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Distributed Evolution Strategies for Black-box
Stochastic Optimization

Xiaoyu He, Zibin Zheng, Chuan Chen, Yuren Zhou, Chuan Luo, and Qingwei Lin

Abstract—This work concerns the evolutionary approaches to distributed stochastic black-box optimization, in which each worker can
individually solve an approximation of the problem with nature-inspired algorithms. We propose a distributed evolution strategy (DES)
algorithm grounded on a proper modification to evolution strategies, a family of classic evolutionary algorithms, as well as a careful
combination with existing distributed frameworks. On smooth and nonconvex landscapes, DES has a convergence rate competitive to
existing zeroth-order methods, and can exploit the sparsity, if applicable, to match the rate of first-order methods. The DES method
uses a Gaussian probability model to guide the search and avoids the numerical issue resulted from finite-difference techniques in
existing zeroth-order methods. The DES method is also fully adaptive to the problem landscape, as its convergence is guaranteed with
any parameter setting. We further propose two alternative sampling schemes which significantly improve the sampling efficiency while
leading to similar performance. Simulation studies on several machine learning problems suggest that the proposed methods show
much promise in reducing the convergence time and improving the robustness to parameter settings.

Index Terms—Evolution strategies, distributed optimization, black-box optimization, stochastic optimization, zeroth-order methods.
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1 INTRODUCTION

We consider the following stochastic optimization prob-
lem:

min
x∈Rn

f(x) = E [F (x; ξ)] (1)

where x ∈ Rn is the decision vector, ξ is a random variable,
F is an unconstrained real-valued function, and E [·] denotes
the expectation taken over the distribution of ξ. Problems of
this type have a long history dating back to 1950’s [1] and
are still at the heart of many modern applications in ma-
chine learning [2], [3], signal processing [4], and automatic
control [5]. For example, we can let ξ be a data point and F
a loss assessing how ξ fits to a statistic model parametrized
by x; the problem (1), in this way, then provides a universal
formulation that captures a wide range of machine learning
tasks [6]. The hardness of stochastic optimization mainly
comes from the inherent noise nature, the possibly high
dimensionality, and the complexity of objective landscapes.
Despite this hardness, significant progress in the resolution
of problem (1) has been made via exploring the gradient
(first-order) or Hessian (second-order) information of the
component function F . A variety of first-order and second-
order stochastic optimization methods have been developed
in recent years, enjoying both the theoretical and practical
benefits; see [7], [8] for a comprehensive survey. How-
ever, when the landscape characteristics (differentiability,
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smoothness, convexity, etc.) are unknown, stochastic opti-
mization remains a challenging task.

In this paper, we are particularly interested in solving
problem (1) in distributed black-box settings. Concretely,
there are M workers having access to the distribution of
ξ, but, for a given x, they can only evaluate the stochastic
objective value F (x; ξ). The workers may run individually
and exchange information periodically through a parameter
server, so they can minimize f in a collaborative manner.
But apart from the decision vector x, what they can share
during the collaboration is limited to the function values
(zeroth-order information), excluding the sharing of gra-
dient or curvature information (which is case of existing
first-/second-order distributed methods). The consideration
of this setting is motivated by two scenarios in the real
world. The first scenario is related to the on-device machine
learning, sometimes referred to as federated learning [9],
[10] or edge intelligence [11]. It is known that machine
learning practitioners seldom derive gradients manually;
instead, they rely on automatic differentiation [12] which
computes the gradient during the function evaluation using
the chain rule. The automatic differentiation tools work well
on usual PCs, but they have a relatively large memory cost
which may be prohibitive on mobile devices. In addition,
automatic differentiation only runs on certain software en-
vironment and may cause compatibility issues in distributed
settings.

The second applicable scenario is the parallel solving
of stochastic black-box problems. Consider minimizing a
time-consuming black-box function defined over a massive
amount of data and the goal is to achieve acceleration
with a multicore machine. Due to its black-box nature, the
objective function may not be thread-safe, and therefore we
have to use the process-level parallelization where the data
is distributed to multiple processes. Sensor selection [13]
and high-dimensional cox regression [14] are representative
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examples that are suitable for this scenario. These prob-
lems are in fact white-box, but the gradient evaluation is
much more expensive than the function evaluation; treating
them as black-box would heavily reduce the demand on
computational resources. Generally, distributed black-box
optimization offers a powerful search paradigm when cal-
culating the gradient is expensive or infeasible, and it also
retains the advantages from classical distributed computing
frameworks in handling big data.

Black-box optimization methods, sometimes known as
zeroth-order or derivative-free optimization methods, re-
quire only the availability of objective function values. They
were among the earliest optimization methods in the his-
tory, while having attracted renewed interest recently due to
the ubiquity of black-box models. The community has made
several efforts in bringing the simplicity and universality of
black-box optimization methods to the distributed world. A
cornerstone of this research line is the Gaussian smoothing
technique [15], a randomized finite-difference method that
admits building a smooth surrogate of the original objective
function with only zeroth-order information. With Gaussian
smoothing, we can get a computationally cheap gradient es-
timator in the black-box setting, thereby making it possible
to reuse existing first-order methods. Various black-box dis-
tributed optimization (DBO) methods have been proposed,
based on the idea of hybridizing Gaussian smoothing with
established distributed optimization methods [16], [17], [18],
[19], [20], [21], [22]. These methods are typically easy to
implement: the only work to do is to replace the real
gradient with the one produced by Gaussian smoothing.
The disadvantage is that they suffer a dimension-dependent
slowdown in convergence rate, which is the cost must be
paid for the absence of gradient information [23].

Current development in DBO methods has not yet been
entirely successful; several common issues can be identified
and should be carefully addressed. The first issue is the
introduction of the smoothing parameter, which keeps a
trade-off in improving the gradient estimation accuracy
while avoiding roundoff errors [24, Chapter 8]. Tuning the
smoothing parameter is onerous, and could become even
more tricky in the distributed setting. This is caused by that
its optimal value depends on the computing environment
but different workers may have different environment. The
second issue is the lack of adaptivity, in the sense that
decision makers have to tune the step-sizes in workers or
in the server or at both sides. Existing step-size adaptation
rules cannot be generalized to black-box settings easily, as
the gradient estimators produced by Gaussian smoothing
does not meet the usual assumptions designed for first-
order methods. There also exist algorithm-specific issues.
For example, in [20], the authors found a well-developed
distributed algorithm, signSGD [25], may fail to approach
the optimality when extended to black-box settings, prob-
ably because of the unfordable sampling effort required
for reducing the bias caused by Gaussian smoothing. For
the above reasons, schemes that are based on Gaussian
smoothing do not provide a truly seamless transformation
of first-order distributed methods to the black-box setting.
This calls for the need in developing new DBO methods
based on completely different frameworks.

We propose in this work a new DBO method based on

evolution strategies (ESs) [26], [27], [28], a popular family of
nature-inspired methods that excel in black-box real-valued
optimization. Unlike Gaussian smoothing, ESs do not try to
approximate the gradient or its surrogate, but instead guide
the search with a probability distribution and gradually
update this distribution on the fly. Moreover, the update
of distribution is adaptive, requiring no knowledge about
the landscape characteristics and very less user-supplied
parameters. These features make ESs a strong candidate
in designing new DBO methods and seem promising in
addressing the aforementioned issues involved in Gaussian
smoothing. ESs also possess a useful feature that they only
use the comparison results of the objective function values
among solutions, rather than their exact values [29]. This is
likely to improve the robustness in the presence of noise, as
the noise would not matter unless it changes the comparison
results [30]. On the other hand, ESs are originally designed
for non-distributed noise-less optimization and have not
been extended to distributed settings. In fact, the major
components of ESs are grounded on heuristics and a rig-
orous convergence analysis is still missing when applied on
problems like (1). The goal of this paper is to help bridge this
gap by describing ideas that can improve the applicability
and rigorousness of ESs in the distributed stochastic setting.
In particular, we propose a distributed evolution strategy
(DES) with characteristics highlighted below:

• DES adopts a synchronous architecture that employs
ESs to perform worker-side local updates and allows
delayed averaging of individual decision vectors to
reduce the communication overhead. It also supports
server-side momentum, which is found to improve
the performance in practice.

• When the local ES update is driven by an isotropic
Gaussian distribution and when the function land-
scape is nonconvex, DES is competitive with existing
zeroth-order methods in terms of iteration complex-
ity. When certain sparsity assumption is met, DES
can even align with the convergence rate of first-
order methods.

• DES is fully adaptive in the sense that its conver-
gence is guaranteed with any initial settings. More-
over, no numerical difference is involved so users
will not worry about the roundoff errors.

• We propose two alternative probability distributions
for generating mutation vectors in local updates. This
significantly reduces the computation cost in high-
dimensional settings.

In the remainder of this article, we first describe some
related work in Section 2. In Section 3 we describe the details
of DES and analyze its convergence properties. We then
provide in Section 4 two alternative sampling methods and
discuss their impact on the algorithm performance. Section
5 uses simulation studies to investigate the performance of
our proposals. The article is concluded in Section 6. This pa-
per has a supplement containing all proofs of our theoretical
findings, as well as additional experimental results.

Notation Vectors are written in bold lowercase. We use
‖x‖p to denote the `p norm of x. In addition, we use ‖x‖
to denote a generic vector norm and ‖x‖∗ its dual norm.
We use E [·] to denote the expectation, V [·] the variance,
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I {·} the indicator function, and P {·} the probability. We
use 0 and I to denote respectively the zero vector and the
identity matrix of appropriate dimensions. N (0, I) denotes
the multivariate isotropic Gaussian distribution. We use ei
to denote the i-th column of I , i.e., the vector with 1 at the
i-th coordinate and 0s elsewhere.

2 RELATED WORK

Distributed optimization is an active field in the optimiza-
tion and machine learning communities. Our proposal be-
longs to the class of synchronous distributed optimization
methods, which has been extensively studied in the first-
order setting. Representative works include [31], [32], [33]
and they are all based on the federated averaging (Fe-
dAvg) framework [34]. These methods usually use stochas-
tic gradient descent (SGD) as the worker-side solver while
adopting different schemes to improve communication ef-
ficiency. Theoretically, these first-order methods could be
generalized straightforwardly to the black-box setting via
Gaussian smoothing; but to the best of our knowledge,
heretofore there exist no generic zeroth-order approaches
in the synchronous distributed setting. The closest work
is the zeroth-order version of signSGD, ZO-signSGD, de-
scribed in [20]; however, this method requires communi-
cation per iteration and does not guarantee global con-
vergence. Another relevant method is FedProx [35] which
does not rely on the specification of local solvers. FedProx
technically admits using zeroth-order solvers at the worker-
side, but it requires an additional regularization parameter
to guarantee local functions becoming strongly convex; in
this sense, it is not applicable when the function is black-
box. On the other hand, there exist several DBO methods
built on asynchronous parallel [19], [36] or multi-agent
architectures [18], [21]; but they are not applicable in the
synchronous distributed setting which is the main focus of
this work.

Choosing the step-size is critical in implementing
stochastic optimization methods, as one cannot simply use a
line search when the landscape is noisy. To avoid the tedious
step-size tuning phase, a variety of adaptation schemes have
been proposed for first-order stochastic methods, where the
step-size is updated with historical first-order information.
Remarkable examples includes [37], [38], [39], [40]. How-
ever, only a few of these adaptation schemes have been
extended to the distributed setting, e.g., in [41], [42], [43],
and they still require a manually selected step-size for each
worker. The method proposed in this work, on the contrary,
can automatically choose step-sizes for both the server and
the workers, and seems to be the first one that achieves such
“full adaptivity”.

Moving beyond the classical approaches that are based
on rigorous mathematic tools, studies on stochastic opti-
mization are very scarce in the evolutionary computation
community. Almost all existing studies consider a more
generic setting, the noisy optimization, and do not explore
the expectation structure of problem (1); see [44] for a sur-
vey. It is found in [45], [46] that, via simple resampling, mod-
ern ESs originally designed for deterministic optimization
may achieve the best known convergence rate on noisy land-
scapes [47]. These studies, however, require assumptions

that are completely different from the ones used in classical
literatures. It is still unknown how evolutionary algorithms
perform on problem (1) with more generic assumptions.

Various studies on distributed optimization exist in the
evolutionary community; related methodologies and tools
have been nicely summarized in [48], [49]. As evolution-
ary approaches are usually population-based, these studies
mostly focus on the parallel acceleration of the function
evaluations of population, but have seldom touched the
data decentralization (which is the case of this study). In
this study, the distributed framework is mainly designed
to achieve data decentralization; but parallelization is also
supported in a synchronous manner.

3 THE PROPOSED METHOD: DES
In this section, we first propose a modified ES method for
non-distributed deterministic optimization and then use it
as a building block to develop the DES algorithm. Although
this work focus on black-box optimization, we need the
following assumptions to analyze the performance of DES.
Unless stated otherwise, we assume Rn is equipped with
some generic vector norm ‖ · ‖ and its dual norm is denoted
by ‖ · ‖∗.

Assumption 1. The function F has Lipschitz continuous gradi-
ent with constant L for any ξ, i.e.,

‖∇F (x; ξ)−∇F (y; ξ)‖∗ ≤ L ‖x− y‖ ∀x,y ∈ Rn.

Assumption 2. The gradient of F has bounded variance, i.e.,

E
[
‖∇F (x; ξ)−∇f (x)‖2∗

]
≤ σ2 ∀x ∈ Rn.

Assumption 3. Every worker has access to the distribution of ξ
independently and identically.

Assumptions 1 and 2 are customary in the analysis of
stochastic optimization. They are useful when using gradi-
ents in measuring the optimality on nonconvex landscapes.
Assumption 3 is somewhat restrictive; but it is required to
reduce the global variance via minibatching at the worker-
side. On the other hand, as an adaptive method, our method
does not assume the gradients to be universally bounded,
and this is an advantage over several existing methods (e.g.,
[37], [38]).

3.1 A modified ES for deterministic optimization

We first consider the simplest ES framework, usually termed
as (1 + 1)-ES in the literature, where in each iteration a
parent produces a single offspring using mutation and the
one with a better objective value becomes the new parent.
The mutation is typically performed with an isotropic Gaus-
sian perturbation and its variance is gradually updated.
The pseudo-code of this method is given in Algorithm 1.
Specifically, it maintains a vector xk ∈ Rn to encode the
parent solution and a scalar αk the standard variance. The
vector uk ∈ Rn (called mutation vector) is drawn from the
standard Gaussian distribution and then used to construct
the offspring given by xk+αkuk. Hereinafter we call αk the
step-size because it (approximately) determines the length
of the descent step.
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Algorithm 1 A modified ES implementation for determinis-
tic nonconvex optimization

Require: x0 ∈ Rn: initial solution; α0 ∈ R+: initial step-size
1: for k = 0, 1, · · · ,K − 1 do
2: αk = α0/

√
k + 1

3: Sample uk from N (0, I)
4: if f(xk + αkuk) ≤ f(xk) then
5: xk+1 = xk + αkuk

6: else
7: xk+1 = xk

8: end if
9: end for

The only difference of our implementation to existing
ones lies in the specification of step-sizes: here we use a pre-
defined diminishing rule (in Line 2) while almost all modern
ESs adopt a comparison-based adaptation rule. Precisely,
most ESs obtain αk+1 via multiplying αk by some factor that
depends on whether the offspring is better than the parent.
This admits the step-size to shrink exponentially fast, so ESs
may achieve linear convergence on certain landscapes [50].
In this work, however, the objective landscape is generally
nonconvex, so we cannot expect more than sublinear con-
vergence [51]. It suggests a thorough redesign of the step-
size rule.

Our choice of the step-size rule αk = α0/
√
k + 1 is to

align with the known convergence rate on deterministic
nonconvex functions, O (1/K), measured by the squared
gradient norm. This is illustrated in the following theorem.

Theorem 1. Let Assumption 1 hold with the self-dual `2 norm,
i.e., ‖ · ‖ = ‖ · ‖∗ = ‖ · ‖2. Assume the function f is bounded
below by f∗. The iterations generated by Algorithm 1 satisfy

1

K

K−1∑
k=0

E [‖∇f (xk)‖2]

≤
√

2π

K

(
f(x0)− f∗

α0
+ α0Ln (1 + logK)

)
.

(2)

Define ∆f = f (x0)− f∗. The bound in (2) is minimized

at α0 = Θ

(√
∆f

Ln

)
; in this case, we have, via taking the

square on both sides, the following rate for ES:(
1

K

K−1∑
k=0

E [‖∇f (xk)‖2]

)2

≤ Õ
(

∆fLn

K

)
(3)

where Õ hides the negligible logK term in the O notation.
Whereas, for comparison, the best known bound for gradi-
ent descent is

1

K

K−1∑
k=0

E
[
‖∇f (xk)‖22

]
≤ O

(
∆fL

K

)
, (4)

or, if the gradient is estimated using Gaussian smoothing,

1

K

K−1∑
k=0

E
[
‖∇f (xk)‖22

]
≤ O

(
∆fLn

K

)
. (5)

See [52] for these results. These bounds are quite similar,
expect for the difference in measuring the optimality. It

suggests that 1) the proposed modified ES is competitive
with zeroth-order gradient descent methods that are based
on Gaussian smoothing, and 2) is only n times slower
than first-order gradient descent methods. The slowdown
compared to first-order methods is probably due to that the
mutation in ES is not necessarily a descent step and it has
a dimension-dependent variance. The advantage of ES is
twofold: it does not need to estimate the gradient and it
converges with any step-size setting.

3.2 Implementation of DES

We now describe the DES method for handling distributed
stochastic problems. Algorithm 2 provides the pseudo-code
for our method. DES adopts the well-known federated av-
eraging framework and uses the deterministic ES proposed
in Section 3.1 as worker-side solvers. Its search process is
divided into T rounds, and in the t-th round, the server
maintains a solution xt ∈ Rn, a step-size αt0 ∈ R+, and an
optional momentum term mt ∈ Rn. The step-size should
decrease at a 1/T 0.25 rate to achieve convergence. The
momentum term is to enhance the robustness of the server-
side updates.

At the beginning of the t-th round, the server broadcasts
xt and αt0 to all M workers, and the workers use them as
their initial solutions and step-sizes respectively (in Lines
3-4). Each worker i then draws a minibatch Di of size b ran-
domly1 and constructs a stochastic approximated function
fi (in Lines 5-6). The minibatchDi is fixed during this round
and thus the function fi is considered as deterministic. The
i-th worker then optimizes fi using the deterministic ES
with a budget ofK iterations. At the k-th iteration of the i-th
worker, we denote respectively the solution and step-size as
vti,k and σtk. After the worker-side search phase terminates,
all workers upload their final output (i.e., vti,K ), and then
the server computes an averaged descent step, denote by
dt+1, in Line 17. Before the end of the t-th round, as shown
in Lines 18-19, the server accumulates the descent step into
the momentum mt+1, with a parameter β controlling the
rate, and finally obtains the new solution xt+1 via moving
xt along the momentum direction. Note that in the final
step we do not specify a step-size; the magnitude of how
the solution is updated is implicitly controlled by the deter-
ministic ES at the worker-side. This is the critical step for
achieving full adaptivity.

3.3 Convergence properties

We now analyze the convergence behavior of DES. Firstly
we consider a general setting where the optimality is mea-
sured by the `2 norm of the gradient.

Theorem 2. Let Assumptions 1 to 3 hold with the self-dual `2
norm, i.e., ‖ · ‖ = ‖ · ‖∗ = ‖ · ‖2. Assume the function f is

1. To simplify the analysis, throughout this work, we assume the
minibatch to be drawn uniformly with replacement.
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Algorithm 2 DES

Require: x0 ∈ Rn: initial solution; α ∈ R+: initial step-size;
β ∈

[
0,
√

1

2
√

2

)
: momentum parameter; b ≥

√
T : minibatch

size
1: for t = 0, 1, · · · , T − 1 do
2: for i = 1, 2, · · · ,M in parallel do
3: vt

i,0 = xt

4: αt
0 = α/(t+ 1)0.25

5: Draw a minibatch Di of size b
6: Define fi(x) = 1

b

∑
ξ∈Di

F (x; ξ)
7: for k = 0, 1, · · · ,K − 1 do
8: αt

k = αt
0/(k + 1)0.5

9: Sample ut
i,k from N (0, I)

10: if fi
(
vt
i,k + αt

ku
t
i,k

)
≤ fi(vt

i,k) then
11: vt

i,k+1 = vt
i,k + αt

ku
t
i,k

12: else
13: vt

i,k+1 = vt
i,k

14: end if
15: end for
16: end for
17: dt+1 = 1

M

∑M
i=1 v

t
i,K − xt

18: mt+1 = βmt + (1− β)dt+1

19: xt+1 = xt +mt+1

20: end for

bounded below by f∗ and choose 0 ≤ β <
√

1
2
√

2
, b ≥

√
T . The

iterations generated by Algorithm 2 satisfy

1

T

T−1∑
t=0

E [‖∇f(xt)‖2] ≤
√

2π

T 3/4

f (x0)− f∗
α
√
K

+

√
n

T 1/4

(
2αL

(
√

2πnΨ +
80β
√
K

3

)
+

8
√

2πσ

3

)
(6)

where

Ψ =

((
2

1− 2
√

2β2
+

1

2

)√
K +

1

2
√
K

)
(1 + logK) +

√
K

(7)

Here we briefly discuss our theoretical result and its
implications.

Remark (Convergence rate). When K is fixed, the
DES method achieves O

(
T−1/4

)
rate in terms of

1
T

∑T−1
t=0 E [‖∇f(xt)‖2]. If, in addition, setting α =

Θ(n−1/2L−1), we achieve(
1

T

T−1∑
t=0

E [‖∇f(xt)‖2]

)2

≤ O
(
σ2 n√

T

)
. (8)

The dependence on T aligns with the best known bound for
zeroth-order stochastic methods, e.g., in [52], which can be
rewritten as

1

T

T−1∑
t=0

E
[
‖∇f(xt)‖22

]
≤ O

(
σ

√
∆fLn

T

)
(9)

where ∆f = f (x0) − f∗. Our method has a worse depen-
dence on σ. However, the best known bound in (9) requires
σ to be known when setting the step-size; so it remains
unknown whether the dependence of σ is improvable in a

real black-box setting. Our obtained rate (8), in fact, matches
the rate of adaptive gradient methods [41] in terms of the σ-
dependence. The convergence of DES is less dependent on
the function landscape characteristics (e.g., ∆f and L), at the
cost of having a worse dimension-dependence. This indi-
cates that DES might suffer from the curse of dimensionality
but could be better in handling ill-conditioning and robust
to initialization.

Remark (Minibatching). The setting b ≥
√
T is critical in

achieving convergence. This requirement is not usual for
first-order methods or Gaussian smoothing based zeroth-
order methods, since for these methods the gradient vari-
ance can be scaled down by choosing a sufficiently small
step-size. The DES method only relies on the comparison
results among solutions and does not try to estimate the
gradient, so the bias of the descent step could accumulate
and prevent convergence unless a large minibatch is used
to explicitly reduce the noise. Note that similar issues are
encountered in the signSGD method [25] where the descent
step becomes biased due to the sign operation. signSGD,
however, requires b ≥ T to achieve convergence whereas in
our method it is relaxed to b ≥

√
T .

Remark (Adaptivity). The DES method is fully adaptive in
the sense that it converges with any valid parameter setting
and relies no knowledge about landscape characteristics
(e.g., values of L and σ). In contrast to existing distributed
adaptive gradient methods such as [41], [42], DES does not
need the gradient to be uniformly bounded and does not
involve a non-adaptive worker-side step-size.

Remark (Momentum). The bound in (6) suggests that the
optimal β is 0, but in experiments we found choosing β > 0
in most cases leads to better performance. This is probably
because the suggested rate is overestimated, so it does not
reflect how the momentum influences the algorithm perfor-
mance. The impact of this parameter will be investigated
using simulation studies.

It is found from (8) that the DES method suffers a
dimension-dependence slowdown in convergence. We note,
however, that when the landscape exhibits certain sparse
structure, DES may automatically exploit such sparsity and
achieve speedup. This is formally stated below:

Theorem 3. Let Assumptions 1 to 3 hold with the `∞ norm, i.e.,
‖ · ‖ = ‖ · ‖∞ and ‖ · ‖∗ = ‖ · ‖1. Assume the function f is
bounded below by f∗ and choose 0 ≤ β <

√
1

2
√

2
, b ≥

√
T . If

‖∇f(x)‖0 ≤ s for any x ∈ Rn and some constant s ≤ n, then
the iterations generated by Algorithm 2 satisfy

1

T

T−1∑
t=0

E[‖∇f(xt)‖1] ≤
√

2πs

T 3/4

f (x0)− f∗
α
√
K

+
8
√

log(
√

2n)

T 1/4

{
αL

(√
2πs log(

√
2n)Ψ +

10β
√
K

3

)

+
2
√

2πsσ

3

}
(10)

where Ψ is defined in (7).
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Remark (Adaptation to sparsity). The rate established
above only poly-logarithmically depends on the dimension.
With any setting of α and noting the fact ‖∇f(x)‖1 ≥
‖∇f(x)‖2, we have(

1

T

T−1∑
t=0

E[‖∇f(xt)‖2]

)2

≤ Õ
(
σ2

√
T

)
which is nearly independent of the dimension, as in most
first-order methods. We emphasize the improvement in the
dimension-dependence is achieved automatically when the
landscape is sparse, without any modification made to the
algorithm.

4 ALTERNATIVE SAMPLING SCHEMES

One bottleneck of the DES method implemented in Sec-
tion 3 is the generation of mutation vectors, in which a
huge amount of Gaussian random numbers are required.
It is known that generating Gaussian random numbers is
usually expensive, and it may cause efficiency issue in
high-dimensional settings. In this section we propose two
alternative probability models which can be used in DES for
improving the sampling efficiency.

4.1 Mixture sampling for fast mutation

In Algorithm 2, each worker has to perturb its maintained
solution in all coordinates, leading to the O(n) complexity
per-iteration. Our scheme to improve this is to only per-
turb a small subset of the coordinates. Specifically, at each
worker’s iteration we uniformly and randomly sample a
subset of l coordinates with replacement, where l � n is a
small integer. Then, on each selected coordinate, we perturb
the current solution with a univariate random noise. This
two-level sampling strategy yields a mixture distribution
since its samples follow a mixture of n univariate probability
models defined individually on each coordinate. Statistical
characteristics of this mixture distribution is completely de-
termined by the parameter l and the underlying univariate
model. In the following we provide two ways in designing
the mixture sampling scheme.

The first scheme is to use Gaussian distribution on
each selected coordinate and we call it “mixture Gaussian
sampling”. This scheme works via replacing the Gaussian
distribution (e.g., N (0, I) in Algorithm 2) with the proba-
bility model defined below:

Definition 1. We call a random vector u ∈ Rn is obtained from
the mixture Gaussian sampling if it can be expressed as

u =

√
n

l

l∑
j=1

erjzj

where z1, · · · , zl are scalars drawn independently from N (0, 1),
and r1, · · · , rl are integers drawn uniformly from {1, · · · , n}
with replacement. We denote its underlying probability model by
MG

l .

The second scheme is to use, on each selected coordinate,
the Rademacher distribution which belongs to the sub-
Gaussian family. We call this scheme “mixture Rademacher

Algorithm 3 DES with mixture sampling

Require: x0 ∈ Rn: initial solution; α ∈ R+: initial step-size;
β ∈

[
0,
√

1

2
√
2

)
: momentum parameter; b ≥

√
T : minibatch

size; l ∈ Z+: mixture parameter
1: for t = 0, 1, · · · , T − 1 do
2: for i = 1, 2, · · · ,M in parallel do
3: vt

i,0 = xt

4: αt
0 = α/(t+ 1)0.25

5: Draw a minibatch Di of size b
6: Define fi(x) = 1

b

∑
ξ∈Di

F (x; ξ)
7: for k = 0, 1, · · · ,K − 1 do
8: αt

k = αt
0/(k + 1)0.5

9: w = vt
i,k

10: for j = 1, · · · , l do
11: Draw r randomly uniformly from {1, · · · , n}

with replacement
12: Option I (mixture Gaussian sampling):

z ∼ N (0, 1)
13: Option II (mixture Rademacher sampling):

z is either -1 or 1 with 50% chance
14: wr = wr + αt

k

√
n
l
z

15: end for
16: if fi(w) ≤ fi(vt

i,k) then
17: vt

i,k+1 = w
18: else
19: vt

i,k+1 = vt
i,k

20: end if
21: end for
22: end for
23: dt+1 = 1

M

∑M
i=1 v

t
i,K − xt

24: mt+1 = βmt + (1− β)dt+1

25: xt+1 = xt +mt+1

26: end for

sampling”. In this case, the mutation vector is drawn from
the following distribution:

Definition 2. We call a random vector u ∈ Rn is obtained from
the mixture Rademacher sampling if it can be expressed as

u =

√
n

l

l∑
j=1

erjzj

where z1, · · · , zl are independent scalars to be either 1 or -1
with 50% chance, and r1, · · · , rl are integers drawn uniformly
from {1, · · · , n} with replacement. We denote its underlying
probability model byMR

l .

The coefficient
√

n
l in the above definitions is to normal-

ize the probability model to achieve the identity covariance
matrix, which will be illustrated in the subsequent analyses.
When l ≤ n, we can implement the above sampling schemes
efficiently in DES, via a loop of length l applied on the
solutions maintained at the worker-side. Algorithm 3 gives
the detailed implementations of this idea. When l � n, the
time complexity for sampling can be reduced to O(l), and
this will save the computing time considerably when n is
large.

4.2 Behavior of DES with mixture sampling
We first discuss the statistic characteristics of proposed two
sampling schemes.
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The mixture Gaussian sampling, in the case of l → ∞,
will degenerate to the standard Gaussian sampling. This
limiting case, to some extent, is useless as it will make
the sampling even more expensive. Therefore, we are more
interested in the l � n case. The following describes the
statistical properties that are required in understanding the
mixture sampling schemes. Since the probability model is
symmetric by design, we will focus on its second-order and
fourth-order moments.

Proposition 1. Let l ∈ Z+ and u ∈ Rn. If u ∼ MG
l , we have

V[u] = I and

E[|yTu|4] = 3

(
n

l
‖y‖44 +

l − 1

l
‖y‖42

)
, ∀y ∈ Rn. (11)

The above shows that the mixture Gaussian sampling
will generate mutation vectors having exactly the same co-
variance matrix as the standard Gaussian sampling, regard-
less of the l value. In addition, since n‖y‖44 ≥ ‖y‖42 ≥ ‖y‖44,
we know

E[|yTu|4]

‖y‖42
∈
[
3, 3

n+ l − 1

l

]
,

which then indicates that any 1-dimensional projection of
MG

l will have a larger kurtosis than Gaussian. Implications
of this property are twofold. Firstly, the mixture Gaussian
sampling method is more likely to generate outliers in the
mutation phase, so if the landscape is highly multimodal,
DES equipped with MG

l would have a greater chance
to escape local optima. Secondly, this makes DES prefer
exploration than exploitation, and hence, it may degrade
the performance. We note, as will be demonstrated later,
that such a performance degradation is insignificant when
the gradient is dense.

Similarly, the mixture Rademacher sampling can be char-
acterized as below.

Proposition 2. Let l ∈ Z+ and u ∈ Rn. If u ∼ MR
l , we have

V[u] = I and

E[|yTu|4] =
n

l
‖y‖44 + 3

l − 1

l
‖y‖42, ∀y ∈ Rn. (12)

Again, the mixture Rademacher sampling is more likely
to produce outlier mutation vectors than the standard Gaus-
sian sampling, while they have the same covariance matrix.
But it is found, via comparing (12) with (11), that MR

l can
scale down the kurtosis of MG

l by a factor about 1/3 for
sufficiently large n. In this sense, the mixture Rademacher
sampling can be considered as a trade-off between the
standard Gaussian sampling and the mixture Gaussian sam-
pling.

In the following, we analyze the convergence perfor-
mance of DES when equipped with the mixture sampling
schemes. For expository purposes, we assume β = 0 and
only consider the `2 norm case, though our analysis can be
extended directly to a more general setting.

Theorem 4. Let Assumptions 1 to 3 hold with the self-dual
`2 norm, i.e., ‖ · ‖ = ‖ · ‖∗ = ‖ · ‖2. Assume the function
f is bounded below by f∗ and choose β = 0, b ≥

√
T . If

‖∇f(x)‖42/‖∇f(x)‖44 ≥ s̃ for any x ∈ Rn and some constant

s̃ ∈ [1, n], then the iterations generated by Algorithm 3 with
mixture Gaussian sampling satisfy

1

T

T−1∑
t=0

E [‖∇f (xt)‖2] ≤
√

3 +
3n

s̃l

{
2

T 3/4

f (x0)− f∗
α
√
K

+
4
√
n

T 1/4

(
4

3
σ + L

√
nΨ̂α

)}
(13)

where

Ψ̂ =

(
1

2
√
K

+
5

2

√
K

)
(1 + logK) +

1√
K
.

Remark (Impact of the denseness). The bound in (13) is
generally looser than that for DES with standard Gaussian
sampling. For example, consider setting α = Θ(n−1/2L−1),
then we obtain the convergence rate(

1

T

T∑
t=0

E[‖∇f(xt)‖2]

)2

≤ O
(
σ2n2

s̃l
√
T

)
,

which could be O
(
n
s̃l

)
times slower than the rate given

in (8). The involved constant s̃, by the definition of vector
norms, always exists in the range [1, n]. In fact, as has been
pointed out in [53], the quantity ‖y‖44/‖y‖42 measures the
sparseness of a vector y ∈ Rn, so the constant s̃ here
can be viewed as a lower bound of the denseness of the
gradient ∇f(x). If the gradient is relatively dense, e.g., all
coordinates in the gradient are of a similar magnitude, then
s̃ will be close to n. In this case, the convergence rate with
mixture Gaussian sampling will coincide with that with
standard Gaussian sampling. We may therefore conclude,
by comparing Theorems 3 and 4, that the mixture sampling
is more suitable for dense problems whereas the standard
Gaussian sampling is preferred for sparse problems.

Theorem 5. Let Assumptions 1 to 3 hold with the self-dual
`2 norm, i.e., ‖ · ‖ = ‖ · ‖∗ = ‖ · ‖2. Assume the function
f is bounded below by f∗ and choose β = 0, b ≥

√
T . If

‖∇f(x)‖42/‖∇f(x)‖44 ≥ s̃ for any x ∈ Rn and some constant
s̃ ∈ [1, n], then the iterations generated by Algorithm 3 with
mixture Rademacher sampling satisfy

1

T

T−1∑
t=0

E [‖∇f (xt)‖2] ≤
√

3 +
n

s̃l

{
2

T 3/4

f (x0)− f∗
α
√
K

+
4
√
n

T 1/4

(
4

3
σ + L

√
nΨ̂α

)}
(14)

where Ψ̂ is defined as in Theorem 4.

The bound corresponding to the mixture Rademacher
sampling is slightly tighter than that for the mixture Gaus-
sian sampling. This could make a considerable difference in
practice when n is large. Our empirical studies show that
in certain cases the mixture Rademacher sampling could
be better than the mixture Gaussian sampling, while their
performance is in general similar.

5 SIMULATION STUDY

In this section we perform simulations to investigate the
empirical performance of the proposed methods.
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5.1 Experimental settings

We consider three binary classification problems arising in
machine learning and statistics. They include logistic regres-
sion (LR), nonconvex support vector machine (NSVM), and
linear support vector machine (LSVM) with a hinge loss.
For these problems, the random sample ξ corresponds to a
pair of input vector z and target label y, and the objective
function takes the finite-sum form:

f(x) =
1

N

N∑
i=1

F (x; ξi) =
1

N

N∑
i=1

loss(x; zi, yi) +
λp
2
‖x‖22,

where loss is the loss function and λp is the regularization
parameter. We fix λp = 10−6 throughout this study. The loss
function is defined as

• Logistic Regression (LR)

loss(x; z, y) = log(1 + exp(−y(xTz)))

• Nonconvex Support Vector Machine (NSVM)

loss(x; z, y) = 1− tanh(y(xTz))

• Linear Support Vector Machine (LSVM)

loss(x; z, y) = max
{

0, 1− y(xTz)
}
.

LR is the simplest, being strongly convex and smooth.
NSVM is nonconvex but smooth. LSVM is not smooth so
it does not meet our assumption; we choose it to verify the
robustness of our proposals.

Six datasets widely used for benchmarking stochastic
optimization methods are selected and their properties are
briefly summarized in Table 1. For each dataset, 80% data
are chosen for training and the remaining 20% are for
testing. We partition the training samples uniformly into
M pieces with no overlap, and each piece is stored at a
counterpart worker.

TABLE 1
Statistics of the used datasets.

dataset n N

ijcnn1 22 49990
SUSY 18 5000000

covtype 54 581012
mnist 780 60000

real-sim 20958 72309
rcv1 47236 677399

We implement four algorithms for comparison, in-
cluding federated zeroth-order gradient method (Fed-ZO-
GD), federated zeroth-order SGD (Fed-ZO-SGD), zeroth-
order signSGD method (ZO-signSGD), and the standard
ES with cumulative step-size adaptation (ES-CSA). Fed-
ZO-GD, Fed-ZO-SGD, and ZO-signSGD are distributed al-
gorithms based on gradient estimation. ES-CSA is non-
distributed but we have made some modifications to enable
distributed optimization. Their configurations are described
below:

1. All datasets are available at https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets. The mnist dataset is transformed into binary
class based on whether the label (digital) is grater than 4.

• Fed-ZO-GD. It is implemented by replacing the
worker-side solver of DES with the Gaussian
smoothing based gradient descent method, so it can
be considered as a plain combination of FedAvg
and the zeroth-order gradient descent method. Each
worker individually chooses a random minibatch of
size b in each round and runs zeroth-order gradient
descent for K ′ = K/2 iterations with the step-size
αtk =

αt
0

k+1 = α
(k+1)

√
t+1

. We choose the central-
difference in Gaussian smoothing, so each worker
takes about Kb function evaluations per round.

• Fed-ZO-SGD. It is a zeroth-order extension of the
standard federated SGD algorithm, where each
worker’s iteration uses an individually random mini-
batch of size b. Each worker’s SGD runs for K ′ =
K/2 iterations with the step-size αtk =

αt
0√
k+1

=
α√

(k+1)(t+1)
. It uses the same setting for Gaussian

smoothing as in Fed-ZO-GD.
• ZO-signSGD. This method is originally proposed in

[20] and we adopt its variant with majority vote for
distributed optimization. In each round, each worker
computes K ′ = K/2 gradient estimators, takes the
sign of their average, and then uploads the result
to the server. Each gradient estimator is obtained
from a central-difference Gaussian smoothing over
a minibatch batch of size b. The server performs
global updates using the sign vector with step-size
αt = α√

t+1
.

• ES-CSA. We use the standard (µ;λ)-ES described in
[27] with slight modifications for date decentraliza-
tion. In each round, the server generates a population
of λ solutions with a standard multivariate Gaussian
distribution and broadcasts the whole population to
each worker. The workers then evaluate the popu-
lation with their local data. The server sums up, for
each solution, the results collected from the workers
and obtain the corresponding objective value. The
best λ ones in the population are chosen and their
recombination becomes the new population mean. In
this setting, each worker takes λNM function evalua-
tions per round. The standard cumulative step-size
adaptation is used and the initial step-size is set to α.

For the three gradient-based methods, we use the
central-difference Gaussian smoothing which takes two
function evaluations on each data sample; so the setting
K ′ = K/2 ensures that the total number of function evalua-
tions per round and per worker is Kb, being consistent with
DES. For CSA-ES, the population size is set to λ = MKb/N ;
under this setting, all algorithms have exactly the same
number of function evaluations per round.

For all algorithms, we choose b = 1000, M = 10.
We choose K = 100 if n ≤ 100 and 500 if n > 100.
Each algorithm is assigned with a budget of EN function
evaluations, whereE = 1000 if n ≤ 100 and 5000 if n > 100.
For algorithms relying on Gaussian smoothing, the finite-
difference radius is µ = 10−6. The momentum parameter
in DES is set to β = 0.5. All algorithms are run for 8 times
individually for each pair of dataset and problem and the
median results are reported. DES with the mixture Gaussian
sampling and the mixture Rademacher sampling schemes

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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are denoted by DES-mG and DES-mR, respectively; their
mixture parameter is set to l = 8.

5.2 Overall performance

We first test DES as well as the competitors on all three prob-
lems and over all six datasets. The initial step-size α for each
algorithm is chosen from {0.1, 1, 10} using a grid-search.
Figures 1 and 2 report the convergence behavior of the
algorithms, measured with the median training error versus
the number of rounds. It is found that the DES methods with
either standard Gaussian sampling or mixture sampling are
the best performers in all cases. Belonging to the same ES
family, our implementation of DES is significantly better
than the non-distributed implementation of ES-CSA, where
the latter performs the worst in most cases. This is caused
by that the standard ES is for deterministic optimization
and does not explore the stochastic characteristics of the
objective function. Fed-ZO-SGD is the best one among the
competitors and is competitive with DES in certain cases.
Fed-ZO-GD, in most cases, is not competitive with DES, ZO-
signSGD, or Fed-ZO-SGD.

We also observe that, when implemented in DES, the
standard Gaussian sampling, the mixture Gaussian sam-
pling, and the mixture Rademacher sampling do not show
significant difference in performance. Although our analy-
ses in Theorems 4 and 5 suggest the possibility that mixture
sampling might degrade the convergence, the results here
show that the degradation, if exists, is in general negligible.
In many cases, in fact, mixture sampling can even improve
the performance. This suggests that mixture sampling could
be used as the default scheme for DES, given its availability
in improving the sampling efficiency.

The experimental results obtained on testing sets are
reported in the supplement. In general, the generalization
performance of the DES methods are consistent with their
training performance.

5.3 Adaptation of step-size

The theoretical analyses have demonstrated that DES con-
verges with any initial step-size; and in this subsection we
provide more empirical evidence. We first verify the per-
formance of DES and the other competitors under different
initial settings. In order to evaluate their performance over
all problems and all datasets, we adopt the performance
profile [54], a classic tool for visual comparison. The profile
of an algorithm is the curve of the fraction of its solved test
instances2 (denoted by ρ(τ)) versus the amount of allocated
computational budget (denoted by τ ). The computational
budget is measured by the ratio of the required number of
rounds to that required by the best performer. We say an
algorithm can solve a test instance if its obtained objective
function value f ′ satisfies f(x0)−f ′ > δ(f(x0)−f ′∗) where
δ ∈ (0, 1) controls the accuracy and f ′∗ is the best objective
value obtained among all algorithms. An algorithm with
high values of ρ(τ) or one that is located at the top left of
the figure is preferable. In this section, the objective function
value is measured by the training loss.

2. Test instance denotes the pair of problem and dataset.

Figure 3 plots the performance profiles of DES (with
the standard Gaussian sampling) as well as the three com-
petitors, with initial step-sizes chosen from {0.1, 1, 10}. We
choose δ = 0.1 in plotting the profiles. The curves of DES
are mostly lie to the left of the others, demonstrating that
the relative performance of DES is in general robust to
the step-size setting. For small τ , the profile of DES with
α = 0.1 lies to the right of Fed-ZO-SGD with α = 10, and
overlaps with that of the other methods; this indicates that
α = 0.1 is too small for DES to achieve fast decrease in early
stage. But when a sufficient amount of computation budget
(e.g., τ ≥ 10) is allowed, then such a step-size setting can
nevertheless lead to the performance comparable to Fed-
ZO-SGD with the best tuned step-size. Fed-ZO-GD is not
robust to the step-size setting. Its profile for α = 0.1 is not
shown in the plot, implying that with this setting Fed-ZO-
GD cannot solve any test instance.

Figure 4 provides, as an representative, the convergence
trajectories of the algorithms with different initial step-sizes.
In general, on the two convex problems (i.e., LR and LSVM),
the performance of DES is quite insensitive to the initial
step-size; all three settings admit approaching similar results
in the long run. ES-CSA exhibits similar adaptation ability,
albeit with relatively poor performance. The other gradient
based methods are sensitive to step-size settings, leading to
quite different solutions even in the convex problems. On
the nonconvex problem NSVM, the initial value of the step-
size seems to have a considerable influence on all methods,
possibly because of that the step-size setting is critical in
escaping local optima. In this case, large initial step-sizes
seem to yield faster convergence, but may also lead to early
stagnation.

5.4 Impact of momentum
The convergence rate established previously does not re-
flects its dependence on the momentum parameter, so
here we investigate this empirically. Consider the mixture
Rademacher sampling based DES method, with β chosen
from {0, 0.2, 0.4, 0.6, 0.8} and α fixed to 1. All other settings
are the same as those in Section 5.2. Note that in the
theoretical analyses we have required

β ≤
√

1

2
√

2
/ 0.6 (15)

for technical reasons. So the choice β = 0.8 is to verify
whether the above requirement is necessary in practice.

Figure 5 gives the profile plot obtained on all test in-
stances, measured with two different δ settings. Note that
the smaller δ is, the higher solution-accuracy the curve
reflects. It is found that the momentum mechanism becomes
useless in the low accuracy domain; as setting β to 0 is
enough to solve nearly 80% test instances within a very lim-
ited amount of computational budget. In this case, setting β
to 0.8 is indeed harmful to the performance. To approach
good performance in high accuracy, on the contrary, an
appropriate setting of this parameter is generally helpful
and could influence the final results. Again, we observe that
the setting β = 0.8 leads to poor performance, indicating
that the assumption (15) seems to be mandatory. But it
is worthy nothing that the choice of β is not critical to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) LR, rcv1 (b) NSVM, rcv1 (c) LSVM, rcv1

(d) LR, SUSY (e) NSVM, SUSY (f) LSVM, SUSY

(g) LR, mnist (h) NSVM, mnist (i) LSVM, mnist

Fig. 1. Comparison on rcv1, SUSY, and mnist datasets. The curve displays the training error versus the number of rounds and the corresponding
shaded area extends from the 25th to 75th percentiles over the results obtained from all independent runs.

the relative performance of DES compared with the other
competitors; we suggest to fix its value in the range [0.2, 0.6]
in all situations.

5.5 Impact of minibatch size
Here we verify the impact of minibatch size on the algo-
rithm performance. We consider the mixture Rademacher
sampling based DES method and choose β from
{100, 500, 1000, 1500, 2000}. All other settings are the same
as in Section 5.2.

Figure 6 reports the results obtained on all test instances
via performance profile. It is clearly that whether minibatch
size matters depends on which accuracy we would like to
achieve. In the low accuracy case (δ = 0.05), choosing a
small minibatch b = 100 can solve at least 50% test instances
very quickly, although suffering early termination later. In

this case, using a large minibatch does not lead to significant
improvement in performance. Oppositely, the impact of
minibatch size becomes quite clear in high accuracy case
(δ = 0.001) where increasing b consistently improves the
number of test instances that can be solved. This observation
matches our theoretical analyses and suggests that a large
minibatch is generally better if the computational cost is
affordable at the worker-side.

6 CONCLUSION

In this work we propose the DES method via modifying
the classic evolution strategy method and adapting it to the
distributed setting. Our method uses a Gaussian probability
model to guide the worker’s local update, so it avoids
finite-difference based smoothing techniques which might



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

(a) LR, real-sim (b) NSVM, real-sim (c) LSVM, real-sim

(d) LR, ijcnn1 (e) NSVM, ijcnn1 (f) LSVM, ijcnn1

(g) LR, covtype (h) NSVM, covtype (i) LSVM, covtype

Fig. 2. Comparison on ijcnn, covtype, and real-sim datasets. The curve displays the training error versus the number of rounds and the corresponding
shaded area extends from the 25th to 75th percentiles over the results obtained from all independent runs.

cause numerical issues. We have analyzed its convergence
properties compared to existing zeroth-order and first-order
methods, demonstrating its adaptivity to objective land-
scapes and the exploitation ability towards sparsity. Two
alternative sampling schemes have been suggested and we
find they lead to an improvement in sampling efficiency
with no obvious degradation in performance. The current
implementation of DES, however, does not support hetero-
geneous data distribution, which seems to be a common
issue for those based on biased descent step; see [20], [25]
for an example. The idea of bias correction suggested in
[55] seems to address this issue, and is worth a try in
further development of DES. This idea, nevertheless, would
be incompatible with the comparison-based nature of the
ES family. We would like to continue resolving this in the
future. We hope our work on DES will serve as a starting

point for generalizing the rich studies in evolutionary com-
putation communities to the distributed world.
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and D. Bacon, “Federated Learning: Strategies for Improving
Communication Efficiency,” arXiv:1610.05492 [cs], Oct. 2016.
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Supplementary Appendices

APPENDIX A
PROOF OF THEOREM 1
Proof. For convenience define the following scalar operations

sign(a) =

{
1 if a ≥ 0

−1 if a < 0
and sign+(a) =

sign(a) + 1

2
=

{
1 if a ≥ 0

0 if a < 0
. (16)

Note that the sign(·) is different from the usual operation of taking sign, as in our definition it returns 1 when performed
on 0. In addition, we have the following useful identities:

sign(a)b = (−1 + 2I {sign(a) = sign(b)}) |b| (17)

and
I {sign(a) = sign(b)} = I {|a+ b| ≥ |b|} (18)

which can be verified easily.
With the sign operation defined in (16), the iterations generated by Algorithm 1 can be rewritten as

xk+1 = xk + αksign+ (f (xk)− f (xk + αkuk))uk. (19)

With Assumption 1, we can bound the per-iteration progress as

f (xk+1)− f (xk) ≤ ∇f (xk)
T

(xk+1 − xk) +
L

2
‖xk+1 − xk‖2

(19)

≤ αksign+ (f (xk)− f (xk + αkuk))∇f (xk)
T
uk +

Lα2
k

2
‖uk‖2

(16)
=

1

2
αkuk +

1

2
αk (sign (f (xk)− f (xk + αkuk)))∇f (xk)

T
uk︸ ︷︷ ︸

∆
=A

+
Lα2

k

2
‖uk‖2 .

Taking expectation with respect to uk at both sides, and according to Lemma 7, we have

Ek [f (xk+1)]− f (xk) ≤ 1

2
αkEk [A] +

Lα2
k

2
U (20)

where Ek denotes the expectation conditioned on the randomness at the k-th iteration.
We now bound the term A using identities (17) and (18):

A
(17)
=
(
−1 + 2I

{
sign (f (xk)− f (xk + αkuk)) = sign

(
∇f (xk)

T
uk
)}) ∣∣∣∇f (xk)

T
uk

∣∣∣
=
(
−1 + 2I

{
sign (f (xk)− f (xk + αkuk)) = sign

(
αk∇f (xk)

T
uk
)}) ∣∣∣∇f (xk)

T
uk

∣∣∣
(18)
=
(
−1 + 2I

{∣∣∣f (xk + αkuk)− f (xk)− αk∇f (xk)
T
uk

∣∣∣ ≥ αk ∣∣∣∇f (xk)
T
uk

∣∣∣}) ∣∣∣∇f (xk)
T
uk

∣∣∣
≤
(
−1 + 2I

{
L

2
‖αkuk‖2 ≥ αk

∣∣∣∇f (xk)
T
uk

∣∣∣}) ∣∣∣∇f (xk)
T
uk

∣∣∣
(21)

where the last inequality is due to Assumption 1.
Substituting (21) into (20) gives

Ek [f (xk+1)]− f (xk)

≤ αk
2
Ek
[(
−1 + 2I

{
αkL

2
‖uk‖2 ≥

∣∣∣∇f (xk)
T
uk

∣∣∣}) ∣∣∣∇f (xk)
T
uk

∣∣∣]+
Lα2

k

2
U

= −αk
2
Ek
[∣∣∣∇f (xk)

T
uk

∣∣∣]+ αk Ek
[
I
{
αkL

2
‖uk‖2 ≥

∣∣∣∇f (xk)
T
uk

∣∣∣} ∣∣∣∇f (xk)
T
uk

∣∣∣]︸ ︷︷ ︸
∆
=B

+
Lα2

k

2
U

= − αk√
2π
‖∇f (xk)‖2 + αkB +

Lα2
k

2
U

(22)

where the last equality uses the fact

E[|yTu|] =

√
2

π
‖y‖2 for u ∼ N (0, I). (23)
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Since the distribution of uk is isotropic, we can assume ∇f(xk) = ‖∇f(xk)‖2 e1 where e1 = (1, 0, · · · , 0)T . Denoting
uk,i as the i-th element of uk and noting the assumption ‖ · ‖ = ‖ · ‖2, we have

B = Ek

[
I

{
αkL

2

n∑
i=1

u2
k,i ≥ ‖∇f (xk)‖2 |uk,1|

}
‖∇f (xk)‖2 |uk,1|

]
. (24)

Now we decompose the expectation operation Ek into two steps: firstly taking the expectation over uk,2, · · · , uk,n and
secondly over uk,1. That is,

B = Euk,1
Euk,2,··· ,uk,n

[
I

{
αkL

2

n∑
i=1

u2
k,i ≥ ‖∇f (xk)‖2 |uk,1|

}
‖∇f (xk)‖2 |uk,1|

]

= Euk,1

[
Puk,2,··· ,uk,n

{
αkL

2

n∑
i=1

u2
k,i ≥ ‖∇f (xk)‖2 |uk,1|

}
‖∇f (xk)‖2 |uk,1|

]

≤ Euk,1

αkL
2

u2
k,1 +

∑n
i=2 Euk,i

[
u2
k,i

]
‖∇f (xk)‖2 |uk,1|

‖∇f (xk)‖2 |uk,1|


=
αkL

2
Euk,1

[
u2
k,1 +

n∑
i=2

Euk,i

[
u2
k,i

]]
=
αkL

2
Ek
[
‖uk‖2

]
.

Here we use the Markov inequality applied on the components uk,2, · · · , uk,n.
Substituting the above bound into (22) and using Lemma 7, we get

Ek [f (xk+1)]− f (xk) ≤ − αk√
2π
‖∇f (xk)‖2 + Lα2

kU.

Taking the total expectation and summing over k = 0, 1, · · · ,K − 1 give

K−1∑
k=0

αkE [‖∇f (xk)‖2] ≤
√

2π

(
f (x0)− f∗ + LU

K−1∑
k=0

α2
k

)
(42)
≤
√

2π
(
f (x0)− f∗ + LUα2

0(1 + logK)
)
. (25)

On the other hand, we can lower bound the left-hand side as

K−1∑
k=0

αkE [‖∇f (xk)‖2]
(44)
≥
√
Kα0

(
1

K

K∑
k=0

E [‖∇f (xk)‖2]

)
.

Combing this with (25) yields

1

K

K−1∑
k=0

E [‖∇f (xk)‖2] ≤
√

2π

K

(
f (x0)− f∗

α0
+ LUα0(1 + logK)

)
.

The bound (2) can be obtained via specifying U = n according to Lemma 7.

APPENDIX B
A UNIFIED IMPLEMENTATION OF DES AND FUNDAMENTAL LEMMAS

Before proving the main results Theorems 2 to 5, we provide in this section some lemmas which will be used several times
in the subsequent proofs. Since we have two DES implementations (i.e., Algorithms 2 and 3) and they only differ in the way
of generating mutation vectors, we suggest to analyze them in a unified manner. To this end, we provide in Algorithm 4 a
unified implementation of DES which can recover both Algorithm 2 and Algorithm 3. For example, it recovers Algorithm 2
if the mutation vector uti,k in Line 9 is drawn from the Gaussian distribution N (0, I). It is also logically equivalent to
Algorithm 3 when uti,k is drawn from the mixture Gaussian distribution MG

l or mixture Rademacher distribution MR
l .

Note that the lemmas derived in this section do not rely on the detailed distribution for the mutation vectors. We will also
not specify the vector norm when using the assumptions. The only requirement is that the variance of the mutation vector
uti,k needs to be bounded by some constant U (see Line 9 in Algorithm 4). We will show in the next sections that this
requirement indeed holds.

In the following we give some lemmas regarding the iterations generated from Algorithm 4. Due to the momentum
mechanism, it is difficult to directly work with the solutions {xt}. Instead, we introduce a virtual sequence {zt} which can
be regarded as a counterpart of {xt} without momentum:

zt+1 =
1

1− β
xt+1 −

β

1− β
xt.
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Algorithm 4 Unified implementation of DES for convergence analyses

Require: x0 ∈ Rn: initial solution; α ∈ R+: initial step-size; β ∈
[
0,
√

1

2
√
2

)
: momentum parameter; b ≥

√
T : minibatch size;

l ∈ Z+: mixture parameter
1: for t = 0, 1, · · · , T − 1 do
2: for i = 1, 2, · · · ,M in parallel do
3: vt

i,0 = xt

4: αt
0 = α/(t+ 1)0.25

5: Draw a minibatch Di of size b
6: Define fi(x) = 1

b

∑
ξ∈Di

F (x; ξ)
7: for k = 0, 1, · · · ,K − 1 do
8: αt

k = αt
0/(k + 1)0.5

9: Generate a random vector ut
i,k satisfying E

[
‖ut

i,k‖2
]
≤ U for some positive constant U and some generic norm ‖ · ‖

10: vt
i,k+1 = vt

i,k + αt
ksign

+

(
fi(v

t
i,k)− fi

(
vt
i,k + αt

ku
t
i,k

))
where sign

+
is defined in (16)

11: end for
12: end for
13: dt+1 = 1

M

∑M
i=1 v

t
i,K − xt

14: mt+1 = βmt + (1− β)dt+1

15: xt+1 = xt +mt+1

16: end for

To make it well-defined, we specify x−1 = x0 such that z0 = x0. We will characterize the algorithm behavior with {zt}
and relate it to {xt} in the last step. Note that by this definition and according to the momentum rule (Lines 14-15 in
Algorithm 4) we have

zt+1 − zt = dt+1 and ‖xt − zt‖ =
β

1− β
‖xt − xt−1‖ . (26)

Lemma 1. The descent step dt+1 in Algorithm 4 can be bounded as

E
[
‖dt+1‖2

]
≤
(
αt0
)2
UK (1 + logK) , (27)

E [‖dt+1‖] ≤ 2αt0
√
KU. (28)

Proof. According to Line 13 of Algorithm 4 we have

E
[
‖dt+1‖2

] (∗)
≤ 1

M

M∑
i=1

E
[∥∥vti,K − xt∥∥2

]

=
1

M

M∑
i=1

E

∥∥∥∥∥
K−1∑
k=0

vti,k+1 − vti,k

∥∥∥∥∥
2


(∗)
≤ K

M

M∑
i=1

K−1∑
k=0

E
[∥∥vti,k+1 − vti,k

∥∥2
]

≤ K

M

M∑
i=1

K−1∑
k=0

(
αtk
)2 E [∥∥uti,k∥∥2

]
≤
(
αt0
)2 K
M

M∑
i=1

K−1∑
k=0

U

k + 1

where (∗) is due to Jensen’s inequality. Applying (42) in Lemma 8 gives (27).
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Similarly, the bound (28) can be obtained as

E [‖dt+1‖] ≤
1

M

M∑
i=1

E
[∥∥vti,K − xt∥∥]

=
1

M

M∑
i=1

E

[∥∥∥∥∥
K−1∑
k=0

vti,k+1 − vti,k

∥∥∥∥∥
]

(∗)
≤ 1

M

M∑
i=1

K−1∑
k=0

E
[∥∥vti,k+1 − vti,k

∥∥]
≤ 1

M

M∑
i=1

K−1∑
k=0

αtkE
[∥∥uti,k∥∥]

≤ αt0
1

M

M∑
i=1

K−1∑
k=0

√
U

k + 1
.

where (∗) is due to Jensen’s inequality and the last inequality is due to E
[
‖uti,k‖

]
≤
√

E
[
‖uti,k‖2

]
≤
√
U . We can then

reach (28) using (43) from Lemma 8.

Lemma 2. Assume 0 ≤ β <
√

1
2
√

2
. The change of the sequence {xt} in Algorithm 4 can be bounded as

1

T

T−1∑
t=0

E [‖xt − xt−1‖] ≤
160(1− β)α

√
KU

3T 1/4
, (29)

E
[
‖xt − xt−1‖2

]
≤ (1− β)2

1
2
√

2
− β2

UK (1 + logK)
(
αt0
)2
. (30)

Proof. We first prove (29). By construction, we have for t > 1

‖xt − xt−1‖ = ‖mt‖ = ‖βmt−1 + (1− β)dt‖ ≤ β ‖mt−1‖+ (1− β) ‖dt‖ .

Expanding the above recursive bound gives

‖xt − xt−1‖ ≤
(
βt−1‖d1‖+ · · ·+ β‖dt−1‖+ ‖dt‖

)
(1− β).

Taking expectation at both sides yields

E [‖xt − xt−1‖] ≤ (1− β)
t∑

j=1

βt−jE [‖dj‖]

(28)
≤ (1− β)

t∑
j=1

βt−j2αj−1
0

√
KU

= 2(1− β)α
√
KU

t∑
j=1

βt−j

j0.25

(47)
≤ 40(1− β)α

√
KU

t0.25

Recall that we have defined x0 = x−1, so

1

T

T−1∑
t=0

E [‖xt − xt−1‖] ≤
1

T

T−1∑
t=1

40(1− β)α
√
KU

t0.25

(45)
≤ 160(1− β)α

√
KU

3T 1/4

and (29) is proved.
(30) is trivial for t = 0. For t ≥ 1, it can be proved in a way similar to the above.
Firstly, we obtain via Jensen’s inequality

‖xt − xt−1‖2 = ‖mt‖2 = ‖βmt−1 + (1− β)dt‖2 ≤ 2β2 ‖mt−1‖2 + 2(1− β)2 ‖dt‖2 .
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Expanding the momentum terms {mt−1} and taking expectation give

E
[
‖xt − xt−1‖2

]
≤ 2(1− β)2E

[(
2β2

)t−1 ‖d1‖2 + · · ·+
(
2β2

)0 ‖dt‖2]
= 2(1− β)2

t∑
j=1

(
2β2

)t−j E [‖dj‖2]
(27)
≤ 2(1− β)2

t∑
j=1

(
2β2

)t−j (
αj−1

0

)2
UK (1 + logK)

= 2(1− β)2
t∑

j=1

α2

(
2β2

)t−j
j0.5

UK (1 + logK)

(48)
≤ 2(1− β)2α2UK (1 + logK)

√
t
(

1− 2
√

2β2
)

=

√
t+ 1

t

2(1− β)2 (αt0)
2
UK (1 + logK)

1− 2
√

2β2
.

The last step is due to the definition of αt0. Now use the assumption t ≥ 1 and we can reach (30).

Lemma 3. Assume 0 ≤ β <
√

1
2
√

2
. The worker drift in Algorithm 4 can be bounded as

E
[∥∥vti,k − zt∥∥2

]
≤ 2

1− 2
√

2β2
UK (1 + logK)

(
αt0
)2
. (31)

Proof.

E
[∥∥vti,k − zt∥∥2

]
≤ 2E

[∥∥vti,k − xt∥∥2
]

+ 2E
[
‖xt − zt‖2

]
(26)
= 2E

[∥∥vti,k − xt∥∥2
]

+ 2

(
β

1− β

)2

E
[
‖xt − xt−1‖2

]
(30)
≤ 2E

[∥∥vti,k − xt∥∥2
]

+
2β2

1
2
√

2
− β2

UK (1 + logK)
(
αt0
)2

where

E
[∥∥vti,k − xt∥∥2

]
≤ k

k−1∑
j=0

E
[∥∥vti,j+1 − vti,j

∥∥2
]
≤ k

k−1∑
j=0

(
αtj
)2 E [∥∥uti,j∥∥2

]
(42)
≤ Uk

(
αt0
)2

(1 + log k) ≤ UK
(
αt0
)2

(1 + logK) .

We thus obtain

E
[∥∥vti,k − zt∥∥2

]
≤
(

2 +
2β2

1
2
√

2
− β2

)
UK (1 + logK)

(
αt0
)2 ≤ 2

1− 2
√

2β2
UK (1 + logK)

(
αt0
)2
.

Lemma 4. Consider Algorithm 4. Let Assumptions 1 to 3 hold for some generic vector norm ‖ · ‖. Denote EDi
as the expectation

taken over the minibatch Di. We have

EDi

[∣∣∣∇f (zt)
T
uti,k

∣∣∣ I{sign
(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

))
= sign

(
∇f (zt)

T
uti,k

)}]
≤ αtkL+ ω1 + ω2

2

∥∥uti,k∥∥2
+

L2

2ω1

∥∥vti,k − zt∥∥2
+

σ2

2ω2b

(32)

Proof. Define
A =

∣∣∣∇f (zt)
T
uti,k

∣∣∣ I{sign
(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

))
= sign

(
∇f (zt)

T
uti,k

)}
.

By (18), we have

A
(18)
=
∣∣∣∇f (zt)

T
uti,k

∣∣∣ I

∣∣∣fi (vti,k + αtku

t
i,k

)
− fi

(
vti,k

)
− αtk∇f (zt)

T
uti,k

∣∣∣︸ ︷︷ ︸
∆
=B

≥ αtk
∣∣∣∇f (zt)

T
uti,k

∣∣∣
 ,
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where

B ≤
∣∣∣fi (vti,k + αtku

t
i,k

)
− fi

(
vti,k

)
− αtk∇fi

(
vti,k

)T
uti,k

∣∣∣︸ ︷︷ ︸
C1

+ αtk

∣∣∣∇fi (vti,k)T uti,k −∇fi (zt)
T
uti,k

∣∣∣︸ ︷︷ ︸
C2

+αtk

∣∣∣∇fi (zt)
T
uti,k −∇f (zt)

T
uti,k

∣∣∣︸ ︷︷ ︸
C3

.

By Assumption 1 we have

C1 ≤
L

2

∥∥αtkuti,k∥∥2
.

Noting that we have |aT b| ≤ 1
2c‖a‖

2
∗ + c

2‖b‖
2 for any a, b ∈ Rn and c ∈ R+, so

C2 ≤
1

2ω1

∥∥∇fi (vti,k)−∇fi (zt)
∥∥2

∗ +
ω1

2

∥∥uti,k∥∥2 ≤ L2

2ω1

∥∥vti,k − zt∥∥2
+
ω1

2

∥∥uti,k∥∥2

and

C3 ≤
1

2ω2
‖∇fi (zt)−∇f (zt)‖2∗ +

ω2

2

∥∥uti,k∥∥2
,

for some ω1, ω2 ∈ R+.
Putting all these together, we reach

A =
∣∣∣∇f (zt)

T
uti,k

∣∣∣ I{B ≥ αtk ∣∣∣∇f (zt)
T
uti,k

∣∣∣}
≤
∣∣∣∇f (zt)

T
uti,k

∣∣∣ I{αtkL+ ω1 + ω2

2

∥∥uti,k∥∥2
+

L2

2ω1

∥∥vti,k − zt∥∥2
+
‖∇fi (zt)−∇f (zt)‖2∗

2ω2
≥
∣∣∣∇f (zt)

T
uti,k

∣∣∣}

Now take expectation over Di. Noting that Assumptions 2 and 3 indicate that the gradient variance can be scaled down
by a factor of b = |Di|, so we have, based on the Markov inequality,

EDi [A]≤
∣∣∣∇f (zt)

T
uti,k

∣∣∣PDi

{
αtkL+ ω1 + ω2

2

∥∥uti,k∥∥2
+

L2

2ω1

∥∥vti,k − zt∥∥2
+
‖∇fi (zt)−∇f (zt)‖2∗

2ω2
≥
∣∣∣∇f (zt)

T
uti,k

∣∣∣}

≤ αtkL+ ω1 + ω2

2

∥∥uti,k∥∥2
+

L2

2ω1

∥∥vti,k − zt∥∥2
+

EDi

[
‖∇fi (zt)−∇f (zt)‖2∗

]
2ω2

≤ αtkL+ ω1 + ω2

2

∥∥uti,k∥∥2
+

L2

2ω1

∥∥vti,k − zt∥∥2
+

σ2

2ω2b
.

APPENDIX C
PROOF OF THEOREMS 2 AND 3

In this section we proof the convergence results for Algorithm 2. Since Algorithm 2 is a special case of Algorithm 4 with
Gaussian mutation, we can proceed in two steps. In the first step, we start from Lemmas 1, 3 and 4 (which are obtained
for Algorithm 4) with the specification uti,k ∼ N (0, I). This admits bounding the gradient norm averaged over the virtual
sequence {zt} with some constant U . The result is given in Lemma 5. Then, in the second step, we further specify the
vector norm used in the assumptions, from which we can get the detailed values for U . In particular, based on Lemmas 2
and 5, we can prove Theorem 2 with the specification ‖ · ‖ = ‖ · ‖2 and prove Theorem 3 with ‖ · ‖ = ‖ · ‖∞.

Lemma 5. Let Assumptions 1 to 3 hold for some generic vector norm ‖ · ‖. The virtual sequence zt produced by Algorithm 2 satisfies,
for some U ≥ E

[
‖uti,k‖2

]
,

1

T

T−1∑
t=0

E [‖∇f (zt)‖2] ≤
√

2π

αT 3/4

(
f (x0)− f∗√

K
+ LUΨ

T−1∑
t=0

(
αt0
)2

+ 2σ

√
U

b

T−1∑
t=0

αt0

)
, (33)

where Ψ is given in (7).
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Proof. First rewrite E
[
∇f (zt)

T
dt+1

]
as

E
[
∇f (zt)

T
dt+1

]
= E

[
∇f (zt)

T

(
1

M

M∑
i=1

vti,K − xt

)]

=
1

M

M∑
i=1

K−1∑
k=0

αtkE
[
sign+

(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

))
∇f (zt)

T
uti,k

]
(16)
=

1

2M

M∑
i=1

K−1∑
k=0

αtkE
[(

1 + sign
(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

)))
∇f (zt)

T
uti,k

]
(∗)
=

1

2M

M∑
i=1

K−1∑
k=0

αtkE
[
sign

(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

))
∇f (zt)

T
uti,k

]
(17)
=

1

2M

M∑
i=1

K−1∑
k=0

αtkE
[∣∣∣∇f (zt)

T
uti,k

∣∣∣ (−1 + 2I
{

sign
(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

))
= sign

(
∇f (zt)

T
uti,k

)})]
,

where (∗) is due to E
[
uti,k

]
= 0.

Now specify uti,k ∼ N (0, I). Using the identity in (23), we have

E
[
∇f (zt)

T
dt+1

]
(23)
≤ −

E [‖∇f (zt)‖2]√
2π

K−1∑
k=0

αtk

+
1

M

M∑
i=1

K−1∑
k=0

αtkE

∣∣∣∇f (zt)
T
uti,k

∣∣∣ I{sign
(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

))
= sign

(
∇f (zt)

T
uti,k

)}
︸ ︷︷ ︸

∆
=A


(43)
≤ −

E [‖∇f (zt)‖2]√
2π

αt0
√
K +

1

M

M∑
i=1

K−1∑
k=0

αtkE [A] ,

Now use Lemmas 4 and 7 to bound E [A]:

E
[
∇f (zt)

T
dt+1

]
+

E [‖∇f (zt)‖2]√
2π

αt0
√
K

≤ 1

2M

M∑
i=1

K−1∑
k=0

αtk

{(
αtkL+ ω1 + ω2

)
U +

L2

ω1
E
[∥∥vti,k − zt∥∥2

]
+

σ2

ω2b

}

≤ L2

2Mω1

M∑
i=1

K−1∑
k=0

αtkE
[∥∥vti,k − zt∥∥2

]
+
LU

2

K−1∑
k=0

(
αtk
)2

+

(
ω1 + ω2

2
U +

σ2

2ω2b

)K−1∑
k=0

αtk

(42,43)

≤ L2

2Mω1

M∑
i=1

K−1∑
k=0

αtkE
[∥∥vti,k − zt∥∥2

]
+
LU

2
(1 + logK)

(
αt0
)2

+

(
(ω1 + ω2)U +

σ2

ω2b

)√
Kαt0

Using Lemma 3 and (43) yields

E
[
∇f (zt)

T
dt+1

]
+

E [‖∇f (zt)‖2]√
2π

αt0
√
K

≤ LU
√
K

(
αt0L

ω1

2

1− 2
√

2β2
K +

1

2
√
K

)
(1 + logK)

(
αt0
)2

+

(
(ω1 + ω2)U +

σ2

ω2b

)√
Kαt0

Consider now the setting ω1 =
Lαt

0√
K
, ω2 = σ√

Ub
, and we can reach

E
[
∇f (zt)

T
dt+1

]
≤ −

E [‖∇f (zt)‖2]√
2π

αt0
√
K + LU

√
K

((
2

1− 2
√

2β2

√
K +

1

2
√
K

)
(1 + logK) +

√
K

)(
αt0
)2

+ 2σ
√
K

√
U

b
αt0.

(34)
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Using Assumption 1, we have

f (zt+1) ≤ f (zt) +∇f (zt)
T

(zt+1 − zt) +
L

2
‖zt+1 − zt‖2

(26)
= f (zt) +∇f (zt)

T
dt+1 +

L

2
‖dt+1‖2

(35)

Taking total expectation, using (27) and (34), and rearranging yield

E [‖∇f (zt)‖2]√
2π

αt0 ≤
E [f (zt)− f (zt+1)]√

K

+ LU


((

2

1− 2
√

2β2
+

1

2

)√
K +

1

2
√
K

)
(1 + logK) +

√
K︸ ︷︷ ︸

∆
=Ψ

(αt0)2 + 2σ

√
U

b
αt0.

Summing over t = 0, · · · , T − 1 gives

T−1∑
t=0

E [‖∇f (zt)‖2]√
2π

αt0 ≤
f (z0)− f∗√

K
+ LUΨ

T−1∑
t=0

(
αt0
)2

+ 2σ

√
U

b

T−1∑
t=0

αt0.

By (46), the left-hand side is no smaller than αT 3/4
√

2π
1
T

∑T−1
t=0 E [‖∇f (zt)‖2]. And noting that, by definition, z0 = x0, we

then obtain (33).

Proof of Theorem 2. Under Assumption 1 and using the specification ‖ · ‖ = ‖ · ‖∗ = ‖ · ‖2, we have

‖∇f(xt)‖2 ≤ ‖∇f(xt)−∇f(zt)‖2 + ‖∇f(zt)‖2 ≤ L‖xt − zt‖2 + ‖∇f(zt)‖2
(26)
=

Lβ

1− β
‖xt − xt−1‖2 + ‖∇f(zt)‖2

which gives, via taking expectation,

E [‖∇f(zt)‖2] ≥ E [‖∇f(xt)‖2]− Lβ

1− β
E [‖xt − xt−1‖2] .

Substituting this into (33) and using b ≥
√
T yield

1

T

T−1∑
t=0

E [‖∇f(xt)‖2] ≤
√

2π

αT 3/4

(
f (x0)− f∗√

K
+ LUΨ

T−1∑
t=0

(
αt0
)2

+ 2σ

√
U

b

T−1∑
t=0

αt0

)
+

Lβ

1− β
1

T

T−1∑
t=0

E [‖xt − xt−1‖2]

(29),(43),(45)

≤
√

2π

αT 3/4

(
f (x0)− f∗√

K
+ LUΨα22

√
T + 2σ

√
U

b
α

4

3
T 3/4

)
+ Lβ

160α
√
KU

3T 1/4

≤
√

2π

T 3/4

f (x0)− f∗
α
√
K

+

√
U

T 1/4

(
2αL

(
√

2πUΨ +
80β
√
K

3

)
+

8
√

2πσ

3

)
.

where when using (29) we have specified ‖ · ‖ = ‖ · ‖2. Finally, according to Lemma 7, we have E
[
‖uti,k‖22

]
= n when

uti,k ∼ N (0, I). We can therefore choose U = n and then reach the target bound.

Proof of Theorem 3. Firstly, the assumption ‖∇f(x)‖0 ≤ s implies

‖∇f(x)‖∞ ≤ ‖∇f(x)‖2 ≤ ‖∇f(x)‖1 ≤
√
s‖∇f(x)‖∞,

and hence we have

‖∇f(xt)‖1 ≤ ‖∇f(xt)−∇f(zt)‖1 + ‖∇f(zt)‖1
≤ ‖∇f(xt)−∇f(zt)‖1 +

√
s‖∇f(zt)‖2

(∗)
≤ L‖xt − zt‖∞ +

√
s‖∇f(zt)‖2

(26)
=

Lβ

1− β
‖xt − xt−1‖∞ +

√
s‖∇f(zt)‖2

where (∗) uses Assumption 1 with the specification ‖ · ‖ = ‖ · ‖∞ and ‖ · ‖∗ = ‖ · ‖1. Taking expectation and rearranging
give

E[‖∇f(zt)‖2] ≥ 1√
s

(
E[‖∇f(xt)‖1]− Lβ

1− β
E[‖xt − xt−1‖∞]

)
.
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Substituting this into the left-hand side of (33) in Lemma 5 yields

1

T

T−1∑
t=0

E[‖∇f(xt)‖1] ≤ Lβ

1− β
1

T

T−1∑
t=0

E[‖xt − xt−1‖∞] +

√
2πs

αT 3/4

(
f (x0)− f∗√

K
+ LUΨ

T−1∑
t=0

(
αt0
)2

+ 2σ

√
U

b

T−1∑
t=0

αt0

)
(29)
≤ 160Lβα

√
KU

3T 1/4
+

√
2πs

αT 3/4

(
f (x0)− f∗√

K
+ LUΨ

T−1∑
t=0

(
αt0
)2

+ 2σ

√
U

b

T−1∑
t=0

αt0

)
(43,45)

≤ 160Lβα
√
KU

3T 1/4
+

√
2πs

αT 3/4

(
f (x0)− f∗√

K
+ LUΨα22

√
T + 2σ

√
U

b
α

4

3
T 3/4

)

≤
√

2πs

T 3/4

f (x0)− f∗
α
√
K

+

√
U

T 1/4

(
2αL

(
√

2πUsΨ +
80β
√
K

3

)
+

8
√

2πsσ

3

)

where the last step uses the assumption b ≥
√
T .

Since we have used Lemma 5, we need U ≥ E
[
‖uti,k‖2∞

]
. According to Lemma 7, we know U = 4 log(

√
2n) is valid

choice. We then obtain the final bound as

1

T

T−1∑
t=0

E[‖∇f(xt)‖1] ≤
√

2πs

T 3/4

f (x0)− f∗
α
√
K

+
8
√

log(
√

2n)

T 1/4

(
αL

(√
2πs log(

√
2n)Ψ +

10β
√
K

3

)
+

2
√

2πsσ

3

)

APPENDIX D
PROOF OF PROPOSITIONS 1 AND 2
In the above proofs for DES with Gaussian mutation, we have repeatedly used the lower bound of E[|uTy|] where y ∈ Rn
and u is random. This bound is trivial when u ∼ N (0, I), as has been given in (23). To prove Theorems 4 and 5 we need a
similar bound whenu is sampled from the mixture Gaussian distributionMG

l or the mixture Rademacher distributionMR
l .

This can be achieved by analyzing the second-order and the fourth-order momentums of the corresponding probability
distribution; this is the reason why Propositions 1 and 2 are required.

Proof of Proposition 1. We prove this proposition using moment-generating function.
Denote the moment-generating function ofMG

l by M(t). By definition, M(t) can be written as

M(t) = E
[
exp(tTu)

]
= E

exp

√
n

l

tT l∑
j=1

erjzj

 = E

exp

√
n

l

 l∑
j=1

trjzj

 (∗)
=

l∏
j=1

E
[
exp

(√
n

l
trjzj

)]

=
l∏

j=1

E

[
n∑
k=1

I{rj = k} exp

(√
n

l
trjzj

)]
=

l∏
j=1

n∑
k=1

P{rj = k}Ek
[
exp

(√
n

l
tkzj

)]
where trj denotes the rj-th element of t and Ek denotes the expectation conditioned on the event rj = k. Equation (∗) is
due to the independence of {zj} and {rj}.

Since the coordinate index rj is sampled uniformly with replacement, we have P{rj = k} = 1
n . Note that Ek[exp(tkzj)]

is in fact the (conditioned) moment-generating function of the univariate Gaussian variable
√

n
l zj , which is given by

exp
(
n
2l t

2
k

)
. So we reach

M(t) =
l∏

j=1

n∑
k=1

1

n
exp

( n
2l
t2k

)
=

(
1

n

n∑
k=1

exp
( n

2l
t2k

))l
.

By construction, the covariance matrix must be diagonal, so we focus on its diagonal elements. Firstly, take the partial
derivative with respect to tj and this yields

∂M(t)

∂tj
=

l

n

(
1

n

n∑
k=1

exp
( n

2l
t2k

))l−1
∂

∂tj
exp

( n
2l
t2j

)
=

(
1

n

n∑
k=1

exp
( n

2l
t2k

))l−1

exp
( n

2l
t2j

)
tj .

The second-order partial derivative is then

∂2M(t)

∂t2j
=

 ∂

∂tj

(
1

n

n∑
k=1

exp
( n

2l
t2k

))l−1
 exp

( n
2l
t2j

)
tj︸ ︷︷ ︸

T1

+

(
1

n

n∑
k=1

exp
( n

2l
t2k

))l−1

︸ ︷︷ ︸
T2

∂

∂tj

(
exp

( n
2l
t2j

)
tj
)

︸ ︷︷ ︸
T3

.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 24

When setting t = 0, T1 vanishes and T2 becomes 1. We also have

T3 = exp
( n

2l
t2j

)( ∂

∂tj

( n
2l
t2j

))
tj + exp

( n
2l
t2j

)
t=0⇒ 1.

So the j-th diagonal element is 1. We therefore conclude that u has an identity covariance matrix.
In a similar manner, the moment-generating function of yTu is

M̃(t) =

(
1

n

n∑
k=1

exp
( n

2l
y2
kt

2
))l

.

Now expand the exponential term as Taylor series

M̃(t) =

(
1

n

n∑
k=1

(
1 +

n

2l
y2
kt

2 +
1

2

( n
2l
y2
kt

2
)2

+O(t6)

))l
=

(
1 +

1

2l
‖y‖22t2 +

n

8l2
‖y‖44t4 +O(t6)

)l
.

Using the multinomial theorem, we get

M̃(t) =
l∑

j=0

(
l
j

)( 1

2l
‖y‖22t2 +

n

8l2
‖y‖44t4 +O(t6)

)j
= (l1)

( n

8l2
‖y‖44t4

)
+ (l2)

(
1

2l
‖y‖22t2

)2

+ 1 +At2 +O(t6)

=
1

8

(
n

l
‖y‖44 +

l − 1

l
‖y‖42

)
t4 + 1 +At2 +O(t6)

where A is some constant not depending on t. We can then reach the desired result by taking the fourth-order derivative
and setting t = 0, i.e.,

E
[
|yTu|4

]
=

∂4

∂t4
M̃(t)

∣∣∣∣∣
t=0

= 3

(
n

l
‖y‖44 +

l − 1

l
‖y‖42

)
+O(t2)

∣∣∣∣∣
t=0

= 3

(
n

l
‖y‖44 +

l − 1

l
‖y‖42

)
.

Proof of Proposition 2. The proof is very similar to that of Proposition 1. First, we obtain the moment-generating function
forMR

l as

M(t) = E
[
exp(tTu)

]
= E

exp

√
n

l

tT l∑
j=1

erjzj

 = E

exp

√
n

l

 l∑
j=1

trjzj

 (∗)
=

l∏
j=1

E
[
exp

(√
n

l
trjzj

)]

=
l∏

j=1

E

[
n∑
k=1

I{rj = k} exp

(√
n

l
trjzj

)]
=

l∏
j=1

n∑
k=1

P{rj = k}Ek
[
exp

(√
n

l
tkzj

)]

=
l∏

j=1

1

2n

n∑
k=1

(
exp

(√
n

l
tk

)
+ exp

(
−
√
n

l
tk

))
=

(
1

2n

n∑
k=1

(
exp

(√
n

l
tk

)
+ exp

(
−
√
n

l
tk

)))l
.

Equation (∗) in the above is due to the independence of {zj} and {rj}. The partial derivative with respect to tj is then

∂M(t)

∂tj
=

1

2

√
l

n

(
1

2n

n∑
k=1

(
exp

(√
n

l
tk

)
+ exp

(
−
√
n

l
tk

)))l−1 (
exp

(√
n

l
tj

)
− exp

(
−
√
n

l
tj

))
and

∂2M(t)

∂t2j
=

1

2

√
l

n

∂

∂tj

(
1

2n

n∑
k=1

(
exp

(√
n

l
tk

)
+ exp

(
−
√
n

l
tk

)))l−1 (
exp

(√
n

l
tj

)
− exp

(
−
√
n

l
tj

))
︸ ︷︷ ︸

=0 when t=0

+
1

2

√
l

n

(
1

2n

n∑
k=1

(
exp

(√
n

l
tk

)
+ exp

(
−
√
n

l
tk

)))l−1

︸ ︷︷ ︸
=1 when t=0

∂

∂tj

(
exp

(√
n

l
tj

)
− exp

(
−
√
n

l
tj

))
.

We therefore obtain

∂2M(t)

∂t2j

∣∣∣∣∣
t=0

=
1

2

√
l

n

∂

∂tj

(
exp

(√
n

l
tj

)
− exp

(
−
√
n

l
tj

)) ∣∣∣∣∣
t=0

= 1
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As the covariance matrix is diagonal, we conclude from the above that the covariance matrix is an identity matrix.
The moment-generating function of the random variable yTu, denoted by M̃(t), can be obtained by substituting t = yt

into M(t):

M̃(t) =

(
1

2n

n∑
k=1

(
exp

(√
n

l
ykt

)
+ exp

(
−
√
n

l
ykt

)))l
=

(
1

n

n∑
k=1

cosh

(√
n

l
ykt

))l
.

Now expanding the cosh function using Taylor series, we obtain

M̃(t) =

(
1

n

n∑
k=1

(
1 +

1

2

(√
n

l
ykt

)2

+
1

4!

(√
n

l
ykt

)4

+O(t6)

))l

=

(
1 +

1

2l
‖y‖22t2 +

n

24l2
‖y‖44t4 +O(t6)

)l
= l

( n

24l2
‖y‖44t4

)
+
l(l − 1)

2

(
1

2l
‖y‖22t2

)2

+ 1 +At2 +O(t6).

The fourth-order moment of yTu can be obtained as

E[|yTu|] =
∂4

∂t4
M̃(t)

∣∣∣∣∣
t=0

=
n

l
‖y‖44 + 3

l − 1

l
‖y‖42.

APPENDIX E
PROOF OF THEOREMS 4 AND 5
We will require the following lemma, which can be derived from Propositions 1 and 2.

Lemma 6. Let y ∈ Rn be a vector satisfying ‖y‖42/‖y‖44 ≥ s̃ for some constant s ∈ [1, n]. We have

E[|yTu|] ≥ ‖y‖2√
3n/(s̃l) + 3

for u ∼MG
l

and

E[|yTu|] ≥ ‖y‖2√
n/(s̃l) + 3

for u ∼MR
l .

Proof. First, by Hölder’s inequality, we have

E[|yTu|] ≥
(
E[|yTu|2]

)3/2
(E[|yTu|4])

1/2
=

‖y‖32
(E[|yTu|4])

1/2
. (36)

where the equality uses the fact V[u] = I , according to Propositions 1 and 2.
Now consider the case of mixture Gaussian sampling. In this case, we have, from (11), that

E[|yTu|] ≥ ‖y‖32√
3
(
n
l ‖y‖

4
4 + l−1

l ‖y‖
4
2

) . (37)

Using the assumption ‖y‖42/‖y‖44 ≥ s̃ then yields

E[|yTu|] ≥ ‖y‖32√
3
(
n
s̃l‖y‖

4
2 + l−1

l ‖y‖
4
2

) =
‖y‖2√

3
(
n
s̃l + l−1

l

) ≥ ‖y‖2√
3 (n/(s̃l) + 1)

.

Consider then the case of mixture Rademacher sampling. From (36), (12), and the assumption ‖y‖42/‖y‖44 ≥ s̃, we have

E[|yTu|] ≥ ‖y‖32√
n
l ‖y‖

4
4 + 3 l−1

l ‖y‖
4
2

≥ ‖y‖32√
n
s̃l‖y‖

4
2 + 3 l−1

l ‖y‖
4
2

=
‖y‖2√

n/(s̃l) + 3 l−1
l

≥ ‖y‖2√
n/(s̃l) + 3

. (38)

Proof of Theorem 4. Recall that the DES with mixture Gaussian sampling is a special case of Algorithm 4, so we can reuse
Lemmas 1 to 4 which are derived for Algorithm 4.
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The first step in this proof is to obtain a similar bound as in Lemma 5. We begin with rewriting E
[
∇f (xt)

T
dt+1

]
. For

β = 0, we have zt = xt and

E
[
∇f (xt)

T
dt+1

]
= E

[
∇f (xt)

T

(
1

M

M∑
i=1

vti,K − xt

)]

=
1

M

M∑
i=1

K−1∑
k=0

αtkE
[
sign+

(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

))
∇f (xt)

T
uti,k

]
(16)
=

1

2M

M∑
i=1

K−1∑
k=0

αtkE
[(

1 + sign
(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

)))
∇f (xt)

T
uti,k

]
=

1

2M

M∑
i=1

K−1∑
k=0

αtkE
[
sign

(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

))
∇f (xt)

T
uti,k

]
(17)
=

1

2M

M∑
i=1

K−1∑
k=0

αtkE
[∣∣∣∇f (xt)

T
uti,k

∣∣∣ (−1 + 2I
{

sign
(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

))
= sign

(
∇f (xt)

T
uti,k

)})]
(44)
≤ − αt0

2M
√
K

M∑
i=1

K−1∑
k=0

E
[∣∣∣∇f (xt)

T
uti,k

∣∣∣]

+
1

M

M∑
i=1

K−1∑
k=0

αtkE

∣∣∣∇f (xt)
T
uti,k

∣∣∣ I{sign
(
fi
(
vti,k

)
− fi

(
vti,k + αtku

t
i,k

))
= sign

(
∇f (xt)

T
uti,k

)}
︸ ︷︷ ︸

∆
=A


= − αt0

2M
√
K

M∑
i=1

K−1∑
k=0

E
[∣∣∣∇f (xt)

T
uti,k

∣∣∣]+
1

M

M∑
i=1

K−1∑
k=0

αtkE [A]

(39)

Using the assumption ‖∇f(x)‖42/‖∇f(x)‖44 ≥ s̃ and Lemma 6, we have

E
[
∇f (xt)

T
dt+1

]
≤ −α

t
0

√
K

2V
E [‖∇f (xt)‖2] +

1

M

M∑
i=1

K−1∑
k=0

αtkE [A]

where V is a constant that can be set to

V =
√

3 + 3n/(s̃l). (40)

Note that Lemma 4 gives an upper bound for the term E[A]. We therefore have

E
[
∇f (xt)

T
dt+1

]
+
αt0
√
K

2V
E [‖∇f (xt)‖2]

≤ 1

M

M∑
i=1

K−1∑
k=0

αtk

(
αtkL+ ω1 + ω2

2
E
[
‖uti,k‖2

]
+

L2

2ω1
E
[
‖vti,k − zt‖2

]
+

σ2

2ω2b

)

≤ 1

M

M∑
i=1

K−1∑
k=0

αtk

(
αtkL+ ω1 + ω2

2
U +

L2

2ω1
E
[
‖vti,k − zt‖2

]
+

σ2

2ω2b

)
.

Now use Lemma 3 to bound E
[
‖vti,k − zt‖2

]
and use the setting β = 0:

E
[
∇f (xt)

T
dt+1

]
+
αt0
√
K

2V
E [‖∇f (xt)‖2]

(31),β=0

≤
K−1∑
k=0

αtk

(
αtkL+ ω1 + ω2

2
U +

L2

ω1
UK(1 + logK)(αt0)2 +

σ2

2ω2b

)

=
LU

2

K−1∑
k=0

(αtk)2 +

(
L2

ω1
UK(1 + logK)(αt0)2 +

ω1 + ω2

2
U +

σ2

2ω2b

)K−1∑
k=0

αtk.
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Letting ω1 =
Lαt

0√
K
, ω2 = σ√

Ub
yields

E
[
∇f (xt)

T
dt+1

]
+
αt0
√
K

2V
E [‖∇f (xt)‖2]

=
LU

2

K−1∑
k=0

(αtk)2 +

(
LU

(√
K(1 + logK) +

1

2
√
K

)
αt0 +

√
Uσ√
b

)
K−1∑
k=0

αtk

(42,43)

≤ LU

2
(1 + logK)(αt0)2 +

(
LU

(√
K(1 + logK) +

1

2
√
K

)
αt0 +

√
Uσ√
b

)
2
√
Kαt0

=
√
KLU

((
1

2
√
K

+ 2
√
K

)
(1 + logK) +

1√
K

)
(αt0)2 +

√
Uσ√
b

2
√
Kαt0.

(41)

On the other hand, by the smoothness assumption, we have

E [f (xt+1)− f (xt)] ≤ E
[
∇f(xt)

Tdt+1

]
+
L

2
E
[
‖dt+1‖2

]
(41)
≤ −α

t
0

√
K

2V
E [‖∇f (xt)‖2] +

√
KLU

((
1

2
√
K

+ 2
√
K

)
(1 + logK) +

1√
K

)
(αt0)2 +

√
Uσ√
b

2
√
Kαt0 +

L

2
E
[
‖dt+1‖2

]
(27)
≤ −α

t
0

√
K

2V
E [‖∇f (xt)‖2] +

√
KLU

((
1

2
√
K

+
5

2

√
K

)
(1 + logK) +

1√
K

)
︸ ︷︷ ︸

∆
=Ψ̂

(αt0)2 +

√
Uσ√
b

2
√
Kαt0,

where in the last step we have reused the bound in Lemma 1. Summing the above up for t = 0, · · · , T − 1 gives

T−1∑
t=0

αt0
E [‖∇f (xt)‖2]

V
≤ 2

f(x0)− f∗√
K

+ 4

√
Uσ√
b

T−1∑
t=0

αt0 + 2LUΨ̂
T−1∑
t=0

(αt0)2

(43,45)

≤ 2
f(x0)− f∗√

K
+

16

3

√
Uσ√
b
αT

3
4 + 4LUΨ̂α2

√
T

b≥
√
T
≤ 2

f(x0)− f∗√
K

+
16

3

√
Uσα

√
T + 4LUΨ̂α2

√
T .

The left-hand side is bounded from below as

T−1∑
t=0

αt0
E [‖∇f (xt)‖2]

V

(46)

≥ αT
3
4

1

T

T−1∑
t=0

E [‖∇f (xt)‖2]

V
.

We therefore have
1

T

T−1∑
t=0

E [‖∇f (xt)‖2]

V
≤ 2

T
3
4

f(x0)− f∗
α
√
K

+

(
16

3
σ + 4L

√
UΨ̂α

) √
U

T
1
4

.

The final step is to specify the value of U which is an upper bound of E[‖uti,k‖2]. For any uti,k drawn from MG
l , we

know from Proposition 1 that it has an identical covariance matrix and all its coordinates are independently distributed. It
means Lemma 7 can be used here. In particular, since we are considering the setting ‖ · ‖ = ‖ · ‖2, we can choose U = n.
Substituting the value of V in (40) into the above inequality completes the proof.

Proof of Theorem 5. The proof is almost identical to that of Theorem 4, since by Propositions 1 and 2 the two mixture
sampling schemes only differ in the fourth-order moment, which is used in bounding

E
[∣∣∣∇f(xt)

Tuti,k

∣∣∣]
in (39). Note that by Proposition 2 the above can be lower bounded by ‖∇f(xt)‖2√

n/(s̃l)+3
. Therefore, we can simply replace the

value of V in (40) by

Vt =
√

3 + n/(s̃l)

and we will get the final bound.
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APPENDIX F
AUXILIARY LEMMAS

Lemma 7. Let ‖ · ‖ be a vector norm in Rn. Let u ∈ Rn be any random vector satisfying E[u] = 0 and V[u] = I . Assume all
coordinates of u are distributed independently. Then, there exists a constant U > 0 such that E

[
‖u‖2

]
≤ U . In particular, we can

choose U = n for ‖ · ‖ = ‖ · ‖2 and U = 4 log
(√

2n
)

for ‖ · ‖ = ‖ · ‖∞.

Proof. First, by the identity covariance matrix assumption, we have E[‖u‖22] = Tr[E[uuT ]] = Tr [V[u]] = Tr[I] = n, where
Tr[·] denotes the matrix trace. So this suggests the `2 norm of u can be bounded by U ∆

= n. Then, due to the equivalence of
vector norm, we know such a bound exists for all norms. In the next, we study the case of `∞ norm.

Let t ∈ (0, 1/2) be a constant. By the convexity of ‖ · ‖∞, we have

exp
(
tE
[
‖u‖2∞

])
≤ E

[
exp

(
t ‖u‖2∞

)]
= E

[
exp

(
t max
1≤i≤n

u2
i

)]
≤

n∑
i=1

E
[
exp

(
tu2
i

)]
= nE

[
exp

(
tu2

1

)]
,

where the last equation is due to that all elements in u are independently distributed.
The rightmost expectation can be calculated explicitly as

E
[
exp

(
tu2

1

)]
=

1√
2π

∫
exp

(
tu2

1

)
exp

(
−1

2
u2

1

)
du1 =

1√
2π

∫
exp

(
−1− 2t

2
u2

1

)
du1 =

1√
1− 2t

.

It follows that
exp

(
tE
[
‖u‖2∞

])
≤ n√

1− 2t

and therefore

E
[
‖u‖2∞

]
≤ 1

t
log

n√
1− 2t

.

Note that this inequality holds for any t ∈ (0, 1/2). So we can choose t = 1/4 and then the desired bound E
[
‖u‖2

]
≤

4 log
(√

2n
)

follows.

Lemma 8. For J ∈ Z+ we have the following properties for the partial sum of p-series with p = 1, 0.5, or 0.25:

J∑
j=1

1

j
≤ 1 + log J (42)

√
J ≤

J∑
j=1

1

j0.5
≤ 2
√
J (43)

J∑
j=1

aj
j0.5
≥
√
J

 1

J

J∑
j=1

aj

 ,∀aj ≥ 0 (44)

J∑
j=1

1

j0.25
≤ 4

3
J3/4 (45)

J∑
j=1

aj
j0.25

≥ J3/4

 1

J

J∑
j=1

aj

 ,∀aj ≥ 0 (46)

Proof. (44) and (46) are trivial. For (42), (43) and (45) see [56, Section 4.1].

Lemma 9. For β <
√

1
2
√

2
, we have the following bounds

t∑
j=1

βt−j

j0.25
=
βt−1

10.25
+ · · ·+ β0

t0.25
≤ 20

t0.25
, (47)

t∑
j=1

(
2β2

)t−j
√
j

=

(
2β2

)t−1

√
1

+ · · ·+
(
2β2

)0
√
t
≤ 1
√
t
(

1− 2
√

2β2
) (48)

Proof. Both bounds hold trivially for t = 1, so we prove them with induction.
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(a) LR, rcv1 (b) NSVM, rcv1 (c) LSVM, rcv1

(d) LR, SUSY (e) NSVM, SUSY (f) LSVM, SUSY

(g) LR, mnist (h) NSVM, mnist (i) LSVM, mnist

Fig. 7. Generalization performance on rcv1, SUSY, and mnist datasets. The curve displays the test error versus the number of rounds and the
corresponding shaded area extends from the 25th to 75th percentiles over the results obtained from all independent runs.
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(a) LR, real-sim (b) NSVM, real-sim (c) LSVM, real-sim

(d) LR, ijcnn1 (e) NSVM, ijcnn1 (f) LSVM, ijcnn1

(g) LR, covtype (h) NSVM, covtype (i) LSVM, covtype

Fig. 8. Generalization performance on real-sim, ijcnn1, and covtype datasets. The curve displays the test error versus the number of rounds and
the corresponding shaded area extends from the 25th to 75th percentiles over the results obtained from all independent runs.
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