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Abstract—The challenge of anomaly detection is to obtain an
accurate understanding of expected behaviour which is intensified
when the data are distributed heterogeneously. Transmitting raw
data to a central site incurs high communication overhead and
raises privacy issues. The concept of Edge AI allows computation
to be performed at the edge site allowing for quick decision
making in mission critical scenarios such as self-driving cars.
A model is learnt locally and its parameters are transmitted
and aggregated. However, existing methods of aggregation do
not account for variance and heterogeneous distribution of data.
They also do not consider edge constraints such as limited compu-
tational, memory and communication capabilities of edge devices.
In this work, a fully Bayesian approach is employed by means of a
Bayesian Random Vector Functional Link AutoEncoder being in-
corporated with Expectation Propagation for distributed training.
Our anomaly detection system operates without any transmission
of raw data, is robust under inhomogeneous network densities
and under uneven and biased data distributions. It allows for
asynchronous updates to converge in a few iterations and is
a relatively simple neural network addressing edge constraints
without compromising on performance as compared to existing
more complex models.

Index Terms—Anomaly detection, Bayesian, Random Vector
Functional Link, Expectation Propagation, Edge Al Single Layer
Feed-Forward Neural Network.

I. INTRODUCTION

Anomaly detection is about finding patterns in data that
do not conform to expected behaviour [1]. The challenge is
to obtain an accurate understanding of expected behaviour.
This is usually done by training a model using non-anomalous
data. In the big data era however, gathering data poses a
challenge because transmitting data through the network incurs
high communication costs. In certain sensitive sectors such as
healthcare, transmitting data also raises privacy concerns [2].
In applications such as smart cities, data are distributed and
training and inference need to be made quickly such as in
self-driving vehicles [3].

The shift in paradigm of pushing computational capabilities
to the edge of the network can redefine anomaly detection
systems, thus lowering communication costs [4], improves
data privacy and avoids single point of failure. Anomaly
detection, which depends on the application, plays a critical
role in many fields such as surveillance and monitoring [5],
Wireless Sensor Networks (WSNs) [6] and industrial IoT
(Internet of Things) [7], [8]. For example, crash detection
in traffic surveillance [9], invalid router updates in network
connections [10], pedestrian detection in self-driving cars [11],
anomalous condition detection in medical electrocardiograms
[1], etc. are all mission critical scenarios which require quick
decision making and tractability. Furthermore, privacy also

matters. In this light, edge computing allows for quick training,
decision making and preserves privacy. But learning locally at
each site on local data are not sufficient to build a robust
detection model especially when the data may vary and deep
learning takes too much time, requires a lot of computation
and the problem becomes intractable.

There have been proposals for distributed anomaly detection
methods [8], [12]-[14] as well as algorithms to train a model
in a distributed manner [15]-[19]. Unfortunately, devices
found at the edge are not able to utilise advanced methods
such as deep learning which are computationally heavy. The
main research question is how can anomaly detection take
into consideration heterogeneously distributed data given edge
constraints? Edge constraints include limited computational,
memory and network or communication capabilities of edge
devices. The shortcomings of existing literature in addressing
this is highlighted in section II. Hence, this work builds
a robust, theoretically sound and relatively simple anomaly
detection system in a distributed manner for edge devices
without transmitting raw data over the network.

For anomaly detection, AutoEncoders (AE) have been ex-
tensively studied and used [20], [21]. However, optimising
a deep neural network AE with distributed methods [18]
has high computational complexities which is challenging in
edge networks. In this work, we explore the Random Vector
Functional Link (RVFL) network, which is simply a single
hidden layer feedforward neural network (SLFN) [22]. Only
one layer of weights need to be trained for RVFL which
provides us with closed form solutions as it will be shown in
section III. This allows us to incorporate a theoretically robust
distributed training scheme which achieves the goal without
the complexities of deep neural networks. In a RVFL, the
weights between the input and the hidden layer are randomly
initialised and fixed, and the hidden layer has a particularly
high number of neurons as compared to the input layer. RVFLs
have been used in many applications such as detecting wind
power ramp [23], forecasting oil prices [24] and classification
in data streams [25]. The simplicity of the RVFL architecture
also allows for particularly rapid training.

Despite the benefits, not many methods have considered
Bayesian approaches in the literature. Bayesian approaches
allow the confidence or uncertainty of a model’s output to be
computed. Though they have more parameters to be trained,
they provide a natural mechanism to cope with insufficient
or poorly distributed data. In the Bayesian approach, the
posterior distribution of the parameters is computed rather
than a point estimate of the parameters. We will show that
this allows for better aggregation as compared to other ad



hoc averaging methods. Scardapane et al. [22] implement
Bayesian RVFL (BRVFL) for regression. In a separate work,
they train a RVFL (non-Bayesian) in a distributed fashion
[26] using two methods, by the averaging consensus method
and by optimizing the global problem in a distributed manner
to perform regression. In contrast, we adopt a full Bayesian
approach by using Expectation Propagation (EP) [17] to train a
BRVFL in a completely distributed manner for auto-encoding.

Much of the work in training a distributed model or a
distributed anomaly detection system claim that they can
perform under non-Independent and Identically Distributed
(IID) data distributions but they are not thoroughly evaluated
in the experiments. We take a step further to evaluate our
method under biased and uneven data partitions.

In this paper, we introduce the Expectation Propagation
Bayesian Random Vector Functional Link AutoEncoder (EP-
BRVFL-AE). The contributions of this work are as follows:

(i) A fully Bayesian approach to build a distributed anomaly
detection model addressing communication constraints
and privacy issues.

(i) An anomaly detection model which is robust under in-
homogeneous network densities and under uneven and
biased data distributions.

(iii)) A relatively simple Neural Network addressing com-
putation and memory constraints without compromising
performance.

To the best of our knowledge, this is the first fully Bayesian-
based distributed anomaly detection system built with BRVFL.
It is also the first to evaluate the method under biased and
uneven partitions of data explicitly. The paper is structured as
follows. Section II presents recent related work. Section III
describes the preliminaries. Section IV formulates the main
algorithm. Section V explains the experiments conducted to
evaluate the system and discusses results, and we conclude in
section VI with a few directions for future work. ' A schematic
overview of the paper is shown in Figure 1 and an abbreviation
list is given in Table I.

Table I: Nomenclatures of terms used in the manuscript

Abbreviation Description
AE AutoEncoders
BRVFL Bayesian Random Vector Functional Link
SLEN Single hidden Layer Feedforward Neural Network
EP Expectation Propagation
FL Federated Learning
VI Variational Inference
11D Idependent and Identically Distributed
ROC Receiver Operating Characteristic
AUC Area under ROC curve
PCA Principal Component Analysis
KNN K-Nearest Neighbours
LOF Local Outlier Factor
GMM Gaussian Mixture Model
OCSVM One Class Support Vector Machine
ADPS Average Degree Per Site
SGD Stochastic Gradient Descent
MCMC Markov Chain Monte Carlo

I'This work does not raise any ethical issues

II. RELATED WORK

The related work for the proposed EP-BRVFL-AE falls into
three categories. Firstly, we will look at current methods of
performing distributed training of neural networks. Secondly,
we shall review methods which perform anomaly detection
in a distributed manner. Lastly, Bayesian methods shall be
reviewed to summarise the motivation behind the proposed
algorithm.

A. Distributed training of models

The literature in this area consists mostly of averaging
methods which have not considered different distributions and
variance of data at each site. These scenarios are claimed but
not accounted for in the evaluations. We explicitly evaluate our
method under biased and uneven data partitions. Furthermore,
these existing methods have high computational complexity,
long training times and are not applicable for Bayesian ap-
proaches.

One well known method is the consensus algorithm [27]
which is used to achieve agreement between sites, for example
in blockchain technology. Neural networks can be trained
using the consensus algorithm with decent results [28]. A
privacy-preserving deep learning framework in IoT using
random projection and differential privacy is presented in [7].
Other methods include a decentralized Average Consensus
method and Alternating Direction Method of Multipliers [26].

Many other methods such as synchronous and asynchronous
stochastic gradient descent (SGD), gradient accumulation,
scatter-reduce-all gather method, binary blocks algorithm, etc.
can also be used for neural network training [18], [29].
Communication patterns can also be optimised by using a
parameter server and peer-to-peer communication patterns
[30] or deep reinforcement learning for resource scheduling
[31]. In the same light, a hierarchical method using max
pooling, average pooling and concatenation of the parameters
is used in [19]. Similarly, data communications is improved for
distributed synchronous SGD by merging gradients of different
layers [32]. As such, the trade off between local gradient de-
scent updates and global aggregation is explored with respect
to resource constraints to optimise communication in [33].
Furthermore, optimising SGD algorithms for communications
only leads to slight a improvement and depending on the
task and data, the gains may easily dissipate with increase
in number of iterations required.

These distributed methods also fall under the term Fed-
erated Learning (FL) [34]. The key challenges of FL are
that the training data are non-IID, unbalanced and massively
distributed and communication is also limited [34], [35]. There
are studies which provide frameworks for FL [36], [37] and
tackle accuracy degradation in models due to imbalances
in distributed training data [38]. A model similarity scheme
to compare models trained on data in different locations
and a protocol to classify data without transmitting model
parameters helps preserve privacy but does not elaborate on
distributed training [39]. Surveys of FL approaches such as
FedAvg, FedProx, Local Gradient Descent and real-world
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Figure 1: Schematic overview of the paper

challenges such as resource constraints, communication cost,
storage and scheduling can be found in [40], [41].

Our method implicitly achieves FL with certain restrictions
such as the use of SLEN to address learning in a resource
constrained environment. Communication is reduced since
convergence is achieved quickly as will be shown in Fig 8a.
Moreover, our approach is also able to perform asynchronous
updates. Unlike most of the existing work, we validate with
an unevenly distributed data in section V-C3. This work is not
a general FL. method but shows that for specific application
such as anomaly detection, FL can be achieved with the right
model design and methodology.

B. Distributed Anomaly Detection

The methods in this area involve ad hoc averaging of
parameters which may not be identifiable, or requires the as-
sumption that the objective function is linearly separable which
is not necessarily true. Furthermore, as noted previously, these
methods do not account for uncertainty or variance during
training and testing. Other methods of aggregation are problem
specific and work simply on one-dimensional variables. Our
fully Bayesian approach does not require the separability
assumption and considers the variance and distribution of the
data at each site. Some of the works also do not evaluate the
scenario where the data are biased and unevenly distributed.

Breaking the global optimisation problem into a distributed
one requires the assumption that the objective function is
linearly separable. The equations of One Class Support Vector
Machine (OCSVM) [12] and the Minimum Volume Elliptical
Principal Component Analysis (MVE-PCA) [14] are reformu-
lated into a decentralised optimisation function. Alternatively,
an ensemble algorithm can be used to optimally weight dif-
ferent Random Forests models trained on heterogeneous data
distributions by minimising uncertainty of predictions [13].
Similarly, Gaussian clusters trained on data from the edge can
be merged at the fog and the cloud levels [8]. In these, only
the summary of the data or parameters necessary for model
training are being transmitted. Another approach to distributed
training involves partitioning the data space. This is done by
Local Outlier Factors (LOF) eliminating certain points from
memory [42].

By analyzing the topology and installing rules to collect
statistics at optimal monitoring positions, forwarding anoma-
lies are detected and located in the network [10]. For a predic-
tion variance anomaly detector, the most vital component is
the covariance matrix. Instead of collecting all data segments
centrally, the matrix is aggregated using compressed difference
sequences and the sample standard deviation at each site for
anomaly detection in WSNs [6].

Weights of Gated Recurrent Units trained at different sites
are averaged based on number of data points for anomaly
detection [43]. FL is used to train a deep Long Short Term
Memory model for anomaly detection with a focus on commu-
nication efficiency through a gradient compression mechanism
[44]. These models are employed only on one dimensional
sequential data. A Multi-task Deep Neural Network is trained
using FL in a supervised manner for anomaly detection and
traffic classification in network data [45]. Furthermore, as men-
tioned previously, training deep learning models at the edge is
challenging computationally and memory-wise. A multi-layer
neural network is evaluated in section V-D. Furthermore, these
recent works do not consider variance in the data or perform
Bayesian averaging which provides more information on the
data as explained in the following subsection.

C. Bayesian approaches for distributed training

Compared to the methods discussed thus far, Bayesian
methods provide a distribution over the parameters of the
model instead of a point estimate. This allows for a richer
representation and the uncertainty of a model’s output to be
computed. It allows variance to be considered when com-
bining or averaging model parameters to achieve a global
model. They are also effective when there is not enough data.
However, it increases the number of parameters within the
model. Hence, using deep learning methods with a myriad
of parameters in a Bayesian way is already a challenge in
the cloud. But with a RVFL, we can reduce the complexity
substantially to allow for efficient training at the edge.

Parallel Markov Chain Monte Carlo (MCMC) is performed
to obtain a “subposterior” in each site using a “fractional” prior
and then combining them [15]. The “fractional” prior may be
too weak to effectively regularize such as when the likelihood



Methods Shortcomings

Average Consensus o . L .
Distributed [26]-128]. [33] Heterogeneously distributed data or variance of data at each site is not considered.
Training Optimising SGD Heterogeneously distributed data or variance of data at each site is not considered,

[18], [19], [29]-[32] intractable computation and high communication and computational complexity.

Reformulation of optimisation | Heterogeneously distributed data or variance of data at each site is not considered
L. function [12], [14], [42] and assumes objective function is linearly separable.

Distributed

Ensemble methods o . .. .
Anomaly (6], [8]. [10]. [13] Heterogeneously distributed data or variance of data at each site is not considered
Detection NPT -

Deep I\I[Zlgr]a_l[élt\lse]tworks Intractable computation and high computational and memory complexity for edge sites.

Bayesian EP and/or MCMC . . . .
Approaches (15]. [17). [46] High computational complexity for edge sites.

Table II: Summary of related work

is not sufficient for a good approximation of the posterior
[17]. Another approach would be to multiplicatively combine
the posteriors of each site and divide the result by K — 1
priors, where K is the number of sites. This however runs into
computational instabilities [17]. Expectation Propagation (EP)
and MCMC is used in [46] but their method achieves slow
convergence and has more variability in the beginning [17].
Xu et al. [47] also use EP and MCMC to perform inference.
Though MCMC guarantees convergence in the limit, it is not
easy to determine the number of steps required [48].

A summary of the related work and the shortcomings is
found in Table II. We summarise our motivation as follows.
Firstly, a Bayesian model provides us with uncertainty es-
timates which improves anomaly detection. Secondly, rapid
training and testing is achieved with a SLFN such as the
RVFL. Having to determine only one layer of weights is
computationally tractable and gives us a closed form solution
for the posterior. Speed and tractability are important aspects
for anomaly detection and remediation, especially at the edge.
Next, AE provides us with reconstruction error for anomaly
scoring. Last but not least, EP can be incorporated to the
Bayesian model to achieve distributed training of the model.
The summary of each of the components and how they
correlate are shown in Fig 2.
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Figure 2: Summary of EP-BRVFL-AE and its components.

III. PRELIMINARIES

We briefly introduce the Bayesian neural net we used at
edge sites, and the Expectation Propagation (EP) algorithm
used to combine information.

A. Bayesian Random Vector Functional Links

Let x € R? be the input vector. The output of a neural
network with one hidden layer is denoted by

B
F(x) = wihi(x) = w'h(x) (1)
=1

where h(-)s are randomly initialised non-linear maps which
project the input to a higher B dimensional space. We use the
classical sigmoid function with weights a € R® and biases
b € R drawn from a uniform distribution in the range [—A, \]
where )\ is a positive real number as shown [22].

1
1 +exp(—(alx + b))
Structuring the above problem as a ridge regression problem

with dataset D = {(x;,y;)|i = 1...n} for y; € R, the optimal
weights w are found by solving

hy(x) 2

% .1 C
w :argmln{2||Hw—y|2—|—2||w||2}. 3)
weRB
In equation (3), H is built by stacking row-wise vectors
h(x;) and C is the regularisation factor. The solution can be
found analytically via the Moore-Penrose inverse:

w* = (H'H + C1)"'H y. 4)

To perform autoencoding, we consider a multidimensional
output instead, replacing y; by y;, where each dimension is
independent. We then obtain a multidimensional regression
problem where the equations are as before but w is now B x d
and is independent along each dimension j = 1,...,d. This
independence formulation is possible as we are only training
one set of weights.

Let X denote the data. P(X|w) denotes the likelihood and
P(w) denotes the prior. The posterior distribution over the
parameters is given by Bayes law:

P(w|X) x P(X|w)P(w). ®)

We use the basic results from [22], [49] for Bayesian ridge
regression. We allow each of the outputs to vary by white noise
with variance o2, resulting in (6) for the likelihood in each
dimension. N (z|a,b) denotes a Gaussian distribution over x
with mean a and variance b. For the prior, we incorporate our
belief that the weights will be close to zero and express it as
a zero-mean multivariate Gaussian with diagonal covariance.



In equation (7), mg = 0 and Sg = v~ 'I for all j and ~ is the
precision parameter.

P(X|Wj,0'2) :N(l'ij|W,]rh(Xi),0'2) (6)
P(w;|mo, Sp) = N(w;|myo, So) (7

The posterior is again Gaussian, with mean m; and covariance
3} given by

_ 1
m; = 2(S;'mg + ;Hij) (8)
1
_ —1 T -1
> = (S, + ;H H) )

If we take o2 to be constant for each j then 3 depends only
on the variation in the data given by H”H. The predictive
distribution is also Gaussian,

P(ijbza 027 7) = N(kj |m?h(i)’ (b(i)Q)
¢(%)* = 0® + h(%)" Th().

(10)
Y

The method above provides us not only with an estimate for
the mean of the weights, but also a variance for the weights
and therefore, a predictive variance for y. Furthermore, the
solution is in closed form. Instead of specifying values for
the hyper-parameters o2 and +, we place a conjugate prior
distribution on them, perform Bayesian inference and obtain
Maximum-A-Posterior (MAP) values from the data.

B. Expectation Propagation

Expectation Propagation (EP) was formally introduced by
Opper and Winthler [50] and generalised by Minka [51]. It
is an iterative message-passing algorithm which minimises
the Kullback-Leibler (KL) divergence of the reverse form
KL[P(w|X)||g(w|0)] [49] between two distributions. From
(5), if there is no closed form solution, Variational Inference
(VD) [49] can be used to estimate the posterior. It is then
projected on to g, a member of the family of exponential
distributions, by matching its moments [49], [52]. There is
no guarantee of convergence but it has been shown to work
well for models with log-concave factors such as the Gaussian
distribution [17]. In the case where the posterior is in the
exponential family, minimizing the divergence conveniently
corresponds to matching the moments [51].

As in FL, if a global model exists, the IID assumption is
invoked with respect to the global model for the data, though
they may be unevenly balanced between sites. This may also
be viewd as performing Bayesian inference site by site taking
the posterior as the new prior in the subsequent iteration. Else,
other alternatives such as learning distinct local models should
be considered [35]. From (5), the likelihood is factored into
partitions, one for each site in the network. These are then
combined iteratively with an approximate prior to produce the
global posterior upon convergence. Let there be k =1,..., K
sites and X, denote the data in the k*" edge site. We omit the
dimension variable, j, to reduce clutter.

K
P(w|X) < [ P(Xklw)P(w)
k=1

12)

is approximated by

K

g(wlr, Q) < ] gx(wirk, Qe)go(wlro, Qo). (13)

k=1

where g(w|r, Q) is a member of the exponential family and

r,Q are the natural parameters. The exponential family of

distributions is closed under multiplication and it translates to

addition of the natural parameters. The EP algorithm is stated
as follows. Firstly, initialise r, Qi = 0 and rg, Qg to a global
prior. This global prior is the natural parameters of the prior

in (7). Then r = rg + Zszl rp and Q = Qo + Zle Q.

E1: At each site, determine the cavity distribution g_g, by
rp=r—r; Q1 =Q— Q.

E2: At each site, approximate the tilted distribution g\, where
g\k(W) o< P(Xy|w)g_r(w), using VI [49] if no closed
form solution is available, and by matching moments.

E3: At each site, compute the change in distribution.

Arp =r1\p =1 —1p and AQr = Q\p — Q- — Qi

E4: At each site, update the distribution with a damping factor
o€ (0, 1}, ri < ri + 0Arg and Qr — Qi + 5AQk

ES: In a central site, update the global parameters, r < r +
S K Arpand Q «— Q+ 030 AQy

Repeat steps E1-E5 until Ar; and AQy are small or when

the tilted distribution at each site is consistent with the

approximate posterior. For further details, we refer readers to

[17]. Assuming each of the weights of the BRVFL-AE follows

a Gaussian distribution as in [22], EP can be used in closed

form to compute the tilted distribution. There is a one-to-one

mapping between the natural parameters and the mean and
covariance of the Gaussian distribution:

r=X"'m Q=x1

(14)

IV. EP-BRVFL-AE

The main method is firstly formulated for the case with
a central site, and then extended to a completely distributed
version. The hyper-parameters are estimated likewise. Sub-
sequently, the measures to perform anomaly detection are
described, and a system diagram is given for implementation.

A. Central Site

The formulation of EP-BRVFL-AE follows naturally from
the methods in Section III. An AE consists of an encoder
network, a latent layer and a decoder network. The encoder
maps the input data into the latent layer and the decoder
reconstructs them. For the RVFL, the encoder network is fixed
and maps the input data into a higher dimension. We do not
implement skip connections from input to output, as when
autoencoding through a SLFN, the model could merely learn
the identity function.

Algorithm 1 presents EP-BRVFL-AE(C) with a central site.
Site parameters, ry,Qy are initialised to zero and global
parameters r and Q are initialised to O and ~I respectively.
The central site holds in memory a copy of the edge sites’
parameters as well, to determine the best & with respect to
all sites. In E2 of each iteration of EP, the prior is the
cavity distribution. It is necessary that |Q_g| > 0. Else, the



Algorithm 1 EP-BRVFL-AE(C)

1: Initialise site and global parameters, ry, Qg, r, Q

2: while Ar,, and AQy, are large do
At each site, k: > Site Operation
3 Update site distribution as in E4 > 24 iter. onw.
: Determine cavity distribution as in E1
5: Compute the tilted distribution with (8) and (9) using
cavity as prior
6: Compute Ary and AQy, as in E3

7: Send Arj and AQy to central

At Central: > Central Operation
8: for k=1,...,K do
9: Initialise Q_x = 0, § = 2Jg.
10: while |Q_%| <0 do
11 0+ 0/2
12: for k=1,...,K do
13: Calculate ry, Qx as in E4
14: end for
15: Calculate r, Q as in E5
16: Calculate cavity parameter Q_j as in E1
17: end while
18: end for

19: Send 4, r, Q to sites
20: end while

Algorithm 2 EP-BRVFL-AE(D) without Central Site

1: Initialise site and global parameters, ry, Qx, r, Q

2: while Ary and AQy are large do
At each site, k: > Site Operation
3: Determine cavity distribution as in E1
4: Compute the tilted distribution with (8) and (9) using
cavity as prior
5: Compute Ary and AQy, as in E3

Broadcast Ary, and AQy
7: Receive Ary and AQy from other sites

8: Initialise Q_x = 0, § = 2.

9: while |Q_;| <0 do > Central Operation
10: § <« 4§/2

11: Calculate ri, Q. as in E4

12: Calculate r, Q as in ES

13: Calculate cavity parameter Q_j as in E1

14: end while

15: end while

update computation at the site begins on the second iteration
(line 3). The computation to aggregate the changes and to
determine § shall be referred to as “Central operation”.

B. Fully Distributed

Algorithm 2 gives a fully distributed version, EP-BRVFL-
AE(D). Each edge site holds a copy of the global parameters
and incorporates new information when it is received. The
central operation will be performed at the edge site. The
updates from each site is broadcast throughout the network.

Figure 3: A network with 5 sites is shown. The left image is
distributed with x = 1 and the right image has a central site.

Firstly, we define a few terms to describe network topology.
Network density ~ is defined in (15). The Average Degree
Per Site (ADPS) in (16) indicates the average number of
neighbours per site. F is the total number of edges in the
network and K is the total number of sites. A fully connected
network has k = 1 while a ring network has k = 2/(K — 1).
The Maximum Number of Hops required for any site to
communicate in the network is denoted as MHs.

2F

"TERE-1 (15)
2F
ADPS = —~ (16)

If a site receives updates Ary and AQy from all other sites,
it will achieve the same result as having a central site. In other
words, EP-BRVFL-AE(C) and EP-BRVFL-AE(D) with k = 1
are equivalent if all other parameters are kept constant. An
example diagram is shown in Fig 3. For networks with kK < 1,
waiting for MHs steps to occur before performing an update
is ideal, but the training can also proceed with updates as they
arrive. In the latter case, an update from an edge site which is
3 hops away will only be incorporated on the third iteration.
The clear advantage of not waiting is that there is no need for
the site to have any knowledge of the network topology. Table
IIT shows an example of a network and how two of the sites
are updated. Since site A is 3 hops away from site E, the first
update from site A will reach site E on the 3rd iteration.

Updates received and incorporated

Tter. | At site C At site E '
2 AT, BI, DI DI, F1 e Q
3 A2, B2, D2, El D2, F2, C1

damping factor § needs to be reduced. When the data are
evenly distributed, the value of ¢ is rarely reduced. As the
BRVFL method performs closed-form updates, the algorithm
generally converges in two or three iterations. Our experiments
also verify both these aspects.

The computation of update, cavity and tilted distribution
(and changes) shall be referred to as “Site operation”. The

D3, F3, C2, BI, Al

4 A3, B3, D3, E2, F1

Table III: Numbers represent iterations and letters represent
sites. C1 is the update that is broadcast from site C after the
first iteration. C2 consists of updates from Al, B1, D1, and
its own data.

Algorithm 2 appears simpler and with less computation
per iteration but it requires more communication to reach



convergence. This reduction in computation is mainly due
to each site being interested only in the § value that works
for itself. Our experiments showed that the first update from
each site is the most important. This is because we are only
transmitting the changes and in the first iteration, the flat initial
prior allows the data to provide the most significant changes.

C. Anomaly measures

After Algorithm 1 reaches convergence, the global parame-
ters r, Q are used as the parameters for the BRVFL-AE in each
site. After Algorithm 2 reaches convergence, each site’s global
parameters would have converged to a similar value. Anomaly
scoring can be performed using one of three measures.

The common scoring method is using the reconstruction
error (RE) for AE. The MAP estimate can be used for the
weights. The predictive variance, ¢(X)? can also be used as
the measure or the confidence score for RE. Areas with
high variance suggest that there is not enough data in the
neighbourhood and thus, the point is more anomalous. A
heuristic, H, being a combination of both measures is also
evaluated in this paper.

d
RE =) |m]h(%) — %, (17)

Jj=1

H = RE x ¢(X) (18)

D. System Implementation

A block diagram for EP-BRVFL-AE(D) at the edge site
is depicted in Fig 4. After convergence, the data used to
train the anomaly detection model can be discarded to save
memory. The method can be adapted to perform online batch
training with new data as well. Furthermore, in the event of
transmission delay, asynchronous updates are also possible.
We will show in section V-C3 that the optimal waiting time
is equivalent to the maximum hop time for any two sites in
the network to communicate their updates, and a delayed site
update included in the next iteration would still converge to
the same anomaly detection model.

Data collection Computation jll Communication
module module ‘ module

‘ Collect data ‘
i el
Compute ' | Send updatesAQy,
‘ Store‘data }—’ postzrior ‘ | Arktopothersitqe}; ‘
| | :
! Wait R e >
' | f A
Discard | +
old data ! Collate Receive updates
| ‘ updates H from other sites ‘

Figure 4: Block Diagram of EP-BRVFL-AE(D) implementa-
tion on edge site.

V. EVALUATION AND DISCUSSION

In this section, we evaluate the algorithm’s effectiveness
with various datasets, analyse its computational, memory and
communication complexity and compare its performance with
a few other methods. In section V-C3, we explicitly split
the dataset into biased and uneven partitions to showcase the
efficacy of Bayesian averaging on our model. Other studies
on distributed training have not evaluated their methods in
this manner.

A. Complexity Analysis

Let c denote the transmission cost of network transmission
per parameter, ¢t denote the number of iterations required to
obtain § and s be the number of EP iterations needed for
convergence. For the completely distributed setting, let e, be
the number of neighbours for site k.

1) Memory: Each site firstly holds n; data points of dimen-
sion d. The parameters r and Q contain Bd and B(B +1)/2
quantities respectively. In EP-BRVFL-AE(C), at each site,
the natural parameters ry, Qi and the changes Ary, AQg
are stored. At the central site, the global parameters r, Q,
parameters of all of the sites and the sum of changes of the
sites are stored. For EP-BRVFL-AE(D), 4(Bd+ B(B+1)/2)
quantities are stored at each site adding the global parameters
and the sum of changes from neighbouring sites. Hence,
memory is dominated by O(B?).

2) Computation: For both algorithms 1 and 2, the cost of
computing H at each site is ng(Bd + 1). At each site, the
update, cavity and change computation involving addition or
subtraction costs Bd + B? each. For the tilted distribution,
computing H'H, H” X, and m and inverting X, cost B?ny,,
Bnyd, B% and B? respectively. If B > n;, then the compu-
tation cost is dominated by O(B?) else, it is dominated by
O (B 2nk).

For EP-BRVFL-AE(C), summing up the updates costs
K(Bd + B?) at the central site. To compute J, an additional
cost of 2K (Bd + B?) for the update and cavity computation
and B3 to obtain the determinant is required. This computation
is repeated ¢ times. For EP-BRVFL-AE(D), summing up the
updates is bounded above by K(Bd + B?), the update and
cavity computation costs 2(Bd + B?) and the determinant
computation costs B3. This is repeated ¢ times until ¢ is de-
termined. In our experiments, if the data are evenly distributed
the initial value of dg = 1 suffices.

3) Communication: The sites transmit the changes in the
natural parameters. In EP-BRVFL-AE(C), the central site
transmits the global natural parameters with the same cost,
c¢K(Bd+B(B+1)/2) to all sites. To transmit ¢, the cost is cK.
In EP-BRVFL-AE(D), the edge sites broadcast the changes
to the network. Depending on «, the communication at each
iteration has an upper bound of ¢cK(Bd+ B(B + 1)/2).

The total cost is total computation and communication at
both edge and central times s. We will show that convergence
is achieved with s = 2 for EP-BRVFL-AE(C) and s =Max
Hops for EP-BRVFL-AE(D). Considering only the dominating
terms, the total computational and communication complexity
is O(s(cKB? + maxy(ngB?, B%))). Amount of data, ny



is under computation and not under communication. With
big data, ny >> B2, this presents significant savings in
communication complexity of the network.

4) Comparison: EP-BRVFL-AE has a lower order of com-
plexity or comparable to other methods. It depends on the
number of data items, ng, linearly, while B is a fixed param-
eter. MVE-PCA is cubic in ny. Table IV gives a summary of
these complexities.

Memory C‘omllnu- Computation
nication
Edge (C) O(B? + nid) | O(cB?) O(B3 + ny B?)
Central (C) O(K B?) O(cKB?) | O(@B?)
Edge (D) O(B? +ngd) | O(cKB?) | O@tB® 4 n;B?)
MVE-PCA [14] O(d? + npd) o(ny)
Ellipsoidal® O(p2p + ny+
Clusi)ering (8] Oprd?) (;ikj*) *

“p and py, is the number of nearest ellipsoidals and number of ellipsoidals
at each site respectively
Table IV: Complexity comparisons: Edge (C) and Edge (D)
denote the edge sites for EP-BRVFL-AE(C) and EP-BRVFL-
AE(D) respectively.

B. Experiments

1) Datasets: We evaluate our method on various datasets.
Firstly, we select the UNSW-NB15 dataset (UNSW) because
it has a hybrid of real modern normal and contemporary
synthesized attack [53]. Secondly, we use the NSL-KDD [54].
We also use other real-world datasets from the UCI machine
learning repository [55]. In the datasets, the class with more
data samples is considered normal class and the others are
combined to form the anomaly class. Four datasets from
different applications are used, namely, Abalone, PageBlocks,
Shuttle and Australian Credit Approval. The datasets are
randomly partitioned to achieve a balanced set for testing. The
balanced set is important for AUC measure (Section V-B3) to
indicate the performance of the model effectively. The details
are found in Table V.

Table V: Datasets Summary

Dataset Application Attri- No. Instances
Domain butes Training (Testing)
(Normal+Anomaly)
UNSW-NB15 Intrusion Detection 42 56000 (37000+45332)
NSLKDD 2009 | Intrusion Detection 41 67340 (9711+12833)
Abalone Biology 8 1880 (94+94)
PageBlocks Text Recognition 10 4353 (560+560)
Shuttle Sensor Monitoring 9 34108 (3022+3022)
o eﬁ;‘:g}‘;‘;m Finance 14 283 (100+100)

Algorithm 3 Preprocessing

for k=1,...,K do

At edges: Send f} to central
end for
At central: f; = 1 S/ | fF
At central: Compute /; and send to edges
At edges: Normalize data using (19)

AN A AT

2) Training: Firstly, before any training can occur, data
from all of the sites need to be normalised appropriately. The
method used by Su et al. [56], given by

1—elifis

Normalization of f;; = T ells
e ‘ilij

19)

is used. In this equation, f;; is the it" observed value of
feature j, e represents the Euler number (e ~ 2.718) and [;
is a constant. Since we want to adapt to normal traffic, the
constant [; is determined such that the average of feature j of
the training data instances is mapped to 0.5. For this purpose,
in EP-BRVFL-AE(C), the mean of each numerical feature, fF
in the data from each site k is transmitted to the central site.
The global mean of each of those features is computed and [;
is determined and sent back to the edge sites for normalisation.

In EP-BRVFL-AE(D), a broadcast of f to all sites is
required. This incurs an additional communication cost of d
and computation cost of Kny. Alternatively, each site can use
its own data to perform normalisation especially if the data
distribution is similar between the sites.

The middle layer of the BRVFL-AE shall be ¢ times the
input layer d, and ¢ = 10 for comparison unless otherwise
mentioned. We implement the algorithm with §, = 1. The
number of edge sites is fixed to 10 for comparison and the
data are randomly partitioned unless specified. The hyper-
parameters are the MAP estimates of the hyper-posteriors
determined by the EP. The initial hyper-prior parameters are
such that the initial estimates are 02 = 0.01 and v = 0.01 as
in [22].

All experiments are implemented using Python 3.8.2 and
run on GNU/Linux x86_64 with an Intel Core 17-7567U CPU
at 3.5 GHz, 16 GB RAM.

3) Evaluation Measures: The methods are evaluated based
on Receiver Operating Characteristic (ROC) curve and Area
Under ROC Curve (AUC). The ROC curve is the plot of
True Positive Rate (TPR) against False Positive Rate (FPR) at
different threshold settings. The AUC is a one-value measure
of the ROC curve quality and it represents the degree of
separability between anomalies and normal traffic. A perfect
model has an AUC value of 1, while a value of 0.5 or less
suggests that the model has no capacity to separate the classes.
The AUC scores are multiplied by 100 for display.

To evaluate convergence, we introduce two other measures.
For the global parameters, relative difference is used to mea-
sure convergence [14]. Let rg and Q¢ denote the global
parameters and || - || denotes the Frobenius norm. For rg,
the relative difference of the mean square error along the
independent dimensions are computed.

1Q — Q¢llr
Ere =i~ ==/ 20
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C. Results and Analysis

1) Performance: Firstly, changes in the hyper-priors do
not yield any significant changes to the AUC score on the
UNSW-NBIS5 dataset. Comparing the different anomaly scor-
ing methodologies on EP-BRVFL-AE(C) in Table VI, the
predictive variance score is the most consistent as the number
of sites increase. RE can be used for further inspection of
f(X) against X to identify the type of anomaly by breaking
it down to individual attributes. Also, it can be seen that H
is dominated by RE. Table VI also shows that our method
works well with hundreds of sites.

UNSW-NB15 Shuttle
No. Sites: 500 100 1 500 100 1
RE 80.88 8991 89.93 | 86.67 94.19 99.74
#(%)? 89.99 89.99 89.98 | 9530 96.64 99.39
H 89.88 8991 89.93 | 86.67 94.19 99.74

Table VI: AUC of different scoring methodologies on EP-
BRVFL-AE(C) for different number of sites on UNSW-NB15
and Shuttle dataset.

Data at UNSW-NBI15 Shuttle Aus Credit

each site: 5 10 5 10 5 10
?(%)? 7245 7588 | 9472  95.09 | 76.04 87.84
H 70.60 74.04 | 95.54 9522 | 7770  87.65

Table VII: AUC of EP-BRVFL-AE(C) with small number of
data points at each of the 10 sites.
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Figure 5: AUC against factor ¢ for EP-BRVFL-AE(C) on the

Shuttle and UNSW-NB15 datasets.
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Fig 5 shows AUC against different multiplicative factors ¢
on the nodes in the hidden layer. In general, the more nodes
in the middle layer, the better results but it comes at a higher
computational cost with a larger B. The results show that a
factor of ( = 5 is sufficient.

Results of experimenting with a small number of data
points in each site are shown in Table VII. The data points
are sampled at random. Though the EP-BRVFL-AE(C) still
performs with few data points, in this case, it is more beneficial
to send the data to a central site as B > nj unless there are
privacy concerns.

The EP-BRVFL-AE(C) is compared with various other
approaches, namely Principal Component Analysis (PCA),

K-Nearest Neighbours (KNN), Local Outlier Factor (LOF),
Gaussian Mixture Model (GMM), Bayesian GMM, One Class
Support Vector Machine (OCSVM), RVFL-AE and AE. Each
of these models are trained locally using data present in each
site as done in [12], [14]. The results over 10 and 50 sites
are reported in Table VIII. The same test set is used across
all sites and the average AUC and its standard deviation is
reported. In the centralised approach, all data are sent to the
central site where the model is trained.

Parameters for these other approaches are determined by
commonly used rules of thumb. For PCA, the number of
principal components (and for the AE the number of nodes
in the hidden layer) is Vd+1 [20]. The number of nearest-
neighbours for KNN and LOF is ,/nj. The GMM is trained
using expectation maximisation [49]. The Bayesian GMM
is trained using equation VI and Dirichlet process weight
concentration [57]. The BRVFL-AE is trained locally and
parameters are not shared using EP. Weights for the RVFL-AE
are determined using (4). For BRVFL-AE and EP-BRVFL-
AE, if the heuristic measure H performs better, it is reported
in brackets; otherwise, the predictive variance measure is
reported. These results are shown in Table VIII.

From Table VIII, the most consistent performing model over
any number of sites is the EP-BRVFL-AE. The difference
between the EP-BRVFL-AE and BRVFL-AE at the central
site is due to the hyper-parameter optimisation. There is
no standard deviation on EP-BRVFL-AE because the global
parameters are shared across all sites. Sharing parameters
using EP also improves the AUC result on the Australian
Credit and Abalone datasets. Ranking the performance, the top
three performing methods are EP-BRVFL-AE (C), BRVFL-
AE and Bayesian GMM, which suggest that the Bayesian
approaches are the best way to go about distributed training.
As for the other methods, there is no clear consistent model.
In some cases the standard deviation increases with number of
sites, which shows that models trained only on local data can
have different results. The Bayesian GMM and GMM show
good overall performance but fail when there is not enough
data at the local site, as can be seen with the Australian Credit
dataset. Furthermore, the number of sites do not affect our
method as the AUC score between 50 and 10 sites remain
close.

To compare to some other distributed methods such as
MVE-PCA [14], do-OCSVM, sparse doOCSVM [12], we
perform EP on the same data sets used in those studies. From
Table IX, the EP-BRVFL-AE(C) performs comparably to other
methods in the literature. From Table IV, our method has lower
complexities.

2) Fully Distributed: We mentioned previously that the EP-
BRVFL-AE(C) gives the same result as EP-BRVFL-AE(D)
when x = 1. Table X gives the results with different number
of sites and x values. The network configurations are imple-
mented at random for the various x values and shown in Fig
6. For each network, the method is run for its Max Hops+2
iterations. The small standard deviation in AUC scores suggest
that global solution at each site is almost similar to having
a central site gathering all updates. This is further affirmed
by the small average relative difference values, E,.;(r) and



Datasets UNSW-NB15 NSLKDD Australian Credit Approval
Local 1 Local 1 Local 1

No. Sites: 50 10 50 10 50 10
EP-BRVFL-AE(C) 89.98 89.98 89.98 96.09 96.09 96.09 85.57 83.67 80.82
BRVFL-AE 8891 £ 1.0 89.81 03 8998 | 96.05 £+ 0.2 96.16 £ 0.1 96.09 |69.3(72.5)£10.4 7344 + 72 79.86
PCA 74.09 + 1.7 7375+ 06 7378 | 9552+ 03 9550+ 0.1 9551 | 72.80 £ 109 7131 £55 7143
KNN 81.45 £ 0.8 8374 +£03 86.12 | 9526 £ 0.2 9492 £ 0.2 94.33 75.15 £ 9.2 81.13 £ 47 8533
LOF 66.16 =34 8132+ 0.8 88.86 | 8520 2.8 8391 £0.8 8730 | 71.98 £ 12.1  79.05 £ 54 81.82
Bayesian GMM 88.77 £2.6 8833 25 8729 | 9559 £04 9547 £04 9525 50.0 £ 0.0 68.30 £ 5.7 82.08
GMM 83.70 £ 2.7 8231 £ 08 8462 | 9545 £ 09 96.17 + 09 96.59 49.99 + 0.1 50.00 £ 0.2  78.02
OCSVM 79.84 £ 1.1 7994 £ 04 7996 | 93.60 + 0.2 93.65 £ 0.1 93.65 7795 + 8.9 8351 £3.7 86.84
RVFL-AE 8786 £ 09 8873 03 89.81 | 9498 £0.2 9521 £0.1 95.75 74.85 £ 9.8 7122 £ 5.6  86.80
AE 81.19 £ 02 8121 +£0.1 8121 | 91.69 £ 0.1 91.68 £ 0.1 91.68 7733 £9.2 8332 £2.6 8507

Datasets Shuttle Abalone PageBlocks

Local 1 Local 1 Local 1

No. Sites: 50 10 50 10 50 10
EP-BRVFL-AE(C) 97.17 98.28 99.39 75.70 75.09 74.50 97.34 97.44 97.56
BRVFL-AE 9539 £05 9575+£05 9726 | 7274 £ 50 7456 £ 19 74.62 96.35 £+ 0.6 97.05 £ 0.3  97.49
PCA 8495 £ 3.6 8391 +34 8314 | 68.12 £ 64 6694 +£28 6573 95.04 £ 1.2 9524 + 0.6 95.34
KNN 9792 £ 06 9734 +0.6 98.05 | 5932 £56 71.11 £3.0 77.98 95.04 £ 0.9 95.78 £ 0.3  96.36
LOF 9834 £ 0.7 9338 £23 9879 | 51.87 £ 6.6 66.64 £29 74.15 96.22 + 1.7 9392 + 1.0 95.06
Bayesian GMM 99.63 £ 0.1 9923 +£ 12 99.70 | 7430 £ 4.5 78.67 £ 1.1 81.84 96.04 + 0.8 9594 + 0.5 96.49
GMM 99.76 £ 0.1 99.86 = 0.0 99.90 | 60.10 £ 83 72.06 &+ 2.7 81.38 92.89 £ 2.5 93.58 £ 2.1  94.19
OCSVM 9651 £ 0.6 9650 £ 02 9649 | 55.02 £43 5552 +£20 5578 96.25 + 0.7 96.51 £ 0.2 96.59
RVFL-AE 9433 £03 9523 +£02 9501 | 6452 4+45 7635+ 1.8 76.69 97.02 + 0.4 97.18 £ 0.2 9538
AE 9153 £02 9153 £0.1 9153 | 3754 £35 3637 £ 1.1 35.88 89.72 £ 15 89.62 £ 0.7 89.54

Table VIII: AUC over various datasets and methods. AUC using # is given in brackets if it performs better than ¢(%)? for
bayesian implementation. The data are randomly distributed. Both mean and standard deviation (mean =+ standard deviation)
are reported for methods where the model is learnt using local data at each site and results are averaged.

Table IX: Comparisons of AUC of different models

Central 20 sites
Datasets MVE | EP-BRVFL | MVE | EP-BRVFL
-PCA -AE(C) -PCA -AE(C)
Abalone 83.28 74.5 82.73 75.35
Shuttle 98.41 99.66 94.68 97.83
Central 10 sites
Aus Credit | 80.77 80.82 73.98 [ 83.67
50 sites
Datasets do Sparse EP-BRVFL
OCSVM | doOCSVM -AE(C)
Abalone 63.41 64.52 75.70
PageBlocks 94.71 95.28 97.38

E,¢;(Q). The results show that the method works irrespective
of k. Similar results are observed on the other datasets.

3) Biased Partitions of Data: In some networks, distri-
bution of data from individual sites may be different. Fur-
thermore, the number of data points could vary widely. We
experiment on the worst-case scenario where data in each site
have different profiles. Using a GMM, we split the data into
10 such that each site contains data from a separate Gaussian
component. Other studies on distributed training have not
evaluated their methods in this manner. We use the UNSW-
NB15 dataset to report the results in Table XI.

Fig 7a shows mean AUC increasing and Fig 7b shows
standard deviation amongst AUC over all sites decreasing as
updates are being received at each iteration. Figs. 7c and 7d
show relative errors decreasing with respect to EP-BRVFL-
AE(C). The results show that at the iteration after the Max
Hops of the network, the solutions converge. This also further
validates that the first update from each site is the most
important. Hence, s in the computational complexity is at most
the Max Hops value. From Table XI and Fig 7, the solutions
for the worst case scenario on the poorest distributed network

for 10 sites of x = 0.222 still converge. This confirms that the
solution will converge for any network configurations.

Furthermore, in our test, EP-BRVFL-AE(C) achieves an
AUC of 89.76 and 89.46 for ¢(X)? and H measures re-
spectively with GMM split. An important observation is that
EP-BRVFL-AE(D) with k = 1 achieves the same result in
Table XI, despite the biased and uneven partition of data.
This implies that updates from each site can still be combined
using EP to build the model. Hence, logically, the model is
robust under transmission delays. The computation at each site
can continue and the update can be included in the following
iteration. We simulate the worst-case scenario where updates
from each site arrive one at a time and the computation for
the global parameters is performed after each arrival. Fig 8a
shows how the global parameters converge to the scenario
where all updates arrive together at the central site. The AUC
score increases as each update from the site is included as
depicted in Fig 8b. Hence, our method allows asynchronous
updates to converge with the varied information received at
each site regardless of network configurations. This is in fact
possible because the model is simple and theoretically robust
with closed form solutions.

The value of § remains close to the initial value of 1 when
the data are evenly distributed. For the case of GMM split, Fig
9 shows the minimum and average § values for Q_j to remain
positive definite at different x values. Most of the time, as ¢
remains unchanged, ¢ = 1 in the computational complexity.

D. Comparison with Multi-Layer Neural Network, Federated
Learning and Datasets with Fewer Anomalies

EP-BRVFL-AE gives a good model for distributed training
and anomaly detection. The SLFN provides a fast, efficient
and simple solution to work at the edge of the network.
One of the essentials it lacks is depth in the neural network.



Network Convergence AUC (Mean =+ Std. Dev.)
Sites K ADPS MHs | E,.(r) E,.(Q) o(%)?2 H

10 0.8 7.2 2 0.078 0.003 89.984+0.00  89.931+0.00
10 0.6 54 3 0.045 0.002 89.994+0.00 89.9340.00
10 0.4 3.6 3 0.061 0.002 89.9940.00  89.934+0.00
10 0.222 1.11 6 0.018 0.001 89.9940.00  89.931+0.00
50 0.8 39.2 2 0.169 0.006 89.984+0.00 89.9240.00
50 0.4 19.6 3 0.123 0.005 89.984+0.00  89.9240.00
50 0.2 9.8 4 0.088 0.003 89.984+0.00  89.98+0.00

Table X: Performance of EP-BRVFL-AE(D) on UNSW-NB15 dataset. Average
values over the sites on the last iteration are reported for E,..;(r) and E,.;(Q)
against the solution for EP-BRVFL-AE(C). Mean and standard deviation of Area

under ROC curves (AUC) using both ¢ (%) and H over the distributed sites are (©) k=04 (d) k = 0.222
reported. . . .
p Figure 6: Networks with 10 sites
Network Convergence AUC (Mean =+ Standard Deviation)
Sites K ADPS Max Hops | E,(r) FE.(Q) o(%)2 H
10 1 9 1 0.0023 0.000 89.76 £ 0.000 89.46 £ 0.000
10 0.8 7.2 2 0.0758 0.0029 89.75 £ 0.162 89.40 £ 0.141
10 0.6 54 3 0.2419 0.0084 89.55 £ 0.200 89.34 £ 0.137
10 0.4 3.6 3 0.2668 0.0091 89.44 + 0.674 89.19 £ 0.604
10 0.222 1.11 6 0.3406 0.0080 89.57 £ 0.616 89.78 £ 0.683

Table XI: Performance of EP-BRVFL-AE(D) on UNSW-NB15 with biased and uneven partitions of data.

AUC for each iteration AUC Standard Deviation for each iteration
90 |
—— k=0.8
5 —+— K=0.6
887 —— k=0.4
4l —— k=0.222
86
8]
&)
E 84 3 34
c
© -]
S 82 - o
= 5]
80
l_
78 - v
. : : : : : : : : o+ - O @ @ @
1 2 3 a4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
EP Iterations EP Iterations
(a) AUC (b) Standard Deviation of AUC
Ere/(r) with respect to EP-BRVFL-AE(C) E/(Q) with respect to EP-BRVFL-AE(C)
k=0.8 101 —— k=0.8
k=0.6 e k=0.6
K=0.4 0s —— k=0.4
K=0.222 4 K=0.222
. 061
= <
g K
- uf
0.4 -
A
- - 0.2 4
+ - 0.0 - e
°o 1 2 3 a4 5 6 7 &8 9 o 1 2 3 4 s 6 1 & 9
EP Iterations EP Iterations
(C) Erel(r) (d) Erel(Q)

Figure 7: EP-BRVFL-AE(D) with 10 sites evaluated at each EP iteration on the UNSW-NB15 dataset with GMM split.
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Figure 8: EP-BRVFL-AE(C) with 10 sites where updates are
combined one by one on UNSW-NB15 with GMM split.

One immediate implication is that with more hidden layers
in the neural network with non-linear activations, Bayesian
inference is no longer analytically tractable. Hence a closed
form solution does not exist. In algorithms 1 and 2, the
computation of the tilted distribution needs to be replaced
by approximation methods such as Variational Inference (VI)
[49] and a Bayesian AutoEncoder (BAE) is compared with
BRVFL-AE. An AE with 3 hidden layers is used. A similar
AE is trained using federated learning [34] for comparison.

The AUC scores of EP-BRVFL-AE(C), EP-BAE(C) and FL-
AE (Federated Learning AutoEncoder [34]) with data at 5 sites
are shown in Table XII. ADVI [58] was used to compute
the tilted distribution for the BAE. The MAP estimate of
the posterior is used as a one value estimate of the weights
and the RE is used as the anomaly measure. The global
solution is used for FL-AE. The results show that a closed
form solution with SLEN performs better than both EP-BAE
and FL-AE for distributed training and that the tractability
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Figure 9: (a) Minimum and (b) Average of § over 10 sites
during each EP iteration

of computations contributes to the performance especially in
distributed training. Multi-layer neural networks also require
immense computational complexity and power requirements.
The training times of EP-BAE, FL-AE and EP-BRVFL-AE
was in order of hours, minutes and seconds respectively. FL-
AE does not have a Bayesian component in comparison to
the others and it took multiple iterations before convergence
was achieved. In comparison, EP-BRVFL-AE converged in
1 iteration as it is in closed form. The aim of this work is
to support all types of edge devices, both smartphones with
GPUs and Machine Learning (ML) accelerators, as well as the
increasing number of devices that are not enhanced with ML
accelerators such as IoT devices and wireless sensors. Hence,
BRVFL-AE is certainly more suitable for edge devices without
ML accelerators for real-time applications.

In anomaly detection, the outlier or anomaly points may
be rare, typically around 1-5% of the overall dataset. Hence,
we evaluate our method with randomly selected anomaly



Model AUC | Training Time Fraud Campaign
EP-BAE (C) with 5 sites 76.54 16.11 hours Methods AUC Avr Prec AUC Avr Prec
FL-AE (C) with 5 sites 85.98 3.32 minutes EP-BRVFL-AE(C) 97.28 87.30 99.80 83.72
EP-BRVFL-AE (C) with 5 sites | 89.93 | 10.76 seconds BRVFL-AE 97.364+0.0 87.64+0.4 | 61.9243.3 3.7240.3
PCA 96.344+0.1  82.574+0.1 | 47.15£1.7 2.5840.1
Table XII: AUC scores and training times on UNSW-NB15 KNN 05.7740.0 8245100 | 50.80402  2.93+0.0
dataset LOF 9576+0.1 8301202 | 64.14X14  3.83102
Bayesian GMM 97.664+0.1  85.014+3.5 | 99.76£0.0 98.91£0.0
Datasets AUC | Average Precision GMM 97.544+0.2  86.16+3.6 | 99.81+0.1 96.8446.3
UNSW-NBI15 99.87 94.40 OCSVM 95.784+0.0  80.1940.1 | 50.584+0.1 2.9440.0
NSLKDD 99.98 99.01 RVFL-AE 97.03£0.1 79.62%47 | 64.80£0.7 4.06£0.1
Australian Credit | 98.28 71.55 AE 93.684+0.0  71.504+0.1 | 48.3640.2 2.7940.0
Shuttle 98.81 91.09
Abalone 96.27 59.52 Table XIV: AUC and Average Precision (Avr Prec) scores of
Pag; Blgcks ggg; zg-gg various methods on the Fraud and Campaign datasets on 5 sites
rau . . . : .
Campaign 99.80 5373 with anomalous points being only 3% of the overall dataset.

Table XIII: AUC and Average Precision scores of EP-BRVFL-
AE(C) with 5 sites on datasets with anomalous points being
only 3% of the overall dataset.

points forming 3% of the overall dataset for testing. We also
evaluate on two other suitable datasets namely Fraud [59]
and Campaign [60]. As anomaly points are rare, the average
precision measure is used to evaluate the results. Average
precision denotes the area under the Precision-Recall curve.
The results are shown in Table XIII. Table XIV compares
the other ensemble methods with the two datasets. Bayesian
GMM and GMM perform well, though with variability, when
there are few anomalies but not as well compared to the
results in Table VIII. EP-BRVFL-AE(C) still performs well
and consistently in many situations.

VI. CONCLUSION AND FUTURE WORK

In this work, we have described a novel EP-BRVFL-AE
for anomaly detection in Edge AI networks. The model is
trained in a distributed manner without having to share raw
data from each site. Only changes in the posterior parameters
of the EP-BRVFL-AE weights are shared. Furthermore, the
use of SLFN and the conjugate prior ensues a closed-form
solution which achieves rapid convergence. The longest wait
time is the number of Max Hops within a network. Moreover,
asynchronous update is also possible.

We evaluated the EP-BRVFL-AE against other methods
in the literature and in the distributed setting with varying
network densities. The detection performance is marginally
better, the computational complexity is greatly reduced and
we have added measures of variances to understand the data
distribution better. We performed worst case scenario analysis
by splitting the data in a biased and uneven manner where
other methods in the literature do not. The algorithm performs
well under all of the mentioned scenarios and it is more
suitable in edge devices with resource constraints and for
applications which require quick decision making.

The key findings of this paper are summarised as follows:

e A SLFN reduces computational complexity, allows for

quick training, inference and feasibility at the edge.

« A BRVFL enables closed-form solutions for tractability

and quick aggregation of model parameters.

« The Bayesian approach accounts for variance in the data

at distributed sites. EP incorporates it during aggregation

and allows a robust model to be built with biased parti-
tions of data and in an asynchronous manner.

« EP allows a robust model to be built under inhomoge-
neous network densities and without a central site.

As future work, different prior assumptions can be explored.
In this paper, we have used one value for o2 and one value
for v obtained through EP. This can be further extended to
using UJQ- for each dimension j and -y; for each weight. The
former will lead to a different covariance matrix X; for each
dimension and the latter is also known as Automatic Relevance
Determination [22], [49]. Instead of assuming a Gaussian
distribution for the likelihood and prior in (6) and (7), other
distributions such as the student’s ¢-distribution can be used.

Anomaly detection encompasses a wide range of applica-
tions. Distributed anomaly detection models could be used
to detect malicious router updates in networking or to detect
new objects in self-driving vehicles. Hence, it involves smart
engineering to design the model for specific applications. In
this aspect, the method can also be further studied with com-
munication protocols in resource constrained environments to
manage events and trust between devices [61] and time taken
to train and detect anomalies can be compared with various
edge devices’ power, OS and RAM.
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