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STRETCH: Virtual Shared-Nothing Parallelism
for Scalable and Elastic Stream Processing

Vincenzo Gulisano, Hannaneh Najdataei, Yiannis Nikolakopoulos, Alessandro V. Papadopoulos,
Marina Papatriantafilou, and Philippas Tsigas

Abstract—Stream processing applications extract value from raw data through Directed Acyclic Graphs of data analysis tasks.
Shared-nothing (SN) parallelism is the de-facto standard to scale stream processing applications. Given an application, SN parallelism
instantiates several copies of each analysis task, making each instance responsible for a dedicated portion of the overall analysis, and
relies on dedicated queues to exchange data among connected instances. On the one hand, SN parallelism can scale the execution of
applications both up and out since threads can run task instances within and across processes/nodes. On the other hand, its lack of
sharing can cause unnecessary overheads and hinder the scaling up when threads operate on data that could be jointly accessed in
shared memory. This trade-off motivated us in studying a way for stream processing applications to leverage shared memory and boost
the scale up (before the scale out) while adhering to the widely-adopted and SN-based APIs for stream processing applications.
We introduce STRETCH, a framework that maximizes the scale up and offers instantaneous elastic reconfigurations (without state
transfer) for stream processing applications. We propose the concept of Virtual Shared-Nothing (VSN) parallelism and elasticity and
provide formal definitions and correctness proofs for the semantics of the analysis tasks supported by STRETCH, showing they extend
the ones found in common Stream Processing Engines. We also provide a fully implemented prototype and show that STRETCH ’s
performance exceeds that of state-of-the-art frameworks such as Apache Flink and offers, to the best of our knowledge,
unprecedented ultra-fast reconfigurations, taking less than 40 ms even when provisioning tens of new task instances.

Index Terms—Stream Processing, Shared-Nothing Parallelism, Shared-Memory, Elasticity, Scalability.
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1 INTRODUCTION

Stream processing applications process data (tuples) coming
from unbounded streams (e.g., tweets or trade records). Such
applications are run by Stream Processing Engines (SPEs)
such as Apache Flink [2] or Storm [3]. SPEs provide users
with semantically-rich operators composable into Directed
Acyclic Graphs (DAGs) and automate the process of deploy-
ing and executing efficiently user-defined DAGs.

SPEs’ de-facto standard to parallelize the execution of
stream processing applications builds on Shared-Nothing
(SN) key-by parallelism. Simply put, the idea is to create
multiple instances of each operator, each with a dedicated
state and queues to exchange and route each tuple to exactly
one of such instances. SN parallelism is also used in elastic-
ity protocols, which aim at adjusting the parallelism degree
of the DAGs run by SPEs, avoiding the overheads of over-
or under-provisioned applications [4].

Trade-offs of shared-nothing parallelism.
While able to scale the execution of a DAG both up and
out SN parallelism can incur unnecessary overheads. The
first type of overhead is caused by operators’ dedicated
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input/output queues. When the semantics of a parallel
operator O require to route a tuple to multiple instances of
O, this leads to data duplication. Consider an application,
which we use as a running example, in which O computes
the longest tweet on a per-hour, per-hashtag basis. Its anal-
ysis can be parallelized by having each parallel instance of
O responsible for one observed hashtag. Tweets carrying
multiple hashtags, though, might need to be shared with
multiple instances. This overhead is exacerbated by the fact
that SPEs might leave to users the task of correctly cus-
tomizing the routing of tuples. The second type of overhead
is caused by the operators’ dedicated internal state. Since
instances’ states are not shared, state transfer is needed in
elastic reconfigurations to adjust the workload distribution
and/or parallelism degree of an operator [4]. This overhead
is exacerbated when SPEs request users to implement seri-
alization/deserialization methods for custom states [5].

While these overheads are unavoidable for operator
instances running distributedly, they are not for instances
that share memory within the same process, and could
thus share tuples and states too. Following the principle
that applications should be properly scaled up before being
scaled out [6], we thus pose the following question: How
can we seamlessly leverage shared memory to boost parallel/elas-
tic executions of common SPEs’ operators, while avoiding data
duplication and state transfer overheads?

Contributions
We formally show that it is possible to define parallel and
elastic SPE operators that, by virtualizing the common Ap-
plication Programming Interfaces (APIs) based on SN paral-
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lelism, can leverage shared memory to first scale streaming
applications up while allowing to rely on SN parallelism to
later scale them out. We thus introduce STRETCH and the
concept of Virtual Shared-Nothing (VSN) parallelism/elastic-
ity in stream processing. These are our contributions:
• we prove the potential need for data duplication in SN

parallelism and propose a unified generalized model for
SN parallelism encapsulating common SPEs’ operators,

• we prove that VSN parallelism can correctly enforce the
semantics of our generalized model while circumventing
the overheads of data duplication and state transfer,

• we provide a fully implemented prototype, which builds
on state-of-the-art data structures such as ScaleGate [7]
and our extended Elastic ScaleGate implementation, as
well as a thorough evaluation with several use-cases and
both synthetic and real data.

Outline: § 2 covers preliminaries, § 3 formalizes our problem,
§ 4 discusses the data duplication overhead and introduces
our generalized model, § 5-§ 7 cover STRETCH’s model
and implementation, § 8 evaluates STRETCH, § 9 discusses
related work, and § 10 wraps up our work. A table of
abbreviations/symbols is found in Appendix A.

2 PRELIMINARIES

2.1 Stream processing basics
In accordance with the DataFlow model [8], streams are
unbounded sequences of tuples. Tuples have two attributes:
the metadata and the payload ϕ. The metadata carries the
timestamp τ and possibly further sub-attributes. We write
t.τ to refer to the τ sub-attribute of tuple t’s metadata. We
reference ϕ’s `-th sub-attribute as t.ϕ[`]. A tuple’s combined
notation is 〈τ, . . . , [ϕ[1], ϕ[2], . . . ]〉.

Stream processing queries (or simply queries) are com-
posed of ingresses, operators, and egresses. Ingresses forward
ingress tuples (e.g., events reported by sensors or other
applications). Each ingress stream can be fed to one or more
operators, the basic units manipulating tuples. Operators,
connected in a DAG, process input tuples and produce
output tuples; eventually, egress tuples are fed to egresses,
which deliver results to end-users or other applications.

As ingress tuples correspond to events, τ is the event time
set by the ingress to when the event took place. Operators
set τ of each output tuple according to their semantics, while
ϕ is set by user-defined functions. Event time is expressed
in time units from a given epoch, and progresses in SPE-
specific discrete δ increments (e.g., milliseconds [2]).

The operators of a query are either stateless or stateful.
Stateless operators process each tuple individually. The
Map/Flatmap (M ) operator, for instance, transforms each
input tuple tin into one or more output tuples tout by
setting tout.τ to tin.τ (we write tout.τ ←− tin.τ ) and using
a user-defined function to create tout.ϕ from tin.ϕ. Stateful
operators run their analysis on delimited groups of tuples
called windows, as explained next.

Stateful analysis over time-based windows
We focus on common stateful operators running their analy-
sis over time-based windows, namely Aggregates and Joins. For
conciseness, for operator O we use the notation

O(WA,WS, I, fSK,WT, S, f1, f2, . . .)

to refer to the parameters that such stateful operators share.
Parameters Window Advance (WA) and Size (WS) define
the advance/size of O’s windows, respectively, which
cover periods [`WA, `WA+WS), with ` ∈ Z. Consecutive
periods overlap if WA < WS; the window is then called
sliding and a tuple can fall into several window instances.
Parameter Inputs (I) is the number of O’s input streams,
one for each of O’s upstream peers.
Single Key-by function fSK extracts exactly one key from
a tuple t, usually returning a subset of t.ϕ [8]. O maintains
distinct window instances for each of its I input streams and
for groups of tuples that share the same key.
Parameter Window Type (WT) defines how window in-
stances are internally maintained by O. If WT = single, a
single instance is maintained per key and updated based
both on tuples entering and leaving it. If WT = multi, mul-
tiple overlapping window instances are maintained per key
and updated according to the incoming tuples. Hence, new
window instances are continuously created while old ones
are eventually discarded. As discussed in [9], WT = single
is preferable when WA � WS. Figure 1 shows how two
operators (that only differ in WT) maintain their w instances
(each w contains the tuples falling in it). As shown, for each
key O maintains a list of sets, each with I windows (one
single set if WT = single, or one or more sets if WT = multi).
Parameter Schema (S) defines O’s output tuples.
Functions f1, f2, . . . are operator-specific functions to up-
date O’s state and produce output tuples.

Input 1

Input 2

t2: <00:09,["b"]>

t3: <00:09,["a"]>

t1: <00:08,["a"]>

key "a"
<{t1},00:00,"a">
<{t3},00:00,"a">

<{},00:00,"b">
<{t2},00:00,"b">

Input 1

Input 2

t2: <00:09,["b"]>

t3: <00:09,["a"]>

t1: <00:08,["a"]>

<{t1},00:00,"a">
<{t3},00:00,"a">

<{t1},00:08,"a">
<{t3},00:08,"a">

<{t2},00:00,"b">
<{},00:00,"b">

<{t2},00:08,"b">
<{},00:08,"b">

Window instance, carrying  in 
, with  set to 00:00 and ="a"

key "b"

If  all win. instances to which a
tuple falls in are maintained at the same time

time time

Fig. 1: Sample w instances maintained by two O operators
with WT = single (left) and WT = multi (right).

In the following, we use 〈ζ, l, k〉 for the combined nota-
tion of a window instance w, where ζ is w’s internal state
(e.g., the tuples falling in w), l is the event time of w’s left
boundary (inclusive), and k is w’s key. The right boundary
of w (exclusive) is computed as w.l + WS. As common in
related works [2], [3], [10], when an output tuple tout is
created in connection to a window instance w, tout.τ is set
to w’s right boundary. Since w’s right boundary is exclusive:

Observation 1. Any output tuple tout produced from a window
instance to which tin falls in is such that tout.τ > tin.τ .

The Aggregate A(WA,WS, 1, fSK,WT, S, fA, fR) defines
fA to aggregate the tuples falling in one window instance w
into the ϕ attribute of the output tuple created for w, and fR
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to incrementally update w.ζ . As we show in § 4, A can pro-
duce an output tuple both incrementally, updating its state
for each new tuple it receives, or only upon the expiration
of a window instance. The Join J(WA,WS, 2, fSK,WT, S, fJ)
defines fJ to match pairs of tuples (one from each stream)
that fall to window instances sharing the same boundaries
and associated with the same key. Each matched pair can
result in up to one output tuple.

2.2 Shared-nothing parallelism (model and notation)

Logical view Physical view

physical stream

runs method process on
each input tuple fed to it

runs method forward to
route output tuples to
downstream instance

based on 

logical stream

local state holding a
disjoint subset of keys

Fig. 2: Logical/physical views of O with SN parallelism.

SPEs let users define operators such as A/J as logical,
and later convert them into physical instances (Figure 2). We
use Ui and D to refer to a generic upstream ingress/oper-
ator and downstream operator/egress, respectively. Π(X)
denotes the parallelism degree of the operator, ingress, or
egress X . Each logical stream connecting a pair of logical
operators (or an ingress/egress) is converted into one or
more physical streams. Each instance oj of operator O is
assigned a subset of the keys observed in their input streams
(and thus windows), which it maintains in its local state σj .

With SN parallelism, each instance oj has a dedicated
queue for the tuples of each of its physical input or output
streams. Moreover, oj owns its dedicated σj , which is not
concurrently accessed by other operator instances. From
an implementation perspective, all the operations carried
out by oj are encapsulated in two methods: process and
forward. Method process encapsulates oj ’s analysis, and
runs every time a tuple forwarded by an ui,j instance is
available for processing, being ui,j the j-th instance of Ui.
Method forward encapsulates the routing of tuples to
downstream instances and runs every time one or more
tuples produced by process should be sent to aD instance.
To route tuples, method forward has access to a mapping
function fµ that maps output tuples’ keys to D instances
according to D’s semantics. We say oj is responsible for key
k if, given the fµ used by Ui’s method forward, fµ(k) = j.

2.3 Correctness conditions
When deploying and running operators, users expect SPEs
to enforce operators’ semantics correctly. For operator O,
correct execution within an SPE can be defined as follows.

Definition 1. O’s instances execution is correct if, according
to O’s specifications, any subset of O’s input tuples that
could jointly contribute to an output tuple is indeed pro-
cessed together and results in such an output tuple (if any).

For an Aggregate A, Definition 1 implies that all the
input tuples falling into one specific window instance w
should be jointly processed by fA and/or used by fR
to update w.ζ . For a Join J , it implies that any pair of
tuples (one from the left stream L and one from the right
stream R) 〈tL, tR〉 such that tL ∈ wL, tR ∈ wR, wL.l =
wR.l, and fSK(tL) = fSK(tR) is processed by fJ .

As discussed in [11] the correct execution for an instance
oj requires to consistently maintain its watermark Wω

oj :

Definition 2. The watermark Wω
oj of operator instance oj

at a point in wall-clock time1 ω is the earliest event time a
tuple t` to be processed by oj can have from time ω on (i.e.,
t`.τ ≥Wω

oj ,∀t
` processed from ω on).

We say a window instance is expired if its right boundary
falls before the operator instance’s watermark. We say a
tuple is expired if it only contributes to expired window
instances. Based on Wω

aj , an instance ai of A can safely
invoke fA for any w such that w.l + WS ≤ Wω

aj since no
more tuples that fall in w will be received or processed by
fR, and it is thus safe to shift (if WT = single) or discard (if
WT = multi) w (cf. § 2.1). Appendix B builds on Figure 1
to provide an example visualizing expired and non-expired
windows. Based on Wω

ji
, an instance ji of J can safely

shift/delete w if w.l + WS ≤ Wω
ji

, since ji will no longer
invoke fJ on w’s expired tuples. In related work, Wω

oj is
updated based on one of the following ways.

Implicit watermarks
The first way to update watermarks assumes that each oj ’s
physical input stream is timestamp-sorted [4]. The tuples of
such physical streams are merge-sorted in timestamp-order
and fed to oj once ready, as defined next based on [7]:

Definition 3. t`i , the `-th tuple from timestamp-
sorted stream i, is ready to be processed if t`i .τ ≤
mini{maxm(tmi .τ)}, the minimum among the latest m-th
tuple timestamps from each timestamp-sorted stream i.

In such a case, Wω
oj can be safely updated by oj to t.τ for

each incoming ready tuple t fed to oj .

Explicit watermarks
The second way to update watermarks [2], [11] as-
sumes ingresses/operators periodically propagate water-
marks through the DAG as special tuples. This allows
handling both out-of-timestamp-order streams as well as
timestamp-sorted streams whose rate might drop to zero
during periods of time (in the latter case this could affect the
sorting performed when relying on implicit watermarks).
Upon receiving a watermark, oj stores the watermark’s
time, updates Wω

oj to the minimum of the latest watermarks
received from each input stream, and propagates Wω

oj .
Note that, while both options support correct execution,

implicit watermarks also ensure streams are fed in total
order to oj . Hence, oj can seamlessly support timestamp-
order-sensitive analysis. Explicit watermarks are only safe
for timestamp-order-insensitive analysis or require oj to sort
its input tuples before processing them [11], [12].

1. From here on, we only differentiate wall-clock time (or simply
time) from event time if such distinction is not clear from the context.
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2.4 The ScaleGate object
ScaleGate [13] (SG) is a shared data object, that in this
work is extended and used to support STRETCH’s algo-
rithmic implementation. It allows several sources to con-
currently and efficiently merge timestamp-sorted streams
into a timestamp-sorted stream of ready tuples (cf. Defini-
tion 3). Also, it allows several readers to consume all the
ready tuples of the latter stream. Its lock-free, linearizable
algorithmic implementation supports efficient deterministic
processing [14], [15]. A fixed set of sources/readers can
interact with an SG object using the API methods:
• addTuple(tuple,i): which merges a tuple from the i-

th source in the timestamp-sorted stream of ready tuples.
• getNextReadyTuple(i): which provides to the i-th

reader the next earliest ready tuple that has not been yet
consumed by it. Note that each tuple, once ready, will be
returned to all readers invoking the method.

To ease notation, we refer to methods addTuple and
getNextReadyTuple as add and get in the remainder.

2.5 Elasticity
The computational cost of a stream processing application
varies over time [4]. Hence, an execution in which the
parallelism degree of operators is fixed can lead to
imbalances in the work of such operators. When the overall
work of an operator is unbalanced but can still be carried out
by its instances, a load balancing reconfiguration is needed to
change the work distribution (i.e., the mapping of each key
and the instance responsible for it). If new instances are to be
provisioned, the new work distribution re-assigns some keys
to the newly allocated instances. Since over-provisioned sys-
tems can lead to high latency [15] and unnecessary costs [4],
existing instances should also be decommissioned when
fewer instances suffice for the overall workload. We use
the term reconfiguration to refer to any of these actions (note
provisioning and decommissioning imply load balancing).

3 PROBLEM DEFINITION AND APPROACH

This work focuses on intra-process parallel and elastic
execution of stateful stream processing analysis for time-
based sliding windows (or simply windows), thus assuming
WA < WS. For any given stateful operator O, we do not
make any assumption on the frequency, periodicity, or tim-
ings with which tuples are fed to it. As such, we cannot infer
the event time of the `+1th input tuple fed to an instance of
O based on that of the `th tuple. We assume the information
needed by an instance oj to update its watermark Wω

oj is
carried by tuples’ metadata (cf. § 2.1), be it through t.τ and
implicit watermarks, or by forwarding explicit watermarks
(as special tuples or additional metadata of regular tuples).
We assume ingresses/operator instances are continuously
delivering tuples/watermarks and have completed their
bootstrap phase (i.e., all have started delivering tuples/wa-
termarks). We assume the threads in charge of the physical
execution of O share memory (physical/logical) and can
read/write shared objects stored in it.

Within this setup, we first show that SN parallelism
might require data duplication to parallelize the execution
of operators whose semantics are more general than those of

A/J (e.g., those of our running example from § 1). We then
prove that for such generalized semantics, implementations
that rely on SN parallelism (with an arbitrary degree of data
duplication) can be transformed to semantically equivalent
implementations that rely on shared memory and do not
incur the overheads of data duplication nor those of state
transfer during elastic reconfigurations. Finally, we also
provide an extensive discussion and evaluation (with sev-
eral state-of-the-art baselines) based on a fully implemented
prototype. For ease of presentation, we center most of our
discussions around a single stateful operator. Nonetheless,
STRETCH can support the execution of multiple stateful
operators within one query, as we discuss in § 5 and § 7.

When it comes to elasticity, note that STRETCH does
not aim at embedding a specific policy about when/how
to balance load or provision/decommission instances (e.g.,
based on energy [16] or CPU consumption [4]), but rather
defines a generic API for external modules. We show in § 8
the use of STRETCH in conjunction with two such modules.

4 A GENERALIZED STATEFUL OPERATOR

As introduced in § 1, data duplication is a potential draw-
back of SN parallelism. We prove herein that there exist
operators whose semantics are richer than those of A and J
(cf. § 2), and which might need data duplication for some of
their tuples. To frame the type of stateful operator modeled
by STRETCH, we then introduce a unified and generalized
operator O+, later used when arguing about the semantic
equivalence between SN and VSN setups. With O+ each
input tuple t can be shared with an arbitrary number of
instances, thus accounting for any data duplication level.

4.1 SN parallelism and data duplication

Before proving the data duplication need, we introduce the
following lemma and definitions.

Lemma 1. Let W be the set of non-expired window instances held
by oj for key k. The next tuple with key k fed to oj can fall in a
window instance w such that w ∈W.

Proof. Being w∗ one of the latest non-expired window
instance in W (i.e., one with the highest left boundary l) and
t∗ the next tuple fed to oj , if the statement does not hold,
then either (i) Wω

oj ≥ w∗.l + WS, which contradicts that
W contains non-expired window instances, or (ii) t∗.τ ≥
w∗.l+WS, which contradicts our assumption from § 3 about
future tuples’ timestamps being not known.

Definition 4. fMK(t) is a Multi Key-by function that, differ-
ently from fSK(t), does not result in one key but rather in a
set (possibly empty) of keys.

Definition 5. A+ and J+ are generalizations of A and J ,
respectively, for which fMK replaces fSK.

Given Lemma 1 and Definitions 4 and 5, we can intro-
duce our theorem about data duplication.

Theorem 1. If any arbitrary pair of tuples t`, tm fed to A+/J+

can share a key, then A+/J+ might need data duplication for SN
parallelism to correctly enforce A+/J+’s semantics.
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Proof. Let us begin with A+ and let us assume t` is the last
tuple forwarded to a+, one of A+’s parallel instances, and
that t`+1 is the next tuple that has to be forwarded to one
of A+’s instances. If t` and t`+1 indeed share one key, and
given Definition 1 and Lemma 1, then t`+1 must be sent to
a+ to correctly enforce A+’s semantics. The same holds for
t`+2, t`+3, etc. To avoid any data duplication, all data should
be sent to a+ to account for any future tuple that could share
a key with a previous tuple. In this case, though, A+ would
not run in parallel. The same reasoning holds for J+ and
for two tuples tR, tL (one from stream R, one from L) that
should be compared when sharing a common key.

To support the following discussion about our general-
ized stateful operator O+, we give the following corollary.

Corollary 1. A+ and J+ semantics can be enforced combining
M , A and J operators with SN parallelism.

This is so since by preceding A and J with M operators,
M can be used to process each incoming tuple t` so that (1)
as many copies as keys in t` are made of t`, (2) each such
copy t′` carries one of t`’s keys in t′`.ϕ as an extra attribute,
and (3) such attribute is then returned by the fSK of A or J .

To further build on our running example (cf. § 1), note
that the operator computing the longest tweet per-hour and
per-hashtag is an A+ operator. In this case, fMK would
extract each tweet’s hashtag as a key, and fA would find the
longest tweet of each such key. Corollary 1 shows how the
programmer intervention is required to enforceA+’s seman-
tics, in this case expressing A+ as an M/A combination (we
refer the reader to Appendix C for an extended example).

4.2 STRETCH’s generalized model for stateful analysis

After discussing A+/J+ generalizations in Theorem 1, we
now introduce a general operator O+, and a model for SN
parallelism that (1) encapsulates the semantics of A+/J+

(and thus that of A and J , cf. Corollary 1), and (2) allows for
an arbitrary degree of data duplication.

The logical and physical representations of O+ resem-
ble those shown in Figure 2. O+ has I upstream peers
U1, . . . , UI (which could be an arbitrary mixture of op-
erators and ingresses) and one downstream peer D (an
operator or an egress). We refer to the j-th instance of Ui,
O+, and D as ui,j , o+

j , and dj , respectively; qa,b is the queue
between instances a and b. O+ is defined as follows:

O+(WA,WS, I, fMK,WT, S, fµ, fU , fO, fS)

Besides the aforementioned parameters WA, WS, I , fMK,
WT, S, and fµ, O+ defines an update (fU ), an output (fO),
and a slide function (fS) to maintain its window instances:
fU is invoked, upon the reception of t, to update the state
of the instances of keys associated with t and (optionally)
to return a set of tuple payloads to be forwarded to D;
fO is invoked when a set of instances expires, to return a
set of tuple payloads to be forwarded to D; fS is invoked
when instances slide, to return the updated states for a set
of I window instances that have just advanced by WA time
units.

As shown in Table 1, a default behavior is associated
with each function. To draw a parallel with Object-Oriented

TABLE 1: Functions O+ uses to maintain window instances.

Input Output Default behavior

fU {w1, . . . , wI}, t {ζ1, . . . , ζI ,
ϕ1, . . . , ϕ`}

Store t in w.ζ of t’s
sender. Returns no ϕ.

fO {w1, . . . , wI} {ϕ1, . . . , ϕ`} Returns no ϕ.
fS {w1, . . . , wI} {ζ1, . . . , ζI} Purge stale tuples.

Programming, O+ acts as a superclass of operators like A+

and J+ (we formally prove this later in the section). The lat-
ter can be instantiated by specializing some of its functions
fU , fO, and fS . The user is expected to specialize at least
one function, since the default implementations result inO+

maintaining all tuples that fall in each window instance (via
fU and fS) but without producing any output tuple.

Implementation of forward and process methods
We start with the method forwardSN (forward for SN
setups) run by ui,j instances (Alg. 1). As soon as a tuple t is
ready to be forwarded to O+, forwardSN retrieves the set
of keys associated with t (L5). For each key k, it then adds
t to the queue of each downstream peer responsible for at
least one of t’s keys (L6-7).

We move now to the description of method processSN
(process for SN setups, Alg. 2). Upon reception of t (L31),
the method updates o+

j ’s watermark (L32) with the infor-
mation contained in t’s metadata (if any, cf. § 2). It then
proceeds by outputting the result of all expired window
instances and shifting/removing them (L33-35). We use the
notation σj [k][`] to refer to the `-th set of I window instances
(one for each of the I upstream operators) maintained in
σj for key k. It starts with the earliest ones, having ρ
as left boundary (L34), outputs their result invoking fO
(L13) and shifts them (when WT = single) invoking fS
(L14-16) and/or removes them (L17-18), if WT = multi
or if all window instances have an empty state. When
no window instances with left boundary ρ remain, the
method continues checking the ones starting at ρ + WA
(L35). After taking care of expired window instances, the
method proceeds identifying the set of window instances
to which t falls in (depending on WT) and adjusting ρ if
needed (L21-24). For each such window instance (L25), and
for each of t’s keys responsibility of o+ (L26) the method
creates the corresponding window instances, if not already
defined, and updates their state invoking fU (L27-30).

Upon invoking fU/fO , O+ sets the event time of any
resulting output tuple to the right boundary of the window

Algorithm 1: Method forwardSN (forward for
SN setups) for a ui,j instance. Invoked when a non-
empty set of tuples is to be forwarded to O+.

Instance-local variables:
1 fMK, fµ // From O+’s definition

2 Method forwardSN({t1, . . . , t`})
3 for t ∈ {t1, . . . , t`} do
4 P←− {} // empty set of downstream peers
5 K←− fMK(t) // get keys of t
6 for k ∈ K do P←− P ∪ fµ(k)
7 for p ∈ P do q

ui,j ,o
+
p

.add(t)
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Algorithm 2: Method processSN (process for SN setups) for an o+
j instance. Runs when t is returned by qui,j ,o

+
j

.

Instance-local variables (besides WA,WS, I, fMK,WT, S, fµ, fU , fO, fS ):
1 σj // o+j ’s state, initially empty

2 W // o+j ’s watermark, initially 0
3 ρ // earliest w.l of any w ∈ σj, initially 0

Auxiliary methods:
4 updateW(t) // update W based on t’s metadata
5 σj.remove(k, `) // remove the `-th set of I window instances for key k
6 σj.set(k, `, {ζ1, . . . , ζI}) // set states of the `-th set of I window instances for key k
7 σj.shift(k, `, {ζ1, . . . , ζI}) // for the `-th set of I w inst. for key k, increase w.l by WA and set states
8 σj.check&Create(k, l) // add set of I w instances for key k and w.l = l if they are not already in σj
9 earliestWinL(t) // get earliest w.l for any w in which t falls

10 latestWinL(t) // get latest w.l for any w in which t falls
11 prepareOutTuples({ϕ1, . . . , ϕ`}) // create an output tuple and set its metadata for each of the ` payloads

12 Method forwardAndShift(k) // forward results (if any) and shift/remove the w instances
13 forward(prepareOutTuples(fO(σj [k][1])))
14 if WT = single then
15 {ζ1, . . . , ζI} ←− fS(σj [k][1])
16 if ∃i ∈ {1, . . . , I}|ζi 6= ∅ then σj.shift(k, 1, {ζ1, . . . , ζI})
17 else σj.remove(k, 1)
18 else σj.remove(k, 1)

19 Method handleInputTuple(t)
20 if ∃k|k ∈ fMK(t) ∧ fµ(k) = j then
21 τ1 ←−earliestWinL(t) // Find w.l of window instance to update
22 if WT = single then τ2 ←−earliestWinL(t)
23 else τ2 ←−latestWinL(t)
24 if τ1 < ρ then ρ←− τ1
25 for ` ∈ {0, . . . , (τ2 − τ1)/WA} do // Create/update window instance
26 for k ∈ fMK(t)|fµ(k) = j do
27 σj.check&Create(k, τ1 + ` ∗ WA)
28 {ζ1, . . . , ζI , ϕ1, . . . , ϕ`} ←− fU (σj [k][`])
29 forward(prepareOutTuples(ϕ1, . . . , ϕ`)) // forward results (if any)
30 σj.set(k, `, {ζ1, . . . , ζI})
31 Method processSN(t)
32 updateW(t) // update o+j watermark

33 while ρ+ WS < W do // while o+j has expired window instances
34 while ∃k|σj [k][1].l = ρ do forwardAndShift(k) // and an expired window inst. w starts at ρ, handle w
35 ρ←− ρ+ WA // update ρ value
36 handleInputTuple(t)

instances on which fU/fO have been invoked, as done by
A and J (see § 2), using method prepareOutTuples.

Formal Guarantees
After covering the implementation of O+, we now prove
O+ encapsulates the semantics of A+/J+ (and thus A/J ).

Theorem 2. O+ guarantees A+ and J+ semantics (cf. Def. 5).

Proof. The method forwardSN of ui,j implements the
same semantics of those of an additional map, placed after
each ui,j instance, that create copies of each tuple according
to Corollary 1. Moreover, with O+’s, A can be instantiated
by setting I = 1 and using fA as fO and/or fR as fS .
Similarly, J can be instantiated by setting I = 2 and
matching tuples via fJ either incrementally with fU or upon
window instance expiration with fO .

An additional property of O+ is about how watermarks
can be delivered by its instances, as discussed next.

Lemma 2. For each o+ instance, output tuples timestamps’
represent valid implicit watermarks, since tm.τ ≥ t`.τ for any
pair of consecutive output tuples t` and tm.

Proof. As shown in Alg. 2 L33-35, o+ produces output
tuples in timestamp order. As such, each output tuple’s

timestamp is also a valid watermark, since no tuple t`+1

delivered after t` can have t`+1.τ < t`.τ .

We refer to Appendix D for several complete operator
examples, including one for an A+ running the example
from § 1 and one for ScaleJoin [13] (a J+ that we later use
in § 8), and to Appendix E for an additional example that
connects to Theorem 2 and shows how an execution of an
A+ results in the same state updates observed when A+’s
semantics are implemented using M and A operators.

Despite not being within the scope of this work to create
a complete taxonomy of all the stateful analysis semantics
O+ can cover, but rather to show O+ is a generalization of
common stateful operators such as A and J , note that, in
the spirit of a description of O+ semantics:

1) differently from A and J , O+ can work with an arbi-
trary number of upstream peers each producing tuples
with their own schema, and

2) O+ can implement custom stateful operators (e.g., the
ScaleJoin operator, presented in Appendix D and § 8).

5 VSN PARALLELISM AND ELASTICITY

After introducing O+, we show O+ can leverage shared
memory to avoid data duplication and state transfers during
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TABLE 2: API of the TB shared data structure. Highlighted methods are only relevant for elastic setups.

API Method Description

add(t, j) invoked by source j to add tuple t.
get(j) invoked by reader j to retrieve the next tuple conforming to the watermarks that are also delivered by the get method.
addReaders(R, j) invoked by reader j to add readers in R that are not already readers of TB. Once invoked, TB delivers to R tuples

and watermarks starting from the ones that will be also returned to j once j invokes get. If more readers invoke
addReaders concurrently, only one succeeds. Returns true only if it adds all new readers in R.

removeReaders(R) removes each of the readers in R (that are readers of TB) when invoked by a reader of TB. If more readers invoke
removeReaders concurrently, only one succeeds. Returns true only if it removes all existing readers in R.

addSources(S) adds each of the sources in S that are not already sources of TB when invoked by a source of TB. If more sources invoke
addSource concurrently, only one succeeds. Returns true only if it adds all new sources in S.

removeSources(S) removes each of the sources in S (that are sources of TB) when invoked by a source of TB. If more sources invoke
removeSources concurrently, only one succeeds. Returns true only if it removes all existing sources in S.

elastic reconfigurations while preserving its semantics. We
first focus on how VSN parallelism can overcome the data
duplication overhead. For ease of exposition, we begin with
a static setup in which Π(O+) is fixed.

In STRETCH, we assume that each pair of instances
〈ui,j , o+

j 〉 has no dedicated queue (cf. § 2.2), but rather that
all Ui andO+ instances share a single Tuple Buffer (TB) object
(cf. Figure 3) which behave according to the next definition.

Definition 6. TB is a data structure that allows a set of
sources to concurrently add tuples to it, that delivers each
tuple exactly once to each one of its readers, and that merges
sources’ watermarks into a single stream of non-decreasing
watermarks, each delivered to all readers. It defines the
methods presented in Table 2.

We rely on a generic TB data structure for generality. We
discuss a specific data structure with such an API in § 6.

Implementation of the forward method
In this new setup, ui,j instances run the method
forwardVSN (forward method for VSN setups) in Alg. 3.
Each ui,j instance carries an id (L1) that represents its index
as source of TB (i.e., 1 for u1,1 and

∑
i Π(Ui) for uI,Π(UI))

and passes such id when adding tuples to TB via the add
method (L 3). In this case, since all tuples are visible to each
o+ instance, o+ should process only the tuples that carry at
least one key that is its responsibility. Noting that, nonethe-
less, this is already the case in method handleInputTuple
(Alg. 2 L26), we make the following observation.

Algorithm 3: Method forwardVSN (forward for
VSN setups) for a ui,j instance. Invoked when a
non-empty set of tuples is to be forwarded to O+.

Instance-local variables:
1 id // instance’s id

2 Function forwardVSN({t1, . . . , tm})
3 for t ∈ {t1, . . . , tm} do TBin.add(t, id)

Observation 2. When Ui and O+ instances are connected
through TB objects, and Ui instances use Alg. 3 to forward
tuples, O+ can run in parallel enforcing correctly O+’s semantics
without data duplication.

Observation 2 focuses on the data duplication overhead
for a single operator O+. When considering a series of oper-
ators, note that tuples’ data could be duplicated also when

D is stateful and o+ and dj instances share tuples through
dedicated queues. Hence, for generality, we also replace the
queues of 〈o+

j , dj〉 pairs with a TB, as shown in Figure 3
(we name the objects TBin and TBout to differentiate them).
Note our model assumes one D operator for simplicity; our
results hold also if more D operators invoke get on TBout.

From static to elastic setups

We now show that if o+
j instances share a global state σ

– rather than per-instance σj states – this can enable state-
transfer-free elasticity (cf. § 1). We thus move from a static
setup in which Π(O+) and fµ are fixed to one in which both
can change over time. It should be noted that, as we formally
prove later in the section, although σ can potentially be
exposed to concurrent updates for distinct keys from the
various o+

j instances, STRETCH ensures that each key is
consistently updated by exactly one instance at a time.

A reconfiguration implies a change in fµ to hold from a
certain event time onward. We use the term epoch to refer
to the event time period in between two watermarks during
which the mapping of keys to instances does not change.
Hence, being e the current epoch, O the set of O+ instances,
and fµ the mapping in e, a reconfiguration implies the start
of a new epoch e∗ for which a new mapping f∗µ is used for a
(possibly different) set of operator instances O∗. We focus on
a single transition from epoch e to e∗ since subsequent epoch
switches happen with the same logic. To ease presentation,
we define two temporary conditions:

• Cond. 1: For provisioning reconfigurations, the joining
instances O∗ \O are already instantiated, and start retriev-
ing/processing tuples as soon as they are given access to
TBin. For decommissioning reconfigurations, the leaving
instances O \ O∗ will stop processing/outputting tuples
once they are disconnected from TBin and TBout.

• Cond. 2: All instances o+
j ∈ O ∪ O∗ have access to

a set of variables {e, e∗,O,O∗, f∗µ, γ} that represent the
current epoch id number (e), the next epoch id number
(e∗), the set of instances of the current epoch (O), the
set of instances of the next epoch (O∗), the mapping
function of the next epoch (f∗µ), and a shared event time
(γ) greater than the current watermark of any instance
o+
j , used by all o+

j instances to trigger a reconfiguration
as soon as their watermark is greater than or equal to γ.
O+ instances receive special control tuples, and set such
parameters using a method named prepareReconfig.
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Control tuples can be distinguished with a method named
isControl and are not processed to update O+’s state.

Figure 3 shows STRETCH’s setup. We cover the actual co-
ordination of instances, the implementation of isControl
and prepareReconfig, and satisfy Cond. 1/2 in § 7.

Elasticity and correctness
Before focusing on STRETCH’s shared state and elasticity
protocol, we want to draw attention to one challenging
connection between elasticity and correctness guarantees.
A change in Π(O+) implies a change in the number of in-
stances delivering tuples/watermarks to D. Independently
of whether tuples/watermarks are delivered to D through
individual queues or TB objects, a crucial question arises:
can a newly provisioned instance deliver tuples/watermarks to a dl
instance that conflict withWω

dl
(i.e., that carry a timestamp earlier

than Wω
dl

)? Without assumptions on when such operator
instance will deliver tuples/watermarks or which values
they will carry, this is indeed the case. Note this could
violate correctness if D is stateful and t contributes to a
window instance w that dl has already treated as expired.

One way, discussed in the literature [17], to deal with this
is to relax the correctness guarantees. An alternative way,
which we follow in this work, is to prove that, for an O+

operator, it is possible to guarantee a safe lower bound on
the watermarks delivered by newly provisioned instances
and thus consistently deliver tuples/watermarks to D (this
is shown in detail in Lemma 3, later in this section).

runs processVSN (Alg. 4)

runs forwardVSN (Alg. 3) Physical view

Fig. 3: STRETCH’s model for VSN parallelism/elasticity.

Implementation of the process method
Alg. 4 overviews the implementation of O+ for VSN par-
allelism and elasticity. It resembles the structure of the one
in Alg. 2 but has important differences.

The first difference between the algorithms is the ad-
ditional L13-21 to handle the elastic reconfigurations. As
shown, the algorithm first checks if the tuple is a control
one (L13). If that is the case, it proceeds storing γ (the event
time triggering the reconfiguration) and the future values
of e,O, fµ in the respective variables e∗,O∗, f∗µ . Notice that,
as shown, a control tuple itself does not trigger a reconfig-
uration immediately. The reconfiguration is later triggered
when a new incoming regular tuple increases the watermark
and such increased watermark is greater than γ (L17). In this
case, the algorithm enters a barrier and, once all instances
reach such barrier, proceeds to apply the reconfiguration
(L18-21) before processing t (L22 onward).

The second difference between the algorithms is that the
code handling O+’s state when producing output tuples

(L22-24). In this case, each instance o+
j handles an expired

window instance w only if w.k is o+
j ’s responsibility (L23).

Together with method handleInputTuple, which handles
only the keys responsibility of o+

j , this prevents concurrent
modifications for the same key in σ.

Formal Guarantees

Given Alg. 4, we can now formally prove that STRETCH
ensures that each key maintained in the shared state σ is
consistently updated by exactly one instance at a time.

Theorem 3. If O ∪O∗ instances run the processVSN method
presented in Alg. 4, then elastic reconfigurations can be carried
out while preserving O+’s semantics (cf. § 4.2).

Proof. To begin, note that when processing each tuple, all
instances in O use the same fµ (L13-21). Hence, each key k
is only updated by the instance responsible for k.

We argue that each key k is also updated exclusively
and consistently by one instance in the presence of recon-
figurations. Each instance in O enters the if statement
at L17 only after it receives a tuple t that increases its
watermark to the first value greater than γ and then pro-
ceeds to wait for all other instances (L18). As specified in
Definition 6, TB objects deliver the same watermarks to
all instances, and each watermark observed by an instance
has non-decreasing values. Before entering the barrier, all
instances have already handled expired window instances
whose right boundary fell before W using fµ. Once leaving
the barrier, all instances will consistently handle window
instances whose right boundary falls after W using f∗µ
(both expired and non-expired ones). Newly provisioned in-
stances (if any) are connected to TBin/TBout, or alternatively
instances being decommissioned (if any) are disconnected
from TBin/TBout by exactly one of the existing instances (the
one that succeeds in adding the sources being provisioned
or in removing the readers being decommissioned). Hence,
if t carries a key k whose responsibility has shifted from o+

i

to o+
j , independently of whether o+

j is a newly deployed
instance or not, o+

j will not only process t (in relation to
key k) after o+

i is done processing all tuples preceding
t, but also process t after having been connected to both
TBin and TBout, if o+

j is a newly deployed instance. If o+
i

is being decommissioned, o+
i will not process t (no key

responsibility of o+
i is returned by f∗µ) and o+

i will also not
retrieve any tuple from TBin nor will it output to TBout once
disconnected from the latter.

After proving Alg. 4 can support parallel execution
and elastic reconfigurations for O+ while enforcing O+’s
semantics correctly, we now prove it also enables VSN par-
allelism/elasticity for any downstream peer. This is because,
even in the presence of provisioning reconfigurations, O+

can consistently deliver tuples/watermarks to TBout, and
the latter can act as the TBin of D.

Lemma 3. Being t the tuple that triggers a reconfiguration
(entering the if statement at L17) t.τ is a safe lower bound for
the watermark of newly provisioned instances.

Proof. The method addSources (L19) is invoked success-
fully by exactly one o+

j instance only upon reception of a
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Algorithm 4: Method processVSN (process for VSN setups) of a o+
j instance. Runs when t is returned by TBin.

Instance-local variables (besides WA,WS, I, fMK,WT, S, fµ, fU , fO, fS ):
1 W // o+j ’s watermark, initially 0
2 ρ // earliest w.l of any w ∈ σ, initially 0
3 e, e∗ // current/next epoch number
4 O,O∗ // set of current/next epoch instances
5 f∗µ // next epoch fµ
6 γ // Event time to trigger reconfiguration

Shared variables:
7 σ // shared state σ

Auxiliary functions:

8 updateW(t), σ.remove(k, `), σ.set(k, `, {ζ1, . . . , ζI}), σ.shift(k, `, {ζ1, . . . , ζI}), σ.check&create(k, l),
earliestWinL(t), latestWinL(t), prepareOutTuples({ϕ1, . . . , ϕ`}), forwardAndShift(k), handleInputTuple(t)

9 waitForInstances(O) // blocking call acting as a barrier
10 isControl(t) // check if t is a control tuple
11 prepareReconfig(t) // setup reconfig-related parameters

12 Function processVSN(t)
13 if isControl(t) then {e∗,O∗, f∗µ , γ} ←−prepareReconfig(t) // set up reconfiguration parameters. The

reconfiguration is triggered as soon as W grows beyond γ
14 else
15 W ←−W
16 updateW(t) // update o+j watermark

17 if W > W ∧W > γ then
18 waitForInstances(O)
19 if |O∗| > |O| ∧ TBout.addSources(O∗ \ O) then TBin.addReaders(O∗ \ O, j) // provision instances. The if

clause ensures exactly one instance adds new instances first to TBout and then to TBin
20 if |O∗| < |O| ∧ TBin.removeReaders(O \ O∗) then TBout.removeSources(O \ O∗) // decommission insts. The

if clause ensures exactly one instance removes instances first from TBin and then from TBout
21 {e,O, fµ} ←− {e∗,O∗, f∗µ}
22 while ρ+ WS < W do // while o+j has expired window inst. it is responsible for and starting at ρ

23 while ∃k|σ[k][1].l = ρ ∧ fµ(k) = j do forwardAndShift(k)
24 ρ←− ρ+ WA // update ρ value
25

As defined in Alg. 2, but operating on σ rather than σj

handleInputTuple(t)

tuple t that increases o+
j ’s watermark (from W to W , L15-

18). All results that could have been produced before pro-
cessing t have already been delivered to TB by all instances
(Theorem 3) and have timestamp lower than or equal to
W and thus lower than or equal to t.τ (since t.τ ≥ W ,
cf. Definition 2), while all results that could depend on
t or future tuples will have a timestamp greater than t.τ
(cf. Observation 1). If according to Lemma 2, the timestamps
of the tuples produced by o+

j can be used as watermarks by
TB, then t.τ can be immediately delivered as a watermark
for a newly provisioned instance o+

j .

6 USING SCALEGATE AS TB OBJECTS

§ 5 covered STRETCH’s algorithms for VSN parallelism
and elasticity. The latter relies on the TB data object, which
exposes six methods, presented in Table 2. Here, we show
how an enhanced SG object (cf. § 2.4) can offer all such
methods and support a real implementation of STRETCH.

We begin observing that the original SG is already suffi-
cient to provide methods add and get. More formally, un-
der the assumption that each source delivers a timestamp-
sorted stream of tuples, SG objects allow concurrent in-
sertion and retrieval of tuples for arbitrary sets of sources
and readers, delivering each tuple exactly once, and also
delivering non-decreasing implicit watermarks (cf. § 2.3)
through tuples’ t.τ attribute. As discussed in § 4, each o+

j

outputs window results in timestamp-order (Lemma 2). It
is thus safe for each o+

j to deliver its output tuples to

an SG data structure that can support data-duplication-
free parallelism for downstream peers too, in a composable
fashion. In this case, both O+ as well as D (if the latter is
a stateful operator) can support correct execution for both
order-sensitive as well as order-insensitive functions.

SG objects do not define methods to dynamically change
their sources and readers. They can be extended to provide
the API methods highlighted in Table 2, nonetheless. We
refer to such extended objects as Elastic ScaleGate (ESG)
objects. In order to outline our ESG implementation, we
first overview the internals of the add and get methods. SG
builds a skip list where tuples are maintained in timestamp
order, along with some auxiliary book-keeping structures.

H t tt t tt t t T...

Reader Reader Source Source

Head Tail

Reader s
handle

Source s
handle

Ready tuples that  can be 
retrieved by readers

Tuples that  
are not ready

Fig. 4: ScaleGate’s skip list, and readers’/sources’ handles.

The book-keeping structures contain handles to the skip
list, for sources and readers, to continue inserting or reading
nodes (tuples), respectively. As shown in Figure 4, readers’
handles traverse the list from head to tail, retrieving the
next tuple only if the latter is not pointed by a source’s
handle (thus returning only ready tuples). At the same
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time, sources’ handles point to their last inserted tuples
and facilitate the sorted insertion of subsequent tuples (also
leveraging the skip list shortcuts). Since each source adds
a timestamp-sorted stream, each insertion “falls” after its
previous one. All the tuples before the earliest tuple pointed
by a source (i.e., with earlier timestamps), are ready.

Adding new readers: Each reader has access to one of ESG’s
nodes through its own handle. Each new reader simply
needs a handle to the node pointed by the j-th reader (the
one invoking the addReaders method) to retrieve next
the same tuple that will be delivered to the j-th reader
(according to the API), and then traverse the rest of the list
in timestamp order in subsequent get invocations.

Removing existing readers: Removing a set of existing readers
only requires removing their thread-specific structures.

Adding new sources: According to Lemma 3, the timestamp
of the tuple t triggering a reconfiguration is a safe lower
bound for the watermark of newly provisioned instances
in STRETCH. Since t is the last tuple observed by the
instance invoking method addSources, and given that
to.τ < Wω

o+j
< t.τ , being to the last tuple produced by such

o+
j instance, the book-keeping handles of new sources can

be copying the handles of the source invoking successfully
the addSources method. For the sake of the new thread, an
initial dummy tuple following the one pointed by the source
invoking successfully the addSources method is inserted,
to initialize the functionality of its handles. Readers can
move their pointer to the next tuple pointed by a source
when such tuple is of type dummy but the tuple is not
returned as ready to readers invoking get.

Removing existing sources: Removing a source consists mainly
of adding, on behalf of the source, a special flush tuple in
ESG, with a timestamp equal to the latest insertion of the
source. Such a tuple will let the previously added tuples
of the leaving source to be ready (according also to other
sources’ tuples). The removed source’s associated book-
keeping structures can then be removed. As for dummy
tuples, readers can move their pointer to the next tuple
pointed by a source when such tuple is of type flush,
without returning it as ready via the get method.

Concurrent calls to the API methods: For concurrent calls
of the same method that updates the set of threads (e.g.
concurrent calls to addReaders), synchronization is in
place (using a TestAndSet variable) so that only one of
each type takes effect. Concurrent calls among competing
such methods that modify the thread-specific book-keeping
structures (e.g. addReaders and removeReaders) require
extra synchronization to protect consistency; since these are
low-contention operations, nonetheless, a simple lock can
do. Since each reconfiguration results in sources/readers
being added or removed but not both (Alg. 4 L19-20), and
each reconfiguration can only start after the previous is com-
pleted (cf. § 7), we do not incur such extra synchronization
overhead in our implementation. If regular operations (add
and get) are concurrent with those that update the set of
threads and their book-keeping structures, the latter can
overwrite, causing the former to have no effect. Note that
in STRETCH such invocations do not interfere.

7 IMPLEMENTATION - API AND ARCHITECTURE

We focus herein on how STRETCH meets Cond. 1 and Cond.
2 (cf. § 5). We begin overviewing the overall architecture of
our implementation and discussing Cond. 1.

pool  
of instances

Controller

thread

Algorithm 6

void addSTRETCH( )

 setup( ) 

 setup( ) 
void reconfigure( )

Fig. 5: API and architecture of STRETCH’s implementation.

As shown in Figure 5, STRETCH’s API defines
two setup and one reconfigure method. Method
{ESGin, ESGout} = setup(O+,m, n) takes as input the
O+ to instantiate, its initial parallelism degree m and its
maximum parallelism degree n. Upon invocation of this
method, STRETCH creates n o+

j that share state σ. Further-
more, it connects m of them to ESGin and ESGout. The
remaining n − m instances are kept in a pool. The pool is
also used to keep instances that are later decommissioned.

Each o+
j instance is run by a thread. The latter is con-

stantly trying to get a tuple to process through the get
method of ESGin. When no tuple is retrieved, either be-
cause no tuple is ready or because o+

j belongs to the pool
and is thus not connected to ESGin, exponential backoff
prevents the thread from creating contention on ESGin.
Instances can promptly start retrieving tuples once provi-
sioned and connected to ESGin, thus invoking method
processVSN, while decommissioned/pool instances will
create negligible contention on ESGin, and stop invoking
the processVSN/forwardVSN methods, as per Cond. 1.

The setup method returns both ESGin and ESGout,
for the latter to be fed by upstream and to feed downstream
instances, respectively. As mentioned in § 3, we focus our
discussions on a single stateful operator for simplicity, but
STRETCH can be used to instantiate many (connected)
operators within a query. Because of this, the {ESGout} =
setup(ESGin, O

+,m, n) variation can be used to create
an O+ operator and connect it to a previously created one
through ESGin (i.e., the ESGout of such upstream peer).

Algorithm 5: Method addSTRETCH .
Instance-local variables:

1 q[] // Queues holding reconfiguration messages
2 T [] // τ of the latest tuple added by source i

3 Function addSTRETCH(t, i)
4 T [i]←− t.τ
5 while q[i].size()> 0 do
6 x←− q[i].pop()
7 ESGin.add(〈T [i],control, [x.e, x.O, x.fµ]〉,i)
8 ESGin.add(t,i)
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Algorithm 6: Method prepareReconfig used
in Alg. 4, to set the instance-local variables needed
during a reconfiguration.
1 Function prepareReconfig(t)
2 if t.ϕ[1] > e then // the reconfiguration id

carried by t is greater than O+’s one
3 e∗ ←− t.ϕ[1] // set reconfig. parameters
4 O∗ ←− t.ϕ[2]
5 f∗µ ←− t.ϕ[3]
6 γ ←− t.τ

Triggering elastic reconfigurations
As discussed in § 5, elastic reconfigurations depend on the
parameters e∗, O∗, f∗µ , γ, which in Alg. 4 are handled by
methods isControl and prepareReconfig, detail next.

In STRETCH, a reconfiguration is triggered by the ex-
ternal module sharing a new set of instances ids O∗ and a
mapping function f∗µ . To deliver O∗ and f∗µ to O+ instances,
STRETCH encapsulates them in a special control tuple.
Method isControl distinguishes regular from control tu-
ples based on the attributes carried in their metadata.

It should be noted that, even if regular as well as control
tuples can be delivered by Ui,j instances and the controller,
respectively, ESGin still expects each of its sources to
deliver tuples in timestamp order. To fulfill such a con-
dition, STRETCH defines one dedicated control queue per
upstream instance (as shown in Figure 5), and wraps the
add method of ESGin within the method addSTRETCH,
shown in Alg. 5. With this method, STRETCH tracks the last
timestamp τ forwarded by each upstream instance (Alg. 5
L4) and, by having the reconfigure method add the next
O∗, f∗µ in each control queue, creates and forwards a control
tuple carrying timestamp τ and O∗, f∗µ in its metadata.
Control tuples can then be processed as shown in Alg. 6.

Formal Guarantees
Theorem 4. Each reconfiguration that is applied based on Alg. 4,
Alg. 5, and Alg. 6 takes place atomically and exactly once.

Proof. As shown in Alg. 4, all o+
j perform an elastic recon-

figuration based on their local parameters e∗, O∗, f∗µ , and γ,
with exactly one instance succeeding in connecting or dis-
connecting provisioned or decommissioned instances from
TBin/TBout, respectively. These parameters are set by Alg. 6
based on a control tuple t, delivered by ESGin to all o+

j .
Furthermore, if multiple such control tuples are delivered by
ESGin, all are delivered in the same order to o+

j instances.
Hence, all instances switch to the same e∗ at the same point
in time. If multiple e∗ are delivered by multiple control
tuples from ESGin, the latest one is applied, and such latest
one is the same for all o+

j instances.

8 EVALUATION

We aim at comparing STRETCH with other state-of-the-art
baselines. We place emphasis on stream joins since joins
are among the most computationally heavy operators [18].
The choice of focusing on stream joins is also motivated
by the existence of [13], a custom highly-specialized im-
plementation of the VSN parallelism offered by STRETCH
that, while supporting only a fraction of the stateful analysis

that STRETCH can support, provides the best performance
figures at which STRETCH can aspire. To account also
for other state-of-the-art baselines, we also compare with
Apache Flink (or simply Flink). First, we rely on an estab-
lished baseline, word-count [19] and a variation counting
distinct pairs of words, to study the effects of different data
duplication levels on throughput and latency metrics. We
then study the maximum performance STRETCH and Flink
can offer for O+ operators with I = 2 (i.e., including
joins). Since both ScaleJoin and STRETCH support correct
execution for order-sensitive functions, we assume that in
SN setups input tuples are merged-sorted by both o+

j and
dj instances. Our experiments seek answers to the questions
found in Table 3: Q1-Q3 assume a static setup, while Q4-Q6

focus on elastic setups and also on real-world applications.
Experiments are run on a 2.10 GHz Intel(R) Xeon(R)

E5-2695 CPU with 2 18-cores sockets, 72 logical threads
with hyper-threading, and 64 GB memory. STRETCH is
implemented in Java and tested with Java HotSpot(TM) 64-
bit Server VM. For SN, we use Flink 1.6.0.

In the following, we present and discuss the results
of the performance metrics of interest, averaged over five
runs. More concretely, we use input rate – computed as the
number of tuples/second (t/s) processed by an operator,
throughput (for join operators) – computed as the number
of comparisons/second (c/s) sustained by the operator, and
latency – computed as the timestamp difference of each
output tuple and the latest input tuple that contributes to it,
while using flow control to handle backpressure. The imple-
mented flow control mechanism is similar to that of Flink, in
this case, putting a bound on ESG’s size. For experiments
concerning elasticity, we also report reconfiguration times –
measured as the time difference between the moment the
controller invokes method reconfigure (cf. § 7) to the
moment the reconfiguration is completed, and the number
of threads used throughout the experiment.

8.1 Throughput and latency in VSN (STRETCH) vs SN
(Flink) for established baselines such as wordcount (Q1)
In our first experiment, we use the wordcount bench-
mark [19], frequently used in applications like Sentiment
Analysis ones [20]. To account for different amounts of
duplication, we also run a paircount variation, that counts
pairs of rather than individual words. In these experiments,
STRETCH’s shared-memory allows each input tuple to be
shared with all the parallel threads, having each one re-
sponsible for one word/pair, while Flink’s shared-nothing
approach requires each tuple to be transformed in multiple
output tuples, according to Corollary 1. The definitions for
all the used operators are found in Appendix D.

We process a dataset consisting of 4.3 million tweets,
between the 1st and 2nd of October 2018. The input schema
is defined as 〈τ, [user, tweet]〉. With wordcount, each input
tuple t results in as many output tuples as words carried
in t.ϕ[2]. With paircount, each word in t.ϕ[2] is paired
and forwarded with its nearby words, up to a distance of
3, 10, and +∞ for the Low (L), Medium (M), and High (H)
duplication cases, respectively. Wordcount gives the least
amount of duplication, paircount H the greatest.

Results are presented in Figure 6. Flink performance is
shown as a shaded region since, according to Corollary 1,
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TABLE 3: Questions addressed in the evaluation, together with information about the operators used in the experiments.

ID Setup Question Operator Section

Q1 Static How do VSN (STRETCH) and SN (Flink) compare for
established baselines such as wordcount?

A+ implementing wordcount and paircount (a vari-
ation that counts distinct pairs of words)

§ 8.1

Q2 Static What is the maximum throughput/minimum latency
for VSN/SN setups in STRETCH and Flink?

Operator 6 (cf. Appendix D), processing tweets collected
during October 2018.

§ 8.2

Q3 Static How does STRETCH compare with ad-hoc stateful op-
erator implementations such as ScaleJoin (Operator 3)?

ScaleJoin (Operator 3, cf. Appendix D) with WA/WS
set to δ and 5 minutes, resp., running the benchmark
from [13].

§ 8.3

Q4 Elastic How long does it take for STRETCH to complete an
elastic reconfiguration?

ScaleJoin (Operator 3, cf. Appendix D) with WA/WS set
to δ and 5 minutes, resp.

§ 8.4

Q5 Elastic What is STRETCH performance under multiple recon-
figurations?

ScaleJoin (Operator 3, cf. Appendix D) with WA/WS set
to δ and 1 minute, resp.

§ 8.5

Q6 Elastic What is STRETCH performance in real-word applica-
tions?

ScaleJoin (Operator 3, cf. Appendix D) with WA/WS set
to δ and 30 seconds, resp., analyzing financial trades

§ 8.6

a Map M is required to split each input tuple into distinct
words/pairs, and such M can also be executed in parallel.
The bottom and upper lines represent the minimum and
maximum throughput/latency observed for any parallelism
degree of M in [1, 36]. As shown, in the wordcount case
(the one with the least amount of duplication) STRETCH
and Flink are comparable. Despite its degradation (because
of the contention on shared resources) after reaching its peak
throughput, STRETCH is nonetheless able to achieve +17%
throughput and −94% latency. STRETCH’s benefits become
even more evident for the paircount cases, achieving
+137%, +237%, and +283% throughput and −89%, −94%,
and −94% latency for L, M and H, respectively. Note in
this case the throughput is decreasing for an increasing
duplication level (e.g., from counting words to counting
pairs) since each input tuple (carrying a tweet) results in a
higher number of pairs, thus resulting in a higher workload.

8.2 Maximum throughput and minimum latency in VSN
(STRETCH) vs SN (Flink) for an O+ with I = 2 (Q2)

This experiment compares STRETCH performance using
Flink as a baseline for SN operators that, like Joins, define
two input streams. Since Flink does not offer parallel ex-
ecution of general Joins (but only EquiJoins), we evaluate
the performance of an operator that simply forwards each
incoming tuple, and thus measures the maximum through-
put/minimum latency observed when the performance bot-
tleneck is given by data sharing and sorting (its definition is
found in Appendix D). We use the same dataset from Q1.

Figure 7 shows the operators’ scalability. For an increas-
ing Π(O+), STRETCH’s throughput decreases from approx-
imately 120 000 to 100 000 t/s due to the synchronization
overheads induced by the higher Π(O+). Flink starts from a
lower throughput and decreases faster, from 40 000 to 2 000
t/s. STRETCH achieves from 3× to 50× better throughput.
Flink’s latency, regardless of Π(O+), is higher than 100 ms,
while STRETCH’s is always less than 30 ms.

8.3 Throughput/latency of J+ in STRETCH vs ad-hoc
implementations (Q3)

After studying Operator 6’s maximum throughput/mini-
mum latency, we focus now on J+ (Operator 3). Since Flink
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Fig. 6: STRETCH (VSN) and Flink (SN) Throughput/La-
tency for wordcount and paircount

supports only parallel equijoins, we compare STRETCH
performance with that of the original ScaleJoin implementa-
tion [13] and with an additional optimized single-threaded
implementation, which we refer to as 1T. The latter allows
measuring the performance of an implementation that de-
votes as many CPU cycles as possible to data analysis rather
than data communication when Π(J+) = 1.

We follow the same benchmark used in [13], [21] to join
two logical streams L and R. L tuples’ schema is 〈τ, [x, y]〉,
where x is type of int and y is float. R tuples’ schema is
〈τ, [a, b, c, d]〉, where a, b, c, and d are of type int, float,
double and boolean, respectively. WA and WS are set to δ
(1 ms, as in Flink) and 5 minutes, respectively. For each pair
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of tuples tL and tR, an output tuple is produced if:

tR.ϕ[1]− 10 6 tL.ϕ[1] 6 tR.ϕ[1] + 10
∧

tR.ϕ[2]− 10 6 tL.ϕ[2] 6 tR.ϕ[2] + 10

Attributes x, y, a and b are randomly selected from a
uniform distribution with interval [1, 10 000] which results
on average in an output tuple every 250 000 comparisons.

Figure 8 shows (i) the average of the maximum sustain-
able input rate and the standard deviation for increasing
Π(J+), (ii) the corresponding throughput, in terms of num-
ber of comparisons, and (iii) the corresponding latency in
logarithmic scale. The throughput of STRETCH and Scale-
Join when Π(J+) = 1 is similar to 1T, but the latency for
1T is lower than the other two, because of STRETCH’s and
ScaleJoin’s data communication costs. As shown, despite be-
ing a general rather than a specialized operator, STRETCH’s
throughput still grows linearly with Π(J+) and can match
that of ScaleJoin (the latter shows some higher degradation
caused by hyper-threading when Π(J+) exceeds the 36
physical threads), despite a small overhead (in the order of
10 ms) in latency.

8.4 STRETCH – elasticity overheads (Q4)
We now move from static to elastic setups for the ScaleJoin
benchmark (cf. § 8.3). With Q4, we measure the overhead
and duration of individual elastic reconfigurations in isola-
tion. We trigger one elastic reconfiguration per experiment
using a simple controller. The latter defines an upper, a tar-
get, and a lower CPU consumption threshold of 90%, 70%,
and 45%, respectively. When the current processing load
of active threads exceeds the upper threshold, the smallest
amount of new threads needed to bring the average pro-
cessing capacity below the target threshold is provisioned.
When the current processing load of active threads is below
the bottom threshold, the largest amount of underutilized
threads that keep the average processing capacity below the
target threshold is decommissioned.

To evaluate the elasticity of the framework, we increase
(decrease) the load after filling the window and add (re-
move) threads while measuring the latency, throughput, and
reconfiguration time. For the provisioning experiments, we
start with an input rate set to 70% of the maximum rate
sustainable by the corresponding number of J+ threads.
After 6 minutes, when the window is full and the system
is stable, we increase the rate to 120% of the maximum
sustainable rate and therefore trigger an epoch switch. For
the decommissioning experiments, we start with 70% of the
maximum sustainable rate and, after 6 minutes, decrease
the rate to 30%. Table 4 summarizes the various provi-
sioning/decommissioning experiments. For each number of
starting threads, it shows the resulting number of threads
after provisioning/decommissioning or a “-” when the cor-
responding number of starting threads does not allow for a
provisioning/decommissioning action (e.g., it shows “-” in
post-decommissioning for 1 starting thread since no thread
can be decommissioned in such a case). The reconfiguration
times for each action are shown on the left side of Figure 9.
Each reconfiguration time is reported on the X axis based
on the number of threads before the reconfiguration (e.g.,
the provisioning point, shaped as a circle, on 30 threads
indicates it took approximately 12 ms to switch from 30 to 52
threads). To stress that each reconfiguration is triggered for
a set of threads in which no thread has more spare resources
than others (i.e., when the load is balanced), we report
on the right-side of Figure 9 the coefficient of variation
percentage of threads’ workload (in this case one point for
each number of starting threads before a provisioning or
a decommissioning reconfiguration). All in all, all reconfig-
uration times are negligible, always lower than 40 ms (an
higher reconfiguration time is observed when Π(J+) grows
beyond the number of threads of a single socket), and there
is at most 2% of load imbalance among threads.

TABLE 4: Π(J+) values for Figure 9

starting Π(J+) 1 5 9 18 30 40 60 70

Π(J+) post-provisioning 2 9 16 31 52 69 - -
Π(J+) post-decommissioning - 2 3 7 12 17 25 30

Figure 10 shows the effect of increasing or decreasing
the workload for STRETCH and ScaleJoin, and consecu-
tively provisioning or decommissioning threads for J+ in
STRETCH, when Π(J+) is initially set to 18. As shown
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for the provisioning, STRETCH sustains higher rates when
adding new threads, resulting in higher throughput without
affecting the latency. In the decommissioning procedure,
when decreasing the workload, STRETCH achieves the
same throughput as ScaleJoin but shows lower latency, as
expected based on the model in [22].

8.5 STRETCH under multiple reconfigurations (Q5)

We continue our evaluation with an experiment that aims at
stress-testing STRETCH’s reconfigurations. First, we narrow
the lower/upper thresholds to [70%, 80%] of the capacity.
Second, we modify the controller so that J+ cost is not
matched only with its current CPU consumption, but ac-
counts also for the pending and predicted workload, ac-
cording to the model in [22]. Third, we decrease WS to one
minute. These changes imply more reconfigurations being

frequently triggered (because of the narrower distance of
lower/upper thresholds and because the controller proac-
tively triggers reconfigurations on the predicted processing
capacity in correspondence to rate changes) and higher
sustainable input rates (because of the smaller WS and thus
resulting comparisons per-tuple across windows).

Each experiment is 20 minutes long and consists of sev-
eral sequential phases in which data tuples are injected with
a constant rate, randomly chosen from the range [500, 8 000]
t/s. The length of each phase is at least 100 and at most
300 seconds (i.e., long enough for J+’s window instances
to reach the size corresponding to the phase’s rate). The
transition between phases is by an abrupt change in the
input rate to stress timely reconfiguration. Figure 11 shows
the measurements of a representative execution out of the
ones conducted, to keep the illustration uncluttered. Results
of additional experiments are shown in Appendix F.

Figure 11(a) shows the input rate throughout the ex-
periment. As shown in Figure 11(b), when the input rate
increases, new processing threads are added accordingly.
Likewise, in case of a decrease in the rate, unnecessary
threads are removed without affecting throughput and
latency. J+’s throughput is shown in Figure 11(c). The
highlighted region indicates the upper and lower bound
of computational capacity at each moment for the corre-
sponding number of processing threads. When the work-
load exceeds the upper bound or falls short of the lower
bound, the controller proceeds in applying reconfigurations.
Figure 11(d) shows the average latency per second. There
are a few spikes in the latency which are associated with
abrupt changes in the input rate. However, as shown by the
box plot on the right side, the controller keeps the average
latency around 20 ms. Also, as shown in the zoomed-in
view, spikes are handled within 10 seconds.

After showing STRETCH results for this experiment,
we want to further shed light on the benefits enabled by
STRETCH’s ultra-fast reconfigurations. Figure 12 shows a
zoomed-in view of Figure 11 at the time instants when
the input rate increases at 290 seconds. We consider a
transition duration starting at the moment the input rate
changes until WS is exceeded (rectangular highlighted area
in Figure 12). Out of the transition duration, we show a
baseline by extracting the desired number of processing
threads for the specific input rate. Within the transition du-
ration, since STRETCH can accommodate reconfigurations
in negligible time, the desired number of threads can change
gradually, following how the new rate affects the amount
of computations until the window instances are filled with
tuples coming with the new rate.

8.6 STRETCH performance in a real-world setup (Q6)

In this conclusive experiment, we evaluate STRETCH using
real-world data. We use NYSE group reference data pro-
vided by the NYSE Market Data reporting authority (ftp://
ftp.nyxdata.com/), containing six hours of trades registered
in the NYSE and NASDAQ markets on July 30th, 2018. One
major characteristic of this data is the abrupt and very fre-
quent changes in the incoming rate. This use-case examines
correlations of the trades of the 10 biggest companies of the
day. When looking into the characteristics of the data stream

ftp://ftp.nyxdata.com/
ftp://ftp.nyxdata.com/
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Fig. 11: Results of adjusting the number of processing
threads with respect to the input rate for synthetic data.
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Fig. 12: Zoomed-in view of the reconfigurations around
second 290 from Figure 11.

that these trades generate, we see its rate oscillates between
0 and 8 000 t/s. In this experiment, we run J+ as a self-
Join, setting WS to 30 seconds and feeding twice a stream
with schema 〈τ, [id,TradePrice,AveragePrice]〉, where id, of
type string, is the unique id of the company, TradePrice,
of type int, is the price of the trade, and AveragePrice, of
type int, is the average trade price of the corresponding
company for the previous day. The output schema SO is
〈τ, [l id, l price, r id, r price]〉, where l id, l price, r id, and
r price are tL.ϕ[1], tL.ϕ[2], tR.ϕ[1] and tR.ϕ[2], respectively.

For the predicate function, we study the hedging (or
negative correlation) of the stock prices among companies
by computing the normalized distance of the stock price
for each tuple with respect to its average price and then
compare it with the other tuples. The normalized distance
NDt of tuple t is computed as t.ϕ[2]−t.ϕ[3]

t.ϕ[3] . Consequently,
the join results in an output tuple if:

tR.ϕ[1] 6= tL.ϕ[1]
∧
−1.05 ≤ NDtR

NDtL

As shown in Figure 13, the hedge predicate can be run by
a small number of threads most of the time, which also em-
phasizes the need for adjusting processing threads at run-
time to utilize the resources. Nonetheless, abrupt changes
in the data rate require resource adjustments. The zoomed-
in view of Figure 13 highlights the results for the time
interval in which the highest peak of the input rate occurs.
Figure 13(a) indicates the input rate with the highest peak
∼ 7 600 t/s. The corresponding throughput and latency are
also shown in Figure 13(c) and Figure 13(d), respectively. As
shown in Figure 13(d), STRETCH keeps the latency low (on
average at 21 ms for the zoomed-in view, as shown by the
box plot Figure 13(d), and 1 ms for the whole experiment)
by frequently provisioning or decommissioning instances
according to changes in the input rate.

9 RELATED WORK

Scalable and elastic stream processing are discussed in
several related works (e.g., [4], [23], [24]). For a systematic
review, we refer to [25]. STRETCH does not focus on a spe-
cific stateful operator [26] nor on a specific policy to trigger
reconfigurations [16]. Instead, it shows how shared-memory
can be seamlessly leveraged to scale up stateful analysis
while virtualizing the common APIs for SN parallelism (i.e.,
without altering how queries are usually composed and
still being able to scale applications out via SN parallelism),
something not previously discussed in the literature. In the
following, we place particular focus on works about scale-
up servers and intra-operator elasticity. Acknowledging that
intra-operator elasticity is a way to boost performance in
scale-up servers, we mostly discuss solutions that are not
elastic when covering works dedicated to scale-up servers.
For space reasons, we do not discuss elastic approaches not
tailored to stream processing (e.g., [27]).

Focusing on scale-up servers, a first distinction can be
made between works that aim at better leveraging the mem-
ory shared among CPU threads [26], [28], [29] and works
that, orthogonally to STRETCH, focus on shared-memory in
hybrid architectures, with a special focus on integrated [30],
[31] and discrete [32] CPU-GPU ones.

For the former, differently from STRETCH’s intra-
operator memory sharing, [28] focuses on the comple-
mentary aspect of inter-operator/intra-query memory shar-
ing, to optimize operator placement for producer-consumer
pairs e.g., based on NUMA distance. Complementary intra-
query optimizations are also discussed in [29], by formal-
izing basic stream processing tasks and defining composi-
tion/transformation rules that can be used to jointly boost
performance metrics such as throughput and latency. An
approach closer to STRETCH is discussed in [26], with a
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Fig. 13: Results of adjusting the number of processing threads while processing the NYSE market data. The zoomed-in
view indicates the details of the experiment during the time when the input rate is the highest.

special focus on streaming aggregation. Such an approach
allows trading a higher degree of customization for the
richer semantics and elasticity offered by STRETCH.

Focusing now on elasticity for intra-operator paralleliza-
tion, we discuss related work based on goals and prop-
erties such as the number of threads that can change per
reconfiguration, the roles of state transfer and the triggering
mechanism, the support for correctness, and the reaction
time vs overhead of frequent reconfigurations.

Regarding changes in the number of threads, related
works provide techniques for provisioning/decommission-
ing one thread at a time (e.g., [33], [34]) or more threads (e.g.,
[35]), as in our case. Differently from STRETCH, nonetheless,
in [35] the execution of operators being reconfigured is
halted to ensure all required state transfers are completed
before the processing of tuples resumes.

In connection to state transfers, a common challenge
is that of deciding how to balance the load of a parallel
operator, which is usually a combinatorial problem related
to packing (cf. [4], [35], [36], [37] and references therein).
Some related work proposed techniques to make decisions
that can reduce latency spikes [38], recreating small states by
replaying past tuples rather than serializing/deserializing
states [4], or by distributing the work to nodes through hash-
ing, in ways that minimize the changes when rehashing [39].
Since STRETCH allows to re-balance work without any state
transfer nor serialization/deserialization, it makes these is-
sues orthogonal and existing techniques complementary.

Regarding correctness, we note that such an aspect has
been formalized by e.g., [7], [13] and is also referred to as

determinism [7], [13], safety [40] and semantic transparency [4].
Here we show sufficient conditions for correct execution,
also under reconfigurations.

Focusing now on the issue of when to trigger reconfig-
urations, and the related trade-offs between overheads and
time to react, related works can be distinguished into reac-
tive or proactive approaches (cf. [4], [16], [17], [34], [41], [42],
[43] and references therein). Earlier works proposed reactive
strategies, e.g. with threshold-based rules based on CPU
utilization [4], [44], [45], heuristic-based algorithms [46], and
model-based approaches to enforce latency constraints [47].
To make timely decisions, proactive approaches have gained
more attention over the years. Model-based proactive meth-
ods such as [16], for instance, use a limited future time
horizon to choose reconfigurations for timely execution,
with two different resource usage characteristics to achieve
high throughput and low latency. Similar to [47], the tech-
nique proposed in [16] uses queuing theory to model stream
operators as G/G/1 queues. More advanced queuing sys-
tems to model SPEs are discussed in [48] to increase the
accuracy of the results. However, the technique proposed
in [48] does not consider quality of service requirements
and it is not optimized for low latency workload. All in
all, various complementary triggering mechanisms can be
combined with STRETCH. As discussed by [16] with re-
spect to SASO properties (i.e., Stability, Accuracy, Settling
time, and Overshoot), elasticity builds on top of contrasting
objectives. STRETCH can imply better margins due to its
ultra-fast reconfigurations.
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10 CONCLUSIONS AND FUTURE WORK

We introduced STRETCH, a model as well as an imple-
mented prototype for VSN parallel and elastic execution
of stateful stream processing. We started discussing how
SN parallelism can potentially suffer data duplication and
state transfer overheads, and how such overheads can be
avoided when the instances of a parallel operator share
memory. For STRETCH approach to be general while en-
capsulating the semantics of common stateful operators, we
have introduced a generalized stateful operator O+, and
later discussed how VSN can be enabled for O+’s instances
by having the latter share their input tuples, output tuples,
and state. Together with an algorithmic description, we have
provided a fully implemented prototype, which builds on
the state-of-the-art stream-processing-tailored data structure
ScaleGate. Together with our theoretical contributions, we
also provided an exhaustive evaluation, based both on syn-
thetic and real data and comparing with various baselines.

To the best of our knowledge, this is the first work
blending a formal approach with correctness proofs about
parallel/elastic stateful stream processing with a model and
prototype complementary to that of SN-based solutions.
STRETCH can pave the road for hybrid approaches that ex-
tend from intra- to inter-node parallel and elastic solutions.
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APPENDIX A
TABLE OF SYMBOLS (IN ALPHABETICAL ORDER)

Symbol Description

〈τ, . . . , [ϕ[1], ϕ[2], . . . ]〉 Combined notation for a tuple
A(WA,WS, 1, fSK,WT, S, fA, fR) Combined notation for Aggregate operator
A+(WA,WS, 1, fMK,WT, S, fA, fR) Combined notation for Aggregate operator that relies on fMK instead of fSK

γ Event time shared by O+ instances at which a reconfiguration takes place
δ Smallest increment of event time of an SPE
D Generic downstream operator/egress of O/O+

DAG Directed Acyclic Graph
e epoch during the execution of a certain operator
fA Aggregate function of A
fJ Join function of J
fµ Function mapping keys to operators instances
fMK Multi Key-by function that maps each tuple t to an arbitrary number of key

values
fO Function used by O+ to produce the result from a window instance
fR Reduce function of A
fS Function used by O+ to shift a window instance
fSK Single Key-by function that maps each tuple t to exactly one key value
fU Function used by O+ to update a window instance upon reception of t
forward/forwardSN/forwardVSN Methods used by an operator/ingress instance to route tuples downstream

(for O, O+ in SN, and O+ in VSN setups, respectively)
J(WA,WS, 2, fSK,WT, S, fJ) Combined notation for Join operator
J+(WA,WS, 2, fMK,WT, S, fJ) Combined notation for Aggregate operator that relies on fMK instead of fSK

M Map/FlatMap operator
O(WA,WS, I, fSK,WT, S, f1, f2, . . .) Combined notation for a generic stateful operator. Parameters WA, WS, I , fSK,

WT, and S are covered in the table. Parameters f1, f2 refer to operator-specific
functions to update O’s state and produce output tuples

oj j-th instance of O
O+(WA,WS, I, fMK, fµ,WT, S, fU , fO, fS) Combined notation for STRETCH’s generalized operator
o+j j-th instance of O+

O Set of parallel instances running for a certain during epoch e
Π(X) Parallelism degree of ingress/operator/egress X
process/processSN/processVSN Methods used by an operator instance to process each new input tuple (for O,

O+ in SN, and O+ in VSN setups, respectively)
qa,b Queue connecting operator instances (or ingress/egress) a and b
S Schema of the tuples of the referenced stream
σj State of oj/o+j (when locally maintained at oj/o+j
σ State of o+j (when shared by all O+ instances
SN Shared Nothing
SPE Stream Processing Engine
t.τ , t.ϕ Timestamp and payload (`-th sub-attribute is t.ϕ[`]) of tuple t
Ui The i-th generic upstream operator/ingress of O/O+

ui,j The j-th instance of Ui
VSN Virtual Shared Nothing
w = 〈ζ, l, k〉 Combined notation for a window instance w: state ζ, left inclusive boundary

l, and key k.
Wω
oj Watermark of the j-th instance of operator O at clock wall time ω

WA Window advance
WS Window size
WT Window Type maintained by a stateful operator (single or multi)
TB/TBin/TBout (Tuple Buffer) Data object STRETCH uses to connect Ui with O+ and O+ with D (cf. Table 2)
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APPENDIX B
WATERMARK EXAMPLE

Input 1

Input 2

<{t1},00:00,"a">
<{t3},00:00,"a">

<{t1},00:08,"a">
<{t3},00:08,"a">

<{t2},00:00,"b">
<{},00:00,"b">

<{t2},00:08,"b">
<{},00:08,"b">

Input 1

Input 2

<{t1},00:00,"a">
<{t3},00:00,"a">

<{t1},00:08,"a">
<{t3},00:08,"a">

<{t2},00:00,"b">
<{},00:00,"b">

<{t2},00:08,"b">
<{},00:08,"b">

Legend   non-expired window  expired window

time time

Fig. 14: Internal state of operator O before (left side of
the figure) and after (right side of the figure) updating its
watermark from Wω1

O to Wω2

O .

Figure 14 shows how the internal state of Operator O
from Figure 1 changes from wall-clock time ω1 to ω2, upon
the processing of two tuples, one from each upstream peer,
that carry new watermark values. As shown, none of the
window instances maintained by O before updating its
watermark (left side of Figure 14) is expired, since incoming
tuples, with a timestamp greater than Wω1

O , could still
contribute to any of such window instances. Once O’s wa-
termark changes to Wω2

O , no new input tuple can contribute
to window instances starting at 00:00. Hence, such windows
are expired and their corresponding output tuple can be
created and forwarded to O’s downstream peer(s).

APPENDIX C
EXAMPLE FOR COROLLARY 1

runs method process in
Algorithm 7

defined in Operator 4

Fig. 15: Sample execution of a M and an A that, together,
implement the semantics of the running example from § 1

Figure 15 illustrates how a M and an A operator can be
jointly used to implement the semantics of an A+, according

Algorithm 7: Method process for the M used
in Figure 15 to compute the longest tweet on a per-
hashtag basis.

1 Function process(t)
2 for h ∈ hashtags(t.ϕ[2]) do

forward(〈t.τ, [h,length(t.ϕ[2])]〉)

Operator 1: User-defined parameters for the A used
in Figure 15 to compute the longest tweet on a per-
hashtag basis.

A(30m, 60m, 1, fSK,multi, fµ, SO, fA, fR), where:

1 Function fSK(t)
2 return t.ϕ[1]
3 Function fµ(k)
4 return hash(k)%Π(A)
5 Class ζ
6 long count
7 Function fA(w, t) // Update count based on t.ϕ[2]
8 if t.ϕ[2]> w.ζ.count then
9 w.ζ.count←−t.ϕ[2]

10 return {w.ζ}
11 Function fR(w, t)
12 return {w.k,w.ζ.count}

to Corollary 1. For each stream, the figure shows an excerpt
of the tuples observed as input/output of the two operators.
M implements the process function presented in Alg. 7,
creating and forwarding one output tuple for each hashtag
found in an input tuple (Alg. 7 L2). For instance, forwarding
tuples 〈09:58, [red, 13]〉 and 〈09:58, [pink, 13]〉 upon process-
ing of 〈09:58, [C, “hi #red #pink”]〉.

A is defined according to Operator 1. A aggregates
tuples over a sliding window with WA and WS of 30 and
60 minutes, respectively. According to fSK, tuples sharing
the same hashtag are aggregated together, and routed to
the same instance of A by fµ (cf. § 2.2). In the example,
output tuples 〈10:00, [red, 13]〉 and 〈10:00, [pink, 13]〉 are the
results of aggregating the input tuples covering the event
time [09:00, 10:00), 〈09:50, [pink, 11]〉 and 〈09:58, [pink, 13]〉
for key pink, and 〈09:58, [red, 13]〉 for key red.

APPENDIX D
EXAMPLE OPERATORS

This appendix provides several complete examples. It be-
gins by providing one example for the A+ and one example
for the J+ operators introduced in § 4. The latter operator
is one of the operators used to evaluate STRETCH in § 8.
The remaining examples are for other operators that are also
used in § 8.

A+ – compute longest tweet per hashtag
This A+ operator is the running example from § 1. We
assume that the input schema is defined as 〈τ, [user, tweet]〉,
while the output schema SO as 〈τ, [hashtag, chars]〉, where
hashtag and chars represent the number of characters chars
of the longest tweet observed for each hashtag. As shown in
Operator 2, fMK returns one key for each hashtag contained
in the tweet attribute of t (L3). Each hashtag is then matched
with one instance by fµ, hashing the key and returning its
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Operator 2: User-defined parameters (cf. § 4) for an
A+ computing the longest tweet on a per-hashtag
basis.

A+(WA,WS, 1, fMK,multi, SO, fµ, fU , fO,−), where:

1 Function fMK(t)
2 K←− {}
3 for h ∈ hashtags(t.ϕ[2]) do K←− K ∪ h
4 return K
5 Function fµ(k)
6 return hash(k)%Π(A+)
7 Class ζ
8 long count
9 Function fU (w, t) // Update count based on t.ϕ[2]

10 if length(t.ϕ[2])> w.ζ.count then
11 w.ζ.count←−length(t.ϕ[2])
12 return {w.ζ}
13 Function fO(w, t)
14 return {w.k,w.ζ.count}

value modulo the parallelism degree of A+. The state asso-
ciated with each window instance w is a counter. Function
fU is invoked to update such count, while fO is invoked to
forward the hashtag (k) and count of each expired window
instance. Since WT = multi, each expired window instance
is simply removed after being passed as parameter to fO .

Operator 3: User-defined parameters (cf. § 4) for a
J+ implementing ScaleJoin [13].

J+(WA,WS, 2, fMK, single, SO, fµ, fU ,−,−), where:

1 Function fMK(t)
2 return {1, . . . , 1000}
3 Function fµ(k)
4 return hash(k)%Π(J+)
5 Class ζ
6 long c // tuple counter
7 queue<t> T // previous tuples
8 Function fU ({w1, w2}, t)
9 TO ←− {} // create set for output tuples

10 w1.ζ.c←− w1.ζ.c+ 1 // increase c of win inst.
11 w2.ζ.c←− w2.ζ.c+ 1
12 if t from U1 then // set this/opposite win.

inst.
13 thisw ←− w1

14 oppw ←− w2

15 else
16 thisw ←− w2

17 oppw ←− w1

18 while oppw.ζ.T [0].τ + WS < t.τ do // purge
19 oppw.ζ.T .dequeue()
20 for t′ ∈ oppw.ζ.T do // match
21 if t′ and t match then TO ←− TO ∪ {t′.ϕ, t.ϕ}
22 if c%1000 =thisw.k then // store t
23 thisw.ζ.T .enqueue(t)
24 return TO // return results

Algorithm 8: Method process for the M used
in § 8.1 in Flink’s wordcount implementation.

1 Function process(t)
2 for w ∈split(t.ϕ[2]) do forward(〈t.τ, [w]〉)

J+ – ScaleJoin
To provide an example of a J+, we now show how O+

can be used to implement ScaleJoin [13], which performs a
Cartesian join of all tuples belonging to two windows.

Operator 4: User-defined parameters for the A used
in § 8.1 in Flink’s wordcount/paircount imple-
mentation.

A(60s, 120s, 1, fSK,multi, fµ, SO, fA, fR), where:

1 Function fSK(t) // implementation for wordcount
2 return t.ϕ[1]
3 Function fSK(t) // implementation for paircount
4 return 〈t.ϕ[1], t.ϕ[2]〉
5 Function fµ(k)
6 return hash(k)%Π(A)
7 Class ζ
8 long count
9 Function fA(w, t)

10 w.ζ.count←− w.ζ.count+1
11 return {w.ζ}
12 Function fR(w, t)
13 return {w.k,w.ζ.count}

Algorithm 9: Method process for the M used
in § 8.1 in Flink’s paircount implementation.

Instance-local variables:
1 B // Maximum dist. for 2 words to form a pair

2 Function process(t)
3 W←−split(t.ϕ[2])
4 for i ∈ 0, . . . , |W| − 1 do
5 for j ∈ i+ 1, . . . , |W| − 1 do
6 if j − i ≤ B then forward(〈t.τ, [W[i],W[j]]〉)

To run in a parallel and skew-resilient fashion, it delivers
each input tuple (from any of the two input streams) to all
instances, and has each instance compare it with a share
of previous tuples (from any of the two input streams).
Each tuple is stored, in a round-robin fashion, by exactly
one of the instances. We assume in this case that SO is the
concatenation of schemas from the two input streams.

As shown in Operator 3, this implementation maintains
a fixed number of keys, larger than Π(J+) (1000 in the
example). All keys are returned for each tuple by fMK (L2).
Hence, each instance will be given the chance of running fU
for their share of keys (L4). The state associated with each
window instance consists of counter c and a queue of tuples
(L6-7). Since I = 2, function fU is invoked passing two
window instances together with t. The counter of each pair
of window instances (for all keys) is consistently increased
by one for each window instance upon reception of the same
tuple for all j+

i , because ESGout delivers all tuples in the
same order to all instances. Afterward, t is used to purge
all stale tuples from the window instance opposite to t’s
stream and subsequently matched with all remaining tuples
in such window instance. Finally, t is stored, in a round-
robin fashion based on c, in the window instance associated
with exactly one key by one instance (L12-24).

Other evaluation operators
This section covers additional examples for other operators
used in § 8. Algorithm 8 and Operator 4 refer to the
process method of M and the implementation of A in
Flink, respectively, for the wordcount experiment in § 8.2,
while Algorithm 9 and Operator 4 are the ones used in Flink
for M and A, respectively, for the paircount experiment
in § 8.2. In this case, we re-use the same Operator and spe-
cialize function fSK for compact notation. Operator 5 is the
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A+ used in STRETCH for the wordcount and paircount
experiments in § 8.2. Also in this case, we re-use the same
Operator and specialize fMK for compact notation. Finally,
Operator 6 is used to measure the maximum through-
put/minimum latency when the performance bottleneck is
given by data sharing/sorting (§ 8.2).

Operator 5: User-defined parameters for
the A+ used in § 8.1 for STRETCH’s
wordcount/paircount implementation.

A+(WA,WS, 1, fMK,multi, SO, fµ, fU , fO,−), where:

1 Function fMK(t) // implementation for wordcount
2 K←− {}
3 for w ∈split(t.ϕ[2]) do K←− K ∪ w
4 return K
5 Function fMK(t) // implementation for paircount.

Parameter B (the max. dist. for 2 words to
form a pair) is a local variable of fMK.

6 K←− {}
7 W←−split(t.ϕ[2])
8 for i ∈ 0, . . . , |W| − 1 do
9 for j ∈ i+ 1, . . . , |W| − 1 do

10 if j − i ≤ B then K←− K ∪ 〈W[i],W[j]〉
11 return K
12 Function fµ(k)
13 return hash(k)%Π(A+)
14 Class ζ
15 long count
16 Function fU (w, t)
17 w.ζ.count←− w.ζ.count+1
18 return {w.ζ}
19 Function fO(w, t)
20 return {w.k,w.ζ.count}

Operator 6: O+ for Q2 and Π(O+) = n.

O+(δ, δ, 2, fMK, single, SO, fµ, fU ,−,−), where:

1 Function fMK(t)
2 return {1, . . . , n}
3 Function fµ(k)
4 return k
5 Function fU ({w1, w2}, t)
6 return {∅, ∅, t.ϕ} // return empty states for w1

and w2 and t’s payload

APPENDIX E
EXAMPLE FOR THEOREM 2
In here, we continue the example introduced in Appendix C,
focusing on the execution path (in terms of invoked func-
tions) that is triggered for the A+ of Appendix D (which im-
plements the same semantics of the M and A from Figure 15)
upon the reception of tuple t = 〈09:58, [C, “hi #red #pink”]〉.
We assume in this case that the WA and WS parameters
for A+ are set to 30 minutes and 1 hour, respectively. As
we show next, the events triggered on O+’s state upon
reception of t are the same triggered for A in Figure 15 upon
the reception of the two tuples produced by M from t, i.e.
〈09:58, [red, 13]〉 and 〈09:58, [pink, 13]〉.

For simplicity, we assume all the input tuples’ times-
tamps from Figure 15 are valid watermarks for A+ (as
stated in § 3 such information can be carried in tuples’
metadata). Hence, given the WA/WS parameters of A/A+,

Execution Trace 1: Execution trace for the A+ in
Appendix D, upon invocation of processSN(t =
〈09:58, [C,“hi #red #pink”]〉)

Initial State:
W = 09:00
σ = {〈11, 09:00, “pink”〉, 〈11, 09:30, “pink”〉}

1 updateW (t) // W ←− 09:58
2 handleInputTuple(t)
3 earliestWinL(t) // τ1 ←− 09:00
4 latestWinL(t) // τ2 ←− 09:30
5 σj.check&Create(“red”,09:00)
// σ ←− {〈11,09:00, “pink”〉, 〈0,09:00, “red”〉,
// 〈11,09:30, “pink”〉}

6 σj.set(“red”, 0, {13})
// σ ←− {〈11,09:00, “pink”〉, 〈13,09:00, “red”〉,
// 〈11,09:30, “pink”〉}

7 σj.check&Create(“red”,09:30)
// σ ←− {〈11,09:00, “pink”〉, 〈13,09:00, “red”〉,
// 〈11,09:30, “pink”〉, 〈0,09:30, “red”〉}

8 σj.set(“red”, 1, {13})
// σ ←− {〈11,09:00, “pink”〉, 〈13,09:00, “red”〉,
// 〈11,09:30, “pink”〉, 〈13,09:30, “red”〉}

9 σj.check&Create(“pink”,09:00)
10 σj.set(“pink”, 0, {13})

// σ ←− {〈13,09:00, “pink”〉, 〈13,09:00, “red”〉,
// 〈11,09:30, “pink”〉, 〈13,09:30, “red”〉}

11 σj.check&Create(“pink”,09:30)
12 σj.set(“pink”, 1, {13})

// σ ←− {〈13,09:00, “pink”〉, 〈13,09:00, “red”〉,
// 〈13,09:30, “pink”〉, 〈13,09:30, “red”〉}

and since the tuple previously processed by A/A+ was
〈09:50, [B, “hello #pink”]〉, only window instances such that
l ≥ 09 : 00 are maintained by A+ upon reception of t.

The initial state and the execution path following the
invocation of processSN for tuple t are shown in Listing 1.
The first invoked method is updateW , and W accordingly
updated to 09:58 (L1). Since WT = multi, τ1 and τ2 are
set to 09:00 and 09:30 within the execution of method
handleInpuTuple (L2-4). Subsequently, all window in-
stances for key “red” and “pink”, and for l = 09:00 and
l = 09:30, are updated (L5-12). Since the window instances
for key “pink” are already in place before the processing
of t, only the counter maintained in their ζ is updated. As
shown in L12, the final state maintained by A+, contains
the window instances that will then result in the production
of tuples 〈10:00, [red, 13]〉 and 〈10:00, [pink, 13]〉 (Figure 15)
once their timestamp is set to l + WS (i.e., to 10:00).

APPENDIX F
ADDITIONAL EXPERIMENTS

This section contains additional experiments, similar to the
one presented in § 8.5. These 20 minutes long experiments
stress-test STRETCH’s reconfigurations with several phases
in which the input rate is subject to abrupt changes.
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Fig. 16: Results of adjusting the number of processing
threads with respect to the input rate for synthetic data.
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Fig. 17: Results of adjusting the number of processing
threads with respect to the input rate for synthetic data.
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Fig. 18: Results of adjusting the number of processing
threads with respect to the input rate for synthetic data.
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Fig. 19: Results of adjusting the number of processing
threads with respect to the input rate for synthetic data.
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