
1

SMURF: Efficient and Scalable Metadata
Access for Distributed Applications

Bing Zhang, Tevfik Kosar, Senior Member, IEEE

Abstract—In parallel with big data processing and analysis dominating the usage of distributed and cloud infrastructures, the demand
for distributed metadata access and transfer has increased. In many application domains, the volume of data generated exceeds
petabytes, while the corresponding metadata amounts to terabytes or even more. This paper proposes a novel solution for efficient and
scalable metadata access for distributed applications across wide-area networks, dubbed SMURF. Our solution combines novel
pipelining and concurrent transfer mechanisms with reliability, provides distributed continuum caching and prefetching strategies to
sidestep fetching latency, and achieves scalable and high-performance metadata fetch/prefetch services in the cloud. We also study
the phenomenon of semantic locality in real trace logs, which is not well utilized in metadata access prediction. We implement a novel
prefetch predictor based on this observation and compare it with three existing state-of-the-art prefetch schemes on Yahoo! Hadoop
audit traces. By effectively caching and prefetching metadata based on the access patterns, our continuum caching and prefetching
mechanism significantly improves local cache hit rate and reduces the average fetching latency. We replayed approximately 20 Million
metadata access operations from real audit traces, in which our system achieved 90% accuracy during prefetch prediction and reduced
the average fetch latency by 50% compared to the state-of-the-art mechanisms.

Index Terms—Heterogeneity, scalability, metadata access, prefetch prediction, continuum caching, semantic locality.

F

1 INTRODUCTION

W E are witnessing a new era that offers new op-
portunities to conduct data-intensive scientific re-

search with the help of recent advancements in computa-
tional, storage, and network technologies. With the rapid
deployment of distributed infrastructures and the collab-
orations between different organizations (e.g., XSEDE [1],
OSG [2], Chameleon [3] and Cloudlab [4]), it is feasible
and promising to run scientific applications on these large-
scale geo-distributed infrastructures. In many application
domains, including environmental and coastal hazard pre-
diction, climate modeling, high-energy physics, astronomy,
and genome mapping, the volume of data generated has
already exceeded petabytes, while the corresponding meta-
data amounts to terabytes or even more [5]. According
to Roselli [6]’s study, more than 50% of all I/O opera-
tions are due to metadata-intensive computing, and the
requests to read file attributes dominate in all workloads.
The data movement is the common operation between the
data I/O nodes, compute clusters, and user workstations
for reconstruction, analysis, and visualization of the data.
The cloud-hosted metadata catalog (e.g., Globus Catalog [7],
iRODS Metadata Catalog [8]) mitigates the difficulty of
browsing, tracking, and discovery of the data. Thus, re-
mote metadata retrieval and searching always have been
conducted frequently between the users and cloud services,
even over wide-area networks. Data lakes [9], [10], [11] have
been proposed to meet the requirement that scientists and

• B. Zhang is with National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign, Champaign, IL 61801
E-mail: bing@illinois.edu

• T. Kosar is with the Department of Computer Science and Engineering at
the University at Buffalo (SUNY), Buffalo, NY, 14260.

researchers are seeking broader access to different types
of “raw data” organized in a contextual format that can
be used across different projects. In contrast to the data
warehouse schema [12], the data schema in a data lake is
not predefined. With the help of a metadata description, a
data lake system can annotate, integrate, and query the raw
data. Without the metadata, data alone is not useful, and the
data lake becomes a data swamp [9].

More recently, with the unprecedented growth of the
Internet of Things (IoT) devices (e.g., sensors, virtual reality,
smartphones, smart vehicles, smart homes, and smart gro-
cery stores) connecting to the world [13], the drops in the
cost of sensors [14], and the advanced technologies in wired
and wireless networks, more than 50 billion edge devices
are expected to be connected to the cloud by 2022 [15].
IoT devices autonomously capture and ingest data and
seamlessly integrate with the modern IT infrastructures,
and it is tenable to argue that IoT data is becoming the
Big Data. In the IoT data processing, the real-time response
is the inherent core feature. IBM estimates that 90% of
the data generated by the end devices like tablets and
smartphones is never analyzed, and as much as 60% of
this data will start to lose value within milliseconds of
being generated [16]. Intelligent IoT applications such as
camera-based monitoring systems collect the real-time data
and send the aggregated information of the raw data to
the remote analytic platforms (e.g., Apache Storm [17],
Apache Spark [18], and IBM Infosphere Streams [19]) for
real-time decision-making. Traditional remote exchange of
information from the distant cloud cannot meet the ultra-
low latency requirements of these time-sensitive and geo-
graphically dispersed IoT applications. Consequentially, the
challenge beckons a paradigm shift in which the data and
metadata can be accessed anywhere, anytime, and from any

ar
X

iv
:2

10
5.

14
15

7v
1

 [
cs

.D
C

]
 2

9
M

ay
 2

02
1

2

device.
Access to proper metadata is extremely latency-sensitive

also due to user experience and critical business operations:
Google reported 20% revenue loss due to a specific ex-
periment that increased the time to display search results
by as little as 500 milliseconds; and Amazon reported 1%
sales decrease for an additional delay of as little as 100
milliseconds [20]. Unfortunately, most of the existing studies
have focused on the efficient and scalable transfer of large-
scale data, and there has been little work focusing on the op-
timization of remote access and transferring of metadata [21]
in wide-area networks. By considering wide-area network
latency, the frequency of revalidation of metadata, and the
rapid growth of IoT, efficient and scalable metadata access
and transfer technologies are demanded and expected to be-
come a cornerstone of modern distributed IT infrastructures.

In this paper, we present a novel metadata access and
retrieval system, called SMURF, which is built on the dis-
tributed continuum caching and prefetching architecture to
effectively fetch, prefetch, and cache metadata on different
hierarchical layers (as shown in Figure 1) between clients
and remote I/O servers in a wide-area network (WAN) set-
ting. The merits of the SMURF system have been illustrated
by the scalability of the real-time metadata transferring and
the reliability of metadata access from heterogeneous remote
I/O nodes. The main contributions of this paper include:

• Design and implementation of an efficient and scal-
able metadata access and transferring technique for
millions of metadata instances and records in WAN.

• Design and implementation of a distributed contin-
uum caching and prefetching technique to sidestep
metadata access and transfer latency in WAN.

• An interoperable solution that can work for hetero-
geneous metadata sources, not just specific for any
protocol.

• A study of the phenomenon of semantic locality
in real system traces and development of a novel
semantic locality prefetch scheme, which can achieve
more than 90% accurate prediction rate.

• Comparison of four different prefetch predictors (our
semantic locality prefetch predictor and three state-
of-the-art predictors, namely, NEXUS, AMP and
FARMER) and the legacy LRU cache on the Yahoo
HDFS traces.

The rest of the paper is organized as follows: Section 2
describes the proposed system architecture and discusses
its design issues; Section 3 presents the simulation method-
ology and performance evaluations; Section 4 discusses
existing relevant work in this area; and Section 5 concludes
the paper.

2 SYSTEM ARCHITECTURE

Two major goals of the SMURF system are (1) provid-
ing interoperability between heterogeneous and distributed
nodes through on-the-fly inter-protocol translation and (2)
improvement of the metadata transfer performance while
meeting the scalability demands to enable large-scale meta-
data access over WAN on demand. Both of these capabilities

Heterogeneous
Metadata Sources

WAN

Cloud

protocols storage

Fog
Node

Continuum Caching and Prefetching

Cache

prefetch predictor

Edge
Server

LAN

Client

Layer-1 Layer-2 Layer-3

Fig. 1: Client devices fetch/prefetch metadata of interest
in WAN via SMURF’s distributed continuum cache and
prefetch mechanism.

are crucial in translating raw data into knowledge and
discovery in an efficient way.

Interoperability is a critical need since valuable data may
reside on different I/O servers or cloud services. In such
heterogeneous and distributed environments, users have to
install different protocol clients (e.g., HTTP [22], FTP [23],
GSIFTP [24], IRODS [25], and Amazon S3 [26]) which makes
the edge devices tightly coupled with specific services.
Therefore, it is cumbersome and requires extra expertise
to switch between the different services. SMURF deploys
a cloudlet edge cluster to the proximity of IoT devices,
where the edge application can communicate with our edge
cloudlet services with the universal programming interface
(e.g., RESTful API), and the remote metadata resources to be
retrieved can be expressed as Uniform Resource Identifier
(URI) inside the requests.

Scalability is another central technical challenge in dis-
tributed metadata access. IoT applications, especially the
sensor-based applications, have to process the dynamic
workloads in real-time. The scalability of transferring large-
scale metadata is a significant criterion to evaluate the
performance of such systems. SMURF improves metadata
transfer performance and meets scalability demands by us-
ing optimized pipelining and concurrency techniques. Con-
currency is an effective way to improve the end-to-end data
transfer performance and has been well studied by many
previous works [27], [28], [29], [30], [31], [32], [33], [34].
Our system provides cloud service to establish and maintain
multiple connections to the remote servers from a number
of cluster machines. It also utilizes a hierarchical mechanism
for the continuum caching and prefetching along the IoT-to-
Cloud path, where the cache and the metadata prefetch pre-
dictor have been installed on each edge/fog layer. SMURF
employs a novel approach based on semantic locality to
predict the metadata access of distributed workloads over
WAN.

In the following subsections, we introduce the details of
the SMURF architecture, discuss each functional component
of the system, and outline the system’s end-to-end operation
workflow.

2.1 SMURF Overview
SMURF has a hierarchical architecture, as shown in Figure 1,
consisting of two major components: (1) a centralized cloud
cluster with the scalable fetch/prefetch services provides
the universal pipelining and concurrent metadata transfer
mechanisms with reliability; (2) the distributed continuum

3

Frontend HTTP
Service

Prefetch Services

Prefetch
Jobs Queue

Frontend HTTP
Service

C
loud

Metadata
Updates

Subscriber

Prefetch Jobs
Wait-notify Queue

Fetch Jobs
Wait-notify Queue

EdgeClients

IO Servers

Fetch Services

Fetch Jobs
Queue

Fig. 2: High-level overview of SMURF’s metadata fetching
and prefetching between edge server and cloud.

caching and smart prefetching strategies are deployed on
edge/fog layers in clients’ nearby networks, where the cus-
tomized locality prefetch schemes utilize the local storage
effectively to capture the future metadata to the proximity
of clients.

Figure 2 shows the high-level metadata fetching and
prefetching mechanism between the edge and the cloud.
When clients submit the metadata fetch requests to the edge
server, the edge server will first try to read the metadata
from the local storage and reply to the clients. The edge
server will then send the requests to the prefetch predictor
to analyze the request access patterns and predict the cor-
relation metadata. The edge server establishes connections
to the cloud server and sends/receives the fetch request
and its correlation prefetch requests in pipelining. The edge
requests will be dispatched to the clusters of fetch/prefetch
services in the cloud and processed in parallel.

2.2 Universal Metadata Transfer Stream
The universal transfer stream is designed and implemented
to coordinate and optimize the metadata access and transfer
over different heterogeneous application-level transfer pro-
tocols over WAN. One universal transfer stream retrieves
the metadata of interest from the remote I/O server using a
single TCP connection, and its novelty will be illustrated
in three aspects. First, very different from implementing
the traditional programming model, our implementation
decouples the protocol’s definition and the message transfer
mechanism. We abstract and reconstruct the definition of
protocol request as a chain of commands and parsers, and
our transfer stream can send and parse different protocol
requests in a universal mechanism. Furthermore, the pro-
tocol definition is provided as a library with programma-
bility and extensibility; thus, users can follow the con-
vention to customize their protocol to interact with the
SMURF’s universal transfer stream. Currently, SMURF sup-
ports application-layer transfer protocols such as FTP [23],
SFTP [35], GSIFTP [36], IRODS [25], and Amazon S3 [26].
Second, our transfer stream can efficiently utilize the net-
work bandwidth via metadata transfer pipelining. The
value of pipeline capacity can configure transfer stream
channel, where the pipelining capacity defines the maximum
value of C requests (request is a user’s logical activity, such
as auth, login, and metadata retrieval) to be continuously

sent over one TCP connection without blocking or waiting
for the completion of the previous replies from remote
servers. Third, the stream is aware of the transfer status and
supports failure recovery. When the connection is broken,
the stream can automatically re-establish the connection and
notify the service to re-dispatch the pending requests.

2.2.1 Metadata Transfer Stream Programming Model

An application-level protocol defines how the application
exchanges the information between its distributed compo-
nents. Especially during end-to-end metadata transferring,
one round of information exchange will be initiated by a
command sent from a client to the remote server, waiting for
the arrival of the reply from the remote server, and then ter-
minated by parsing the reply based on the protocol defini-
tion. The completion of one metadata request will require at
least one round of message exchange between the client and
the server. This whole process can be formally expressed in
Traditional(Request) = f1(c1) ◦ f2(c2) · · · fn(cn), where
the completion of one request takes n rounds of mes-
sage exchanges and the notion of f denotes a function to
pack/send the protocol command c and parse the reply.
The operator ◦ concatenating two adjacent functions defines
the order of message sending, receiving and parsing, thus it
can denote the strict dependent relationship between two
adjacent functions fi ◦ fi+1 =⇒ fi+1 = g(fi) where
the sending of current message depends on the reply of
previous messages. Moreover, the operator ◦ will take at
least one round-trip-time (RTT) between two dependent
adjacent command transmissions.

We can always decompose the function f into two parts:
message sending s and message parsing p. Both functions
of s and p can take a list of input parameters and ap-
ply the function execution over each element inside the
given parameters. When the protocol definition does not
require the dependency, then the pipeline transferring of one
metadata request can be expressed as Pipeline(request) =
s(c1, c2, · · · , cn) ◦ p(c1, c2, · · · , cn). This expression follows
three constraints: (1) The sender s can continuously send
request commands in the sequence order of c1, c2, · · · , cn
without blocking, and meanwhile, the parser p will parse
the incoming replies in the same sequence order. (2) The
operator ◦ strictly guarantees that the order of sending
a command ci happens before parsing the reply of this
command ci, namely, order(s(ci)) < order(p(ci)). The
overlapping executions of sending messages and parsing
replies can be denoted as s(ck · · · cn) ∩ p(c1 · · · ck−1). It is
possible because of the settings of the pipeline levels and
the value of the RTT between the client and the server. (3)
The completion of Pipeline(request) will take at least one
RTT.

If the protocol is stateless and requires the independent
relationship between two adjacent commands’ sending and
receiving, the pipeline transferring of multiple m requests
over one stream will be expressed as (assuming transfer
of the same type of requests, each of which consists of n
commands):

4

Pipeline(R1, R2, · · · , Rm) =

s(c11, c12, · · · , c1n) ◦ p(c11, c12, · · · , c1n)
s(c21, c22, · · · , c2n) ◦ p(c21, c22, · · · , c2n)

...
s(cm1, cm2, · · · , cmn) ◦ p(cm1, cm2, · · · , cmn)

This expression resembles a matrix where the sender(s)
and parser(s) of one request Ri have been defined as row-
wise, and the order of processing the requests has been
defined as column-wise. The operator ◦ still follows the
aforementioned notion to define the order between the
sender s and the parser p on the same row. Moreover, the
overlapping executions of sending messages and parsing
will happen across the requests, increasing the pipeline
system throughput.

If the protocol is stateful that requires the dependent
relationship between the commands’ sending and parsing,
then the transfer of one request cannot be interleaved by
other requests. In this scenario, the pipeline transferring can-
not give outstanding performance, but the system can still
increase the transfer performance via concurrency. Namely,
the system establishes multiple isolated connections to the
remote server and transfers metadata messages simultane-
ously. Concurrent transferring will be discussed in more
detail in section 2.3.1.

To maximize the pipeline system’s performance, the real-
time stream transfer is preferable to the batch transfer.
The new request should be put into the pipeline system
immediately for transferring as long as the pipeline capacity
is not full. Meanwhile, one request should be removed from
the pipeline system once it is completed successfully or
aborted. This real-time design of the pipeline system still
needs to guarantee that the parser ordering is consistent
with the sender ordering, which will be discussed in section
2.2.2.

Algorithm 1: Send Metadata Requests
1: channel← METACHANNEL(host, port, pipelineCapacity)
2: protocolType← FTP, GSIFTP, IRODS ...
3: channel.OPEN(protocolType)

4: request← REQUEST()
5: request.AUTHENTICATE(channel, credentials)
6: dependent← True or False

7: request.SETDEPENDENTCHAIN(dependent)
8: wait← True or False

9: channel.SEND(request, wait)

10: request← REQUEST()
11: request.LIST(path)
12: response← channel.SEND(request, wait)

if response.wait = True then
13: PRINT(response)

Algorithm 1 shows the pseudocode for sending the
metadata requests. First, the client establishes the metadata
channel to the remote server (lines 1 - 3) with the provided
information, such as host address, port number, and the
pipeline capacity value. It also needs to provide the type
of protocol to be used for metadata retrieval. Then an au-
thentication request is generated with the given credentials
(line 4). When sending the request, it is optional to specify

Algorithm 2: SMURF Protocol Request
1: procedure AUTHENTICATE(channel, credentials)
2: cmdInfo← PACKCRED(credentials)
3: cmd← COMMAND(′′auth′′, cmdInfo)
4: parser← PROTOCOLPARSER(request).AUTHCMDPARSER(cmd)
5: pair← PAIR(cmd, parser)
6: pairs.APPEND(pair)
7: end procedure

8: procedure LIST(path)
9: cmdInfo← PACKPATH(path)

10: cmd← COMMAND(′′list′′, cmdInfo)
11: parser← PROTOCOLPARSER(request).LISTCMDPARSER(cmd)
12: pair← PAIR(cmd, parser)
13: pairs.APPEND(pair)
14: end procedure

Algorithm 3: SMURF Protocol Parser
1: procedure PARSE(reply)
2: myreply← READ(reply)
3: globalData1← PARSEREPLY(myreply)
4: request.SAVE(globalData1)
5: globalData2← request.GET()
6: cmdInfo← PACKNEXT(reply, globalData2)
7: nextCmd← COMMAND(′′next′′, cmdInfo)
8: nextParser←

PROTOCOLPARSER(request).CMDPARSERNEXT(nextCmd)
9: request.ADDPAIR(nextCmd, nextParser)

10: end procedure

that this client will do a blocking wait to complete authenti-
cation. Line 10 - 12 is to send the metadata request, namely,
a listing request to retrieve the metadata content denoted by
the resource path. Every metadata request can be sent in this
convention, and the client can populate more requests into
the metadata channel without waiting for the completion
of the previous requests. Moreover, the metadata channel
will automatically handle the commands’ sending/parsing
in the pipeline mechanism.

In practice, any protocol can be written into SMURF
protocol request and parser, as shown in Algorithms 2 and
3. In Algorithm 2, the SMURF protocol request library packs
the command message (line 3) and assigns the predefined
parser to parse this reply (line 4). One request maintains
a chain of pairs (line 6), where each pair is organized in
the format of {command, parser}. The request decides the
sequence order of commands in this pair chain and can
append more pairs as the independent relationship (line 6).
In Algorithm 3, each SMURF protocol parser can design and
implement its logic to read the reply from the remote server
(line 2). Parsers of this request share the data variables via
the request space (lines 3 - 5). One parser can define the next
dependent {command, parser} based on the current result
and append this pair into the pair chain (lines 6 - 9).

2.2.2 Matrix Ordering Guarantees the Rule of “You Parse
What You Send”
Matrix ordering abstracts the messages’ sending/parsing
orders inside the universal transferring stream. In Figure 3,
one request with the chain of pairs is expressed as a matrix
column, where each pair {command, parser} is a one-row
element. Each row element also contains the information
to specify whether this command will require the next row
element’s dependent relationship.

5

R1(Cmd1, Parser1)

R1(Cmd2, Parser2)

R1(Cmd3, Parser3)

R2(Cmd1, Parser1)

R2(Cmd2, Parser2)

R3(Cmd1, Parser1)

R3(Cmd2, Parser2)

R3(Cmd3, Parser3)

R3(Cmd4, Parser4)

Commands' Sending Order

Protocol
Request
Chain
Order

Arrival Replies' Parsing Order

Fig. 3: One possible scenario of matrix ordering to
send/parse three requests in pipeline. The green color back-
ground denotes each request’s inner cursor position to parse
the arriving reply.

The system can guarantee the correctness of the pipeline
sending and parsing over multiple requests. Moreover,
this correctness comes from two facts: (1) The underlying
transfer connection guarantees that the order of sending
messages is the same as the order of receiving the replies;
(2) The matrix ordering guarantees that the order of parser
in each pair is the same as sending its command message.

The system serves the message sending and parsing in
parallel. The message sending is in Round Robin on the col-
umn order. We assume the request on the left-most column
of the matrix will be served first without loss of generality. In
Figure 3, followed by the sending of a command of R1, then
the commands of R2, R3 will be sent. When a new request
comes, it will be placed on the left-most column, and the first
command Cmd1 from its chain will be sent immediately.
Each request maintains an internal cursor pointing to the
pair whose parser will be invoked for its incoming reply.
When a request’s parser has completed the arriving reply’s
execution, it will check the dependent relationship of the
next pair on the below row. This parser will send the next
command, and meanwhile, this request will be removed
from the current column position and appended to the right-
most. If there is no dependent relationship, this request will
send all of its commands, and its parsers will continue to
parse the arriving replies.

The matrix ordering is thread-safe and can be interleaved
by multiple threads. Figure 3 demonstrates one possible
scenario to process three stateless and dependent protocol
requests: R1 is a previous existing request, which finished
its first command’s sending and parsing and just sent its
second command Cmd2. R1’s inner cursor is pointing to
its Parser2 and waiting for the reply. R2 is a new request
joining the system, and its first command has been sent,
and thus its Parser1 is waiting for the reply. R3 is also a
previous existing request, which already completed its first
and second commands. Its third command has been sent,
and thus Parser3 is at the current inner cursor position and
waiting for the reply. Overall, the system has sent the com-
mands in the order of {R1Cmd2, R2Cmd1, R3Cmd3} and
will parse the arriving replies in the order of {R1Parser2,
R2Parser1, R3Parser3}.

As shown in Algorithm 3, each parser has its own design

and implementation to parse the incoming reply and decide
the completion of parsing. Usually, this can be implemented
as a state machine, where the transition of a state will be
defined by the protocol’s Request for Comments (RFC).
For example, on retrieving the metadata of a filesystem
folder containing millions of subfiles from a GSIFTP server,
SMURF’s transferring stream will receive a continuous in-
termediate part of metadata. The whole transferring will
be terminated successfully when the parser can parse code
250 of the reply. When one request’s last parser has been
completed, and then this request is finished. One request
will be marked as success as long as its protocol commands
have been sent and parsed correctly. Otherwise, this request
will be regarded as a failure, either re-transferred or skipped
according to parsers’ results. One request failure will not
block the next requests to be transferred over the same
connection as long as this connection is not broken.

2.3 Fetch/Prefetch Services
SMURF-Cloud transfers the large-scale metadata using con-
currency and pipelining and guarantees the reliability of
the transfers in WAN. The details of sub-components and
features are described below.

2.3.1 Metadata Transferring via a Cluster of Fetch/Prefetch
Services
The dispatcher assigns the pending jobs to all available
services in Round-Robin. One service will become available
to process the next job as long as the service completes
one fetch/prefetch job and sends back an ACK message
to the queue dispatcher. When a service is terminated, the
unacknowledged jobs will be re-dispatched to the rest of the
available services. A fetch/prefetch service keeps at most
one singleton connection to the remote server and serves up to
C (pipelining capacity) fetch/prefetch jobs from the queue.
If one established connection has been idle for a while, this
connection will receive a TIMEOUT reply from a remote
I/O node, and resources of this connection will be de-
allocated from the service. Re-establishment of connection
will be triggered by the next dispatch job and automatically
handled by the Transferring Stream 2.2.

To fully exploit the computing power and network I/O
bandwidth of the cloud cluster, the cloud backend deploys
and launches multiple instances of fetch/prefetch services
on a single cluster node. With N services running in the
cluster, the cloud establishes N TCP connections to remote
servers and transfers N metadata requests concurrently. The
cloud backend controls the concurrency level by changing
the number of fetch/prefetch service instances depending
on the demand and the load. When the cloud deploys
services across M machines, the cloud service can transfer
N metadata requests from M nodes that exceed the single
machine’s limitation and bottleneck. Meanwhile, the cloud
service can tolerate the failure of (M − 1) nodes. The
instances of services running on the failed nodes will be
redeployed to the other available nodes.

2.3.2 Metadata Storage and Transfer Format
On the cloud backend, the metadata is stored as a {key,
value} pair in a NoSQL database, where key is the hash

6

value of the resource path and value is the metadata con-
tent in JSON format (schemaless data structure). On the
edge/fog node, the metadata resides in the memory cache as
ProtocolBuffer [37] objects. When transferring the metadata
between the system nodes, the metadata content is encoded
into bytestreams by ProtocolBuffer.

The size of metadata can be as small as a few bytes or
up to hundreds of megabytes. In our experiment, Figure 6
shows that a few directories can contain more than 400
thousand subfiles in the trace log. The overhead of encoding,
decoding, and transferring such large metadata content
between the continuum cache layers will severely degrade
the system response time and increase the user-perceived
latency. Thus, the cloud divides the large metadata object
into fixed-size blocks and guarantees that each block object’s
size will not exceed the size limit. Very large-sized metadata
will be stored as a bunch of metadata blocks, and these
metadata blocks will form into a logic tree structure, where
the blocks of partial subfiles will be stored at the bottom
as the leaf nodes. A manifest of sub-blocks will be stored
as part of the metadata to locate the metadata blocks, and
any metadata block can be accessed by a uniform resource
identifier (URI).

The metadata block is stored in a distributed storage;
thus, the services can access and update the metadata blocks
in parallel. Moreover, the pipeline and concurrency transfer-
ring of the metadata blocks significantly increase the end-to-
end system throughput between the hierarchical layers. This
also benefits the prefetching since once the metadata block
has been received and decoded, its content can be immedi-
ately available to the cache instead of waiting to transfer and
decode the original metadata. Thus, the prefetch predictor
can adjust its prefetching decision on time based on the real-
time prefetch results. SMURF system judiciously chooses
the right block size to avoid storage space overhead and the
cost of bandwidth on transferring. The effect of metadata
block size selection on average fetch latency and memory
usage is evaluated in Section 3.

SMURF resolves the overwrite conflicts of metadata con-
tents using the timestamp of files on remote I/O node as the
“version”. The underlying database clusters can guarantee
the atomic read/write on the same metadata entry. More-
over, as long as the retrieval metadata’s file timestamp is
newer than what has been cached, it is safe to overwrite it.
Otherwise, the retrieved metadata with the stale timestamp
will be discarded. The service will return currently cached
metadata content to the edge/fog service that requested this
metadata retrieval.

2.3.3 Directory Tree Structure Synchronization
SMURF provides a way to maintain the metadata consis-
tency between cloud and remote I/O nodes on the directory
tree structure. It caches metadata content under the key of
the request URL. If a folder has been renamed, deleted, or
moved on the remote I/O node, then the subfolder meta-
data cached in SMURF will become dirty. If any metadata
retrieval with force-refresh option has such an invalid path,
the service will receive “No such file or directory” exception
in the reply from remote I/O nodes.

Once a fetch/prefetch service gets such an error from
a remote I/O node, then SMURF cloud does backtrace syn-

chronization to conservatively clean up the cached metadata
under those invalid file paths. First, the fetch/prefetch ser-
vice will try to read the currently cached metadata digest
D. Then metadata retrieval on the invalid file path will
cause the underlying transfer stream to return “DELETE”
ErrorCode, which means this metadata has been cached
under the invalid file path and should be marked as dele-
tion. The atomic operation will compare and overwrite the
“DELETE” status into current caching metadata D′ if D is
equal to D′. The comparison of metadata content digest
guarantees that this service will mark “DELETE” status
on the invalid caching metadata without overwriting the
metadata content of another success update D′′. Finally,
if this deletion has been successfully populated into cloud
DB, the deletion message will be sent to update all sub-
scribed edge/fog servers which have fetched/prefetched
on this invalid file path previously. Otherwise, the service
will return the current caching metadata. Moreover, when
deletion happens, the fetch/prefetch service will create a
new fetch/prefetch request to do force-refresh on the parent
file path and prefetch sublayer files (without force-refresh).

Cloud will synchronize the parent file path’s metadata
content from remote I/O node and then prefetch 1-layer
sub-folders under this newly updated metadata content.
Without a force-refresh option on the subfiles prefetching
is to maximumly reused local cache to avoid redundant
force-refresh retrieval of the cached metadata. It is possible
that the parent file path could also be invalid, then the
fetch/prefetch service will repeat the above process to syn-
chronize the metadata on the parent file path and increase
the prefetch option on subfolder layers by 1, e.g., prefetch
2-layer (prefetchTTL=2). The cloud backend performs early-
stop prefetch, which means such propagation of prefetching
will terminate when a file path is valid or has not been
cached yet.

2.4 Distributed Continuum Caching and Prefetching
Architecture

The same metadata will be cached in the distributed layers-
{1,2,3}, as shown in Figure 1. Our experimental analysis
simulates the IoT network topology and assumes that the
cloud has unlimited storage space, and the fog node can
have a larger cache capacity than the edge server. The
system consists of the distributed continuum cache from
cloud to an edge server, where the cloud caches and stores
all fetch/prefetch metadata, the fog node caches partial
cloud metadata, and the edge server only caches a small
subset of the fog metadata. The prefetch predictors can be
installed on the edge server and the fog node with the judi-
cious parameters to retrieve the locality metadata into each
layer’s local cache. Usually, our system will conduct more
aggressive prefetching between the fog node and the cloud
to mask the high latency in WAN. The prefetching between
the edge server and the fog node is more conservative by
considering that the edge server connects to the fog node in
LAN (usually wireless connection) and the storage is always
limited on the edge server.

When the optional fog node (layer-2) has been deployed
between the edge server and cloud, this edge server will
fetch/prefetch metadata from the fog node’s local cache,

7

which can be denoted as Fedge and {Pedge}. The fog node
can send the cached metadata back to the edge server or
forward the cache miss fetch request Fedge and prefetch
requests {Pedge} to the cloud. The cache miss fetch request
Fedge can cause the fog node’s prefetch framework (more
details in 2.5) to consult its prefetch predictor on the aggres-
sive prefetching {Pfog}. Thus there would be overlapping
prefetch requests between {Pedge} and {Pfog} requests;
however, the wait-notify queue (discussed in 2.4.1) will de-
duplicate the overlapping prefetch requests to send them to
the cloud, and the fog node will send back the edge server’s
requested prefetch metadata {Pedge} upon completion.

2.4.1 Layer Server’s Request and Response Multiplexing
We design and implement a wait-and-notify queue to ef-
ficiently send and receive messages between the edge
server and the cloud. The wait-and-notify queue consists
of a sender thread and a receiver thread. Multiple worker
threads can enqueue the requests and wait for the notifica-
tion of completion concurrently. The sender thread allocates
a unique context locally for each enqueued request and
sends requests to the remote layers. The receiver thread
extracts the context from the response and then uses this
context to notify and wake up the waiting worker threads.
Especially during one request R’s sending and receiving,
the similar queuing requests will be de-duplicated without
sending them to the cloud, and their worker threads will
wait for the completion of R. The de-duplication is exe-
cuted on the edge/fog layer to ease the cloud’s computing
overhead and save the network bandwidth. The queue can
also be configured to be in a “nowait” mode, which means
worker threads do not wait for the completion. The wait-
and-notifying queue mechanism exhibits high performance
in multiple threading environments. Message sending and
receiving are designed to be interleaved between multiple
threads. Moreover, the queue has been implemented based
on a non-blocking queue, where compare and swap (CAS)
strategy has been applied to improve the concurrent perfor-
mance without the blocking synchronization. Note that the
order of requests sending is not necessarily synchronized
with the receiving order of the responses.

2.5 Prefetch Framework

SMURF employs a generic prefetch framework to apply
the configurable prefetch predictor on edge/fog service.
Users and system admins can easily configure and cus-
tomize prefetch schemes for different types of applications.
In this prefetch framework, each fetch request will be sent
to the prefetch predictor to analyze and build a prefetch
correlation relationship. For each fetch request, the prefetch
framework maintains a cache miss counter and its meta-
data content in the cache with Least Recently Used (LRU)
replacement policy. The cache miss counter denotes how
many cache misses are on this request. The cache object
can be evicted using the LRU replacement algorithm when
the cache is full, and new metadata needs to be put into
the cache. When the cache miss counter’s value exceeds the
threshold, the prefetch framework will consult the prefetch
predictor for the potential prefetching candidates and ex-
ecute aggressive prefetching on this request’s correlation

candidates. The prefetch framework checks whether each
prefetch candidate exists in the current local cache. If there is
a cache miss on this candidate, the prefetch framework will
pack and send a prefetch request with the information (e.g.,
URI and priority). Prefetch framework does not maintain
the cache miss counter for all the history requests since the
essence of the LRU cache replacement algorithm is based
on temporal locality, and the cache miss information of the
coldest request will be replaced and cached out to reflect the
temporal access locality and also save the memory usage.

The edge/fog node can set the value of the threshold
in the prefetch predictor property file. This threshold is
an essential factor to affect the frequency of prefetch on
correlation files. If the threshold value is set to a smaller
value, then the prefetch predictor will be too sensitive to
detect the cache miss on a file path and aggressively prefetch
correlation files. However, the too big threshold will cause
the prefetch predictor to react to the cache miss without
sending prefetch requests slowly. The threshold is tuned by
the analysis of the trace log.

2.6 Semantic Locality Prefetch Predictor
SMURF uses a novel prefetch predictor based on the direc-
tory semantic locality. The predictor uses a history window
to predict the semantic locality of the trace log. This history
window with the fixed window size stores the unique file
path into segments. For one input file path, the predictor
will find out the pattern of “A ? B” with the maximum
matching number inside the history window, where “A”
stands for the common prefix, “?” stands for one mismatch
segment and “B” is the suffix, and sometimes this suffix can
be empty. If the matching number exceeds the threshold, the
predictor sends back this detected pattern to predict that the
fetching file paths will follow this access pattern in the near
future.

When a request on a file path f causes a local cache
miss, the predictor will check whether its pattern file path
fp object is cached or not. If the pattern file path object has
not been cached, then the predictor will create an object of
this pattern file path, put it into the local cache, and set
the counter’s value to one. If the pattern file path object
has been cached, then the predictor will increase the cache
miss counter by one. When this cache miss counter exceeds
threshold T , the predictor decides to prefetch the correlation
files of the pattern file path fp and set the miss counter to
zero.

If the pattern file path object has already been cached, the
predictor will iterate the list of metadata of each subfile path
fsi in the cache and send the prefetch requests of all cache
missed subfile paths. In the prefetch request, the predictor
can associate with the value of prefetch TTL, configured
(by default, the value is 0) in the prediction property file.
The number of prefetch TTL is to denote how many layers
of subfiles to prefetch. Theoretically, the predictor can set
an arbitrary large number to the value of prefetch TTL.
However, upon completion of the prefetch on a file path,
the queue system will automatically decrease the value of
prefetch TTL by one and recreate a new prefetch request for
each subfile and then re-queue those requests with the lower
priority until TTL degrades to 0. In the competition of large-
scale prefetching requests, higher priority prefetch requests

8

Chameleon
Cloud@UI

Chameleon
Cloud@TACC

WAN RTT=8ms

WAN RTT=32ms

edge

LAN RTT=0.5ms

fog

BW=100Gbps
RTT=32ms

WAN RTT=53ms

XSEDE
comet@SDSC

Fig. 4: Network map of the experimental testbed.

TABLE 1: Specifications of the Cloud/Edge/Fog nodes in
the experiments.

Specs Edge/Fog Cloud Remote IO

CPU
Intel Core

i7-2600
Intel Xeon
Gold 6126

Intel Xeon
E5-2650 v3

RAM 32 GB 187 GB 62 GB
Disk 80 GB 210 GB 350 GB
OS Ubuntu 16.04 Ubuntu 16.04 Ubuntu 16.04

of nodes 5 KVM 5 Bare metal 1 Bare metal

will be given precedence and always preempt available
prefetching services. It could be a large amount of lowest
priority prefetch requests in the queue system, which can
never be served or completed in a period and will be finally
reclaimed and destroyed by queue cleaning.

Semantic locality predictor can effectively match the
workload pattern on the semantic directory tree structure,
primarily when most of the subfiles under a common
hotspot parent file path are randomly accessed once or
very few times. When the data access sequence does not
exhibit strong locality behavior under a common file path,
semantic locality predictor can set a higher threshold to
prevent redundant miss-prefetching effectively. Semantic
locality predictor can potentially prefetch a large amount of
metadata in WAN. However, our system has been optimized
to support the massive scale of metadata transfer with lower
average latency in WAN, which can fit the semantic locality
predictor requirements.

3 EVALUATION

We conduct our experiments over Yahoo! Hadoop grid
trace logs from Yahoo! Webscope dataset [38]. This trace
consists of more than 20 Million continuous daily metadata
operations of the Hadoop name node throughout the year
2010. Geographical locations of the servers used in our
experiments and the network specifications between them
are presented in Figure 4. The system settings and con-
figuration are shown in Table 1. To simulate the heteroge-
neous remote I/O nodes, we setup FTP and iRODS servers
at the Chameleon-TACC site and installed Globus Toolkit
6.0 [39] to configure the SimpleCA and GSIFTP server for
the GSIFTP metadata transfers. The Minio [40] server is in-
stalled to simulate the Amazon S3 object storage service. In
all experiments, SMURF protocol libraries are installed only

Fig. 5: The distribution of the metadata operations in Yahoo!
Webscope Hadoop traces.

TABLE 2: Yahoo! Hadoop log’s ‘list’ command statistics.

Log Name # of list cmds unique file path histogram=1
part-00000 4,750,645 49.72% 92.6%
part-00001 4,090,678 62.31% 92.98%
part-00002 3,732,058 62.52% 92.33%
part-00004 3,895,900 62.77% 91.85%
part-00005 4,148,414 54.23% 92.76%

on SMURF-Cloud, deployed on the Chameleon-UC bare-
metal cluster. SMURF’s fetch/prefetch services are launched
as Docker [41] services and managed under the Docker
orchestration tool. The edge and fog clusters are deployed
into a Kernel-based Virtual Machine (KVM) cluster and con-
figured with limited computing resources for more realistic
experimental evaluation.

3.1 Trace File System Directory Tree Reconstruction

In trace logs, file path f always associates with types of op-
erations, e.g., open, ls, delete, etc. Metadata read operations
are directory tree idempotent (e.g., open and ls) and will
not change the directory tree structure on trace file system.
The write operations (e.g., mkdir, rename and delete) can
change trace file system directory tree dynamically. Yahoo!
Webscope dataset encrypts each segment of the file path into
27 bytes string. Thus the approximate directory tree size of
each Hadoop trace log on disk will be more than 250GB.

We extract file paths from all types of operations for
each audit log and construct them on the disk. This is the
approximate emulation of trace file system directory tree
structure in our prediction experiments. Figure 6 shows the
cumulative distribution of directories by the number of files
they contain and files by directory depth. This reconstructed
file system’s shape is flat: millions of files (nearly 90%) reside
in the directories with a depth between 5 and 10. Most of
the directories (around 95%) contain only a few files, and
the majority of files (around 75%) are stored under a small
portion of directories (about 3%), each of which contains
more than hundreds of files and even up to hundreds of
thousands of files.

We extract requests containing the “listStatus” command
from Yahoo! Webscope Hadoop audit trace logs in our ex-
periments. In table 2, we statistically analyze the histogram
of distinct file path in “listStatus” command. The histogram
results show very skew access of “listStatus” metadata

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Files per Directory

Part-00000

cdf
weighted cdf

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

Depth per Directory

Part-00000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Files per Directory

Part-00001

cdf
weighted cdf

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

Depth per Directory

Part-00001

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Files per Directory

Part-00002

cdf
weighted cdf

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

Depth per Directory

Part-00002

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Files per Directory

Part-00004

cdf
weighted cdf

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

Depth per Directory

Part-00004

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Files per Directory

Part-00005

cdf
weighted cdf

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

Depth per Directory

Part-00005

(b)

Fig. 6: Trace file system statistics in Yahoo! HDFS: (a) CDF
and Weighted CDF of files per directory; (b) Distribution of
files by directory depth.

operation in Hadoop audit log: among the total number of
four million “listStatus” operations, there are 50%-62% of
unique file paths. The majority (92%) of unique file paths
have been accessed only once, and only 8% of unique file
paths contribute nearly half of total “listStatus” metadata
operations. This skew access to behavior can cause prefetch
predictors based on historical access sequence abysmal pre-
diction rate. Their prediction rate is almost the same as that
of LRU cache since most of their prefetch candidates are
from history requests, but they will never appear again in
the next “listStatus” requests, and the most frequent file
paths will reside in the memory by the cache replacement
policy.

3.2 Scalability of Fetch Services
To emulate concurrent metadata transferring performance
from remote servers, we use Yahoo! Cloud Serving Bench-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

latency in second

latency distribution of 100 concurrent requests

cloud5
cloud10
cloud20
cloud30

 0

 0.5

 1

 0.04 0.05 0.06

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

latency in second

latency distribution of 1000 concurrent requests

cloud5
cloud10
cloud20
cloud30
cloud40
cloud50

 0

 0.5

 1

 0.04 0.05 0.06 0.07 0.08

Fig. 7: Concurrent fetch latency distribution.

mark (YCSB) [42] to continuously send a large number of
distinct requests from the client to the SMURF system and
evaluate the latency distribution with the different number
of cloud fetch services. All the requests will be transferred
along the edge-cloud I/O path with around 40 ms accu-
mulated RTT. In this experiment, we turn off the caching
and prefetching effects in the testbed and configure the edge
cluster with 16 fetch services, and set the value of each cloud
fetch service’s pipeline capacity to be 5. Figure 7 shows the
latency measured on the edge cluster and demonstrates that
the latency distribution curves of 100 and 1000 concurrent
requests with five cloud fetch services are almost linear due
to the queueing effect of cloud, which means five cloud fetch
services are not sufficient enough to scale the number of
concurrent requests. Thus, with more number of services
in the cloud, most of the requests can be made concurrently,
and the latency of the majority of requests is within the small
range between 40 ms and 80 ms.

3.3 Scalability of Prefetch Services
Figure 8 demonstrates the scalability of prefetching files
metadata from heterogeneous I/O servers. We turn off
caching effects in the testbed and let one edge service
initialize the sending of 10,000 and 100,000 distinct prefetch
requests to the cloud, respectively, and calculated the aver-
age prefetching elapse time on the SMURF-Edge side. We
continue to increase the number of concurrency channels
and each channel’s maximum pipeline capacity until there
are no noticeable performance gains. The scalability perfor-
mance between the different protocols is similar, and the
SMURF system can reduce the prefetching latency to 0.6
millisecond per request on average, which means the system
can complete the prefetching of 100,000 metadata contents
in 60 seconds.

We also evaluated the scalability of prefetching from
XSEDE Comet [43] endpoints at San Diego Supercomputer
Center (SDSC) in Figure 9, where the average prefetch
latency per request is around 0.8 millisecond. Note that
the transferring of files metadata over GSIFTP is conducted
in the control channel by sending the command “MLSC”.
SMURF still supports FTP/GSIFTP data channel metadata
transferring, which has been evaluated in our previous
work [21].

3.3.1 Cache Hit Rate
Figure 10(a) compares the cache hit rate between LRU cache
and different prefetching schemes. Our directory locality
scheme (denoted as “DLS”) outperforms all other schemes
on cache hit rate. It can achieve around 90%+ on all individ-
ual Hadoop audit logs because the directory locality scheme

10

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 L

a
te

n
c
y
 i
n
 S

e
c
o
n
d

pipeline level

FTP: 10,000 prefetch request scalability

cc=1
cc=5

cc=10
cc=15
cc=20

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 L

a
te

n
c
y
 i
n
 S

e
c
o
n
d

pipeline level

FTP: 100,000 prefetch request scalability

cc=1
cc=5

cc=10
cc=15
cc=20

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 L

a
te

n
c
y
 i
n
 S

e
c
o
n
d

pipeline level

GSIFTP: 10,000 prefetch request scalability

cc=1
cc=5

cc=10
cc=15
cc=20

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 L

a
te

n
c
y
 i
n
 S

e
c
o
n
d

pipeline level

GSIFTP: 100,000 prefetch request scalability

cc=1
cc=5

cc=10
cc=15
cc=20

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 L

a
te

n
c
y
 i
n
 S

e
c
o
n
d

pipeline level

iRODS: 10,000 prefetch request scalability

cc=1
cc=5

cc=10
cc=15
cc=20

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 L

a
te

n
c
y
 i
n
 S

e
c
o
n
d

pipeline level

iRODS: 100,000 prefetch request scalability

cc=1
cc=5

cc=10
cc=15
cc=20

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 L

a
te

n
c
y
 i
n
 S

e
c
o
n
d

pipeline level

S3: 10,000 prefetch request scalability

cc=1
cc=5

cc=10
cc=15
cc=20

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 L

a
te

n
c
y
 i
n
 S

e
c
o
n
d

pipeline level

S3: 100,000 prefetch request scalability

cc=1
cc=5

cc=10
cc=15
cc=20

Fig. 8: Scalability of pipeline and concurrency.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 L

a
te

n
c
y
 i
n
 S

e
c
o
n
d
s

number of prefetch services

 prefetch 10,000 files’ metadata

SMURF-GSIFTP

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 7 8 9 10
 0

 0.002

 0.004

 0.006

 0.008

 0.01

 7 8 9 10

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

A
v
e
ra

g
e
 L

a
te

n
c
y
 i
n
 S

e
c
o
n
d
s

number of prefetch services

 prefetch 100,000 files’ metadata

SMURF-GSIFTP

 0
 0.0002
 0.0004
 0.0006
 0.0008
 0.001

 0.0012
 0.0014

 55 60 65 70 75 80 85
 0

 0.0002
 0.0004
 0.0006
 0.0008
 0.001

 0.0012
 0.0014

 55 60 65 70 75 80 85

Fig. 9: Scalability of metadata prefetching from XSEDE-
Comet@SDSC.

can successfully capture the access pattern of the “listStatus”
operation in Yahoo! Webscope Hadoop audit log. AMP is
another prediction scheme with a high prediction rate that
can achieve around 65%+ accuracy. We train the AMP model
on each day’s trace and use that trained model for the
next day’s prefetching prediction. The AMP scheme’s high
prediction rate comes from the fact that there are many
overlapping file paths of “listStatus” metadata operations
between successive days. The first day (Part-00000) of AMP
performance has been set to the same value as that of
the LRU cache since no previous day data is available. In
Yahoo! Webscope datasets, day four (Part-00003) data is not
available; hence, we use the day three (Part-00002) trained
model for conducting the AMP performance prediction on
day four trace. We also found that the cache hit rates of
Nexus and Farmer are almost the same as that of LRU cache

TABLE 3: Prefetch Schemes Average Memory Usage (GB)
on Edge Node.

Prefetch Scheme 10% 20% 30%
LRU 13 19 22
AMP 13 19 22

NEXUS 15 21 25
FARMER 15 21 25

DLS 13 20 22

(below 25%) since the prefetching candidates suggested by
the prediction schemes of Nexus and Farmer are all from
the history requests. Simultaneously, the Hadoop audit log
exhibits significantly skew popularity access in the “listSta-
tus” metadata operation. Most of the “listStatus” operations
execute on a file path once or occasionally, which inevitably
causes the low prediction rate of prediction schemes based
on history access sequence.

3.4 Evaluation of Prefetch Schemes on Yahoo! Hadoop
Grid Trace Logs
We conduct the experiments on the edge node and replay
the trace logs with different settings. The experiments have
been evaluated on the Edge-Cloud I/O path (the abbrevi-
ation term “EC” in Figure 10) with the prefetch schemes
installation on the edge node. The cache size also has been
taken into consideration, where the cache capacity on the
edge node has been increased by the percentage (10%, 20%,
and 30%) of total requests in each trace log, and the aver-
age memory usages have been calculated by the oshi [44]
software tool in Table 3. We also measure the average fetch
time latency without the caching, and prefetching effects on
the edge node denoted as E (Edge I/O path) and EC in
Figure 10). In the following sections, we will compare and
discuss the prefetch scheme’s performance on the criteria
of cache hit rate, average fetch latency, and storage usages,
respectively.

3.5 Performance of Continuum Caching
Based on the evaluation of prefetch schemes, we decide to
choose DLS as the default prefetch scheme and repeat the
experiments on the Yahoo! Hadoop trace logs to evaluate
the continuum caching performance on the Edge-Cloud and
Edge-Fog-Cloud I/O paths. The edge node and the fog
cluster are deployed in the same site, and the distributed
cache system is installed across all the fog cluster nodes to
provide the extra caching layer between the edge node and
the cloud. We evaluate the average fetch latency and cache
hit rate on the edge node between two aforementioned I/O
paths with the increasing continuum caching capacity in
Tables 4 and 5 and the average system memory usage in
Table ??, where on the Edge-Cloud I/O path we first set
the relatively small cache size at 0.5% percentage of the
total requests (around 20,000 metadata entries) on the edge
node and keep increasing its cache size to 10% until there
are no obvious performance gains on the average fetch
latency and cache hit rate. Accordingly, on the Edge-Fog-
Cloud I/O path, we increase the fog cluster cache size to
the percentages of 1%, 5%, and 10%. It is clearly shown that

11

Fig. 10: Cache hit rate and average fetch latency between
prediction schemes on Yahoo! Hadoop trace.

the average fetch latency of the edge node is significantly
reduced when the system sets a relatively larger cache size
on the fog cluster. When the edge node has been configured
with the constant cache size, namely, 0.5% cache capacity,
the fog cluster caching and prefetching can reduce the edge
node average fetch latency up to 46% and slightly increases
the cache hit rate. This result comes from the fact that the
nearby fog cluster can effectively cache and prefetch the
demanded metadata shortly, and most cache-miss fetching
requests on the edge node will be directly retrieved from the
nearby fog cluster instead of the remote cloud.

Compared with the EC settings, the average fetch elapse
time has been delayed by the communication overhead be-
tween the edge node and the fog cluster but can be reduced

by increasing the caching capacity on the fog cluster. When
the fog cluster has been configured with 10% cache capacity,
the average fetch latency of the edge node with 0.5% cache
capacity can be almost the same as that of the edge node
with 10% cache capacity.

3.5.1 Average Fetch Latency
In Figure 10(b), we calculate the average fetch time be-
tween the prefetch schemes and measure the accumulated
overhead of metadata transferring without any cache and
prefetch installed. The setting of “E” (denoted with the
solid horizontal line) shows the average latency of fetching
performance that the edge node directly fetches metadata
from the remote I/O server. The average fetching latency
of the “EC” setting is denoted with the dashed horizontal
line. The performance of LRU and all prefetch schemes
are usually below the “EC” bar, which demonstrates that
caching and prefetching is still an effective way to reduce
the average fetching latency even with the low cache hit
rates.

The prefetching scheme with a higher prediction rate can
significantly reduce the average fetch latency since most
metadata can be accessed locally. With the highest predic-
tion rate (90+%) of the DLS prefetch scheme, the average
fetching latency can be reduced to 0.004 seconds. The AMP
(65+%) can achieve the average fetching latency of 0.015
seconds. Note that we have to use external storage to store
the AMP training model, but the AMP model’s high pre-
diction rate can offset the overhead of database operations.
The LRU with a larger amount of cache size can slightly
reduce the average fetching latency. Nexus and Farmer’s
average latencies are relatively higher (above the solid bar).
This may be due to two factors: 1) The RTT between client
and remote I/O server is around 32 milliseconds, while
the accumulated RTT of EC path is above 40 milliseconds;
2) Nexus and Farmer prediction rates are nearly the same
as that of LRU cache, but there is extra computation to
build relation graph on the fly. Moreover, the overhead of
constructing and updating the relation graph in the Nexus
and Farmer prefetch schemes is not ignorable.

4 RELATED WORK

Metadata prefetch prediction [45], [46], [47] studies de-
veloped different strategies to predict future requests as
accurately as possible. NEXUS [46] applies a weighted-
group-based prefetching algorithm to prefetch prediction.
A weighted directed graph is built on the fly when the
metadata server (MDS) receives requests from clients. The
proposed polynomial time complexity algorithm looks up
and analyzes requests in a predefined capacity history win-
dow. For a given access sequence, the history queue is pop-
ulated with each request in the access sequence order. Each
enqueued request is created as a vertex in this weighted
relationship graph, where a directed edge from any queue-
ing request connects to this newly enqueued request. The
weight of each edge connection is calculated according to
the successor relationship strength. For a given request,
the prediction predictor looks up the graph to find out
the directly connected vertices (requests) and predict top-k
vertices with the largest edge weight as the best prefetching

12

TABLE 4: Edge Node Average Fetch Latency (milliseconds) Scalability with Increasing Continuum Caching Capacity.

Log Name EC 0.5% EC 1% EC 5% EC 10% E 0.5% F 1% E 0.5% F 5% E 0.5% F 10%
part-00000 5.9 4.7 3.8 3.8 7.0 4.4 3.8
part-00001 6.4 4.8 4.0 4.0 6.2 4.5 4.4
part-00002 4.7 4.4 4.3 4.2 4.5 4.3 4.2
part-00004 5.4 5.0 4.4 4.3 5.2 5.0 4.7
part-00005 5.7 5.3 4.1 3.7 7.8 5.5 4.3

TABLE 5: Edge Node Cache Hit Rate (percentage) with Increasing Continuum Caching Capacity.

Log Name EC 0.5% EC 1% EC 5% EC 10% E 0.5% F 1% E 0.5% F 5% E 0.5% F 10%
part-00000 83% 88% 93% 93% 77% 82% 84%
part-00001 85% 88% 93% 93% 79% 87% 88%
part-00002 89% 90% 92% 92% 88% 89% 89%
part-00004 84% 88% 92% 92% 83% 83% 84%
part-00005 78% 81% 88% 93% 73% 78% 77%

candidates. Experiments show that their prefetching predic-
tion can effectively reduce clients’ average response time
with reasonable overhead.

FARMER [48] investigates how a request’s attributes
information (e.g., “Host”, “UserID”, “ProcessID” and file
path) can affect the file successor probability (the likelihood
of successor being accessed if the predecessor has been ac-
cessed). The authors statistically analyze the average proba-
bilities for the different trace sequences. They conclude that
the same attribute will have a different successor probability
between various traces. The access pattern without con-
sidering the semantic attributes is not sufficient to predict
the file access probability. They apply a linear combination
model to consider the combined effect of the history access
sequence and the semantic attributes of requests. FARMER
builds a relationship graph between predecessor and suc-
cessors in a specific size history window similar to NEXUS
and applies Integrated Path Algorithm (IPA) to detect the
semantic attributes correlation between predecessor and
each successor. The best prefetching accuracy that FARMER
achieves is 64%, where NEXUS can perform 43%.

AMP [47] uses a different approach to predict the re-
quest pattern based on the analysis of the historical access
sequence. The authors apply N-gram [49] model, which has
been widely used in natural language processing, to train
the prediction model in a quasi-online fashion (overnight
training and use training result for the next day’s prefetch-
ing prediction). AMP states that a 3-gram model can have
more constraints on prediction and give more accurate
predictions. They also claim that a 3-gram with up to 6
prefetching items can achieve a better hit ratio with less
computation overhead. The experiments show that AMP
can outperform NEXUS by 4% on hit ratio and reduce the
average response time by 8%.

Hierarchical caching has been well studied in the liter-
ature. For the web caching systems, Wolman et al. [50]
conducted their analysis on the hierarchical tree structure
cache and evaluated the advantages and drawbacks of inter-
proxy cooperation to demonstrate the performance benefits
of cooperative caching. Sadeghi et al. [51] represented the
popular tree hierarchical cache networks into a two-level
network caching, where the network of caching nodes has

been managed in a two-timescale approach. The researchers
formulated the file transmission cost model as the Markov
decision process (MDP) and propose a novel reinforcement
learning (RL) to select the efficient caching policy to adapt to
the dynamic evolution of file requests and caching policies
of the network nodes. Jia et al. [52] considered a cached
content placement problem in a hierarchical web proxies
environment. The authors formulated the problem to min-
imize the data access costs by considering the distance
between the source of requests and the closest destination
with the requested data. Tran et al [53] introduced a novel
cooperative hierarchical caching framework under the C-
RAN [54] architecture. Inside the proposed framework, the
complementary cloud cache and edge caches have been
managed by a centralized controller at the cloud. The au-
thors evaluated the performance by configuring the cache
installation on the different hierarchical layers. The exper-
iments show that the proposed framework significantly
outperforms traditional edge-only caching schemes.

5 CONCLUSION

This paper addresses two crucial IoT research challenges
in accessing remote metadata: heterogeneity and scalabil-
ity. We have presented a novel solution for efficient and
scalable metadata access for distributed and heterogeneous
applications across wide-area networks, called SMURF. Our
solution combines novel pipelining and concurrent transfer
mechanisms with reliability, provides distributed contin-
uum caching and prefetching strategies to sidestep fetching
latency, and achieves scalable and high-performance meta-
data fetch/prefetch services in the cloud. We also studied
the applicability of semantic locality in real trace logs,
which is not well utilized in traditional metadata access
prediction techniques, and implemented a novel prefetch
predictor based on semantic locality. We compared it with
three existing state-of-the-art prefetch schemes (NEXUS,
FARMER, and AMP) on Yahoo! Hadoop audit traces. Our
experimental results show that SMURF can achieve 90%
accuracy during prefetch prediction and reduce the average
fetch latency up to 50% compared to the other mechanisms.

13

REFERENCES

[1] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peter-
son et al., “Xsede: accelerating scientific discovery,” Computing in
Science & Engineering, vol. 16, no. 5, pp. 62–74, 2014.

[2] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy,
P. Avery, K. Blackburn, T. Wenaus, F. Würthwein et al., “The open
science grid,” in Journal of Physics: Conference Series, vol. 78, no. 1.
IOP Publishing, 2007, p. 012057.

[3] J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds,
the chameleon cloud testbed, and software defined networking
(sdn),” in Proceedings of the 2015 International Conference on Cloud
Computing Research and Innovation (ICCCRI), ser. ICCCRI ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 73–79.
[Online]. Available: http://dx.doi.org/10.1109/ICCCRI.2015.10

[4] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb et al., “The design
and operation of cloudlab,” in 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19), 2019, pp. 1–14.

[5] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic
metadata management for petabyte-scale file systems,” in Proceed-
ings of the 2004 ACM/IEEE conference on Supercomputing. IEEE
Computer Society, 2004, p. 4.

[6] D. S. Roselli, J. R. Lorch, T. E. Anderson et al., “A comparison of
file system workloads.” in USENIX Annual Technical Conference,
General Track, 2000, pp. 41–54.

[7] J. M. Wozniak, K. Chard, B. Blaiszik, R. Osborn, M. Wilde, and
I. Foster, “Big data remote access interfaces for light source sci-
ence,” in 2015 IEEE/ACM 2nd International Symposium on Big Data
Computing (BDC). IEEE, 2015, pp. 51–60.

[8] J. L. Schnase, D. Q. Duffy, G. S. Tamkin, D. Nadeau, J. H. Thomp-
son, C. M. Grieg, M. A. McInerney, and W. P. Webster, “Merra an-
alytic services: Meeting the big data challenges of climate science
through cloud-enabled climate analytics-as-a-service,” Computers,
Environment and Urban Systems, vol. 61, pp. 198–211, 2017.

[9] R. Hai, S. Geisler, and C. Quix, “Constance: An intelligent data
lake system,” in Proceedings of the 2016 International Conference on
Management of Data. ACM, 2016, pp. 2097–2100.

[10] C. Quix, R. Hai, and I. Vatov, “Gemms: A generic and extensible
metadata management system for data lakes.” in CAiSE Forum,
2016, pp. 129–136.

[11] I. G. Terrizzano, P. M. Schwarz, M. Roth, and J. E. Colino, “Data
wrangling: The challenging yourney from the wild to the lake.” in
CIDR, 2015.

[12] S. Chaudhuri and U. Dayal, “An overview of data warehousing
and olap technology,” ACM Sigmod record, vol. 26, no. 1, pp. 65–
74, 1997.

[13] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal,
vol. 22, no. 7, pp. 97–114, 2009.

[14] S. Jankowski, J. Covello, H. Bellini, J. Ritchie, and D. Costa, “The
internet of things: Making sense of the next mega-trend,” Goldman
Sachs, 2014.

[15] D. Evans, “The internet of things: How the next evolution of the
internet is changing everything,” CISCO white paper, vol. 1, no.
2011, pp. 1–11, 2011.

[16] https://www-03.ibm.com/press/us/en/pressrelease/46453.wss.
[17] http://storm.apache.org.
[18] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,

X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications
of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[19] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Ver-
scheure, H. Koutsopoulos, and C. Moran, “Ibm infosphere streams
for scalable, real-time, intelligent transportation services,” in Pro-
ceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 1093–1104.

[20] R. Kohavi, R. M. Henne, and D. Sommerfield, “Practical guide to
controlled experiments on the web: Listen to your customers not
to the hippo,” in Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’07.
New York, NY, USA: ACM, 2007, pp. 959–967. [Online]. Available:
http://doi.acm.org/10.1145/1281192.1281295

[21] B. Zhang, B. Ross, and T. Kosar, “Dls: a cloud-hosted data caching
and prefetching service for distributed metadata access,” Interna-
tional Journal of Big Data Intelligence, vol. 2, no. 3, pp. 183–200, 2015.

[22] E. Rescorla et al., “Http over tls,” 2000.

[23] J. Postel and J. Reynolds, “Rfc 959: File transfer protocol (ftp),”
InterNet Network Working Group, 1985.

[24] G. Aloisio, M. Cafaro, and I. Epicoco, “Early experiences with the
gridftp protocol using the grb-gsiftp library,” Future Generation
Computer Systems, vol. 18, no. 8, pp. 1053–1059, 2002.

[25] “The integrated rule oriented data system iRODS,”
http://www.irods.org/.

[26] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel,
“Amazon s3 for science grids: A viable solution?” in Proceedings
of the 2008 International Workshop on Data-aware Distributed
Computing, ser. DADC ’08. New York, NY, USA: ACM, 2008, pp.
55–64. [Online]. Available: http://doi.acm.org/10.1145/1383519.
1383526

[27] T. Kosar and M. Balman, “A new paradigm: Data-aware schedul-
ing in grid computing,” Future Generation Computer Systems,
vol. 25, no. 4, pp. 406–413, 2009.

[28] E. Yildirim and T. Kosar, “End-to-end data-flow parallelism for
throughput optimization in high-speed networks,” Journal of Grid
Computing, vol. 10, no. 3, pp. 395–418, 2012.

[29] W. Liu, B. Tieman, R. Kettimuthu, and I. Foster, “A data transfer
framework for large-scale science experiments,” in Proceedings of
the 19th ACM International Symposium on High Performance Dis-
tributed Computing. ACM, 2010, pp. 717–724.

[30] E. Deelman, T. Kosar, C. Kesselman, and M. Livny, “What makes
workflows work in an opportunistic environment?” Concurrency
and Computation: Practice and Experience, vol. 18, no. 10, pp. 1187–
1199, 2006.

[31] G. Kola, T. Kosar, J. Frey, M. Livny, R. Brunner, and M. Remijan,
“Disc: A system for distributed data intensive scientific comput-
ing.” in WORLDS, 2004.

[32] T. Kosar, M. Balman, E. Yildirim, S. Kulasekaran, and B. Ross,
“Stork data scheduler: Mitigating the data bottleneck in e-science,”
Philosophical Transactions of the Royal Society A: Mathematical, Physi-
cal and Engineering Sciences, vol. 369, no. 1949, pp. 3254–3267, 2011.

[33] J. Kim, E. Yildirim, and T. Kosar, “A highly-accurate and low-
overhead prediction model for transfer throughput optimization,”
Cluster Computing, vol. 18, no. 1, pp. 41–59, 2015.

[34] E. Yildirim, J. Kim, and T. Kosar, “How gridftp pipelining, paral-
lelism and concurrency work: A guide for optimizing large dataset
transfers,” in 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis. IEEE, 2012, pp. 506–515.

[35] J. A. Moore, J. M. Johnson, S. F. T. P. Initiative et al., “Transporta-
tion, land use and sustainability,” 1994.

[36] W. Allcock, Gridftp protocol specification, Global grid forum, 2003,
gFD.20.

[37] https://en.wikipedia.org/wiki/Protocol Buffers.
[38] http://research.yahoo.com.
[39] http://toolkit.globus.org/toolkit/downloads/latest-stable/.
[40] https://min.io/.
[41] C. Boettiger, “An introduction to docker for reproducible re-

search,” ACM SIGOPS Operating Systems Review, vol. 49, no. 1,
pp. 71–79, 2015.

[42] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings
of the 1st ACM symposium on Cloud computing. ACM, 2010, pp.
143–154.

[43] https://portal.xsede.org/sdsc-comet.
[44] http://oshi.github.io/oshi/.
[45] J. Li and S. Wu, “Real-time data prefetching algorithm based

on sequential patternmining in cloud environment,” in Industrial
Control and Electronics Engineering (ICICEE), 2012 International Con-
ference on. IEEE, 2012, pp. 1044–1048.

[46] P. Gu, Y. Zhu, H. Jiang, and J. Wang, “Nexus: a novel
weighted-graph-based prefetching algorithm for metadata servers
in petabyte-scale storage systems,” in Cluster Computing and the
Grid, 2006. CCGRID 06. Sixth IEEE International Symposium on,
vol. 1. IEEE, 2006, pp. 8–pp.

[47] L. Lin, X. Li, H. Jiang, Y. Zhu, and L. Tian, “Amp: An affinity-based
metadata prefetching scheme in large-scale distributed storage
systems,” in Cluster Computing and the Grid, 2008. CCGRID ’08.
8th IEEE International Symposium on, 2008, pp. 459–466.

[48] P. Xia, D. Feng, H. Jiang, L. Tian, and F. Wang, “Farmer: a novel
approach to file access correlation mining and evaluation reference
model for optimizing peta-scale file system performance,” in
Proceedings of the 17th international symposium on High performance
distributed computing. ACM, 2008, pp. 185–196.

http://dx.doi.org/10.1109/ICCCRI.2015.10
http://doi.acm.org/10.1145/1281192.1281295
http://doi.acm.org/10.1145/1383519.1383526
http://doi.acm.org/10.1145/1383519.1383526

14

[49] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai,
“Class-based n-gram models of natural language,” Computational
linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[50] A. Wolman, M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. M. Levy, “On the scale and performance of cooperative web
proxy caching,” in Proceedings of the seventeenth ACM symposium
on Operating systems principles, 1999, pp. 16–31.

[51] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement
learning for adaptive caching in hierarchical content delivery
networks,” IEEE Transactions on Cognitive Communications and Net-
working, vol. 5, no. 4, pp. 1024–1033, 2019.

[52] X. Jia, D. Li, H. Du, and J. Cao, “On optimal replication of
data object at hierarchical and transparent web proxies,” IEEE
Transactions on Parallel and Distributed Systems, vol. 16, no. 8, pp.
673–685, 2005.

[53] T. X. Tran, A. Hajisami, and D. Pompili, “Cooperative hierarchical
caching in 5g cloud radio access networks,” IEEE Network, vol. 31,
no. 4, pp. 35–41, 2017.

[54] I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. Jiang, and L. Li, “Recent
progress on c-ran centralization and cloudification,” IEEE Access,
vol. 2, pp. 1030–1039, 2014.

	1 Introduction
	2 System Architecture
	2.1 SMURF Overview
	2.2 Universal Metadata Transfer Stream
	2.2.1 Metadata Transfer Stream Programming Model
	2.2.2 Matrix Ordering Guarantees the Rule of ``You Parse What You Send''

	2.3 Fetch/Prefetch Services
	2.3.1 Metadata Transferring via a Cluster of Fetch/Prefetch Services
	2.3.2 Metadata Storage and Transfer Format
	2.3.3 Directory Tree Structure Synchronization

	2.4 Distributed Continuum Caching and Prefetching Architecture
	2.4.1 Layer Server's Request and Response Multiplexing

	2.5 Prefetch Framework
	2.6 Semantic Locality Prefetch Predictor

	3 Evaluation
	3.1 Trace File System Directory Tree Reconstruction
	3.2 Scalability of Fetch Services
	3.3 Scalability of Prefetch Services
	3.3.1 Cache Hit Rate

	3.4 Evaluation of Prefetch Schemes on Yahoo! Hadoop Grid Trace Logs
	3.5 Performance of Continuum Caching
	3.5.1 Average Fetch Latency

	4 Related Work
	5 Conclusion
	References

