
Communicational and Computational Efficient Federated Domain Adaptation

Kang, Hua; Li, Zhiyang; Zhang, Qian

IEEE Transactions on Parallel and Distributed Systems, v. 33, (12), 1 December 2022,
article number 9757821, p. 3678-3689

Accepted Version

10.1109/TPDS.2022.3167457

IEEE

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,

Communicational and Computational Efficient
Federated Domain Adaptation

Hua Kang, Zhiyang Li and Qian Zhang, Fellow, IEEE

Abstract—The emerging paradigm of Federated Learning enables mobile users to collaboratively train a model without disclosing their
privacy-sensitive data. Nevertheless, data collected from different mobile users may not be independent and identically distributed.
Thus directly applying the trained model to a new mobile user usually leads to performance degradation due to the so-called domain
shift. Unsupervised Domain Adaptation is an effective technique to mitigate domain shift and transfer knowledge from labeled source
domains to the unlabeled target domain. In this paper, we design a Federated Domain Adaptation framework that extends Domain
Adaptation with the constraints of Federated Learning to train a model for the target domain and preserve the data privacy of all the
source and target domains. As mobile devices usually have limited computation and communication capabilities, we design a set of
optimization methods that significantly enhance our framework’s computation and communication efficiency, making it more friendly to
resource-constrained edge devices. Evaluation results on three datasets show that our framework has comparable performance with
the standard centralized training approach, and the optimization methods can reduce the computation and communication overheads
by up to two orders of magnitude.

Index Terms—Federated learning, domain adaptation, communicational efficient

�

1 INTRODUCTION

WITH the proliferation of intelligent devices, data have
multiplied at the network edge and enabled many

applications including health care, smart home, and be-
havior analysis. Deep learning tools capable of handling
complicated data patterns have been widely adopted for
data processing and analysis [1], [2], [3]. Traditional model
training takes a centralized approach where all training data
need to be gathered in a single place. However, due to the
limited network bandwidth as well as privacy concerns, it
is impractical to take such a centralized learning approach.
As a result, data will be stored and processed locally with
the emerging technology of mobile edge computing (MEC).
Recently, Federated Learning (FL) [4] has been proposed to
keep all participants’ data local during the training process.
However, different participants may have data collected
from different distributions and the target participant where
the model to be applied may only have limited unlabeled
data. Therefore, a Transfer Learning technique named Un-
supervised Domain Adaptation (UDA) [5], [6] is typically
used for the training, which can transfer the knowledge
from the labeled source domain to the unlabeled target

This work was supported in part by RGC under Contract CERG 16204418,
Contract 16203719, Contract 16204820, and Contract R8015; and in part by
the Guangdong Natural Science Foundation under Grant 2017A030312008.

• Hua Kang is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong, China.
E-mail: hkangae@cse.ust.hk

• Zhiyang Li was with the Department of Computer Science and Engineer-
ing, Hong Kong University of Science and Technology, Hong Kong, China
and is with ByteDance Inc.
E-mail: lizhiyang.zy@bytedance.com.

• Qian Zhang is with the Department of Computer Science and Engi-
neering, Hong Kong University of Science and Technology, Hong Kong,
China.
E-mail: qianzh@cse.ust.hk

The first two authors contributed equally to this work.

domain. Fig. 1 shows some common scenarios where differ-
ent domain information including different rooms, persons,
devices and so on, have an impact on the corresponding
data distributions. In addition, the collected data are stored
in different places, and these scenarios call for a secure
federated domain adaptation method. However, currently
there is no secure FL framework suitable for UDA. One
possible candidate is the Federated Transfer Learning frame-
work proposed in [7], [8]. Nevertheless, it does not fit the
scenario either. Firstly, it requires some labeled data in the
target domain, but the target domain may have no labeled
data because it is burdensome to require the target user
to label their data. Secondly, its alignment loss definition
is based on co-occurrence pairs between source domain
samples and target domain samples but such a pairing
may not exist. Another approach [9] integrates FL with
adversarial DA. However, the work mainly focuses on the
model architecture design without a detailed discussion of
privacy-preserving methods and communication costs.

In this paper, we propose an FL framework for UDA.
We use Maximum Mean Discrepancy (MMD) [10] loss as
the alignment loss in our framework, which is widely used
in UDA. Moreover, for the necessary information exchange
during training, we use the well-known Homomorphic
Encryption scheme named Paillier [11] to encrypt the in-
formation to prevent indirect data leakage and also make
computation on ciphertext viable. For limited computation
and communication capabilities of edge devices, we propose
two optimization methods to further improve the efficiency.
The model in our framework is composed of two parts:
feature extractor and classifier (or regressor for regression
tasks).

There are three challenges in our framework design:
1) How to compute MMD loss and gradients in a federated set-
ting? MMD loss calculation involves data from both source

(a) Different rooms’ receivers collect WiFi signal
data for tasks like gesture recognition, and the re-
ceived data are influenced by different rooms.

wrist

ankle

chest

(b) Different sensors attached to
different persons collect IMU data
for human activity recognition,
and the collected data are influ-
enced by different persons.

Bookcase from
amazon.com

Bookcase from
webcam

(c) Different cameras capture im-
ages for classification, and the im-
ages are influenced by the en-
vironments where they are col-
lected and the cameras’ quality.

Fig. 1: Common tasks that collect data separately and are influenced by different domain information

and target domains. In a federated setting, data of different
domains are located on different devices, and we need to
guarantee the data privacy of all participants. By analyzing
the structure of MMD loss and dividing it into three parts,
we find that each part has a unique relationship with the
source and target domain data. We design a scheme for
both domains to securely exchange necessary information
and collaboratively compute the MMD loss and gradient
values.
2) How to incorporate the Paillier encryption scheme into MMD
loss and gradient calculation? MMD loss is composed of kernel
functions, typically Radial basis function (RBF) kernels. The
RBF kernel involves the evaluation of the exponential func-
tion, but Paillier only supports ciphertext additions. To cope
with this challenge, we substitute the exponential function
with the first few terms in its Taylor Series, transforming the
RBF kernel into a polynomial. Next, we specify the items to
be encrypted and sent by both domains to compute this
polynomial supported by Paillier.
3) How to minimize the computation and communication over-
heads during model training? It is essential to improve the
efficiency of data located on edge devices with limited
computation and communication capabilities. To this end,
we propose two optimization methods. Firstly, based on
the mathematical characteristic of MMD loss, we conduct
a transformation showing that both domains can calculate
and send less information than the trivial method. Secondly,
by applying the chain rule of derivative to the normal
gradient calculation process, we observe that we only need
to care about the intermediate derivatives, which are far
fewer than the final gradients.

We build a prototype implementation and conduct ex-
periments on three different datasets with data formats
varying from image and WiFi sensing to wearable sensor
data. The results show that our Federated Domain Adap-
tation framework has comparable performance with the
standard centralized training approach. Moreover, further
evaluation shows that our optimization methods can reduce
our framework’s computation and communication over-
heads by up to two orders of magnitude. In addition, the
more complex the model, the more significant the reduction
of computation and communication overheads.

Our contribution can be summarized as follows:
• We design a Federated Domain Adaptation framework

that combines FL with UDA.
• We propose two optimization methods that significantly

reduce the computation and communication overheads

during training.
• We build a prototype implementation and conduct ex-

tensive experiments that show our framework’s effective-
ness.

2 RELATED WORK

2.1 Federated Learning
The concept of Federated Learning (FL) was first proposed
by McMahan et al. [4]. They targeted the Horizontal FL
scenario and proposed a Federated Averaging algorithm
for model training. In each round of the algorithm, each
participant trains the current model for multiple epochs
and sends the updated weights to the central server. The
server computes the weighted average over the uploaded
weights as the new weights. After that, many improvements
or extensions to Horizontal FL have been proposed. Smith
et al. [12] incorporated Multi-Task Learning into FL to solve
the statistical and system challenges faced by Horizontal FL.
The statistical challenge refers to the non-IID distribution
of data of different participants, and the system challenge
refers to the distinct capabilities of different training nodes,
which may result in problems like stragglers. Zhao et
al. [13] focused on the statistical challenges and proposed
to use a globally shared dataset to improve the accuracy.
Briggs et al. [14] also targeted this challenge and proposed
Hierarchical Clustering, which separates participants into
groups according to the similarity of their updates, and
trains an independent model for each group. Chen et al. [15]
combined Meta-Learning with FL and shared a parameter-
ized algorithm among participants rather than a model. In
terms of security, Bonawitz et al. [16] proposed a Secure
Aggregation protocol in which the exact update values
uploaded by each participant are hidden from the central
server. However, the server can still calculate their weighted
average values. As for communication cost optimization in
Horizontal FL, Konecný et al. [17] proposed two methods
namely structured updates and sketched updates to reduce
the communication overhead. Wang et al. [18] proposed a
Communication Mitigation method in which a participant
will not upload its update if its update tendency is different
from that of the global model. Note that these communica-
tion cost optimization methods are tailored for Horizontal
FL and are not applicable to Federated Transfer Learning
frameworks.

Apart from Horizontal FL, Vertical FL and Federated
Transfer Learning are also gradually becoming the research

TABLE 1: List of Symbols

Symbol Description
N Batch size in the pretraining phase
ns Source batch size in the fine-tuning phase
nt Target batch size in the fine-tuning phase
C Number of classes
M Number of monomials of the approximated kernel function
S Number of source domains
L Length of the feature vector
p Ciphertext size of Paillier encryption
vsi Source sample i’s feature vector
vtj Target sample j’s feature vector
yji Ground truth of sample j’s class i

sji Prediction score of sample j’s class i
γ Loss weight of the regularization loss
λ Loss weight of the MMD loss
γ1 Loss weight of source regularization loss in the fine-tuning phase
γ2 Loss weight of target regularization loss in the fine-tuning phase
Θs Parameters of the source model
Θt Parameters of the target model
LC Classification loss
LΘ Regularization loss
LMMD MMD loss

focus. For Vertical FL, Hardy et al. [19] used Entity Resolu-
tion to map the samples with the same identity and build
a linear model from both parties’ data. As for Federated
Transfer Learning, Liu et al. [7] proposed a framework
suitable for semi-supervised transfer learning. Sharma et
al. [8] further incorporated Multi-Party Computation and
Secret Sharing into this framework. Still, basic assumptions,
including the semi-supervised scenario and alignment loss
format, are not changed. This framework can not apply to
UDA due to the reasons mentioned in the introduction.

2.2 MMD Based Domain Adaptation
Ghifary et al. are one of the earliest researchers that propose
to use Maximum Mean Discrepancy (MMD) as alignment
loss for Deep Domain Adaptation (DA) [10]. They showed
that MMD based DA leads to higher accuracy than other
state-of-the-art DA approaches. After that, MMD loss be-
comes widely used in DA. Tzeng et al. [20] proposed a
method to find the best place and size of the adaptation
layer, whose output is regarded as feature vectors and used
to compute MMD loss. Long et al. [21] regarded the last
few layers of the model as adaptation layers and applied
MMD to each of them. They further extended this method
and proposed Joint MMD [22] to minimize the distance
between the joint distribution of these layers. Zhang et
al. [23] applied MMD to both the feature vectors and the
final output scores. Yan et al. [24] pointed out that different
class weights between the source and target domain will
affect the effectiveness of DA and proposed Weighted MMD
to cope with this problem. Rozantsev et al. [25] proposed
to loosen the weight sharing restriction between feature
extractors of the source and target domain and achieved
better performance. We build on top of these works and
integrate FL with MMD based DA.

3 LIST OF SYMBOLS

We list the symbols used in our framework in Table 1.

4 FEDERATED DOMAIN ADAPTATION

In many applications, data collected from the target domain
are typically unlabeled since it is time-consuming and not

Source Domain

Labeled
Data

Feature
Extractor

Feature
Vectors

Classifier Output
Scores

Target Domain

Unlabeled
Data

Feature
Extractor

Feature
Vectors

MMD Loss Classification Loss
Information

Exchange

Fig. 2: A sketch of our federated domain adaptation frame-
work for one source and one target user.

user-friendly to label the data. Therefore, UDA is used to
train the target model with the help of labeled data from
other participants or existing datasets.

To protect the privacy of the data holders, we design
a Federated Domain Adaptation framework that keeps the
data local during the model training process. A sketch of
our framework is shown in Fig. 2. For simplicity, we first
discuss the situation with only one source and one target.
Extension to support multiple participants with labeled
data and one participant with unlabeled data is shown in
Section 4.4. The source domain will train both the feature
extractor and the classifier, whereas the target domain will
only train the feature extractor due to lack of labels. The
feature extractors of the source and target domains adopt
the same architecture, but their weights in our framework
are not the same to have a better performance [25]. There
are two main loss terms during the training procedure:
classification loss and MMD loss. We can easily replace
the classifier with a regressor and the classification loss
with the regression loss for regression tasks. Classification
loss is calculated on the output score of the classifier in
the source domain, and MMD loss is calculated on the
feature vectors of both domains. Optional regularization
terms such as weight decay can also be added to the loss
function. Information needs to be exchanged between the
two domains for loss and gradient calculation during the
training process. When the whole training process finishes,
we concatenate the feature extractor in the target domain
and the classifier in the source domain to get the final model
for the target domain.

Our framework adopts the typical training procedure for
Domain Adaptation, containing a pretraining phase and a
fine-tuning phase. Next, we describe these two phases in
detail in Sections 4.1 and 4.2 respectively. Then in Section
4.3, we introduce two optimization methods to reduce com-
munication and computation costs further. After that, the
framework for one source domain and one target domain
is complete. In Section 4.4, we extend the framework to fit
the multi-source domains and one target domain situation.
Finally, we analyze the communication cost in Section 4.5.

4.1 Pretraining Phase

The source domain pretrains the feature extractor and classi-
fier to prepare for the fine-tuning phase during the pretrain-

ing phase. Before pretraining begins, the source and target
domain must first agree on the detailed model structure
for the feature extractor and the classifier. Then the source
domain starts to train its feature extractor and classifier
using its own data. The loss function during pretraining can
be defined as follows:

Lpretrain = LC + γLΘ, (1)

where LC denotes the classification loss, and LΘ de-
notes an optional regularization term. Typically, Cross En-
tropy loss is used as classification loss. That is, LC =
1
N

∑N
j=1[−

∑C
i=1 y

j
i log(s

j
i)], where N represents batch size,

C represents the number of classes, yji and sji represent the
ground truth and output score for each class of sample j.

When pretraining finishes, the source domain sends the
weights of the feature extractor to the target domain. The
target domain uses it to initialize its own feature extractor.

4.2 Fine-Tuning Phase
After the target domain initializes its feature extractor with
pretrained weights from the source domain, they can start
the fine-tuning phase and train the whole model collabora-
tively. For each batch, the source and target domain need to
exchange the necessary information to calculate the current
loss value and gradients for their own model part. At this
phase, the total loss is defined as follows:

Lfinetune = LC + λLMMD + γ1LΘs + γ2LΘt , (2)

where LC still represents the classification loss on the la-
beled data of the source domain. LΘs and LΘt are optional
regularization terms for the source and target domains,
respectively. LMMD represents the MMD loss. Let ns and
nt denote the batch size of the source and target domains
respectively, {vsi }ns

i=1 and {vtj}nt
j=1 denote the feature vectors

of one batch of the source and target domains respectively.
The LMMD of one batch can be formulated as:

LMMD = Lp1 + Lp2 + Lp3, (3)

Lp1 =
1

ns(ns − 1)

ns∑

i=1

ns∑

i′=1,i′ �=i

k(vsi , v
s
i′), (4)

Lp2 =
1

nt(nt − 1)

nt∑

j=1

nt∑

j′=1,j′ �=j

k(vtj , v
t
j′), (5)

Lp3 = − 2

nsnt

ns∑

i=1

nt∑

j=1

k(vsi , v
t
j), (6)

where k(v, v′) represents the RBF kernel function, i.e.,
k(v, v′) = exp(−α‖v − v′‖2) where α is the kernel function
parameter.

For each batch, we need to calculate the loss value to
monitor the training process and the gradients to update
the model parameters. Each batch of the fine-tuning phase
can be divided into the following five steps:
• Feed forward: Source domain and target domain forward a

batch of samples through the model.
• Classification loss and gradients calculation: Source domain

calculates the classification loss LC and its gradients on
its own. Since the target domain only has unlabeled data,
it is not involved in this step.

• Regularization loss and gradients calculation: LΘs and its
gradients are only related to the model parameters in
the source domain. Similarly, LΘt and its gradients are
only associated with the model parameters in the target
domain. Thus, the source domain is responsible for the
calculation of LΘs and its gradients, whereas the target
domain is responsible for LΘt and its gradients.

• MMD loss and gradients calculation: Source domain and
target domain work together to calculate the MMD loss
and gradient values.

• Parameter update: Source domain and target domain up-
date their model parameters respectively with the calcu-
lated gradients.

Except for MMD loss and gradients calculation, all other
steps are performed on either domain separately. Since
MMD loss comprises feature vectors of both domains, we
need collaboration between the source and target domains
to calculate its loss value and gradients. Thus the procedure
is much more complex than other steps. Next, we elaborate
on the MMD loss and gradients calculation process.

4.2.1 MMD Loss Calculation

In the MMD loss definition, we notice that the first part
Lp1 is only related to feature vectors in the source domain.
Therefore, the source domain can calculate Lp1 on its own.
Similarly, the target domain can calculate Lp2 on its own.
However, for Lp3, each kernel function k(vsi , v

t
j) contains

a feature vector vsi from the source domain and a feature
vector vtj from the target domain. In our framework, we
let the source domain send encrypted information about
each feature vector vsi to the target domain, and the target
domain is responsible for calculating Lp3. To enable compu-
tation on ciphertexts, we use Paillier [11], an Additive PHE
system. However, Paillier only allows additive operations
and does not support the exponential function in the kernel.
To tackle this problem, we leverage the Taylor series of
the exponential functions, and use its first few terms for
approximation [7], [19]. Specifically, for exponential function
we have exp(x) =

∑∞
k=0

xk

k! . We can keep the first n terms
∑n−1

k=0
xk

k! in this Taylor series and use it to substitute the
exponential function in the kernel. After this step, the kernel
function k(vsi , v

t
j) becomes a polynomial of elements in vsi

and vtj .
For the approximated kernel k(vsi , v

t
j), suppose that vec-

tor vsi = (a1, a2, . . . , aL), and vector vtj = (b1, b2, . . . , bL).
Let fm(vsi) represent a constant 1 or a monomial composed
of elements in vsi , which appears in the approximated
kernel. Similarly, let gm(vtj) represent 1 or a monomial
composed of elements in vtj . Let M be the total number
of monomials. Then the approximated kernel can be written
as:

k(vsi , v
t
j) =

M∑

m=1

cmfm(vsi)gm(vtj), (7)

where cm is the constant coefficient for each term in the
approximated kernel. For example, if there is a term 3a1a2b

2
1

in the approximated kernel, then for this term we have
cm = 3, fm(vsi) = a1a2, and gm(vtj) = b21. From this
kernel function representation, we can see that in order
to calculate the value of this kernel k(vsi , v

t
j), the source

domain needs to send the ciphertexts for all {fm(vsi)}Mm=1

to the target domain. Since the target domain can calculate
the ciphertexts for all {gm(vtj)}Mm=1, it can now calculate the
ciphertexts of k(vsi , v

t
j) based on the additive property of the

Paillier crypto system.
For the target domain to calculate Lp3, the source do-

main needs to compute {{fm(vsi)}Mm=1}ns
i=1 for all the fea-

ture vectors in the batch, encrypts them and sends them to
the target domain. The target domain then computes the ci-
phertext of k(vsi , v

t
j) for each vector pair (vsi , v

t
j), adds them

together and finally multiplies the sum with the coefficient
in Lp3 to get the ciphertext of Lp3.

4.2.2 MMD Gradients Calculation
MMD gradients are the partial derivatives of MMD loss
with respect to model parameters. Since MMD loss is based
on the feature vectors of the two domains, it is not relevant
to the parameters in the classifier of the source domain. For
a model parameter θs in the feature extractor of the source
domain, the partial derivative can be written as:

∂LMMD

∂θs
=

∂Lp1

∂θs
+

∂Lp2

∂θs
+

∂Lp3

∂θs
=

∂Lp1

∂θs
+

∂Lp3

∂θs
. (8)

The partial derivative of Lp2 can be omitted because it is
only related to feature vectors in the target domain, thus is
not relevant to θs. Similarly, for a model parameter θt in the
feature extractor of the target domain, we have:

∂LMMD

∂θt
=

∂Lp2

∂θt
+

∂Lp3

∂θt
, (9)

where the partial derivative of Lp1 is omitted.
For the source domain, Lp1 only contains its own feature

vectors, thus it can compute ∂Lp1

∂θs on its own. In contrast,
Lp3 contains feature vectors from the target domain, so
the source domain needs information about these feature
vectors to calculate ∂Lp3

∂θs . Since Lp3 is basically a sum of
k(vsi , v

t
j), we next focus on the partial derivative of k(vsi , v

t
j)

with respect to θs.
Based on Equation 7 of the approximated kernel, this

derivative can be written as:

∂k(vsi , v
t
j)

∂θs
=

M∑

m=1

cmgm(vtj)
∂fm(vsi)

∂θs
, (10)

where gm(vtj) only contains feature vector elements of the
target domain, thus it is not relevant to θs. In the above
equation, gm(vtj) is unknown to the source domain, there-
fore the target domain needs to send the ciphertexts of all
gm(vtj) to the source domain, so that the source domain can

calculate the encrypted value of
∂k(vs

i ,v
t
j)

∂θs and ∂Lp3

∂θs .
A similar analysis also applies to the target domain. For

∂Lp2

∂θt , the target domain can compute it on its own. As for
∂Lp3

∂θt , the target domain needs encrypted fm(vsi) of each
feature vector from the source domain to compute it. Note
that during MMD loss calculation, the source domain has
already sent this information to the target domain, so the
target domain does not need extra data from the source
domain to compute this derivative.

To summarize, the source domain needs to send en-
crypted {fm(vsi)}Mm=1 of each feature vector vsi to the target
domain, and the target domain needs to send encrypted
{gm(vtj)}Mm=1 of each feature vector vtj to the source domain.

Therefore, both domains can calculate their own MMD
gradients, and the target domain can calculate the MMD
loss.

4.2.3 Loss Monitoring and MMD Gradient Decryption
In our framework, we let the source domain monitor the
total loss during training. Since the loss terms LΘt , Lp2 and
Lp3 are computed by the target domain, we let the target
domain compute λ(Lp2 +Lp3) + γ2LΘt and send the result
to the source domain. Note that this result is encrypted with
the source domain’s public key because the Lp3 computed
by the target domain is encrypted. Thus, the source domain
needs to decrypt this result first and then add it to the
remaining part of the total loss.

For parameter updates, note that the MMD gradients
computed by both domains are encrypted with the other
party’s public key. Therefore, they need to send the MMD
gradients to each other for decryption. However, they can-
not directly send the raw gradients due to the potential
security risk. Sending raw gradients means that one party
will know the real gradients of the other party after decryp-
tion. However, some works have shown that information
about training data can be inferred from gradients [26], [27],
[28]. Therefore, in our framework, we let one party add a
random mask to its gradients before sending them to the
other party [7], [29]. Since the other party does not know
the random mask, it cannot get the actual gradients. After
decryption, the plaintexts are sent back, and both parties
can subtract the mask to get gradient values for parameter
updates.

When the fine-tuning phase finishes, the source domain
will send the classifier weights to the target domain. The
target domain can concatenate its feature extractor and the
received classifier to get the final model.

4.3 Further Optimization
In our framework, the training participants may be edge de-
vices or even mobile devices with limited computation and
communication capabilities. Thus, we design two methods
to further reduce the computation and communication costs
during the training process.

4.3.1 Compression of Feature Vector Information
In the MMD loss and gradients calculation method de-
scribed above, both domains need to send information
about feature vectors to the other domain so that the source
domain can calculate ∂Lp3

∂θs , and the target domain can calcu-
late Lp3 and ∂Lp3

∂θt . Specifically, for each feature vector vsi in
the batch, the source domain needs to calculate the values
of all monomials fm(vsi) and send their encrypted results
to the target domain. Similarly, for each feature vector vtj ,
the target domain needs to send the encrypted results of
all monomials gm(vtj) to the source domain. Suppose the
number of monomials fm(vsi) and gm(vtj) is ms and mt

respectively, and the batch size of the source and target
domain is ns and nt respectively. Then for each batch, the
source domain needs to compute and send ms · ns values,
and the target domain needs to send mt · nt values.

In order to compress the feature vector information
sent by both domains, we can leverage the mathematical

characteristics of Lp3. Instead of calculating each kernel

value k(vsi , v
t
j) or its derivative

∂k(vs
i ,v

t
j)

∂θ separately, we
can consider Lp3 as a whole, and compute its value and
derivative using the following transformation:

Lp3 = − 2

nsnt

ns∑

i=1

nt∑

j=1

k(vsi , v
t
j)

= − 2

nsnt

ns∑

i=1

nt∑

j=1

M∑

m=1

cmfm(vsi)gm(vtj)

= − 2

nsnt

M∑

m=1

cm · (
ns∑

i=1

fm(vsi)) · (
nt∑

j=1

gm(vtj)),

(11)

∂Lp3

∂θs
= − 2

nsnt

M∑

m=1

cm · (
ns∑

i=1

∂fm(vsi)

∂θs
) · (

nt∑

j=1

gm(vtj)), (12)

∂Lp3

∂θt
= − 2

nsnt

M∑

m=1

cm · (
ns∑

i=1

fm(vsi)) · (
nt∑

j=1

∂gm(vtj)

∂θt
). (13)

From the above transformation, we can see that for the
target domain to calculate Lp3 and ∂Lp3

∂θt , the source domain
only needs to send

∑ns

i=1 fm(vsi) for each monomial. For
each monomial, the source domain can calculate the sum of
all feature vectors and send the sum to the target domain. In
this way, the number of values sent by the source domain is
reduced to ms. Similarly, for the target domain, it only needs
to send

∑nt

j=1 gm(vtj) for each monomial, and the number of
values sent is reduced to mt. Thus, it dramatically reduces
the amount of feature vector information sent and encrypted
by both domains in which way the computational overhead
can be reduced.

4.3.2 Optimization Based on the Chain Rule
Currently, both domains directly calculate the gradient ∂Lp3

∂θ
for each parameter θ, using the feature vector information
from the other party. Due to time-consuming homomor-
phic operations on ciphertext gradient calculation and large
numbers of parameters, the current method will incur high
computation and communication cost for both domains.

We leverage the chain rule in the derivative calculation
to optimize this procedure. For the source domain, the
gradient ∂Lp3

∂θs can be written as follows, using the feature
vectors as an intermediate stage:

∂Lp3

∂θs
=

ns∑

i=1

L∑

l=1

∂Lp3

∂vsil
· ∂v

s
il

∂θs
+

nt∑

j=1

L∑

l=1

∂Lp3

∂vtjl
· ∂v

t
jl

∂θs
, (14)

where vsil denotes the l-th element in the feature vector vsi .
The second part in the sum can be omitted because vtjl is
a feature vector element in the target domain and is not
relevant to θs. For each parameter θs, the source domain can
compute ∂vs

il

∂θs on its own. As for the calculation of ∂Lp3

∂vs
il

, it
needs information from the target domain. Now the source
domain only needs to calculate ns · L encrypted values
because there are only ns · L feature vector elements. This
is typically much smaller than the number of source fea-
ture extractor’s parameters |Θs|. Moreover, now the source
domain only needs to send ∂Lp3

∂vs
il

for each feature vector
element vsil to the target domain for decryption, rather than
∂Lp3

∂θs for each parameter θs. A similar analysis also applies to

the target domain. Thus, this new chain rule-based method
greatly reduces the computation and communication costs.

For a specific feature vector element vsi0l0 , the derivative
∂Lp3

∂vs
i0l0

can be computed as follows:

∂Lp3

∂vsi0l0
= − 2

nsnt

M∑

m=1

cm · (
ns∑

i=1

∂fm(vsi)

∂vsi0l0
) · (

nt∑

j=1

gm(vtj))

= − 2

nsnt

M∑

m=1

cm · ∂fm(vsi0)

∂vsi0l0
· (

nt∑

j=1

gm(vtj)).

(15)

From the above equation, we can see that the informa-
tion it needs from the target domain is still

∑nt

j=1 gm(vtj),
which is the same as the direct gradient calculation. The
same conclusion also holds for the target domain. That is,
for the new chain rule-based method, the number and types
of monomials sent from the source domain to the target
domain and from the target domain to the source domain
do not change compared to direct gradient calculation.

4.4 Extension to Multiple Users

Till now, we have only discussed the case where there is
one participant with labeled data and one participant with
unlabeled data. In reality, there may be multiple participants
with labeled data, such that we need to extend the method
to accommodate multiple source domain situations.

One approach is to regard all participants with labeled
data as a single source domain. A possible solution for this
scenario is incorporating Horizontal FL techniques into our
framework. We can use a central server to coordinate all
participants in the source domain and securely aggregate
their information during training. For classification and
regularization terms during the pretraining and fine-tuning,
each participant in the source domain can compute their
loss and gradients on their own data and securely send the
results to the central server for aggregation. As for MMD
loss and gradients, feature vector information exchange is
needed before computation and aggregation. Here for Lp1

loss and gradients calculation, the participants in the source
domain need to exchange information with each other. For
Lp3 loss and gradients calculation, we need information
exchange between the target user and each participant in the
source domain. Lp2 is still handled by the target user alone.
Suppose there are S labeled participants, each with batch
size nsi , i ∈ {1, 2, ..., S}. The total number of samples of
source labeled participants for one batch is

∑S
i=1 nsi = Ns.

One unlabeled participant has a batch size nt. The MMD
loss is composed of three parts as shown in Equation 3, but
Lp1

and Lp3
are recalculated as shown in Equation 16 and

17 respectively.

Lp1 =
1

Ns(Ns − 1)

Ns∑

i=1

S∑

i′=1,i′ �=i

k(vsi , v
s
i′)

=
1

Ns(Ns − 1)
[

S∑

i=1

S∑

j=1,j �=i

nsi∑

k=1

nsj∑

k′=1

k(vsik , v
sj
k′)

+

S∑

i=1

nsi∑

k=1

nsi∑

k′=1,k′ �=k

k(vsik , vsik′)].

(16)

Source Domain 1

Labeled
Data

Feature Extractor
(Initialized with

pretrained global weights)

Feature
Vectors Classifier Output

Scores

Classification Loss

Unlabeled
Data

Feature Extractor
(Initialized with

pretrained global weights)
Feature
Vectors

Target Domain
.
.
.

MMD Loss 1

MMD Loss N

Source Domain N

Labeled
Data

Feature Extractor
(Initialized with

pretrained global weights)

Feature
Vectors Classifier Output

Scores

Classification Loss

Fig. 3: A sketch of our federated multi-source domain adap-
tation framework (fine-tuning phase).

Lp3 = − 2

Nsnt

Ns∑

i=1

nt∑

j=1

k(vsi , v
t
j) = − 2

Nsnt

S∑

i=1

nsi∑

j=1

nt∑

k=1

k(vsij , vtk).

(17)
As shown in Equation 16, exchanges between different

labeled participants bring high communication costs, and
discrepancies exist between labeled data distributions. Thus
we treat each labeled participant as a source domain and
apply multi-source domain adaptation, which calculates
MMD loss between each source and the target domain.
Fig. 3 shows a sketch of our proposed federated multi-
source domain adaptation. The MMD loss is formulated as
follows:

LMMD =
1

S

S∑

i=1

Lsi
p1 + Lp2 +

1

S

S∑

i=1

Lsi
p3 , (18)

Lsi
p1 =

1

nsi(nsi − 1)

nsi∑

j=1

nsi∑

j′=1,j′ �=j

k(vsj , v
s
j′), (19)

Lsi
p3 = − 2

nsint

nsi∑

j=1

nt∑

k=1

k(vsij , vtk). (20)

In this way, we relieve the communication costs of exchang-
ing values among source domains. We show later that multi-
source domain adaptation methods achieve even better
accuracy than the single source domain adaptation method.
Note that we also relieve the communication cost needed for
source domains to aggregate their weights update resulting
from classification and regularization loss in the fine-tuning
phase. Since at the beginning of the fine-tuning phase, all the
source domains’ feature extractors adopt the same model
weights they trained together in the pretraining phase. Then
they can fine-tune their own feature extractors without
sharing weights among each other. As each source domain
classifier will output a classification result for the target
data, we take the average as the final prediction result for
the target domain.

4.5 Communication Cost Analysis

We summarize the relationship between the communication
cost and corresponding parameters including source batch
size ns, target batch size nt, number of Taylor expansion
monomials M , number of source labeled users S and ci-
phertext size of Paillier encryption p. M is a function of
latent feature length L and the highest degree of Taylor

expansion n. Each labeled user needs to send
∑ns

i=1 fm(vsi)
of M monomials to the target domain, and the total bytes
needed are O(M · p). To calculate gradients, each labeled
user also needs to send ∂fm(vs

i)
∂vs

il
for each feature element of

each sample thus the total bytes needed are O(ns · L · p).
The labeled user receives encrypted gradients (with ran-
dom mask) from the target domain and needs to send the
decrypt values back to the target. Therefore, the labeled
user also needs to send O(nt · L) bytes. The total num-
ber of bytes a source labeled user sends for a batch is
O(M ·p+ns ·L ·p+nt ·L). Similarly, the targeted unlabeled
user needs to send O(M · p + S · nt · L · p + S · ns · L).
The first term M · p is the encrypted sum monomials over
all the feature vectors in the batch. As it is encrypted by the
target domain’s public key, it only needs to be sent once.

The second term is for
∂gm(vt

j)

∂vt
jl

. As they are encrypted by
corresponding sources’ public keys, they need to be sent S
times. The last term is to send back the decrypted gradients
(with random masks).

5 EXPERIMENT

We conduct experiments on three datasets, namely
Widar 3.0 [30], Office [31] and PAMAP2 [32] to test the
performance of our Federated Domain Adaptation frame-
work. On the one hand, we want to compare the prediction
performance of our framework with a centralized training
approach, where the same UDA method is applied, but data
from all the domains are known to the model trainer. On the
other hand, we want to measure the enhancement made by
our optimization methods in terms of training speed and
communication cost.

5.1 Deployment
All experiments are emulated on the Amazon EC2 cluster
to prototype the client-side model training as well as the
cloud coordination using socket programming. We do not
use real edge devices like mobile phones or tablets since the
slow network connection as well as the limited computation
capacity at the real edge-side devices will significantly slow
down the training process. Also, as all the experiments are
conducted under the same network conditions, and our
statistics are multiples of improvements, the result should
reflect the truth to a large extent. For each node, we used an
m4.xlarge EC2 instance with 4 cores and 16 GB RAM.

5.2 Datasets
In this section, we briefly introduce the datasets used in our
experiment.

Widar3.0. Widar3.0 [30] is a gesture recognition dataset
based on Wi-Fi signals. It contains data for 22 types of
gestures and 16 volunteers (not all gestures are performed
by each volunteer). Body-coordinate Velocity Profile (BVP)
is a novel representation proposed to reduce domain dis-
crepancy. It represents the intensity of each velocity vector
at the moment with a 20 by 20 matrix.

Office. Office [31] is a benchmark of domain adaptation.
It contains images from three distinct domains: Amazon,
DSLR, and Webcam. The 31 categories in the dataset consist

of objects commonly encountered in office settings, such as
keyboards, laptops, and the like.

PAMAP2. PAMAP2 [32] is an activity recognition dataset
based on inertial and heart rate sensors. It collects data from
3 inertial sensors at the wrist, chest, and ankle. There are 9
volunteers following a given protocol containing 12 physical
activities. Some of the volunteers also follow an optional
protocol which includes another 6 activities. It provides raw
sensor readings for each volunteer at 100Hz and the labels
at each timestamp.

5.3 Prediction Performance
In this section, we evaluate the prediction performance
of our framework compared with the centralized training
approach. We use two metrics in our evaluation: balanced
accuracy and weighted F1 score. Balanced accuracy is cal-
culated as the average of recalls obtained in each class.
Compared with regular accuracy, it better compensates for
the class imbalance in the test set. Weighted F1 score is the
weighted average of F1 score on each class, which is also
used in the evaluation of other Federated Transfer Learning
frameworks [7], [8]. We run all experiments 30 times and
show the average results of the above metrics.

5.3.1 Performance on Widar3.0 Dataset
We pick the same six gestures: Push & Pull, Sweep, Clap,
Slide, Draw Circle, and Draw Zigzag, as that of the origi-
nal paper of the Widar3.0 dataset [30]. We use the same
architecture as the original paper, except that we reduce
the dimension of feature vectors from 128 to 4 to speed
up our experiment, which comes with some sacrifice on
the prediction accuracy. Note that it does not affect the
comparison between our framework and the centralized
training approach because they both use the same simplified
network. In our experiments, we use three users in one room
as the source domain and the other three users in another
room as the target domain. We evaluate the performance of
our framework and centralized training approach on three
across room cases. We run the centralized training approach
in two ways for each across room case: treat the three labeled
users as three source domains and treat the three labeled
users as a single domain. Our proposed FL method treats
three labeled users as three source domains. The highest
Taylor expansion degree is set to 2, the target batch size is
set to 64, Paillier encryption ciphertext size is 1024 (we set
this value as small as possible to speed up the training),
and the weight for MMD loss is set to 0.25. The results in
Table 2 show that our Federated DA framework only has
minor performance differences compared with the standard
centralized learning approach on this dataset. Also, there is
little difference between the centralized training approach
with one single source domain and the centralized training
approach with multiple source domains.

5.3.2 Performance on Office Dataset
For the Office dataset, we use the resnet18 network archi-
tecture with a bottleneck layer to extract 4-dimensional fea-
ture vectors. We evaluate our method across three transfer
tasks commonly used for evaluation (Amazon→Webcam,
DSLR→Webcam, and Webcam→DSLR). As there is only one

source domain, we do not need to extend this to multiple
source domain situations. The results are shown in Table
3. From the results, we can see that our proposed method
has similar results to the centralized method. Note that the
reason our accuracy is much lower than that of the original
paper is that the extracted feature length is only 4, which is
much lower than the normal feature length (e.g., 256).

5.3.3 Performance on PAMAP2 Dataset
For the PAMAP2 dataset, we use the same data preprocess-
ing pipeline as in [33]. We group the 12 activities into three
classes as in [32] representing different activity intensities.
As for the model architecture, we use two fully connected
layers with 32 and 4 output units respectively, and a dropout
layer with 0.5 dropout rate in between as the feature extrac-
tor, and one dropout layer with 0.5 drop out rate plus one
fully connected layer with 3 output classes as the classifier.
We use five users for evaluation on this dataset while the
other four of the nine users in the dataset are not used due
to incomplete data. We run experiments in the leave one
user out manner. The results are summarized in Table 4.
From the result, we can see that the multi-source central-
ized training approach has higher performance compared
with single-source centralized training. Thus it is better to
treat multi-users as multi-source domains in our federated
approach. Our Federated Domain Adaptation framework
has similar performance as centralized training with multi-
source domains.

5.4 Effect of Optimization Methods

In this section, we evaluate the enhancement of running
speed and communication cost resulting from our opti-
mization methods. We run two versions of our framework,
one with the optimization and one without, on all three
datasets. As seen in the last section, treating all the labeled
users as one source and treating them as multiple sources
achieves similar balanced accuracy and weighted F1 score.
In this section, we also compare the communication cost
and running speed of these two versions on PAMAP2
and Widar 3.0 datasets which have multiple source labeled
users. Note that we only compare communication costs
related to MMD loss and gradients computation without
considering aggregation cost when we treat source domains
as a single domain. For Widar 3.0 and the PAMAP2 dataset,
we use the same model architecture described in previous
experiments for both versions. For the Office dataset, we
simplify the Resnet18 model and only keep the first layer
block to reduce the running time of the naive method. Tables
5 and 6 show the running time and the amount of data sent
for each batch averaged over multiple batches. The values in
the table reflect the average of all the cases on each dataset.
All experiments are conducted with a batch size of 64 for the
target domain. The highest degree for Taylor expansion is 2
for the three datasets. The Paillier ciphertext length is 1024
for the Widar3.0 dataset and 512 for the other 2 datasets.

The running time in our framework is mainly deter-
mined by the model complexity, the number of crypto-
graphic operations including encryptions, decryptions, and
homomorphic additions, and also the key size for the Pail-
lier scheme. We choose a relatively small key size to speed

TABLE 2: Performance comparison on Widar3.0 dataset (%) (values in brackets show the difference compared with the
multi-source centralized method).

Cases Centralized (multi-source) Centralized (single-source) Proposed (multi-source)
Balanced accuracy Weighted F1 Balanced accuracy Weighted F1 Balanced accuracy Weighted F1

Room1 → Room2 39.29 40.05 39.86 (+0.57) 38.14 (-1.91) 38.95 (-0.34) 37.47 (-2.58)
Room2 → Room3 39.74 39.83 39.44 (-0.50) 39.24 (-0.59) 38.50 (-1.24) 39.67 (-0.16)
Room3 → Room1 43.14 39.73 45.04 (+1.90) 44.64 (+4.91) 44.83 (+1.69) 40.36 (+0.63)

Average 40.72 39.87 41.45 (+0.73) 40.67 (+0.80) 40.76 (+0.04) 39.17 (-0.70)

TABLE 3: Performance comparison on Office dataset (%)
(values in brackets show the difference compared with the
centralized method).

Case Centralized (single-source) Proposed (single-source)
Balanced accuracy Weighted F1 Balanced accuracy Weighted F1

A → W 27.42 24.08 25.53 (-1.89) 21.67 (-3.13)
W → D 48.59 37.85 46.39 (-2.20) 37.92 (+0.07)
D → W 32.92 26.61 31.48 (-1.44) 24.08 (-2.53)
Average 36.31 29.51 34.47 (-1.84) 27.89 (-1.62)

up our experiments. From the results in Table 5, we can
see that the optimization methods result in an improvement
of 115.38×, 292.71× and 9.45× for running time on the
three datasets, respectively. This is due to the fact that
our optimization methods significantly reduce the number
of cryptographic operations. Note that for more complex
model architecture, greater improvements can be achieved.

As for the communication cost during a batch, we can
see from Table 6 that the amount of data sent by the target
domain is smaller than the source domain if there is only
one source domain (on Office dataset). The first case is
where the source domain has more data and thus has a
larger batch size. The other reason is that in our framework,
the target domain needs to calculate the loss value Lp3, but
the source domain only needs to calculate the gradient of
Lp3. In the approximated kernel function, the monomial
fm(vsi) and gm(vtj) can be a constant number 1. When
gm0(v

t
j) is 1, the source domain still needs to send the

corresponding monomial fm0(v
s
i) to the target domain for

loss calculation. However, when fm0(v
s
i) is 1, its derivative

is 0 when calculating gradients, so there is no need for the
target domain to send corresponding gm0(v

t
j) to the source

domain. Thus the target needs to send less data than the
source.

In terms of the total amount of communication, the opti-
mized version shows an improvement of 160.46×, 442.75×
and 24.65× on three datasets, respectively. Note that the
degree of improvement on PAMAP2 is not as significant as
the other two due to fewer parameters in its model.

In summary, our optimization methods can significantly
improve the running speed and communication cost during
the model training by up to two orders of magnitude.

5.5 Ablation Study

In this section, we show the contribution of our two pro-
posed optimization methods, namely compression of fea-
ture vector information and optimization based on the chain
rule. We evaluate on the PAMAP2 dataset where user 108
is the target and the other four users are the sources. The
result is shown in Fig. 4. We can see that both optimization
methods have a significant impact on the communication
cost. Optimization method B is more effective for the target
domain since the target needs to encrypt the gradients with

Fig. 4: Ablation study for optimization methods

Fig. 5: Convergence

the corresponding labeled user’s public key and send it to
the server. As there are multiple labeled users, this step
saves more communication resources with optimization
method B.

5.6 Convergence Analysis

We compare the loss-epoch curve and accuracy-epoch curve
of the centralized training method and federated train-
ing method. As shown in Fig. 5, the blue lines represent
the loss of the federated method and centralized method,
respectively, and the red lines represent the accuracy of
the federated method and centralized method, respectively.
We can observe that our federated training method finally
converges, and the convergence speed is similar to the
centralized method as the lines overlap.

5.7 Parameter Study

In this section, we evaluate the influence of different pa-
rameters, including the number of labeled users, Taylor
expansion highest degree, and Paillier encryption ciphertext
size.

TABLE 4: Performance comparison on PAMAP2 dataset (%) (values in brackets show the differences compared with the
multi-source centralized method).

Target user Centralized (multi-source) Centralized (single-source) Proposed (multi-source)
Balanced accuracy Weighted F1 Balanced accuracy Weighted F1 Balanced accuracy Weighted F1

101 67.70 72.81 66.44 (-1.26) 70.52 (-2.29) 66.55 (-1.15) 71.51 (-1.30)
102 68.65 78.23 66.94 (-1.71) 73.25 (-4.98) 66.48 (-2.17) 71.44 (-6.79)
105 65.22 73.59 62.87 (-2.35) 69.75 (-3.84) 67.00 (+1.78) 75.20 (+1.61)
106 69.99 80.71 67.91 (-2.08) 75.02 (-5.69) 70.60 (+0.61) 81.38 (+0.67)
108 71.47 82.59 68.31 (-3.16) 76.32 (-6.27) 70.83 (-0.64) 81.93 (-0.66)

Average 68.61 77.59 66.49 (-2.12) 72.95 (-4.63) 68.68 (-0.32) 76.30 (-1.29)

TABLE 5: The running time for one batch on different
datasets (in seconds). The numbers in the brackets show the
improvement.

w/ optimization
(multi-source)

w/ optimization
(single-source) w/o optimization

Widar3.0 10.86 14.63 (1.35×) 1253 (115.38×)
Office 13.23 / 3873.51 (292.71×)

PAMAP2 9.45 11.0 (1.17×) 89.24 (9.45×)

TABLE 6: The amount of data sent for one batch on different
datasets (in KB).

Method Widar 3.0 Office PAMAP2

w/ optimization
(multi-source)

source domain 253.8 129097.2 100.4
target domain 527.1 111934.7 361.1

total 780.9 241031.9 461.5

w/ optimization
(single-source)

source domain 1261.4 / 1151.2
target domain 529.2 / 367.4

total 1790.6 (2.29×) / 1518.6 (3.29×)

w/o optimization
source domain 62663.5 53528178.0 6897.0
target domain 62638.7 53188133.6 4478.4

total 125302.2 (160.46×) 106716311.7 (442.75×) 11375.4 (24.65×)

5.7.1 Number of Labeled Users

To evaluate the impact of the number of labeled users, we
gradually increase the number of labeled users from 1 to 4,
with user 108 as the target. We draw the balanced accuracies,
weighted F1 scores, communication and computation cost
improvements which are the quotients of corresponding
values of methods without the optimization and proposed
method under 4 cases in Fig. 6a. We can see that the
improvements are stable with different numbers of users,
and the balanced accuracies and weighted F1 scores increase
with the number of labeled users.

5.7.2 Taylor Expansion Highest Degree

Taylor expansion highest degree is an important factor that
may affect communication cost and accuracy. This value is
k in exp(x) =

∑K
k=0

xk

k! . We evaluate the value of Taylor
expansion’s highest degree ranging from 1 to 3 and calculate
the accuracy and time for one batch. We show the result in
Fig. 6b. We test in two cases, case 1: the source domains are
user 101, 102, 105, and 106, the target domain is user 108
in the PAMAP2 dataset and case 2: the source domains are
user 14, 15, and 16 in room 1, the target domain is users in
room 2 in the Widar 3.0 dataset. The results are consistent.
The performances are similar when we take different values
of the highest degree, but the time used increases sharply.
Thus, we take it that the Taylor degree as 1 is enough for
a good performance. The reason is that our kernel function
is exp(−α‖vi − vj‖2), when we substitute x in exp(x) =
∑K

k=0
xk

k! with −α‖vi − vj‖2 and take k = 1, the highest
order of element of vi is actually 2. The higher orders may
not contribute much.

5.7.3 Paillier Encryption Ciphertext Size
Paillier encryption ciphertext size determines the security
level and influences the communication cost. In the exper-
iments in previous sections, we set this value as small as
possible to speed up training. Here we set different Paillier
ciphertext sizes as values in {512, 1024, 2048} and compare
their communication costs. As we can see from Fig. 6c, the
communication cost is proportional to the ciphertext size.
Therefore, if we enlarge the ciphertext size, our method can
save more communication consumption compared with the
naive method and becomes more secure.

6 DISCUSSION

6.1 Security Analysis
The same security definition and analysis for the Federated
Transfer Learning framework in [7] applies to our frame-
work. The only difference is that we additionally require
the source domain to send pretrained feature extractor
weights and final classifier weights to the target domain.
Some research works show that exposing model weights
can leak information about training data. However, these
attacks [34], [35], [36], [37] do not work given the weights
disclosed in our system since they all require access to
the full model. In our system, only part of the pretrained
model and part of the final model of the source domain are
disclosed. Thus these two attacks are ineffective.

Other types of attacks based on model weights also exist,
but they are not effective in our system either. The method
proposed in [38] targets the Horizontal FL scenario. The
attacker participates in the training procedure and can ob-
serve the global weight update at each round. The weights
are shared among participants. In contrast, our system is a
Federated Transfer Learning framework. Suppose that the
target user is an attacker. Then firstly, it does not participate
in the pretraining phase. Although it participates in the fine-
tuning phase, the model weights of all the domains are not
shared. Thus, it cannot get information about the training
data of the source domain using this method.

To summarize, our framework is as secure as previous
Federated Transfer Learning frameworks.

7 CONCLUSION

In this paper, we design a Federated Domain Adaptation
framework. We use the Taylor Series to substitute the expo-
nential functions in MMD loss to make Homomorphic En-
cryption applicable and design a scheme for both domains
to calculate the MMD loss and gradients collaboratively.
Moreover, we propose two optimization methods to further
improve our framework’s computation and communica-
tion efficiency. We conduct extensive evaluations on three

(a) Number of labeled users (b) Taylor order (c) Paillier ciphertext size

Fig. 6: Parameter study

datasets. The results show that our framework achieves
comparable performance with a standard centralized train-
ing approach, and the optimization methods can reduce the
overhead by up to two orders of magnitude.

REFERENCES

[1] V. Radu, N. D. Lane, S. Bhattacharya, C. Mascolo, M. K.
Marina, and F. Kawsar, “Towards multimodal deep learning for
activity recognition on mobile devices,” in Proceedings of the 2016
ACM International Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp Adjunct 2016, Heidelberg, Germany, September
12-16, 2016, P. Lukowicz, A. Krüger, A. Bulling, Y. Lim, and
S. N. Patel, Eds. ACM, 2016, pp. 185–188. [Online]. Available:
https://doi.org/10.1145/2968219.2971461

[2] H. Zhang, C. Song, A. Wang, C. Xu, D. Li, and W. Xu, “Pdvocal:
Towards privacy-preserving parkinson’s disease detection using
non-speech body sounds,” in The 25th Annual International
Conference on Mobile Computing and Networking, MobiCom 2019, Los
Cabos, Mexico, October 21-25, 2019, S. A. Brewster, G. Fitzpatrick,
A. L. Cox, and V. Kostakos, Eds. ACM, 2019, pp. 16:1–16:16.
[Online]. Available: https://doi.org/10.1145/3300061.3300125

[3] W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan, H. Xue, C. Song,
X. Ma, D. Koutsonikolas, W. Xu, and L. Su, “Towards environment
independent device free human activity recognition,” in
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, MobiCom 2018, New Delhi, India,
October 29 - November 02, 2018, R. Shorey, R. Murty, Y. J. Chen, and
K. Jamieson, Eds. ACM, 2018, pp. 289–304. [Online]. Available:
https://doi.org/10.1145/3241539.3241548

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, AISTATS 2017,
20-22 April 2017, Fort Lauderdale, FL, USA, ser. Proceedings
of Machine Learning Research, A. Singh and X. J. Zhu,
Eds., vol. 54. PMLR, 2017, pp. 1273–1282. [Online]. Available:
http://proceedings.mlr.press/v54/mcmahan17a.html

[5] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, 2010. [Online].
Available: https://doi.org/10.1109/TKDE.2009.191

[6] M. Wang and W. Deng, “Deep visual domain adaptation: A
survey,” Neurocomputing, vol. 312, pp. 135–153, 2018. [Online].
Available: https://doi.org/10.1016/j.neucom.2018.05.083

[7] Y. Liu, T. Chen, and Q. Yang, “Secure federated transfer
learning,” CoRR, vol. abs/1812.03337, 2018. [Online]. Available:
http://arxiv.org/abs/1812.03337

[8] S. Sharma, C. Xing, Y. Liu, and Y. Kang, “Secure and efficient
federated transfer learning,” in 2019 IEEE International Conference
on Big Data (Big Data), Los Angeles, CA, USA, December
9-12, 2019. IEEE, 2019, pp. 2569–2576. [Online]. Available:
https://doi.org/10.1109/BigData47090.2019.9006280

[9] X. Peng, Z. Huang, Y. Zhu, and K. Saenko, “Federated
adversarial domain adaptation,” in 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,

April 26-30, 2020. OpenReview.net, 2020. [Online]. Available:
https://openreview.net/forum?id=HJezF3VYPB

[10] M. Ghifary, W. B. Kleijn, and M. Zhang, “Domain adaptive
neural networks for object recognition,” in PRICAI 2014: Trends in
Artificial Intelligence - 13th Pacific Rim International Conference on
Artificial Intelligence, Gold Coast, QLD, Australia, December 1-5, 2014.
Proceedings, ser. Lecture Notes in Computer Science, D. N. Pham
and S. Park, Eds., vol. 8862. Springer, 2014, pp. 898–904. [Online].
Available: https://doi.org/10.1007/978-3-319-13560-1 76

[11] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999,
Proceeding, ser. Lecture Notes in Computer Science, J. Stern,
Ed., vol. 1592. Springer, 1999, pp. 223–238. [Online]. Available:
https://doi.org/10.1007/3-540-48910-X 16

[12] V. Smith, C. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, Eds., 2017, pp. 4424–4434.
[Online]. Available: http://papers.nips.cc/paper/7029-federated-
multi-task-learning

[13] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and
V. Chandra, “Federated learning with non-iid data,”
CoRR, vol. abs/1806.00582, 2018. [Online]. Available:
http://arxiv.org/abs/1806.00582

[14] C. Briggs, Z. Fan, and P. Andras, “Federated learning with
hierarchical clustering of local updates to improve training
on non-iid data,” CoRR, vol. abs/2004.11791, 2020. [Online].
Available: https://arxiv.org/abs/2004.11791

[15] F. Chen, Z. Dong, Z. Li, and X. He, “Federated meta-learning
for recommendation,” CoRR, vol. abs/1802.07876, 2018. [Online].
Available: http://arxiv.org/abs/1802.07876

[16] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B.
McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical
secure aggregation for privacy-preserving machine learning,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017, B. M. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, Eds. ACM, 2017, pp. 1175–1191. [Online]. Available:
https://doi.org/10.1145/3133956.3133982

[17] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving
communication efficiency,” CoRR, vol. abs/1610.05492, 2016.
[Online]. Available: http://arxiv.org/abs/1610.05492

[18] L. Wang, W. Wang, and B. Li, “CMFL: mitigating communication
overhead for federated learning,” in 39th IEEE International
Conference on Distributed Computing Systems, ICDCS 2019, Dallas,
TX, USA, July 7-10, 2019. IEEE, 2019, pp. 954–964. [Online].
Available: https://doi.org/10.1109/ICDCS.2019.00099

[19] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini,
G. Smith, and B. Thorne, “Private federated learning on
vertically partitioned data via entity resolution and additively
homomorphic encryption,” CoRR, vol. abs/1711.10677, 2017.
[Online]. Available: http://arxiv.org/abs/1711.10677

[20] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and
T. Darrell, “Deep domain confusion: Maximizing for domain
invariance,” CoRR, vol. abs/1412.3474, 2014. [Online]. Available:
http://arxiv.org/abs/1412.3474

[21] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable
features with deep adaptation networks,” in Proceedings of
the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, ser. JMLR Workshop and
Conference Proceedings, F. R. Bach and D. M. Blei, Eds.,
vol. 37. JMLR.org, 2015, pp. 97–105. [Online]. Available:
http://proceedings.mlr.press/v37/long15.html

[22] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer
learning with joint adaptation networks,” in Proceedings of the
34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, ser. Proceedings
of Machine Learning Research, D. Precup and Y. W. Teh,
Eds., vol. 70. PMLR, 2017, pp. 2208–2217. [Online]. Available:
http://proceedings.mlr.press/v70/long17a.html

[23] X. Zhang, F. X. Yu, S. Chang, and S. Wang, “Deep transfer network:
Unsupervised domain adaptation,” CoRR, vol. abs/1503.00591,
2015. [Online]. Available: http://arxiv.org/abs/1503.00591

[24] H. Yan, Y. Ding, P. Li, Q. Wang, Y. Xu, and W. Zuo, “Mind
the class weight bias: Weighted maximum mean discrepancy for
unsupervised domain adaptation,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017. IEEE Computer Society, 2017, pp. 945–954.
[Online]. Available: https://doi.org/10.1109/CVPR.2017.107

[25] A. Rozantsev, M. Salzmann, and P. Fua, “Beyond sharing weights
for deep domain adaptation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 4, pp. 801–814, 2019. [Online]. Available:
https://doi.org/10.1109/TPAMI.2018.2814042

[26] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai,
“Privacy-preserving deep learning via additively homomorphic
encryption,” IEEE Trans. Information Forensics and Security,
vol. 13, no. 5, pp. 1333–1345, 2018. [Online]. Available:
https://doi.org/10.1109/TIFS.2017.2787987

[27] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,”
in Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS
2019, 8-14 December 2019, Vancouver, BC, Canada, H. M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, Eds., 2019, pp. 14 747–14 756. [Online]. Available:
http://papers.nips.cc/paper/9617-deep-leakage-from-gradients

[28] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep
leakage from gradients,” CoRR, vol. abs/2001.02610, 2020.
[Online]. Available: http://arxiv.org/abs/2001.02610

[29] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated
machine learning: Concept and applications,” ACM TIST,
vol. 10, no. 2, pp. 12:1–12:19, 2019. [Online]. Available:
https://doi.org/10.1145/3298981

[30] Y. Zheng, Y. Zhang, K. Qian, G. Zhang, Y. Liu, C. Wu, and Z. Yang,
“Zero-effort cross-domain gesture recognition with wi-fi,” in
Proceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys 2019, Seoul, Republic of
Korea, June 17-21, 2019, J. Song, M. Kim, N. D. Lane, R. K. Balan,
F. Kawsar, and Y. Liu, Eds. ACM, 2019, pp. 313–325. [Online].
Available: https://doi.org/10.1145/3307334.3326081

[31] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel
for unsupervised domain adaptation,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition, Providence, RI, USA,
June 16-21, 2012. IEEE Computer Society, 2012, pp. 2066–2073.
[Online]. Available: https://doi.org/10.1109/CVPR.2012.6247911

[32] A. Reiss and D. Stricker, “Creating and benchmarking a
new dataset for physical activity monitoring,” in The 5th
International Conference on PErvasive Technologies Related to Assistive
Environments, PETRA 2012, Heraklion, Crete, Greece, June 6-9,
2012, F. Makedon, Ed. ACM, 2012, p. 40. [Online]. Available:
https://doi.org/10.1145/2413097.2413148

[33] R. Adaimi and E. Thomaz, “Leveraging active learning and
conditional mutual information to minimize data annotation in
human activity recognition,” IMWUT, vol. 3, no. 3, pp. 70:1–70:23,
2019. [Online]. Available: https://doi.org/10.1145/3351228

[34] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and
T. Ristenpart, “Privacy in pharmacogenetics: An end-to-end
case study of personalized warfarin dosing,” in Proceedings
of the 23rd USENIX Security Symposium, San Diego, CA,
USA, August 20-22, 2014, K. Fu and J. Jung, Eds.

USENIX Association, 2014, pp. 17–32. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/fredrikson matthew

[35] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-16, 2015,
I. Ray, N. Li, and C. Kruegel, Eds. ACM, 2015, pp. 1322–1333.
[Online]. Available: https://doi.org/10.1145/2810103.2813677

[36] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017. IEEE Computer Society, 2017, pp. 3–18.
[Online]. Available: https://doi.org/10.1109/SP.2017.41

[37] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning,” in 2019
IEEE Symposium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019. IEEE, 2019, pp. 739–753. [Online].
Available: https://doi.org/10.1109/SP.2019.00065

[38] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the
GAN: information leakage from collaborative deep learning,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017, B. M. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, Eds. ACM, 2017, pp. 603–618. [Online]. Available:
https://doi.org/10.1145/3133956.3134012

Hua Kang received the bachelor’s degree in
Transportation Engineering from Tongji Univer-
sity, Shanghai, China, in July 2018. She is cur-
rently pursuing the Ph.D. degree with the De-
partment of Computer Science and Engineering,
Hong Kong University of Science and Technol-
ogy, Hong Kong. Her research interests include
Internet of Things, wireless sensing, and deep
learning.

Zhiyang Li received his bachelor’s degree in
Infomation Security from Wuhan University in
2017, and his Master of Philosophy in Computer
Science and Engineering from HKUST in 2020.
He is now working with ByteDance Inc. His re-
search interests include wireless sensing and
transfer learning.

Qian Zhang (Fellow, IEEE) received the B.S.,
M.S., and Ph.D. degrees in computer science
from Wuhan University, China, in 1994, 1996,
and 1999, respectively. In 2005, she joined the
Hong Kong University of Science and Technol-
ogy, where she is currently a Tencent Professor
of engineering and the Chair Professor of the
Department of Computer Science and Engineer-
ing. She is also serving as the Co-Director of
Huawei-HKUST innovation lab and the Director
of Digital Life Research Center, HKUST. Before

that, she was with Microsoft Research Asia, from July 1999, where she
was the Research Manager of the Wireless and Networking Group.
Her current research interests include Internet of Things, smart health,
mobile computing and sensing, wireless networking, as well as cyber se-
curity. Dr. Zhang is currently serving as the Editor-in-Chief for the IEEE
TRANSACTIONS ON MOBILE COMPUTING. She was a Members-at-
Large of the IEEE Communications Society from 2016 to 2018.

