_
3

P
rx

y
_

0

R
s

rc
h

_
0

S
tg

_
1

T
s

_
0

U
s

r_
0

W
d

e
v

_
0

S
rc

2
_

1

P
ro

j_
0

U
s

r_
2

A
v

e
ra

g
e

N
o

rm
a

li
z
e

d
 F

a
il

u
re

 R
a

te

Workloads

Distant Refreshing Conventional Refreshing

 9.85
 9.9

 9.95
 10

Fig. 11: Impact of distant refreshing vs. conventional refresh-
ing on failure rate

way to detect the best candidate is continuously checking
the access time of each PJA page, which imposes memory
overhead. Another solution is to employ detection mech-
anism such as a) reading the page content and detecting
failures by ECC checking, b) comparing the page content
with its corresponding copy in DRAM, or c) prediction
[44, 45]. However, these solutions either cause extra read
operations from PJA or are not accurate. Thus, conservative
refreshing is inefficient due to high memory overhead and
still probable retention failure. The ideal scheme should
balance between these two extreme approaches.

4.1.2 CoPA Queue Management

CoPA a) increases the length of refresh intervals, b) guar-
antees an upper bound for idle time of each page, and
c) prevents the recently-written pages from refreshing to
reduce the overheads. To this end, CoPA takes advantage
of two queues, named Q1 and Q2, and interprets them as
Sleepy Queue and Awake Queue to differentiate and manage
idle and recent pages. Sleepy queue tracks pages with high
idle times while Awake queue tracks the metadata of pages
with low idle times. CoPA also uses a 2-bit counter called
State Counter to manage both queues, as shown in Fig. 12.
State Counter is employed for differentiating and managing
Q1 and Q2.

CoPA divides each refresh period into two time-steps
where at the end of each time-step, the value of the
State Counter is increased by one. The Most Significant Bit
(MSB) and Least Significant Bit (LSB) of the State Counter
are recognized as QI (Queue Identifier) and DC (Drowsi-
ness Categorizer). Fig. 12 shows how CoPA manages these
queues, based on the value of State Counter. QI is responsi-
ble for identifying the Sleepy and Awake queues. When QI
is ‘0’, Q1 is recognized as the Sleepy queue, otherwise, Q2 is
interpreted as the Sleepy queue. DC manages the insertion
of each page metadata. If DC is ‘0’, the metadata of incoming
page is inserted into the Sleepy queue. On the other hand,
the metadata of incoming page is inserted into the Awake
queue. The refresh operation is performed at the end of
the refresh period (after two time-steps), which leads to QI
transition (from ‘0’ to ‘1’ or from ‘1’ to ‘0’) and refreshing PJA
pages based on the Sleepy queue. Thus, CoPA gets rid of
the high overhead of tracking and checking the idle time of
each page by employing a simple State Counter. Moreover,
using DC, CoPA is able to prevent refreshing of recently
written pages and using QI, CoPA just changes the label of
its queues (Q1 and Q2), instead of copying their contents.

Fig. 12 shows an example of how CoPA manages the
refreshing procedure. It is assumed that the initial value of
the State Counter is 0. In the first time-step, DC is ‘0’ so
A and B as incoming requests are inserted into the Sleepy
queue. As QI is ‘0’, Q1 and Q2 are interpreted as the Sleepy
and Awake queues, respectively. At the end of each time-
step, the value of State Counter is increased by one. In the
second time-step, as DC is ‘1’, the metadata of requests
are redirected to the Awake queue. Since QI value is not
changed, Q1 and Q2 are still the Sleepy and Awake queues,
respectively. The metadata of C is inserted into Q2 and for B,
the old version in Q1 is invalidated and then the metadata
of B is inserted into Q2.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 8

Write Requests
Over Time A B C B

0 0State_Counter

A

B

A C

B

0 1

Sleepy
Queue

Awake
Queue

Sleepy
Queue

Awake
Queue

Q1

A C

B

1 0

Sleepy
Queue

Awake
Queue

Q
u

eu
e

Id
en

ti
fi

er

D
ro

w
sin

ess C
atego

rizer

Refresh Period = 2Ttime-step

D

D

A C

B

1 1

Sleepy
Queue

Awake
Queue

D

E

EAddress

Refreshing Refreshing
Time Step = Ttime-step

Tidleness < 3Ttime-step - ε

Q2 Q1 Q2Q2Q2Q2Q1

Sleepy

Awake

Fig. 12: Queue management in CoPA

 0.75

 0.8

 0.85

 0.9

 0.95

 1

H
m

_
1

M
d

s
_
0

P
ro

j_
3

P
rx

y
_
0

R
s
rc

h
_
0

S
tg

_
1

T
s
_
0

U
s
r_

0

W
d

e
v
_
0

S
rc

2
_
1

P
ro

j_
0

U
s
r_

2

A
v
e
ra

g
e

N
o

rm
a
li
z
e
d

 R
e
fr

e
s
h

e
d

 P
a
g

e
s

Workloads

Conv_Scheme CoPA

Fig. 13: Number of refreshed pages

At the end of the second time-step, the refresh procedure
is performed based on entries of the Sleepy queue, which is
Q1. Thus, the corresponding page of A in PJA is refreshed.
By increasing State Counter value, the QI value is changed
from ‘0’ to ‘1’. Hence, the labels of Q1 and Q2 are inter-
changed, i.e., Q1 becomes Awake queue and Q2 is now the
Sleepy queue. As DC is ‘0’, the metadata of D is inserted
into the Sleepy queue (Q2). At the fourth time-step, based
on DC value (‘1’), E’s metadata is inserted into the Awake
queue (Q1). At the end of the fourth time-step, the refreshing
of C, B, and D is performed as their addresses reside in the
Sleepy queue (Q2). At the worst case, each page is refreshed
after three time-steps. Therefore, if a page is not re-written
by the application, the maximum idle time of each page is
according to (6):

Ttime−step + ε < Tidleness < 3Ttime−step − ε, (6)

where Ttimestep is the time-step period (the half of each
refresh period), Tidleness is the page idleness time, and ε is
the minimum time unit.

We evaluate CoPA to compare with aggressive refresh-
ing (Conv Scheme) as a conventional scheme that aims
to refresh PJA pages by a predetermined period equal to
60 seconds. Fig. 13 shows the number of refreshed pages
normalized to Conv Scheme. CoPA reduces the number of
refreshed pages up to 19.5% compared to Conv Scheme,
as it prevents the refreshing of recently written pages. By
reducing the refreshing period of Conv Scheme, the gap
between CoPA and Conv Scheme is increased.

Algorithm 1 Procedure of Page Awakening
State Counter: 2-bits
Q1, Q2: CoPA Queues
Def. QI: MSB of State Counter //Queue Identifier
Def. DC: LSB of State Counter //Drowsiness Categorizer
Def. Q1 is Sleepy Queue & Q2 is Awake Queue if QI == 0
Def. Q2 is Sleepy Queue & Q1 is Awake Queue if QI == 1
Initial State Counter=0,

Procedure PJA Refreshing
begin

if DC = 1 then
// Refreshing Operation
Refresh PJA Pages, Based on Sleepy Queue

end
State Counter = State Counter + 1

end

Procedure Req Management()
begin

for Each new request P do
Insert P in NVB Buffer
if P is write request then

Invalid P.adrr If It Was Existed in Q1 or Q2
if DC = 0 then

//Sleepy Queue insertion
Insert P.addr in Sleepy Queue

else
//Awake Queue Insertion
Insert P.addr P in Awake Queue

end
end
if Dirty page E is evicted from NVB-Buffer then

Invalid E.adrr If It Was Existed in Q1 or Q2
end

end
end

4.2 Putting It All Together

Algorithm 1 shows the flow of CoPA scheme. CoPA mainly
consists of two procedures: 1) Req Man- agement and 2)
PJA Refreshing. State Counter is a 2-bit counter, which
is used to distinguish between the Sleepy queue and Awake
queue, based on its MSB (QI) and LSB (DC) values. Each
entry of these queues consists of the page address of the
inserted page.

PJA Refreshing is invoked based on the time-steps

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 9

by a timer interrupt. Based on the value of DC, CoPA aims
to refresh PJA pages. In PJA Refreshing, the current
value of DC is checked to determine that which queue is
responsible for tracking incoming requests, and if it is ‘1’,
it means that the recent write requests are inserted into the
Awake queue and now it is the time for QI transition. Hence,
CoPA refreshes PJA pages based on the addresses of the
Sleepy queue. Every time PJA Refreshing is invoked, the
value of State Counter is increased by one, which specifies
the state of CoPA queues for the next time-step.

CoPA also updates its queues by the incoming new write
requests. If the page already exists in either of the CoPA
queues, the corresponding page is invalidated. Based on the
value of QI and DC, CoPA inserts the metadata of this page
into the proper queue (into the Sleepy queue if DC is ’0’ and
into the Awake queue, otherwise). Moreover, if a dirty page
is evicted from NVB-Buffer, CoPA invalidates its metadata
in CoPA queues.

5 EVALUATION

5.1 Evaluation Flow

To evaluate CoPA, we take advantage of our in-house buffer
cache simulator, which is developed based on Linux kernel
4.4 and EXT2 filesystem, validated using Flexible I/O (fio)
[60], Filebench [61] and Postmark [62] over different types
of workloads. As shown in Fig. 14, there is a negligible
difference (up to 2.3%) between the simulator and Linux
hit ratio under different patterns of accesses (random or
sequential) and various distributions (e.g., zipf 0.9 and zipf
1.3), which is due to the difference between employed LRU
and the semi-LRU used by Linux. We extend the simulator
for: 1) analyzing timing parameters of the application block
requests and 2) investigating the impact of each scheme
on the response time. The simulator is also equipped with
DRAMSim2 [64], configured for simulating two DDR3 mod-
ules based on DRAM and STT-MRAM characteristics for
the buffer and PJA, respectively [63]. We post-process the
simulator outputs based on (1)-(5) to evaluate each scheme
in term of retention failure probability.

Our evaluations are performed on twelve workloads
from Microsoft Research Cambridge (MSRC) traces [48], based
on an NVB-Buffer consists of 8GB DRAM as buffer space,
512MB STT-MRAM as PJA, and the page size of 4KB. Each
of these pages are consisted of 512 64-bit datawords, each

 0

 10

 20

 30

 40

 50

 60

 70

 80

Z
ip

f
0

.9

Z
ip

f
1

.3

Z
ip

f
0

.9

Z
ip

f
1

.3

S
e

q
u

e
n

ti
a

l

S
e

q
u

e
n

ti
a

l

P
o

s
tm

a
rk

F
il

e
s

e
rv

e
r

M
a

n
g

o

S
tr

e
a

m
re

a
d

Random Read

Random Write

Read&Write

Read

20KB Blocks

H
it

 R
a

ti
o

 (
%

)

Workloads

Linux Simulator

Fig. 14: Accuracy of the buffer cache simulator used for
evaluations

of which is protected by SEC-DED(64,72) code. CoPA is
compared with the the state-of-the-art approaches [2, 9, 10],
where the periodic flushing is eliminated, referred to as No-
pdflush (the physical journaling is considered as the journal-
ing mechanism). To provide an overview of CoPA efficiency
in term of performance, we also compare CoPA with a
conventional reliable scheme as a Baseline. The Baseline uses
periodic flush based on 5-seconds intervals, where pages
with 30 seconds idle time are flushed to the main storage
and discarded from PJA, which is the default configuration
in operating systems such as Linux [2]. Thus, this scheme
reduces the probability of retention failures by providing
a small idle time for PJA pages, but imposes significant
storage write traffic compared to No-pdflush (as shown in
Section 3.3.2).

5.2 Failure Rate Analysis
To investigate CoPA in term of reliability, we evaluate it
based on different refresh periods and set the time-steps
equal to 30 seconds (CoPA-T30), 90 seconds (CoPA-T90), 150
seconds (CoPA-T150), and 300 seconds (CoPA-T300). Fig. 15
shows the failure rate of CoPA and No-pdflush normalized
to CoPA-T30. On average, CoPA reduces the probability
of failure by three orders of magnitude compared to No-
pdflush.

CoPA provides a significant idle time reduction for PJA
pages (up to 66.9×) by guaranteeing to refresh each PJA
page at least every three time-steps, as shown in Fig. 16.
It also provides a predictable PJA idle time to fill the gap
between No-pdflush and the baseline approach in term of
reliability, as there is no upper bound for PJA page idle time
in No-pdflush scheme. There is a considerable difference
between the maximum page idle time of different workloads
(more than 66 minutes) in No-pdflush, while this value in
CoPA differs in few seconds. Therefore, CoPA alleviates the
variation of page idleness compared to the schemes that
have eliminated periodic flush, and accordingly, provides
a reliable scheme without increasing main storage traffic.
CoPA can be tuned to provide the same reliability as the
Baseline. However, in this case, the trade-off between the
number of refreshed pages and failure rate period should
be considered, as lower refreshing period leads to higher
number of refresh operations.

5.3 Response Time
One of the key aspects of an efficient NVB-Buffer manage-
ment scheme is its impact on the response time of storage
subsystem. Although the baseline considerably reduces the
probability of retention failure, it significantly increases stor-
age write traffic compared to No-pdflush. However, CoPA
not only significantly reduces the probability of retention
failures compared to No-pdflush, but also avoids the base-
line high storage write traffic. CoPA, as well as improving
reliability compared to No-pdflush, aims at preventing the
baseline poor write traffic.

Fig. 17 shows the response time of each scheme nor-
malized to No-pdflush. The time-step of CoPA is set to 30
seconds, which brings the highest response time (due to
higher refreshing operations). CoPA increases response time
by an average of 1.1% compared to No pdflush (up to 4.2%),

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 10

10
1

10
2

10
3

10
4

10
5

10
6

H
m

_
1

M
d

s
_
0

P
ro

j_
3

P
rx

y
_
0

R
s
rc

h
_
0

S
tg

_
1

T
s
_
0

U
s
r_

0

W
d

e
v
_
0

S
rc

2
_
1

P
ro

j_
0

U
s
r_

2

A
v
e
ra

g
e

N
o

rm
a

li
z
e

d
 F

a
il

u
re

 R
a

te

Workloads

No−pdflush CoPA−T300 CoPA−T150 CoPA−T90 CoPA−T30

Fig. 15: Failure rate of CoPA (with different time-steps) compared to No-pdflush

 0

 15

 30

 45

 60

 75

 90

 105

H
m

_
1

M
d

s
_

0

P
ro

j_
3

P
rx

y
_

0

R
s

rc
h

_
0

S
tg

_
1

T
s

_
0

U
s

r_
0

W
d

e
v

_
0

S
rc

2
_

1

P
ro

j_
0

U
s

r_
2

C
o

P
A

−
T

3
0

 =
 1

.4
5

B
a

s
e

li
n

e
 =

 0
.5

M
a

x
im

u
m

 I
d

le
 T

im
e

 (
M

in
u

te
s

)

Workloads

No−pdflush CoPA−T300 CoPA−T150 CoPA−T90 CoPA−T30 Baseline

Fig. 16: Maximum idle time of CoPA compared to No-pdflush. Maximum idle time values: No-pdflush (100.77 minutes),
CoPA-T300 (14.95 minutes), CoPA-T150 (7.47 minutes), CoPA-T90 (4.5 minutes), and CoPA-T30 (1.5 minutes).

 0.9

 1

 1.1

 1.2

 1.3

H
m

_
1

M
d

s
_

0

P
ro

j_
3

P
rx

y
_

0

R
s

rc
h

_
0

S
tg

_
1

T
s

_
0

U
s

r_
0

W
d

e
v

_
0

S
rc

2
_

1

P
ro

j_
0

U
s

r_
2

A
v

e
ra

g
e

2.18 5.75 2.15 2.42 1.79

N
o

rm
a
li
z
e
d

 R
e
s
p

o
n

s
e
 T

im
e

Workloads

No_pdflush CoPA Baseline

Fig. 17: Normalized response time of No pdflush, CoPA, and baseline

which is due to extra read and write operations on PJA and
buffer. On the other hand, CoPA significantly reduces the
response time compared to the Baseline. The reliability im-
provement provided by the Baseline is achieved by enabling
periodic flushing, which leads to a considerable increase
in storage write traffic. CoPA, however, enhances reliability
without imposing extra storage write traffic, therefor it can
offer a reliable NVB-Buffer management scheme with higher
performance compared to the Baseline.

System designers have the opportunity to get the per-
formance behavior of CoPA closer to No-pdflush, by tuning
time-step knob. With proper refresh period, CoPA can pro-
vide response time close to No-pdflush without long idle
time for PJA pages. However, as already discussed, increas-
ing time-step leads to higher failure rate. Nevertheless, it

still can provide an upper bound for PJA pages, and yet
higher reliability compared to No pdflush.

5.4 Overall

6 RELATED WORK & DISCUSSION

Employing NVMs in buffering schemes has already been
addressed in prior studies based on two main approaches: 1)
storage-aware approach [4, 65, 66] and 2) storage-unaware
approach [2, 7, 9, 16, 41, 67–69]. The first approach aims at
improving the lifetime and performance of SSD-based stor-
age systems using different mechanisms such as dirty page
favoring [4] (the mechanism of using policies to prioritize
dirty pages in the buffer), overcoming small write prob-
lem, and reducing garbage collection frequency [51]. These

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 11

schemes, however, increase the idle time of dirty pages in
the NVM, which increase the probability of retention failure.

Schemes in the second approach employ NVMs as
part of the main memory [16, 67, 68] or log/journal area
[2, 7, 9, 41]. As conventional schemes exploit a part of the
main storage (HDD or SSD) as the journal area for crash
recovery, this approach takes advantage of NVM persistency
to reduce storage traffic by committing journaled data to the
NVM. Nevertheless, these schemes are optimized toward
performance improvement by decreasing storage write traf-
fic, which is achieved by increasing the residency time of
dirty pages in the NVM. Therefore, the schemes in the
second approach increase the probability of retention failure
compared to the conventional schemes, in favor of reducing
storage write traffic.

In [70], mwJFS is proposed to address the retention
time of Multi-Level Cell (MLC) PCM-based jouranling file
systems by employing different write pulse widths (and
accordingly retention time). Although expanding the write
pulse in order to increase the retention time is a conven-
tional solution in NVMs, and it is also applicable to STT-
MRAM, it leads to considerable increase in write latency and
power consumption [71]. Moreover, employing the reten-
tion monitoring mechanism of mwJFS for STT-MRAM based
PJAs increases the probability of read disturbance. CoPA,
however, significantly decreases the error rate by reducing
the page idle time compared to these schemes without
increasing read disturbance probability, while providing a
noticeable reduction of storage write traffic compared to the
conventional schemes.

CoPA is also applicable to the main memory buffer cache
layer. To this end, Operating System (OS) needs to assign a
small portion of the main memory to the Awake and Sleepy
queues. For example, for an 8GB main memory and 512MB
PJA, OS should assign 1.2% of the main memory space to
CoPA queues. To employ CoPA for systems with logical
journaling, a portion of DRAM equal to the size of NVM
should be considered to store the required valid copy of
journaled data for Distant Refreshing. Logical journaling
needs much less space since the updates to the data pages
are buffered. Thus, the required DRAM space for Distant
Refreshing compared to the total DRAM space is negligible.

7 CONCLUSION

Employing STT-MRAM as PJA provides the opportunity
for designing efficient NVB-Buffer schemes. The technology
downscaling increases the probability of retention failure in
STT-MRAM, especially in recent technologies where reten-
tion failure becomes the main source of errors. Although
existing NVB-Buffer management schemes provide consid-
erable storage write traffic reduction compared to the con-
ventional schemes, they suffer from long and undetermined
PJA page idle time. The longer the page idle time, the
more the error rate compared to the conventional schemes.
This paper proposed an efficient scheme named CoPA, for
reducing the probability of retention failure. CoPA utilized
an NVB-Buffer-friendly approach named Distant Refreshing,
which re-writes the idle PJA pages based on their replica
in DRAM no matter it is corrupted or not. CoPA monitors
PJA pages using two queues (Awake and Sleepy queues) to

distinguish pages with long idle time. CoPA also guarantees
a tunable upper bound for maximum idle time of PJA
pages. Our evaluations illustrated that CoPA reduces the
probability of failure by three orders of magnitude with
negligible performance overhead.

REFERENCES

[1] Z. Fan, F. Wu, D. Park, J. Diehl, D. Voigt, and D. H.
C. Du, “Hibachi: A Cooperative Hybrid Cache with
NVRAM and DRAM for Storage Arrays,” in Proceedings
of International Symposium on Mass Storage Systems and
Technologies (MSST), May 2017, pp. 1-12.

[2] E. Lee, H. Kang, H. Bahn, and K. G. Shin, “Eliminating
Periodic Flush Overhead of File I/O with Non-Volatile
Buffer Cache,” IEEE Transactions on Computers (TC), vol.
65, no. 4, pp. 1145-1157, April 2016.

[3] R. Salkhordeh, M. Hadizadeh, and H. Asadi, “An Ef-
ficient Hybrid I/O Caching Architecture Using Het-
erogeneous SSDs,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 30, no. 6, pp. 1238-1250,
June 2019.

[4] Z. Fan, D. H. C. Du and D. Voigt, “H-ARC: A Non-
volatile Memory Based Cache Policy for Solid State
Drives,” in Proceedings of Symposium on Mass Storage
Systems and Technologies (MSST), June 2014, pp. 1-11.

[5] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Analysis and Evolution of Journal-
ing File Systems,” in Proceedings of USENIX Annual
Technical Conference (ATC), April 2005, pp. 1-16.

[6] L. Lu, Y. Zhang, T. Do, S. Al-Kiswany, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Physical Dis-
entanglement in a Container-Based File System,” in
Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI), October 2014, pp. 81-
96.

[7] E. Lee, H. Bahn, and S. H. Noh, “A Unified Buffer
Cache Architecture That Subsumes Journaling Func-
tionality via Nonvolatile Memory,” ACM Transactions
on Storage (TOS), vol. 10, no. 1, pp. 1:1-1:17, January
2014.

[8] R. Fang, H. Hsiao, B. He, C. Mohan, and Y. Wang,
“High Performance Database Logging Using Storage
Class Memory,” in Proceedings of International Conference
on Data Engineering (ICDE), April 2011, pp. 1221-1231.

[9] Z. Zhang, L. Ju and Z. Jia, “Unified DRAM and NVM
hybrid buffer cache architecture for reducing journal-
ing overhead,” in Proceedings of Design, Automation &
Test in Europe Conference & Exhibition (DATE), March
2016, pp. 942-947.

[10] X. Zhang, D. Feng, Y. Hua and J. Chen, “A Cost-
Efficient NVM-Based Journaling Scheme for File Sys-
tems,” in Proceedings of IEEE International Conference on
Computer Design (ICCD), November 2017, pp. 57-64.

[11] H. Yan, H. R. Cherian, E. C. Ahn, X. Qian, and L. Duan,
“iCELIA: A Full-Stack Framework for STT-MRAM-
Based Deep Learning Acceleration,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), vol. 31, no. 2,
pp. 408-422, February 2020.

[12] S. Mittal and J. S. Vetter, “A Survey of Software Tech-
niques for Using Non-Volatile Memories for Storage

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 12

and Main Memory Systems,” IEEE Transactions on Par-
allel and Distributed Systems (TPDS), vol. 27, no. 5, pp.
1537-1550, May 2016.

[13] E. Cheshmikhani, H. Farbeh, and H. Asadi, “A System-
Level Framework for Analytical and Empirical Reliabil-
ity Exploration of STT-MRAM Caches,” IEEE Transac-
tions on Reliability (TR), vol. 69, no. 2, pp. 594-610, June
2020.

[14] B. Wu, Y. Cheng, J. Yang, A. Todri-Sanial, and W. Zhao,
“Temperature Impact Analysis and Access Reliability
Enhancement for 1T1MTJ STT-RAM,” IEEE Transactions
on Reliability (TR), vol. 65, no. 4, pp. 1755-1768, Decem-
ber 2016.

[15] Z. Azad, H. Farbeh, A. M. H. Monazzah, and S.
G. Miremadi, “An Efficient Protection Technique for
Last Level STT-RAM Caches in Multi-Core Processors,”
IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 28, no. 6, pp. 1564-1577, June 2017.

[16] R. Salkhordeh, O. Mutlu, and H. Asadi, “An Analytical
Model for Performance and Lifetime Estimation of Hy-
brid DRAM-NVM Main Memories,” IEEE Transactions
on Computers (TC), vol. 68, no. 8, pp. 1114-1130, August
2019.

[17] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and
O. Mutlu, “Evaluating STT-RAM as an energy-efficient
main memory alternative,” in Proceedings of IEEE Inter-
national Symposium on Performance Analysis of Systems
and Software (ISPASS), April 2013, pp. 256-267.

[18] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu,
“ThyNVM: Enabling Software-Transparent Crash Con-
sistency in Persistent Memory Systems,” in Proceed-
ings of International Symposium on Microarchitecture (MI-
CRO), December 2015, pp. 672-685.

[19] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and
T. Anderson, “Strata: A Cross Media File System,” in
Proceedings of Symposium on Operating Systems Principles
(SOSP), October 2017, pp. 460-477.

[20] Y. J. Lin, C.-L. Yang, H. P. Li, and C. Y. M. Wang,
“A Hybrid DRAM/PCM Buffer Cache Architecture for
Smartphones with QoS Consideration,” ACM Transac-
tions on Design Automation of Electronic Systems (TO-
DAES), vol.22, no. 2, pp. 27-49, March 2017.

[21] C. -C. Ho, Y. -M. Chang, Y. -H. Chang, and H. -C. Chen,
and T. -W. Kou, “Write-Aware Memory Management
For Hybrid SLC-MLC PCM Memory Systems,” ACM
SIGAPP Applied Computing Review, vol.17, no. 2,
pp.16-26, February 2017.

[22] S. Song, A. Das, O. Mutlu, and N. Kandasamy,
“Enabling and Exploiting Partition-Level Parallelism
(PALP) in Phase Change Memories,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 18, no. 5s,
pp. 53:1-53:25, October 2019.

[23] H. Yoon, J. Meza, N. Muralimanohar, P. N. Jouppi, and
O. Mutlu, “Efficient Data Mapping and Buffering Tech-
niques for Multilevel Cell Phase-Change Memories,”
ACM Transactions on Architecture and Code Optimization
(TACO), vol. 11, no. 4, pp. 40:1-40:25, January 2015.

[24] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Archi-
tecting Phase Change Memory As a Scalable Dram
Alternative,” in Proceedings of International Symposium
on Computer Architecture (ISCA), June 2009, pp. 2-13.

[25] M. Bazzaz, A. Hoseinghorban, F. Poursafaei, and A.
Ejlali, “High-Performance Predictable NVM-based In-
struction Memory for Real-Time Embedded Systems,”
IEEE Transactions on Emerging Topics in Computing
(TETC), Early Access, July 2018.

[26] R. Salkhordeh and H. Asadi, “An Operating System
level data migration scheme in hybrid DRAM-NVM
memory architecture,” in Proceedings of Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE),
March 2016, pp. 936-941.

[27] Intel, “Intel® Optane™ SSD 905P Series,” [Online].
Available: https://ark.intel.com/content/www/un/e
n/ark/products/147529/intel-optane-ssd-905p-series-
960gb-2-5in-pcie-x4-3d-xpoint.html. Accessed:
05/08/2020.

[28] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao, “Emerg-
ing NVM: A survey on architectural integration and
research challenges,” ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES), vol. 23, no. 2,
pp. 1-32, November 2017.

[29] G. O. Puglia, A. F. Zorzo, C. A. F. De Rose, T. Perez, and
D. Milojicic, “Non-Volatile Memory File Systems: A
Survey,” IEEE Access, vol. 7, pp. 25836-25871, February
2019.

[30] M. Tarihi, H. Asadi, A. Haghdoost, M. Arjomand, and
H. Sarbazi-Azad, “A Hybrid Non-Volatile Cache De-
sign for Solid-State Drives Using Comprehensive I/O
Characterization,” IEEE Transactions on Computers (TC),
vol. 65, no. 6, pp. 1678-1691, June 2016.

[31] J. J. Kan, C. Park, C. Ching, J. Ahn, Y. Xie, M. Pakala,
and S. H. Kang, “A Study on Practically Unlimited En-
durance of STT-MRAM,” IEEE Transactions on Electron
Devices (TED), vol. 64, no. 9, pp. 3639-3646, September
2017.

[32] E. Cheshmikhani, H. Farbeh, S.G. Miremadi, and H.
Asadi, “TA-LRW: A Replacement Policy for Error Rate
Reduction in STT-MRAM Caches”, IEEE Transactions on
Computers (TC), vol. 68, no. 3, pp. 455-470, March 2019.

[33] MRAM-info, “MRAM Companies,” [Online]. Avail-
able: https://www.mram-info.com/companies. Ac-
cessed: 24/02/2021.

[34] RRAM-info, “RRAM Chip Makers,” [Online]. Avail-
able: https://www.rram-info.com/companies/rram-
chip-maker s. Accessed: 24/02/2021.

[35] Cypress, “WM72016-6,” [Online]. Available:
https://www.cypress.com/file/120726/download.
Accessed: 24/02/2021.

[36] Fujitsu, “64K (8K×8) Bit I2C MB85RC64,” [Online].
Available: https://www.fujitsu.com/downloads/ MIC
RO/fme/fram/datasheet-fram-mb85rc64.pdf. Access-
ed: 24/02/2021.

[37] C. Sliwa, “Intel’s 3D XPoint dominance will
face challenge from Micron,” [Online]. Available:
https://searchstorage.techtarget.com/news/252492911
/Intels-3D-XPoint-dominance-will-face-challenge-fro
m-Micron. Accessed: 24/02/2021.

[38] Statista, “ Quarterly market share held by
NAND flash memory manufacturers worldwide
from 2010 to 2020,” [Online]. Available:
https://www.statista.com/statistics/275886/market-
share-held-by-leading-nand-flash-memory-manufactu

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 13

rers-worldwide. Accessed: 20/02/2021.
[39] STMicroelectronics, “STMicroelectronics Now

Sampling Embedded PCM for Automo-
tive Microcontrollers,” [Online]. Available:
https://www.st.com/content/st com/en/about/medi
a-center/press-item.dispfoldersel.html/t4119.html. A-
ccessed: 22/02/2021.

[40] S. Sills, A. Calderoni, N. Ramaswamy, S. Yasuda, and K.
Aratani, “High-density reRAM for storage class mem-
ory,” in Proceedings of Non-Volatile Memory Technology
Symposium (NVMTS), October 2015, pp. 1-4.

[41] S. Chen, T. Chen, Y. Chang, H. Wei, and W. Shih, “A
Partial Page Cache Strategy for NVRAM-Based Storage
Devices,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 39, no. 2,
pp. 373-386, February 2020.

[42] H. Naeimi, C. Augustine, A. Raychowdhury, S. L. Lu,
and J. Tschanz, “STT-MRAM Scaling and Retention
Failure,” Intel Technology Journal (ITJ), vol. 17, no. 1,
2013, pp. 54-75.

[43] N. Sayed, S. M. Nair, R. Bishnoi, and M. B. Tahoori,
“Process variation and temperature aware adaptive
scrubbing for retention failures in STT-MRAM,” in
Proceedings of Asia and South Pacific Design Automation
Conference (ASP-DAC), January 2018, pp. 203-208.

[44] X. Guo, M. N. Bojnordi, Q. Guo, and E. Ipek, “Sanitizer:
Mitigating the Impact of Expensive ECC Checks on
STT-MRAM Based Main Memories,” IEEE Transactions
on Computers (TC), vol. 67, no. 6, pp. 847-860, June 2018.

[45] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi,
and M. R. Stan, “Relaxing Non-Volatility for Fast and
Energy-efficient STT-RAM Caches,” in Proceedings of
IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), February 2011, pp. 50-61.

[46] T. Lee and S. Yoo, “Selective Refresh to Avoid Read Dis-
turb Errors in STT-RAM Main Memory,” in Proceedings
of International SoC Design Conference (ISOCC), October
2016, pp. 315-316.

[47] H. Yan, L. Jiang, L. Duan, W. M. Lin, and E. John,
“FlowPaP and FlowReR: Improving Energy Efficiency
and Performance for STT-MRAM-Based Handheld De-
vices under Read Disturbance,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 16, no. 5s, pp.
132:1-132:20, September 2017.

[48] D. Narayanan, A. Donnelly, and A. Rowstron, “Write
Off-Loading: Practical Power Management for Enter-
prise Storage,” ACM Transactions on Storage (TOS), vol.
4, no. 3, pp. 1-23, November 2008.

[49] S. Ahmadian, O. Mutlu, and H. Asadi, “ECI-Cache:
A High-Endurance and Cost-Efficient I/O Caching
Scheme for Virtualized Platforms,” in Proceedings of the
ACM on Measurement and Analysis of Computing Systems
(SIGMETRICS), June 2018, pp. 1-34.

[50] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read Disturb
Errors in MLC NAND Flash Memory: Characteriza-
tion, Mitigation, and Recovery,” in Proceedings of Inter-
national Conference on Dependable Systems and Networks
(DSN), June. 2015, pp. 438-449.

[51] J. Wan, W. Wu, L. Zhan, Q. Yang, X. Qu, and C.
Xie, “DEFTCache: A Cost-effective and Highly Reliable
SSD Cache for RAID Storage,” in Proceedings of IEEE

International Parallel Distributed Processing Symposium
(IPDPS), May 2017, pp. 102-111.

[52] E. Cheshmikhani, A. M. Hosseini Monazah, H. Farbeh,
and S. G. Miremadi, “Investigating the Effects of Pro-
cess Variations and System Workloads on Reliability of
STT-RAM Caches,” in Proceedings of European Depend-
able Computing Conference (EDCC), September 2016, pp.
120-129.

[53] Businesswire, “Emerging Memories Ramp Up Report,
2019-2029 - Manufacturing Equipment Revenue to Rise
from an Estimated $26M in 2018 to Between $238M to
$1.4B by 2029- ResearchAndMarkets.com,” [Online].
Available: https://www.businesswire.com/news/
home/20200123005593/en/Emerging-Memories-Ram
p-Report-2019-2029—Manufacturing. Accessed:
21/03/2020.

[54] M. Hadizadeh, E. Cheshmikhani, and H. Asadi,
“STAIR: High Reliable STT-MRAM Aware Multi-Level
I/O Cache Architecture by Adaptive ECC Allocation,”
in Proceedings of Design, Automation & Test in Europe
Conference & Exhibition (DATE), March 2020, pp. 1484-
1489.

[55] E. Cheshmikhani, H. Farbeh, and H. Asadi, “ROBIN:
Incremental Oblique Interleaved ECC for Reliability
Improvement in STT-MRAM Caches,” in Proceedings
of Asia and South Pacific Design Automation Conference
(ASP-DAC), January 2019, pp. 1-6.

[56] E. Cheshmikhani, H. Farbeh, and H. Asadi, “Enhancing
Reliability of STT-MRAM Caches by Eliminating Read
Disturbance Accumulation,” in Proceedings of Design,
Automation and Test in Europe Conference (DATE), March
2019, pp. 854-859.

[57] Z. Liu, W. Wen, L. Jiang, Y. Jin, and G. Quan, “A
statistical STT-RAM retention model for fast memory
subsystem designs,” in Proceedings of Asia and South Pa-
cific Design Automation Conference (ASP-DAC), January
2017, pp. 720-725.

[58] E. Aliagha, A. M. H. Monazzah, and H. Farbeh, “RE-
ACT: Read/Write Error Rate Aware Coding Technique
for Emerging STT-MRAM Caches,” IEEE Transactions
on Magnetics (TMAG), vol. 55, no. 5, pp. 1-8, May 2019.

[59] J. Li, P. Ndai, A. Goel, S. Salahuddin, and K. Roy, “De-
sign Paradigm for Robust Spin-Torque Transfer Mag-
netic RAM (STT MRAM) from Circuit/Architecture
Aerspective,” IEEE Transactions on Very Large Scale Inte-
gration (TVLSI) Systems, vol. 18, no. 12, pp. 1710-1723,
December 2010.

[60] J. Axboe, “‘Flexible IO Tester (fio),” [Online]. Available:
https://github.com/axboe/fio. Accessed: 13/12/19.

[61] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A
flexible framework for file system benchmarking,”
USENIX; login, vol. 41, no. 1, pp. 6-12, Spring 2016.

[62] J. Katcher, “Postmark: A New File System Benchmark,”
Technical Report TR3022, Network Appliance, vol. 8,
October 1997.

[63] K. Asifuzzaman, R. S. Verdejo, and P. Radojkovic,
“Enabling a reliable STT-MRAM main memory simu-
lation,” 3rd ACM International Symposium on Memory
Systems (MEMSYS), New York, NY, USA, pp. 283-292,
Oct. 2017.

[64] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAM-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 14

Sim2: A Cycle Accurate Memory System Simulator,”
IEEE Computer Architecture Letters (CAL), vol. 10, no. 1,
pp. 16- 19, March 2011.

[65] D. H. Kang, S. J. Han, Y. C. Kim and Y. I. Eom,
“CLOCK-DNV: A Write Buffer Algorithm for Flash
Storage Devices of Consumer Electronics,” IEEE Trans-
actions on Consumer Electronics (TCE), vol. 63, no. 1, pp.
85-91, February 2017.

[66] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee, “CFLRU: A
Replacement Algorithm for Flash Memory,” in Proceed-
ings of International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), October
2006, pp. 234-241.

[67] A. Chatzistergiou, M. Cintra, and S. D. Viglas,
“REWIND: Recovery Write-Ahead System for In-
Memory Non-Volatile Data-Structures,” in Proceedings
of the VLDB Endowment, vol. 8, no. 5, January 2015.

[68] J. Xu and S. Swanson, “NOVA: A Log-structured File
System for Hybrid Volatile/Non-volatile Main Memo-
ries,” in Proceedings of USENIX Conference on File and
Storage Technologies (FAST), February 2016, pp. 323-338.

[69] Z. Zhang, Z. Shen, Z. Jia, and Z. Shao, “UniBuffer:
Optimizing Journaling Overhead With Unified DRAM
and NVM Hybrid Buffer Cache,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 39, no. 9, pp. 1792-1805, September 2020.

[70] S. Chen, Y. Chang, Y. Chang, and W. Shih, “mwJFS:
A Multiwrite-Mode Journaling File System for MLC
NVRAM Storages,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 9, pp. 2060-
2073, September 2019.

[71] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan,
R. Iyer, and C. R. Das, “Cache Revive: Architecting
Volatile STT-RAM Caches for Enhanced Performance in
CMPs,” in Proceedings of Design Automation Conference
(DAC), June 2012, pp. 243-252.

Mostafa Hadizadeh received the B.Sc. degree
in computer engineering from Shahid Beheshti
University (SBU), Tehran, Iran, in 2016, and the
M.Sc. degree in computer engineering at Sharif
University of Technology (SUT), Tehran, Iran, in
2018. He is a member of Data Storage, Net-
works, and Processing (DSN) Laboratory since
2017. From December 2016 to May 2017, he
was a member of Dependable Systems Labo-
ratory (DSL) at SUT. His research interests in-
clude computer architecture, memory systems,

dependable systems, and systems on chip.

Elham Cheshmikhani received the B.Sc. de-
gree in computer engineering from Iran Uni-
versity of Science and Technology (IUST), the
M.Sc. degree in computer engineering from
Amirkabir University of Technology (Tehran Poly-
technic), Tehran, Iran, in 2011 and 2013, respec-
tively and the PhD degree in computer engineer-
ing from Sharif University of Technology (SUT),
Tehran, Iran in Feb. 2020. She was a member of
the Design and Analysis of Dependable Systems
(DADS) at AUT from 2011 to 2015 and has been

a member of the Dependable Systems Laboratory (DSL) and Data
Storage, Networks & Processing Laboratory (DSN) since 2015 and
2017, respectively. Her research interests include emerging nonvolatile
memory technologies, dependability analysis, fault tolerance, and stor-
age systems. More recently, she received the Best Paper Award at
IEEE/ACM Design, Automation, and Test in Europe (DATE) in 2019.

Maysam Rahmanpour received a B.Sc. de-
gree in computer engineering from Shahid Be-
heshti University (SBU), Tehran, Iran in 2016.
He received an M.Sc. degree in computer en-
gineering from Sharif University of Technology
(SUT), Tehran, Iran. He is a member of the
Data Storage, Networks, and Processing (DSN)
Laboratory since December 2016. His research
interest includes Computer Architecture, Emerg-
ing NVM-Based Architecture, Memory Systems,
and High-Performance Systems.

Onur Mutlu is a Professor of Computer Science
at ETH Zurich. He is also a faculty member at
Carnegie Mellon University, where he previously
held the Strecker Early Career Professorship.
His current broader research interests are in
computer architecture, systems, hardware secu-
rity, and bioinformatics. A variety of techniques
he, along with his group and collaborators, has
invented over the years have influenced industry
and have been employed in commercial micro-
processors and memory/storage systems. He

obtained his PhD and MS in ECE from the University of Texas at Austin
and BS degrees in Computer Engineering and Psychology from the
University of Michigan, Ann Arbor. He started the Computer Architecture
Group at Microsoft Research (2006-2009), and held various product
and research positions at Intel Corporation, Advanced Micro Devices,
VMware, and Google. He received the inaugural IEEE Computer Society
Young Computer Architect Award, the inaugural Intel Early Career Fac-
ulty Award, US National Science Foundation CAREER Award, Carnegie
Mellon University Ladd Research Award, faculty partnership awards
from various companies, and a healthy number of best paper or ”Top
Pick” paper recognitions at various computer systems, architecture, and
hardware security venues. He is an ACM Fellow “for contributions to
computer architecture research, especially in memory systems”, IEEE
Fellow for ”contributions to computer architecture research and prac-
tice”, and an elected member of the Academy of Europe (Academia
Europaea). His computer architecture and digital circuit design course
lectures and materials are freely available on YouTube, and his research
group makes a wide variety of software and hardware artifacts freely
available online. For more information, please see his webpage at
https://people.inf.ethz.ch/omutlu/.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MARCH XXXX 15

Hossein Asadi (M’08, SM’14) received the BSc
and MSc degrees in computer engineering from
the SUT, Tehran, Iran, in 2000 and 2002, respec-
tively, and the PhD degree in computer engineer-
ing from Northeastern University, Boston, MA,
USA, in 2007.

He was with EMC Corporation, Hopkinton,
MA, as a research scientist and senior hardware
engineer, from 2006 to 2009. From 2002 to 2003,
he was a member of the Dependable Systems
Laboratory, SUT, where he researched hardware

verification techniques. From 2001 to 2002, he was a member of the
Sharif Rescue Robots Group. He has been with the Department of
Computer Engineering, SUT, since 2009, where he is currently a full
professor. He is the founder and director of the Data Storage, Networks,
and Processing (DSN) Laboratory and the director of Sharif High-
Performance Computing (HPC) Center. He spent three months in the
summer 2015 as a Visiting Professor at the School of Computer and
Communication Sciences at EPFL. He is also the co-founder of HPDS
corp., designing and fabricating midrange and high-end data storage
systems. He has authored and co-authored more than eighty technical
papers in reputed journals and conference proceedings and holds sev-
eral international patents. His current research interests include data
storage systems and networks, solid-state drives, operating system
support for I/O and memory management, and high-performance, re-
configurable, and dependable computing.

Dr. Asadi was a recipient of the Technical Award for the Best Robot
Design from the International RoboCup Rescue Competition, organized
by AAAI and RoboCup, a recipient of Best Paper Award at the 15th
CSI International Symposium on Computer Architecture & Digital Sys-
tems (CADS), the Distinguished Lecturer Award from SUT in 2010,
the Distinguished Researcher Award and the Distinguished Research
Institute Award from SUT in 2016, the Distinguished Technology Award
from SUT in 2017, and the Distinguished Research Lab Award from
SUT in 2019. He is also recipient of Extraordinary Ability in Science
visa from US Citizenship and Immigration Services in 2008. He has
been ranked among “Top-10” among 500+ faculties by Research and
Technology Deputy, Sharif University of Technology for five consecutive
years from 2016 to 2020. More recently, he received the Best Paper
Award at IEEE/ACM Design, Automation, and Test in Europe (DATE) in
2019. He has served as a guest editor of IEEE Transactions on Comput-
ers, an Associate Editor of Microelectronics Reliability, a Program Co-
Chair of CADS2015, and the Program Chair of CSI National Computer
Conference (CSICC2017). He is a senior member of the IEEE.

	1 Introduction
	2 Background
	2.1 NVM-Backed Buffer
	2.2 STT-MRAM Basics

	3 Motivation
	3.1 Reliability Challenges of STT-MRAM Based PJA
	3.2 Impact of NVB-Buffer Accesses on PJA Page Idle Time
	3.3 Impact of Various Error Types on PJA Failures
	3.3.1 Formulation
	3.3.2 PJA Failure Characterization

	4 Proposed Scheme
	4.1 Page Awakening Procedure
	4.1.1 Refreshing Aggression
	4.1.2 CoPA Queue Management

	4.2 Putting It All Together

	5 Evaluation
	5.1 Evaluation Flow
	5.2 Failure Rate Analysis
	5.3 Response Time
	5.4 Overall

	6 Related Work & Discussion
	7 Conclusion
	Biographies
	Mostafa Hadizadeh
	Elham Cheshmikhani
	Maysam Rahmanpour
	Onur Mutlu
	Hossein Asadi

